JP6536568B2 - Green die for casting cast steel article and method for producing the same, and method for producing cast steel article using the green die - Google Patents

Green die for casting cast steel article and method for producing the same, and method for producing cast steel article using the green die Download PDF

Info

Publication number
JP6536568B2
JP6536568B2 JP2016510433A JP2016510433A JP6536568B2 JP 6536568 B2 JP6536568 B2 JP 6536568B2 JP 2016510433 A JP2016510433 A JP 2016510433A JP 2016510433 A JP2016510433 A JP 2016510433A JP 6536568 B2 JP6536568 B2 JP 6536568B2
Authority
JP
Japan
Prior art keywords
sand
green
cast steel
thermosetting resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016510433A
Other languages
Japanese (ja)
Other versions
JPWO2015147069A1 (en
Inventor
賢太郎 福本
賢太郎 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPWO2015147069A1 publication Critical patent/JPWO2015147069A1/en
Application granted granted Critical
Publication of JP6536568B2 publication Critical patent/JP6536568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/181Cements, oxides or clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00

Description

本発明は、特に難削材として知られるステンレス系鋳鋼品を鋳造するのに好適な生型及びその製造方法、並びにかかる生型を用いた鋳鋼品の製造方法に関する。   The present invention relates to a green mold suitable for casting a stainless steel cast steel product particularly known as a hard-to-cut material, a method of manufacturing the green mold, and a method of manufacturing a cast steel product using the green mold.

鋳鋼品の鋳造用生型を形成する鋳物砂は、一般に骨材(砂)、ベントナイト等の粘結材、二次添加物である炭素成分(石炭材、澱粉等)、及び水を含んでいる。鋳物砂中の骨材、粘結材等の割合は、成型された生型が所望の物性[通気度、強度、キャビティ表面の安定性及びコンパクタビリティ(CB値)等]を有するように適宜設定される。鋳物砂に添加される石炭粉、コークス粉、黒鉛粉、ピッチ粉等の炭素成分は、鋳物への骨材(砂)の付着(砂焼付)を抑制し、鋳放し状態での鋳鋼品の鋳肌品質を安定させる。石炭材に関する技術は、特開昭63-177939号及び特開2009-291801号に開示されている。   The foundry sand forming the casting mold of the cast steel product generally contains aggregate (sand), caking agent such as bentonite, carbon component (coal material, starch, etc.) which is a secondary additive, and water. . The proportions of aggregate, caking additive, etc. in the casting sand are appropriately set so that the molded green mold has desired physical properties [air permeability, strength, stability of cavity surface and compatibility (CB value), etc.] Be done. Carbon components such as coal powder, coke powder, graphite powder and pitch powder added to casting sand suppress adhesion (sand baking) of aggregate (sand) to the casting and cast the cast steel product in the as-cast condition Stabilize skin quality. Techniques related to coal materials are disclosed in Japanese Patent Application Laid-Open Nos. 63-177939 and 2009-291801.

特開昭63-177939号は、鉱油10〜90重量%と炭素質原料90〜10重量%とを含有する鋳物砂型用添加剤1〜2部と、骨材100部と、ベントナイト(粘結材)10部と、澱粉1部と、水3部とを混錬し、得られた鋳物砂を成型することにより鋳造用生型を製造する方法を開示している。また、特開2009-291801号は、グリセリンを含有する食用植物油を主成分とする炭素質添加剤と、ベントナイト(粘結材)と、必要に応じて澱粉等の添加剤と、一定量の水とを含有する生型用鋳物砂を開示している。   Japanese Patent Application Laid-Open No. 63-177939 discloses that 1 to 2 parts of an additive for casting sand mold containing 10 to 90% by weight of mineral oil and 90 to 10% by weight of carbonaceous raw material, 100 parts of aggregate, and bentonite (caking agent) The present invention discloses a method for producing a green casting mold by kneading 10 parts, 1 part of starch and 3 parts of water and molding the obtained casting sand. In addition, JP 2009-291801 A comprises a carbonaceous additive mainly composed of an edible vegetable oil containing glycerin, bentonite (caking agent), an additive such as starch according to need, and a certain amount of water A green casting sand is disclosed.

しかし、特開昭63-177939号及び特開2009-291801号に開示された添加剤はいずれも鉱油、炭素質原料又は植物油を含んでおり、これらが添加された鋳物砂で形成された生型を用いて0.05〜0.60質量%程度の炭素を含む亜共析組成である鋳鋼品を鋳造すると、生型に含まれる炭素分により鋳肌表面に浸炭が生じるおそれがある。鋳肌表層に浸炭があると、鋳鋼品が難削化する。この問題は、例えば内燃機関用排気部材として用いる耐熱特性及び耐食特性が求められるステンレス系鋳鋼品の場合、特に深刻である。   However, the additives disclosed in JP-A-63-177939 and JP-A-2009-291801 all include mineral oil, carbonaceous raw material or vegetable oil, and a green mold formed of foundry sand to which these are added When casting a cast steel product having a hypoeutectoid composition containing about 0.05 to 0.60% by mass of carbon using the above, there is a risk that carburization may occur on the surface of the casting due to the carbon content contained in the green mold. If there is carburization on the surface of the cast surface, the cast steel product becomes difficult to cut. This problem is particularly serious in the case of stainless steel castings which are required to have heat resistance and corrosion resistance, for example, as exhaust members for internal combustion engines.

従って本発明の目的は、砂焼付の発生を抑制して従来並の鋳肌品質を維持しつつ、鋳肌表層の浸炭を抑制する鋳鋼品の鋳造用生型及びその製造方法、並びにかかる生型を用いた鋳鋼品の製造方法を提供することである。   Therefore, an object of the present invention is to provide a cast steel casting green mold for suppressing the carburization of the surface of the casting surface while suppressing the occurrence of sand burning and maintaining the conventional cast surface quality, and a method of manufacturing the same, and such green mold It is to provide a method of producing a cast steel product using

従来並の鋳肌品質(砂焼付)を維持しつつ鋳肌表層の浸炭を抑制するという相矛盾する二つの目的を両立させるために鋭意研究した結果、(1) 生型を構成する鋳物砂中の炭素分の割合を浸炭が生じない程度にまで低減し、かつ(2) 生型の凹部に形成する熱硬化性樹脂の被覆層の厚さを、キャビティに入った溶湯の凝固が開始するまでキャビティ表面を熱硬化性樹脂の分解ガスで覆って砂焼付を防止するとともに、溶湯が凝固すると直ちに分解ガスが消失するような厚さに設定すると、鋳肌品質の維持と鋳肌表層の浸炭の抑制を同時に達成できることを発見し、本発明に想到した。   As a result of keen research to make the two contradictory objectives of suppressing carburization of the surface of the casting surface compatible while maintaining the conventional casting surface quality (sand burning), as a result, (1) In the casting sand that constitutes the green mold Reduce the carbon content of carbon black to such an extent that carburization does not occur, and (2) the thickness of the coating layer of thermosetting resin formed in the hollow of the green mold until solidification of the molten metal entering the cavity starts Covering the cavity surface with the decomposition gas of thermosetting resin to prevent sand burning and setting the thickness so that the decomposition gas disappears immediately when the molten metal solidifies, maintenance of cast surface quality and carburization of cast surface layer The inventors have discovered that suppression can be achieved simultaneously and have contemplated the present invention.

すなわち、鋳鋼品を鋳造するための本発明の生型は、
砂と、粘結材と、炭素分とを含む鋳物砂からなり、
少なくとも鋳鋼品を鋳造するキャビティを含む凹部に熱硬化性樹脂の被覆層が形成されており、
前記炭素分は、炭素粉、石炭、黒鉛、コークス、ピッチコークス、アスファルト、デキストリン、澱粉、鉱油、及び植物油から選択された1種又は2種以上に含まれる炭素成分であり、前記砂100質量部に対して3質量部以下(0質量部を含まない)含まれ、
前記被覆層が、株式会社ナカヤマ製の自硬性硬度計NK-009を使用して測定した50〜95の平均硬度、及び0.5〜2.5 mmの厚みを有することを特徴とする。
That is, the green mold of the present invention for casting a cast steel article is
Foundry sand, which contains sand, caking agent, and carbon ,
A cover layer of a thermosetting resin is formed in a recess including at least a cavity for casting a cast steel product,
The carbon content is a carbon component contained in one or more selected from carbon powder, coal, graphite, coke, pitch coke, asphalt, dextrin, starch, mineral oil, and vegetable oil, and 100 parts by mass of the sand Up to 3 parts by mass (not including 0 parts by mass),
The coating layer is characterized in that it has an average hardness of 50 to 95 and a thickness of 0.5 to 2.5 mm measured using a self-hardening hardness tester NK-009 manufactured by Nakayama Co., Ltd.

前記被覆層を構成する熱硬化性樹脂の塗布量は固形分基準で100〜500 g/m2であるのが好ましい。It is preferable that the application quantity of the thermosetting resin which comprises the said coating layer is 100-500 g / m < 2 > on solid content basis.

大気中で800℃まで10℃/分の速度で昇温した後の前記被覆層の単位体積当たりの炭素残存量は20〜200 mg/cm3であるのが好ましい。The amount of carbon remaining per unit volume of the coating layer after the temperature is raised to 800 ° C. at a rate of 10 ° C./min in the atmosphere is preferably 20 to 200 mg / cm 3 .

上記生型を製造する本発明の方法は、
砂と、粘結材と、砂100質量部に対して3質量部以下(0質量部を含まない)の炭素分とを含む鋳物砂を造型することにより、鋳鋼品を鋳造するためのキャビティを含む凹部を有する少なくとも一対の生型部(例えば、上型及び下型)を作製し、
熱硬化性樹脂と有機溶媒とを含む塗布液を少なくとも前記凹部に塗布し、
前記凹部に塗布された熱硬化性樹脂を加熱硬化させて、株式会社ナカヤマ製の自硬性硬度計NK-009を使用して測定した50〜95の平均硬度を有する被覆層を形成することを特徴とする。
The method of the present invention for producing the above green mold is
A cavity for casting a cast steel article is formed by molding a casting sand containing sand, a caking additive, and a carbon content of 3 parts by mass or less (not including 0 parts by mass) with respect to 100 parts by mass of sand. Producing at least a pair of green parts (e.g., upper and lower molds) having recesses including;
A coating liquid containing a thermosetting resin and an organic solvent is applied to at least the recess,
The thermosetting resin applied to the concave portion is heat cured to form a coating layer having an average hardness of 50 to 95 measured using a self- hardening hardness tester NK-009 manufactured by Nakayama Co. , Ltd. I assume.

前記熱硬化性樹脂の加熱硬化は、型合わせの前及び/又は後に行うことができる。第一の実施形態では、前記熱硬化性樹脂を加熱硬化した後に少なくとも一対の生型部を型合わせする。第二の実施形態では、塗布した塗布液を乾燥してなる被覆層の硬化を、株式会社ナカヤマ製の自硬性硬度計NK-009を使用して測定した硬度として、30〜45の平均硬度となるまで加熱する第一の硬化工程と、一次硬化した被覆層をさらに加熱して平均硬度を50〜95とする第二の硬化工程とにより行う。
The heat curing of the thermosetting resin can be performed before and / or after mold alignment. In the first embodiment, at least a pair of green parts are heat-cured after the thermosetting resin is cured. In the second embodiment, the curing of the coating layer formed by drying the applied coating solution has an average hardness of 30 to 45 as a hardness measured using a self- hardening hardness tester NK-009 manufactured by Nakayama Co. , Ltd. The first curing step of heating until the above and the second curing step of further heating the primarily cured coating layer to make the average hardness 50 to 95.

前記塗布液の粘度は15〜100 mPa・sであるのが好ましい。   The viscosity of the coating solution is preferably 15 to 100 mPa · s.

本発明の鋳鋼品の製造方法は上記生型を使用することを特徴とする。   The method for producing a cast steel product of the present invention is characterized by using the above-mentioned green mold.

本発明の生型は、砂100質量部に対して3質量部以下の炭素分(0質量部を含まない)とを含む鋳物砂からなる生型の凹部に熱硬化性樹脂の被覆層が形成されており、前記被覆層が50〜95の平均硬度(自硬性硬度計で測定)及び0.5〜2.5 mmの厚みを有するので、従来並の鋳肌品質を維持しつつ鋳肌表層の浸炭が抑制された鋳鋼品を製造することができる。
In the green mold of the present invention, a coating layer of a thermosetting resin is formed on a green mold recess made of foundry sand containing 3 parts by mass or less of carbon (not including 0 parts by mass) with respect to 100 parts by mass of sand. Because the coating layer has an average hardness of 50 to 95 (measured with a self-hardening hardness tester) and a thickness of 0.5 to 2.5 mm, carburization of the surface layer of the cast surface is suppressed while maintaining the conventional cast surface quality Cast steel products can be manufactured.

本発明の生型の構成を示す断面図である。It is sectional drawing which shows the structure of the green mold of this invention. 図1のA部を示す拡大部分断面図である。It is an expanded fragmentary sectional view which shows the A section of FIG. 図1の生型の製造工程の第一の例における造型工程を示す断面図である。It is sectional drawing which shows the molding process in the 1st example of the manufacturing process of the green mold of FIG. 図1の生型の製造工程の第一の例における塗布液の塗布工程を示す断面図である。It is sectional drawing which shows the application | coating process of the coating liquid in the 1st example of the manufacturing process of the green mold of FIG. 図1の生型の製造工程の第一の例における熱硬化性樹脂の硬化工程を示す断面図である。It is sectional drawing which shows the hardening process of the thermosetting resin in the 1st example of the manufacturing process of the green mold of FIG. 図1の生型の製造工程の第一の例における型合わせ工程を示す断面図である。It is sectional drawing which shows the type | mold alignment process in the 1st example of the manufacturing process of the green mold of FIG. 図1の生型の製造工程の第二の例における造型工程を示す断面図である。It is sectional drawing which shows the molding process in the 2nd example of the manufacturing process of the green mold of FIG. 図1の生型の製造工程の第二の例における塗布液の塗布工程を示す断面図である。It is sectional drawing which shows the application | coating process of the coating liquid in the 2nd example of the manufacturing process of the green mold of FIG. 図1の生型の製造工程の第二の例における熱硬化性樹脂の第一の硬化工程を示す断面図である。It is sectional drawing which shows the 1st hardening process of the thermosetting resin in the 2nd example of the manufacturing process of the green mold of FIG. 図1の生型の製造工程の第二の例における型合わせ工程を示す断面図である。It is sectional drawing which shows the type | mold setting process in the 2nd example of the manufacturing process of the green mold of FIG. 図1の生型の製造工程の第二の例における熱硬化性樹脂の第二の硬化工程を示す断面図である。It is sectional drawing which shows the 2nd hardening process of the thermosetting resin in the 2nd example of the manufacturing process of the green mold of FIG. 生型を構成する鋳物砂(熱硬化性樹脂を被覆する前)を示す拡大概略図である。It is the expansion schematic which shows the casting sand (before coating a thermosetting resin) which comprises a green mold. 生型を構成する鋳物砂に熱硬化性樹脂を被覆した状態を示す拡大概略図である。It is the expansion schematic which shows the state which coat | covered the thermosetting resin with the casting sand which comprises a green mold. 図1の生型を用いた鋳鋼品の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the cast steel goods using the green mold of FIG. 図6のB部を示す拡大部分断面図である。FIG. 7 is an enlarged partial cross-sectional view showing part B of FIG. 6; 実施例1の生型を構成する鋳物砂を示すSEM写真(100倍)である。It is a SEM photograph (100 times) which shows the molding sand which comprises the green mold of Example 1. FIG. 実施例1の生型を構成する鋳物砂にフェノール樹脂を被覆した状態を示すSEM写真(100倍)である。It is a SEM photograph (100 times) which shows the state which covered the phenol resin on the foundry sand which comprises the green mold of Example 1. FIG.

本発明の実施形態を添付図面を参照して以下詳細に説明するが、本発明はそれらに限定されるものではない。一つの実施形態に関する説明は、特に断りがなければ他の実施形態にも適用される。   Embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but the present invention is not limited thereto. The description of one embodiment also applies to the other embodiments unless otherwise stated.

図1は本発明の生型の構成を示し、図2は図1のA部を拡大して示し、図3及び図4は図1の生型の製造工程を示し、図6は図1の生型を用いた鋳鋼品の製造工程を示す。ここで「鋳鋼品」とは、0.05〜0.6質量%のC及びその他の元素(Ni、Cr、Si、W、Mo、Nb等)を含有し、残部がFe及び不可避不純物からなる亜共析組成の鋳物を意味するが、勿論限定的ではない。   1 shows the structure of the green mold of the present invention, FIG. 2 shows an enlarged part A of FIG. 1, FIG. 3 and FIG. 4 show the manufacturing process of the green mold of FIG. The manufacturing process of the cast steel goods using a green mold is shown. Here, the “cast steel product” is a hypoeutectoid composition containing 0.05 to 0.6% by mass of C and other elements (Ni, Cr, Si, W, Mo, Nb, etc.), with the balance being Fe and unavoidable impurities. Of the castings, but of course not limiting.

[1] 生型の構成
図1に示すように、鋳物砂からなる生型1は、見切り面(型合わせ面)1eで型合わせされた上型1a及び下型1bからなる。上型1aと下型1bとが型合わせされ生型1は、内部に製品を形成するためのキャビティ(製品キャビティ)1cと、湯道1dとを有する。製品キャビティ1c及び湯道1dは、上型1a及び下型1bの各々において凹部により形成されている。勿論、生型1の周囲に型枠を配置しても良い。また製品キャビティ1c及び湯道1d以外に、生型1に押湯、堰、湯口等を設けても良い。
[1] Configuration of Green Mold As shown in FIG. 1, a green mold 1 made of foundry sand is composed of an upper mold 1a and a lower mold 1b which are mold-matched by a parting surface (mold mating surface) 1e. The upper mold 1a and the lower mold 1b are mold-matched, and the green mold 1 has a cavity (product cavity) 1c for forming a product therein and a runner 1d. The product cavity 1c and the runner 1d are formed by recesses in each of the upper mold 1a and the lower mold 1b. Of course, a mold may be arranged around the green mold 1. In addition to the product cavity 1c and the runner 1d, the green mold 1 may be provided with a pouring bath, a gutter, a sprue and the like.

(A) 鋳物砂
鋳物砂は、砂と、粘結材と、炭素分とを含む。
(A) Foundry sand Foundry sand contains sand, caking additive and carbon content.

(1) 砂
鋳物砂を構成する骨材としての砂自体は通常使用されているもので良く、例えば山砂、半合成砂又は合成砂を使用することができる。山砂は天然に産出する粘土分が少なくとも2%のものであれば良く、例えば愛知県産の野間砂、大阪府産の河内砂、三重県産の志摩砂、島根県産の松江砂、福島県産の大田砂等の他、遠州砂、玄海砂等が挙げられる。半合成砂としては、山砂にケイ砂、粘結剤及び添加剤を適当に配合したものが挙げられる。合成砂としては、山砂を全く使用せずにケイ砂等の原料砂に粘結剤及び添加剤とを配合してなるものが挙げられる。合成砂に使用する原料砂としては、ガイロメケイ砂、浜砂及び川砂等の天然ケイ砂、人造ケイ砂、ジルコンケイ酸、オリピン砂、クロマイト砂等が挙げられる。
(1) Sand The sand itself as an aggregate which comprises casting sand may be what is normally used, for example, mountain sand, semi-synthetic sand, or synthetic sand can be used. The mountain sand should have a naturally occurring clay content of at least 2%, for example, Noma sand from Aichi Prefecture, Kawachi sand from Osaka Prefecture, Shima sand from Mie Prefecture, Matsue sand from Shimane Prefecture, Fukushima Other than Ota sand from prefecture, Enshu sand, Genkai sand etc. are mentioned. Examples of semi-synthetic sand include those obtained by appropriately blending silica sand, caking agents and additives with mountain sand. Examples of synthetic sand include those obtained by blending raw material sand such as silica sand with a caking agent and an additive without using any mountain sand. As raw material sand used for synthetic sand, natural silica sand such as guillome sand, beach sand and river sand, artificial silica sand, zircon silicic acid, olipin sand, chromite sand and the like can be mentioned.

(2) 粘結材
粘結材としては、ベントナイト、粘土、モンモリロナイト、カオリン等が挙げられる。粘結材の量は生型の特性を考慮して適宜調整するが、一般に砂100質量部に対して5〜12質量部である。
(2) Caking additive Examples of the caking additive include bentonite, clay, montmorillonite, kaolin and the like. Although the quantity of a caking additive is suitably adjusted in consideration of the characteristic of a green type, it is generally 5-12 mass parts to 100 mass parts of sand.

(3) 炭素分
炭素分としては、石炭、黒鉛、コークス、ピッチコークス、アスファルト等の炭素質原料、デキストリン、澱粉等の澱粉質添加剤、鉱油、植物油等の液体状油等が挙げられる。炭素分は砂又は粘結材に含有されている炭素化合物を含まない。炭素分は単独で用いても2種以上を組合せて用いても良い。
(3) Carbon content Carbon content includes carbonaceous raw materials such as coal, graphite, coke, pitch coke and asphalt, starchy additives such as dextrin and starch, and liquid oils such as mineral oil and vegetable oil. The carbon content does not include carbon compounds contained in sand or caking agent. The carbon content may be used alone or in combination of two or more.

鋳鋼品の浸炭を防止するために、本発明では炭素分は砂100質量部に対して3質量部以下(0質量部を含まない)とする。炭素分が3質量部超の鋳物砂からなる生型を用いて鋳造すると、鋳肌表層の浸炭が進む。炭素分の配合量は1質量部がより好ましく、0.7質量部以下が最も好ましい。 In order to prevent carburization of cast steel products, in the present invention, the carbon content is 3 parts by mass or less (not including 0 parts by mass) with respect to 100 parts by mass of sand. When it casts using the green mold which consists of casting sand whose carbon content exceeds 3 mass parts, carburization of the cast surface layer progresses. As for the compounding quantity of carbon content, 1 mass part is more preferable, and 0.7 mass part or less is the most preferable.

(B) 被覆層
図1及び図2に示すように、少なくとも製品キャビティ1cの表層に、熱硬化性樹脂からなる50〜95の平均硬度(自硬性硬度計で測定)を有する被覆層1fが形成されている。従来並の鋳肌品質を維持しつつ鋳肌表層の浸炭を抑制するという本発明の目的から、製品キャビティ1cに被覆層1fが形成されていれば良いが、溶湯が通る湯道1dにも被覆層1fを形成すれば、浸炭の抑制に効果的である。従って、本発明では少なくともキャビティ1c及び湯道1dを含む凹部に被覆層1fを形成する。さらに、見切り面1eにも被覆層1fを形成しておけば、それらの表面の強度を高めることができ、溶湯の供給時における型壊れ等を抑制できる。
(B) Coating layer As shown in FIGS. 1 and 2, at least the surface layer of the product cavity 1c is formed with a coating layer 1f having an average hardness of 50 to 95 (measured with a self-hardening hardness meter) made of a thermosetting resin. It is done. For the purpose of the present invention to suppress carburization of the surface layer of the cast surface while maintaining the conventional cast surface quality, it is sufficient if the coating layer 1f is formed in the product cavity 1c. Forming the layer 1 f is effective in suppressing carburization. Therefore, in the present invention, the covering layer 1 f is formed in the recess including at least the cavity 1 c and the runner 1 d. Furthermore, if the covering layer 1f is formed also on the parting surface 1e, the strength of the surface thereof can be enhanced, and mold breakage and the like at the time of supply of the molten metal can be suppressed.

熱硬化性樹脂は、鋳鋼の溶湯に接触すると容易に分解してガス化し得るとともに、型合わせ時に破損しないように高強度及び高硬度を有する熱硬化性樹脂であれば特に限定されず、例えばフェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂(ユリア樹脂)、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミド等が挙げられる。熱硬化性樹脂からなる被覆層1fの平均硬度は50〜95の範囲内である。被覆層1fの硬度は自硬性硬度計(株式会社ナカヤマ製、型式:NK-009)を使用して求める。被覆層1fの平均硬度が低すぎると砂焼付を抑制できず、また高すぎると通気度が確保できずガス欠陥が発生するおそれがある。   The thermosetting resin is not particularly limited as long as it is a thermosetting resin having high strength and high hardness so as to be easily decomposed and gasified when it contacts a molten metal of cast steel and not to be damaged at the time of mold alignment. Examples thereof include resins, epoxy resins, melamine resins, urea resins (urea resins), unsaturated polyester resins, alkyd resins, polyurethanes, thermosetting polyimides, and the like. The average hardness of the covering layer 1 f made of a thermosetting resin is in the range of 50 to 95. The hardness of the covering layer 1 f is determined using a self-hardening hardness tester (manufactured by Nakayama Co., Ltd., model: NK-009). If the average hardness of the covering layer 1 f is too low, sand burning can not be suppressed, and if it is too high, air permeability can not be ensured, and gas defects may occur.

被覆層1fを構成する熱硬化性樹脂は高温の溶湯に触れると分解し、ガスとなって消失するが、一部が炭化して炭素分が製品キャビティ1cの表層に残存するおそれがある。鋳肌表層の浸炭を効果的に抑制するために、大気中で室温から800℃まで10℃/分の速度で昇温したときの被覆層1fの単位体積当たりの炭素の残存量は200 mg/cm3以下であるのが好ましい。炭素の残存量が少なすぎると、ガスの発生が少ないために砂焼付が発生しやすくなる。従って、炭素の残存量は20 mg/cm3以上であるのが好ましい。また、炭素の残存量が多すぎると鋳肌表層の浸炭を十分に防止できないので、炭素の残存量の上限を200 mg/cm3とするのが好ましい。炭素の残存量は20〜100 mg/cm3であるのがより好ましい。なお、炭素残存量は熱硬化性樹脂の熱重量分析(Thermogravimetric Analysis:TGA)により測定できる。The thermosetting resin constituting the covering layer 1f decomposes when it contacts the high-temperature molten metal and disappears as a gas, but there is a possibility that a part of it is carbonized and the carbon content remains on the surface layer of the product cavity 1c. In order to effectively suppress carburization of the surface layer of the casting, the residual amount of carbon per unit volume of the covering layer 1f is 200 mg / h when the temperature is raised from room temperature to 800 ° C. at a rate of 10 ° C./min. It is preferable that it is cm 3 or less. If the residual amount of carbon is too small, sand burning is likely to occur because the amount of gas generation is small. Therefore, the residual amount of carbon is preferably 20 mg / cm 3 or more. If the amount of carbon remaining is too large, carburization of the surface layer of the casting can not be sufficiently prevented, so the upper limit of the amount of carbon remaining is preferably 200 mg / cm 3 . The residual amount of carbon is more preferably 20 to 100 mg / cm 3 . The amount of carbon remaining can be measured by thermogravimetric analysis (TGA) of a thermosetting resin.

図2に示すように、砂1j及び粘結材(図示せず)等で構成された生型1は、通気性を確保するため砂1jの間に多くの空隙(気孔)1iを有する。有機溶媒に熱硬化性樹脂を溶解した塗布液は製品キャビティ1cの表層に存在する気孔1iに浸透するので、塗布液の乾燥後に、表層に存在する砂1jの表面に熱硬化性樹脂が残留する。その結果、製品キャビティ1cの表層に砂1jの表面が熱硬化性樹脂で覆われた領域が形成される。この領域を被覆層1fと呼ぶ。被覆層1fでは、砂1jの表面が熱硬化性樹脂で覆われているだけで、空隙(気孔)1iは残存している。図2に示すように熱硬化性樹脂の深さは一定ではないので、被覆層1fの厚みTは平均値により表す。被覆層1fの厚みTの平均値は、被覆層1fを形成した製品キャビティ1cの断面を複数箇所(例えば3箇所)測定し、平均すれば求めることができる。   As shown in FIG. 2, the green mold 1 made of sand 1j and a caking additive (not shown) has many voids (pores) 1i between the sand 1j in order to secure air permeability. The coating solution in which the thermosetting resin is dissolved in the organic solvent penetrates into the pores 1i present in the surface layer of the product cavity 1c, so the thermosetting resin remains on the surface of the sand 1j present in the surface layer after drying of the coating solution. . As a result, an area in which the surface of the sand 1j is covered with the thermosetting resin is formed on the surface layer of the product cavity 1c. This region is called a covering layer 1 f. In the covering layer 1f, only the surface of the sand 1j is covered with the thermosetting resin, and the void (void) 1i remains. Since the depth of the thermosetting resin is not constant as shown in FIG. 2, the thickness T of the covering layer 1 f is represented by an average value. The average value of the thickness T of the covering layer 1 f can be determined by measuring a plurality of (for example, three) cross sections of the product cavity 1 c in which the covering layer 1 f is formed, and averaging the measured values.

被覆層1fの厚みTが大きすぎると、分解されなかった熱硬化性樹脂が炭化し、残存する炭素分により鋳肌表層が浸炭させるおそれがある。鋳肌表層の浸炭を効果的に抑制するために、被覆層1fの厚みTは2.5 mm以下が好ましく、2.0 mm以下がより好ましく、1.5 mm以下が最も好ましい。また、被覆層1fの厚みTが小さすぎると、鋳造作業中に被覆層1fが剥離しやすい。被覆層1fが剥離すると、剥離部に溶湯が侵入して生型の砂と直接接触するため、砂焼付が生じる。従って、被覆層1fの厚みTは0.5 mm以上が好ましい。   If the thickness T of the covering layer 1 f is too large, the thermosetting resin which has not been decomposed may be carbonized, and the remaining carbon content may cause the surface layer of the casting to be carburized. In order to effectively suppress carburization of the cast surface layer, the thickness T of the coating layer 1 f is preferably 2.5 mm or less, more preferably 2.0 mm or less, and most preferably 1.5 mm or less. In addition, when the thickness T of the covering layer 1 f is too small, the covering layer 1 f is easily peeled off during the casting operation. When the covering layer 1f is peeled off, the molten metal intrudes into the peeled portion to be in direct contact with the green sand, thereby causing sand burning. Therefore, the thickness T of the covering layer 1 f is preferably 0.5 mm or more.

被覆層1fは、厚みTだけでなく熱硬化性樹脂の塗布量も重要である。熱硬化性樹脂の塗布量は単位面積当たりの熱硬化性樹脂の乾燥重量(g/m2)により表される。熱硬化性樹脂の塗布量は100〜500 g/m2が好ましい。熱硬化性樹脂の塗布量が100 g/m2未満であると、砂焼付を抑制できない。また、熱硬化性樹脂の塗布量が500 g/m2超であると、生型の通気度が小さくなりすぎてガス欠陥が発生するおそれがあるだけでなく、分解されなかった熱硬化性樹脂が炭化し、残存する炭素分により鋳肌表層が浸炭させるおそれがある。良好な鋳肌品質を維持しつつ鋳肌表層の浸炭を効果的に抑制するために、被覆層1fにおける硬化性樹脂の塗布量は220〜380 g/m2がより好ましい。熱硬化性樹脂の塗布量は、塗布液乾燥後の生型の重量増分ΔD(g)を熱硬化性樹脂の塗布面積(m2)で割ることにより求めることができる。Not only the thickness T but also the coating amount of the thermosetting resin is important for the covering layer 1 f. The coating amount of the thermosetting resin is represented by the dry weight (g / m 2 ) of the thermosetting resin per unit area. The coating amount of the thermosetting resin is preferably 100 to 500 g / m 2 . If the coating amount of the thermosetting resin is less than 100 g / m 2, it is not possible to suppress sand burning. In addition, when the coating amount of the thermosetting resin is more than 500 g / m 2 , not only the air permeability of the green mold becomes too small to cause gas defects but also the thermosetting resin that is not decomposed However, there is a possibility that the surface layer of the casting is carburized due to carbonization and the remaining carbon content. In order to effectively suppress carburization of the cast surface layer while maintaining good cast surface quality, the coating amount of the curable resin in the coating layer 1 f is more preferably 220 to 380 g / m 2 . The coating amount of the thermosetting resin can be determined by dividing the weight increment ΔD (g) of the green mold after drying of the coating liquid by the coating area (m 2 ) of the thermosetting resin.

被覆層1fの通気度は70〜150であるのが好ましい。被覆層1fの通気度が小さすぎると、発生したガスが溶湯にトラップされ、得られる鋳鋼品にピンホール等の欠陥が生じやすい。また被覆層1fの通気度が大きすぎると、被覆層1fの剥離により鋳鋼品の外観や砂落ちが悪化する。通気度はJIS Z 2601の付属書3に記載された迅速法により測定することができる。   The air permeability of the covering layer 1 f is preferably 70 to 150. If the permeability of the covering layer 1 f is too small, the generated gas is trapped in the molten metal, and defects such as pinholes are likely to occur in the obtained cast steel product. Further, if the air permeability of the covering layer 1 f is too large, the appearance of the cast steel product and the sand fall deteriorate due to the peeling of the covering layer 1 f. The air permeability can be measured by the rapid method described in Annex 3 of JIS Z 2601.

[2] 生型の製造方法
(A) 第一の例
(1) 造型工程
所定量の砂、粘結材、炭素分及び水を混錬することにより調製した鋳物砂から、図3(a) に示すように製品キャビティ1c及び湯道1dを形成する凹部1g-1,1g-2を有する上型1a及び下型1bを造型する。造型を容易にするとともに、生型の強度を確保するために、鋳物砂に添加する粘結材及び水の量は生型の特性を考慮して適宜調整するが、一般に砂100質量部に対し、粘結材5〜12質量部及び水1〜5質量部である。
[2] Production method of green mold
(A) First example
(1) Forming process As shown in FIG. 3 (a), a recess for forming a product cavity 1c and a runner 1d as shown in FIG. 3 (a) from a casting sand prepared by mixing predetermined amounts of sand, a caking additive, carbon and water. The upper mold 1a and the lower mold 1b having 1g-1, 1g-2 are molded. The amount of caking additive and water to be added to the foundry sand is appropriately adjusted in consideration of the characteristics of the green mold in order to facilitate molding and secure the green mold strength, but generally it is based on 100 parts by mass of sand. 5 to 12 parts by mass of caking agent and 1 to 5 parts by mass of water.

上型1a及び下型1bは、例えば製品キャビティ、湯道等が形成された模型が収められた鋳枠内に鋳物砂を投入した後、ジョルトスクイーズ法等で圧縮し、最後に模型を抜くことにより形成できる。   The upper mold 1a and the lower mold 1b are, for example, cast sand in a flask containing a model in which a product cavity, a runner, etc. are formed, and then squeeze them by the Jört squeeze method etc. and finally remove the model. It can be formed by

(2) 塗布工程
図3(b) に示すように、上型1a及び下型1bのキャビティ1c及び湯道1dを含む凹部1g-1,1g-2の表面及び型合わせ面1eに、被覆層1fを形成するための熱硬化性樹脂と有機溶媒とを含む塗布液1kを塗布する。図示の例では凹部1g-1,1g-2だけでなく型合わせ面1eにも塗布液1kを塗布しているが、少なくとも凹部1g-1,1g-2に塗布すれば良い。塗布量の安定化及び被覆層1fの膜厚均一化のために、図3(b) に示すように水平に移動する噴霧ノズル10により塗布液1kをスプレー塗布するのが好ましい。
(2) Coating step As shown in FIG. 3 (b), the covering layer is formed on the surfaces of the recesses 1g-1 and 1g-2 including the cavities 1c and runners 1d of the upper and lower molds 1a and 1b and the mold mating surface 1e. A coating liquid 1k containing a thermosetting resin for forming 1f and an organic solvent is applied. Although the coating liquid 1k is applied not only to the concave portions 1g-1 and 1g-2 but also to the mold mating surface 1e in the illustrated example, the coating liquid 1k may be applied to at least the concave portions 1g-1 and 1g-2. In order to stabilize the coating amount and to make the film thickness of the coating layer 1f uniform, it is preferable to spray-coat the coating solution 1k by means of a spray nozzle 10 moving horizontally as shown in FIG. 3 (b).

凹部1g-1,1g-2の表面から砂粒子1jの空隙1i内に適量浸透するように、塗布液1kは15〜100 mPa・sの粘度(JIS K6910のブルックフィールド粘度計で測定)を有するのが好ましい。その結果、凹部1g-1,1g-2の表層に0.5〜2.5 mmの厚みTの被覆層1fが形成される。塗布液1kの粘度が大きすぎると、塗布液1kが凹部1g-1,1g-2の表層に浸透し難く、凹部1g-1,1g-2の表面近傍にのみ被覆層1fが形成されやすい。このため、被覆層1fは剥離しやすくなり、得られる鋳鋼品の外観や砂落ちが悪化する。一方、塗布液1kの粘度が小さすぎると、塗布液1kは過剰に浸透し、被覆層1fが厚くなりすぎる。塗布液1kの塗布量は熱硬化性樹脂の濃度により異なるが、上記の通り凹部1g-1,1g-2に塗布された熱硬化性樹脂の量が固形分基準で100〜500 g/m2となるように設定するのが好ましい。The coating solution 1k has a viscosity of 15 to 100 mPa · s (measured with a Brookfield viscometer according to JIS K 6910) so that a suitable amount of water penetrates from the surface of the recess 1g-1 or 1g-2 into the void 1i of the sand particle 1j. Is preferred. As a result, a coating layer 1f having a thickness T of 0.5 to 2.5 mm is formed on the surface layer of the recesses 1g-1 and 1g-2. If the viscosity of the coating solution 1k is too high, the coating solution 1k does not easily penetrate into the surface layer of the recesses 1g-1 and 1g-2, and the covering layer 1f is easily formed only in the vicinity of the surface of the recesses 1g-1 and 1g-2. For this reason, the coating layer 1 f is easily peeled off, and the appearance and the sand drop of the cast steel product obtained are deteriorated. On the other hand, when the viscosity of the coating solution 1k is too small, the coating solution 1k permeates excessively and the coating layer 1f becomes too thick. The amount of the coating solution 1k applied varies depending on the concentration of the thermosetting resin, but as described above, the amount of the thermosetting resin applied to the concave portions 1g-1 and 1g-2 is 100 to 500 g / m 2 based on solid content. It is preferable to set so that

(3) 被覆層形成工程
図3(c) に示すように、上型1a及び下型1bの凹部1g-1,1g-2に塗布した塗布液を加熱し、熱硬化性樹脂を硬化させる。加熱は、有機溶媒を蒸発させつつ行っても、有機溶媒の蒸発後に行っても良い。これにより、自硬性硬度計で測定した平均硬度が50〜95の範囲内の被覆層1fが形成される。塗布液1kの加熱方法は特に限定されず、例えば図3(c) に示すように水平移動するブロワー11から温風を吹き付けたり、水平面に配列したヒータにより加熱したりすることができる。
(3) Coating Layer Forming Step As shown in FIG. 3C, the coating liquid applied to the concave portions 1g-1 and 1g-2 of the upper mold 1a and the lower mold 1b is heated to cure the thermosetting resin. The heating may be performed while evaporating the organic solvent, or may be performed after the evaporation of the organic solvent. Thereby, the coating layer 1 f having an average hardness of 50 to 95 measured by a self-hardening hardness tester is formed. The heating method of the coating solution 1k is not particularly limited. For example, as shown in FIG. 3C, warm air can be blown from a horizontally moving blower 11 or heating can be performed by a heater arranged in a horizontal plane.

(4) 型合わせ工程
図3(d) に示すように、凹部1g-1,1g-2に被覆層1fを形成した上型1aと下型1bとを型合わせし、図1に示す一体的な生型1を形成する。
(4) Mold alignment process As shown in FIG. 3 (d), upper mold 1a and lower mold 1b having cover layers 1f formed in recesses 1g-1 and 1g-2 are mold-aligned, and integrally shown in FIG. Form a green mold 1

(B) 第二の例
生型1の製造方法の第二の例を図4を参照して説明する。なお、図4において図3と同じ部位には同じ符号を付与し、詳細な説明を省略する。生型1の製造方法の第二の例は、図4(c) 及び図4(e) に示す第一及び第二の硬化工程を有する以外、第一の例と同じである。
(B) Second Example A second example of the method of manufacturing the green mold 1 will be described with reference to FIG. The same reference numerals as in FIG. 3 denote the same parts in FIG. 4 and a detailed description thereof will be omitted. The second example of the method of manufacturing the green mold 1 is the same as the first example except that it has the first and second curing steps shown in FIGS. 4 (c) and 4 (e).

第二の例では、図4(a) に示す造型工程で形成された上型1a及び下型1bの凹部1g-1,1g-2に図4(b) に示す塗布工程で塗布液1kを塗布した後、図4(c) に示す第一の硬化工程でブロワー11から温風を吹き付け、塗布液1kを加熱することにより半硬化層1Lを形成する。図4(d) に示す型合わせ工程で半硬化層1Lが形成された上型1a及び下型1bを型合わせした後、図4(e) に示す第二の硬化工程で、湯道1dよりブロワー12から噴出させた温風をキャビティ1cに吹込み、半硬化層1Lを加熱硬化させて被覆層1fを形成する。   In the second example, the recesses 1g-1 and 1g-2 of the upper mold 1a and the lower mold 1b formed in the molding process shown in FIG. 4A are applied with the coating liquid 1k in the coating process shown in FIG. 4B. After coating, warm air is blown from the blower 11 in the first curing step shown in FIG. 4C to heat the coating solution 1k, thereby forming the semi-cured layer 1L. After the upper mold 1a and the lower mold 1b on which the semi-hardened layer 1L is formed in the mold alignment step shown in FIG. 4 (d) are aligned, in the second curing step shown in FIG. 4 (e) Hot air blown from the blower 12 is blown into the cavity 1c, and the semi-hardened layer 1L is heated and cured to form the covering layer 1f.

このように被覆層1fを形成する第二の硬化工程の前に、第一の硬化工程で予備硬化させて半硬化層1Lを形成することにより、急激な硬化による被覆層1fの割れ等を防止し、もって鋳鋼品の外観不良を抑制できる。この観点から、半硬化層1Lの自硬性硬度計で測定された平均硬度は30〜45であるのが好ましい。第二の例でも、被覆層1fの平均硬度(自硬性硬度計で測定)は50〜95の範囲内であるのが好ましい。   Thus, prior to the second curing step of forming the covering layer 1f, the semi-hardening layer 1L is pre-cured in the first curing step to prevent cracking and the like of the covering layer 1f due to rapid curing. Thus, appearance defects of cast steel products can be suppressed. From this viewpoint, the average hardness measured by the self-hardening hardness tester of the semi-hardened layer 1L is preferably 30 to 45. Also in the second example, the average hardness (measured with a self-hardening hardness tester) of the coating layer 1 f is preferably in the range of 50 to 95.

本発明の方法により、粘結材で結合された砂1jの表面[図5(a)]に薄い熱硬化性樹脂層が形成される。その結果、少なくとも生型1の凹部1g-1,1g-2に空隙1iが残存した被覆層1f[図5(b)]が形成される。   According to the method of the present invention, a thin thermosetting resin layer is formed on the surface [FIG. 5 (a)] of the sand 1j bonded with the caking agent. As a result, a covering layer 1 f [FIG. 5 (b)] is formed in which the air gaps 1 i remain at least in the recesses 1 g-1 and 1 g-2 of the green mold 1.

[3] 鋳鋼品の製造方法
図6に示すように、被覆層1fを形成した上型1a及び下型1bからなる生型1の製品キャビティ1cに湯道1dを通じて溶湯を鋳込むことにより、砂焼付の面で従来なみの鋳肌品質を維持しつつ鋳肌表層の浸炭が抑制された鋳鋼品が製造される。その理由は明らかではないが、以下のように推定される。すなわち、(a) 図7に示すように製品キャビティ1cの被覆層1fが高温の溶湯Mに触れると、被覆層1fの熱硬化性樹脂がほぼ完全にガス化するので、熱硬化性樹脂の分解ガス(矢印で示す)により砂焼付が抑制されるとともに、(b) 0.5〜2.5 mmと比較的薄い被覆層1fが溶湯Mに触れた後すぐに消失し、かつ生型1を構成する鋳物砂の炭素分も3質量部以下と少ないので、凝固中の溶湯Mが炭素に接触する時間が短く、鋳肌表層の浸炭が抑制される。浸炭層の形成が抑制された鋳鋼品は優れた被削性を有する。なお、被覆層1fの深い領域にある熱硬化性樹脂は、浅い領域にある熱硬化性樹脂より僅かに遅れてガス化するので、溶湯Mが凝固するまで製品キャビティ1cの鋳物砂と直接接触するのを阻止することに寄与する。
[3] Production method of cast steel article As shown in FIG. 6, sand is produced by casting a molten metal through a runner 1d into a product cavity 1c of a green mold 1 consisting of an upper mold 1a and a lower mold 1b on which a cover layer 1f is formed. A cast steel product is produced in which carburization of the surface layer of the cast surface is suppressed while maintaining the cast surface quality as conventional in terms of baking. Although the reason is not clear, it is estimated as follows. (A) As shown in FIG. 7, when the covering layer 1f of the product cavity 1c touches the molten metal M at a high temperature, the thermosetting resin of the covering layer 1f is almost completely gasified, so the decomposition of the thermosetting resin While the sand burning is suppressed by the gas (indicated by the arrow), the coating layer 1f relatively thin as (b) 0.5 to 2.5 mm disappears immediately after touching the molten metal M, and casting sand constituting the green mold 1 Since the amount of carbon content of carbon is also as small as 3 parts by mass or less, the time for which the molten metal M in solidification is in contact with carbon is short, and carburization of the surface layer of the casting is suppressed. Cast steel products in which the formation of a carburized layer is suppressed have excellent machinability. Since the thermosetting resin in the deep region of the covering layer 1f gasifies slightly later than the thermosetting resin in the shallow region, it directly contacts the casting sand of the product cavity 1c until the molten metal M solidifies. Contribute to the prevention of

本発明を以下実験例によりさらに詳細に説明するが、本発明はそれらに限定されない。   The present invention will be described in more detail by the following experimental examples, but the present invention is not limited thereto.

実施例1
(1) 調砂工程
ケイ砂100質量部に対して、ベントナイト8.1質量部、水3.0質量部、及び炭素粉3質量部を混合し、鋳物砂を調製した。
Example 1
(1) Sand Preparation Step With respect to 100 parts by mass of silica sand, 8.1 parts by mass of bentonite, 3.0 parts by mass of water, and 3 parts by mass of carbon powder were mixed to prepare a foundry sand.

(2) 造型工程
鋳造方案模型をセットした鋳枠に鋳物砂を投入後、ジョルトスキーズ法で圧縮し、上型及び下型を形成した。自硬性硬度計(株式会社ナカヤマ製のNK-009)で5ヶ所測定した上型及び下型の凹部の平均硬度は20であった。造型した生型の凹部表面のSEM写真(100倍)を図8(a) に示す。図8(a) から明らかなように、粘結材で覆われた砂の間に多くの空隙があった。
(2) Molding process Casting sand was introduced into a flask set with a casting plan model, and then compressed by the Joert Squeez method to form an upper mold and a lower mold. The average hardness of the recesses of the upper and lower molds measured at five points with a self-hardening hardness tester (NK-009 manufactured by Nakayama Co., Ltd.) was 20. The SEM photograph (100 times) of the surface of the concave part of the molded green mold is shown in FIG. 8 (a). As evident from FIG. 8 (a), there were many voids between the cinder-covered sand.

(3) 塗布工程
表2に示すように、フェノール樹脂40質量%及びエタノール60質量%からなる塗布液(粘度:20 mPa・s)を、上型及び下型の凹部及び型合わせ面に塗布した。塗布液の塗布量は固形分基準で300 g/m2であった。
(3) Coating step As shown in Table 2, a coating solution (viscosity: 20 mPa · s) consisting of 40% by mass of phenol resin and 60% by mass of ethanol was applied to the recesses and the mating surfaces of the upper and lower molds. . The coating amount of the coating solution was 300 g / m 2 on a solids basis.

(4) 被覆層形成工程
上型及び下型の凹部及び型合わせ面に塗布した塗布液を白熱灯により加熱硬化させ、被覆層を形成した。被覆層を形成した生型の凹部表面のSEM写真(100倍)を図8(b) に示す。図8(b) から明らかなように、被覆層で覆われた砂の間にも十分な空隙が残存しており、熱硬化性樹脂の分解ガスを排気するのに十分であることが分かる。
(4) Coating layer formation process The coating liquid apply | coated to the recessed part and type | mold matching surface of upper die and lower die was heat-hardened with the incandescent lamp, and the coating layer was formed. An SEM photograph (100 ×) of the surface of the concave portion of the green mold on which the covering layer is formed is shown in FIG. As is clear from FIG. 8 (b), it can be seen that sufficient voids remain even between the sand covered with the covering layer, which is sufficient to exhaust the decomposition gas of the thermosetting resin.

(a) 厚みTの測定
被覆層が形成された上型及び下型の凹部の表面からスプーンで縦×横×深さが3 cm×3 cm×3 cmのブロックを5個切り出し、被覆層を壊さないようにしてブロックから鋳物砂を刷毛で除去し、硬化被覆層のみからなる試料の厚さをノギスで測定した。この測定を全てのブロックに対して行い、得られた測定値を平均し、被覆層の厚みTとした。その結果、硬化した被覆層の厚みTは1.1 mmであった。
(a) Measurement of thickness T From the surface of the upper and lower mold recesses on which the covering layer is formed, five blocks of length x width x depth 3 cm x 3 cm x 3 cm are cut out with a spoon, and the covering layer is The cast sand was removed from the block by brushing without breaking and the thickness of the sample consisting only of the hardened coating layer was measured with a caliper. This measurement was performed on all the blocks, and the obtained measurement values were averaged to obtain the thickness T of the coating layer. As a result, the thickness T of the cured coating layer was 1.1 mm.

(b) 炭素残存量の測定
前記被覆層の厚みを測定した1個の試料[被覆層の表面積:3×3 cm2、被覆層の厚み:T、試料の体積:3×3×T cm3]に対して、大気中で室温から800℃まで10℃/分の速度で昇温する熱重量分析(TGA)を行い、単位体積当たりの炭素残存量を測定した。その結果、被覆層の炭素残存量は100 mg/cm3であった。
(b) Measurement of residual carbon content One sample for which the thickness of the coating layer was measured [surface area of coating layer: 3 × 3 cm 2 , thickness of coating layer: T, volume of sample: 3 × 3 × T cm 3 The thermogravimetric analysis (TGA) was carried out at room temperature to 800.degree. C. at a rate of 10.degree. C./minute in the atmosphere to measure the amount of carbon remaining per unit volume. As a result, the carbon remaining amount of the coating layer was 100 mg / cm 3 .

(c) 硬度の測定
被覆層の硬度は、自硬性硬度計(株式会社ナカヤマ製のNK-009)で5ヶ所測定し、平均することにより求めた。その結果、凹部における被覆層の硬度は67であった。
(c) Measurement of Hardness The hardness of the coating layer was measured at five points using a self-hardening hardness tester (NK-009 manufactured by Nakayama Co., Ltd.) and determined by averaging. As a result, the hardness of the coating layer in the recess was 67.

(5) 型合わせ工程
凹部及び型合わせ面に被覆層を形成した上型と下型とを通常の方法で型合わせし、生型とした。
(5) Die Alignment Step The upper die and the lower die having the covering layer formed on the recess and the die mating surface were die-aligned by a conventional method to obtain a green die.

上記生型のキャビティに、0.45質量%のC、1.30質量%のSi、1.02質量%のMn、10.1質量%のNi、19.9質量%のCr、10.0質量%のNb、0.15質量%のS、及び0.18質量%のNを含有し、残部がFe及び不可避不純物からなる組成の溶湯を1620〜1630℃で注湯した。溶湯が凝固した後、型バラシを行って鋳鋼品を取り出し、平均径が2.4 mmの鋼球を用いたショットブラストを15分間行って鋳肌表面に付着した鋳物砂を除去した。同様にして全部で100個の鋳鋼品を製造した。   In the green mold cavity, 0.45% by mass C, 1.30% by mass Si, 1.02% by mass Mn, 10.1% by mass Ni, 19.9% by mass Cr, 10.0% by mass Nb, 0.15% by mass S, and A melt containing 0.18% by mass of N and the balance being Fe and unavoidable impurities was poured at 1620 to 1630 ° C. After the molten metal solidified, mold disintegration was performed to take out the cast steel product, and shot blasting using steel balls having an average diameter of 2.4 mm was performed for 15 minutes to remove casting sand attached to the cast surface. A total of 100 cast steel articles were produced in the same manner.

(a) 砂焼付発生率の測定
ショットブラスト後の鋳肌表面における砂焼付を目視で観察し、砂焼付が発生した鋳鋼品の個数を鋳鋼品の全数(100個)で割り、砂焼付発生率(%)を求めた。その結果、砂焼付発生率は1%であった。
(a) Measurement of sand burning incidence rate Sand burning on the cast surface after shot blasting was visually observed, and the number of cast steel products in which sand burning occurred was divided by the total number (100) of cast steel articles, sand burning incidence rate It asked for (%). As a result, the incidence of sand burning was 1%.

(b) 表面欠陥発生率の測定
ガス抜け不良にともない発生するピンホールや、凹部被覆層の割れや破損にともない発生するバリ等の鋳鋼品の表面欠陥を目視で観察し、表面欠陥が発生した鋳鋼品の個数を鋳鋼品の全数(100個)で割り、表面欠陥発生率(%)を求めた。その結果、表面欠陥発生率は2%であった。
(b) Measurement of surface defect occurrence rate Surface defects were visually observed by visually observing surface defects of cast steel products such as pinholes generated due to gas leakage failure and burrs generated due to cracking or breakage of the recess covering layer. The number of cast steel products was divided by the total number (100) of cast steel products to determine the surface defect incidence rate (%). As a result, the surface defect incidence was 2%.

(c) 被削性の評価
鋳鋼品の鋳肌の被削性を評価するために、TiAlNをPVDコーティングした超硬インサートを使用し、下記の条件で鋳鋼品の表層(鋳肌を含む深さ1.0 mmの範囲)フライス切削した。
切削速度:150m/分
切込み量:1.0 mm
刃当り送り:0.2 mm/刃
送り速度:381 mm/分
回転速度:76 rpm
切削液:なし(乾式)
(c) Evaluation of machinability In order to evaluate the machinability of the cast surface of the cast steel article, a cemented carbide insert coated with TiAlN using PVD is used, and the surface layer of the cast steel article (depth including the cast surface) under the following conditions 1.0 mm range) milling cut.
Cutting speed: 150 m / min Depth of cut: 1.0 mm
Feed per blade: 0.2 mm / blade Feed rate: 381 mm / min Rotational speed: 76 rpm
Cutting fluid: None (dry type)

超硬インサートの逃げ面の摩耗量が0.2 mm以上になったときに工具寿命に到達したと判定し、工具寿命に至るまでの切削時間を被削性のパラメータとした。比較例1の工具寿命(被削性)を100としたとき、実施例1の被削性は126であった。   It was judged that the tool life was reached when the wear amount of the flank of the carbide insert became 0.2 mm or more, and the cutting time until the tool life was used as the machinability parameter. When the tool life (the machinability) of Comparative Example 1 is 100, the machinability of Example 1 is 126.

実施例2
(a) 塗布液におけるフェノール樹脂の割合を30質量%とし、(b) 塗布液の粘度及び塗布量をそれぞれ17 mPa・s及び100 g/m2とし、(c) 被覆層形成工程の条件を変更することにより、硬度が50、厚みTが2.3 mm、及び炭素残存量が22 mg/cm3の被覆層を凹部に形成した以外、実施例1と同様にして100個の鋳鋼品を製造した。実施例1と同様に被削性、砂焼付発生率及び表面欠陥発生率を測定した結果、被削性は133、砂焼付発生率は3%、及び表面欠陥発生率は3%であった。
Example 2
(a) The proportion of the phenolic resin in the coating solution is 30% by mass, (b) the viscosity and coating amount of the coating solution are 17 mPa · s and 100 g / m 2 respectively, and (c) the conditions for the coating layer forming step 100 cast steel articles were produced in the same manner as in Example 1 except that a coating layer having a hardness of 50, a thickness T of 2.3 mm and a residual carbon content of 22 mg / cm 3 was formed in the recess by changing it. . As a result of measuring the machinability, the sand burning incidence rate and the surface defect incidence rate in the same manner as in Example 1, the machinability was 133, the sand burning incidence rate was 3%, and the surface defect incidence rate was 3%.

実施例3
(a) 塗布液におけるフェノール樹脂の割合を20質量%とし、(b) 塗布液の粘度をそれぞれ13 mPa・sとし、(c) 被覆層の硬化を二段階で行って、硬度が50、厚みTが1.7 mm、及び炭素残存量が50 mg/cm3の被覆層を凹部に形成した以外、実施例1と同様にして100個の鋳鋼品を製造した。二段階の硬化では、第一の硬化工程で硬度が36の半硬化層を形成し、型合わせした後、第二の硬化工程で半硬化層をさらに加熱して完全に硬化させた。実施例1と同様に被削性、砂焼付発生率及び表面欠陥発生率を測定した結果、被削性は130、砂焼付発生率は2%、及び表面欠陥発生率は4%であった。
Example 3
(a) The proportion of the phenol resin in the coating solution is 20% by mass, (b) the viscosity of the coating solution is 13 mPa · s, and (c) the curing of the coating layer is performed in two steps. 100 cast steel articles were produced in the same manner as in Example 1 except that a coating layer having a T of 1.7 mm and a residual carbon content of 50 mg / cm 3 was formed in the recess. In the two-step curing, a semi-cured layer having a hardness of 36 was formed in the first curing step, and after mold alignment, the semi-cured layer was further heated and completely cured in the second curing step. As a result of measuring the machinability, incidence of sand burning and occurrence of surface defects in the same manner as in Example 1, the machinability was 130, the incidence of sand burning was 2%, and the incidence of surface defects was 4%.

実施例4〜6
塗布液におけるフェノール樹脂の割合、及び塗布液の塗布量を表2に示すように変更した以外実施例1と同様にして、100個の鋳鋼品を製造した。実施例1と同様に各実施例の鋳鋼品の被削性、砂焼付発生率及び表面欠陥発生率を測定した。実施例4では、被削性は113、砂焼付発生率は1%、及び表面欠陥発生率は4%であった。実施例5では、被削性は109、砂焼付発生率は1%、及び表面欠陥発生率は3%であった。実施例6では、被削性は118、砂焼付発生率は2%、及び表面欠陥発生率は2%であった。
Examples 4 to 6
100 cast steel articles were produced in the same manner as in Example 1 except that the ratio of the phenol resin in the coating solution and the coating amount of the coating solution were changed as shown in Table 2. In the same manner as in Example 1, the machinability, the incidence of sand burning and the rate of occurrence of surface defects of the cast steel products of the respective examples were measured. In Example 4, the machinability was 113, the sand burning incidence rate was 1%, and the surface defect incidence rate was 4%. In Example 5, the machinability was 109, the sand burning incidence rate was 1%, and the surface defect incidence rate was 3%. In Example 6, the machinability was 118, the sand burning incidence rate was 2%, and the surface defect incidence rate was 2%.

比較例1
鋳物砂における炭素粉の割合を4.0質量部とした以外実施例1と同様にして、100個の鋳鋼品を製造した。実施例1と同様に被削性、砂焼付発生率及び表面欠陥発生率を測定した結果、被削性は100、砂焼付発生率は3%、及び表面欠陥発生率は11%であった。
Comparative Example 1
100 cast steel articles were produced in the same manner as in Example 1 except that the proportion of carbon powder in the foundry sand was 4.0 parts by mass. As a result of measuring the machinability, the incidence of sand burning and the incidence of surface defects in the same manner as in Example 1, the machinability was 100, the incidence of sand burning was 3%, and the incidence of surface defects was 11%.

比較例2
塗布液におけるフェノール樹脂の割合、及び塗布液の塗布量を表2に示すように変更した以外比較例1と同様にして、100個の鋳鋼品を製造した。実施例1と同様に被削性、砂焼付発生率及び表面欠陥発生率を測定した結果、被削性は92、砂焼付発生率は1%、及び表面欠陥発生率は35%であった。
Comparative example 2
One hundred cast steel articles were produced in the same manner as in Comparative Example 1 except that the ratio of the phenolic resin in the coating solution and the coating amount of the coating solution were changed as shown in Table 2. As a result of measuring the machinability, the sand burning incidence rate and the surface defect incidence rate in the same manner as in Example 1, the machinability was 92, the sand burning incidence rate was 1%, and the surface defect incidence rate was 35%.

比較例3
塗布液におけるフェノール樹脂の割合、及び塗布液の塗布量を表2に示すように変更した以外実施例1と同様にして、100個の鋳鋼品を製造した。実施例1と同様に被削性、砂焼付発生率及び表面欠陥発生率を測定した結果、被削性は72、砂焼付発生率は23%、及び表面欠陥発生率は10%であった。被削性の悪化は、鋳肌表面の砂焼付によると考えられる。
面欠陥発生率は35%であった。
Comparative example 3
100 cast steel articles were produced in the same manner as in Example 1 except that the ratio of the phenol resin in the coating solution and the coating amount of the coating solution were changed as shown in Table 2. As a result of measuring the machinability, the incidence of sand burning and the incidence of surface defects in the same manner as in Example 1, the machinability was 72, the incidence of sand burning was 23%, and the incidence of surface defects was 10%. The deterioration of the machinability is considered to be due to sand-baking of the casting surface.
The plane defect incidence rate was 35%.

実施例1〜6及び比較例1〜3の生型の製造条件を表1に示し、生型に塗布した塗布液の組成、粘度及び塗布量、及び被覆層の硬度、厚み及び炭素残存量を表2に示す。また、実施例1〜6及び比較例1〜3の鋳鋼品の被削性、砂焼付発生率及び表面欠陥発生率、並びに総合判定を下記の通り三段階評価で表3に示す。   The production conditions of the green molds of Examples 1 to 6 and Comparative Examples 1 to 3 are shown in Table 1, and the composition, viscosity and coating amount of the coating liquid applied to the green mold, and hardness, thickness and residual carbon amount of the coating layer It shows in Table 2. The machinability, incidence of sand burning and occurrence of surface defects, and the overall judgment of the cast steel products of Examples 1 to 6 and Comparative Examples 1 to 3 are shown in Table 3 in the following three-step evaluation.

被削性(比較例1を100として相対値で表す。)
◎:120以上。
○:100超120未満。
×:100以下。
Machinability (comparative example 1 is expressed as a relative value as 100)
◎: 120 or more.
○: over 100 and under 120.
X: 100 or less.

砂焼付発生率
◎:2%以下。
○:2%超10%未満。
×:10%以上。
Sand burning incidence rate ◎: 2% or less.
○: more than 2% and less than 10%.
X: 10% or more.

表面欠陥発生率
◎:2%以下。
○:2%超10%未満。
×:10%以上。
Surface defect incidence rate ◎: 2% or less.
○: more than 2% and less than 10%.
X: 10% or more.

総合判定
◎:被削性、砂焼付発生率及び表面欠陥発生率の評価が全て◎のとき。
○:被削性、砂焼付発生率及び表面欠陥発生率のいずれかの評価が○のとき。
×:被削性、砂焼付発生率及び表面欠陥発生率のいずれかの評価が×のとき。
Overall judgment ◎: When the machinability, sand burning incidence rate and surface defect incidence rate were all ◎.
○: When the evaluation of any of machinability, sand burning incidence rate and surface defect incidence rate is ○.
X: When the evaluation of any of machinability, sand burning incidence rate and surface defect incidence rate is x.

注:(1) 造型した上型及び下型の凹部(被覆層を形成していない)の平均硬度。 Note: (1) Average hardness of upper and lower mold recesses (not coated).

注:(1) 凹部における表面硬度。
(2) フェノール樹脂
(3) 熱硬化性樹脂の加熱硬化を第一及び第二の硬化工程により行い、第一の硬化工程後の凹部表面硬度は36であった。
Note: (1) Surface hardness in the recess.
(2) Phenolic resin .
(3) The heat curing of the thermosetting resin was performed by the first and second curing steps, and the concave surface hardness after the first curing step was 36.

実施例1〜6では、生型において含まれる炭素分の割合、被覆層の表面硬度を上記のように調整することにより、表3に示すように被削性が○又は◎判定と優れ、砂焼付及び表面欠陥の発生が○又は◎判定と抑制された鋳鋼品を得ることができた。これに対して、生型において含まれる炭素分の割合、被覆層の表面硬度が本発明が規定する範囲を外れた比較例1〜3では、被削性、砂焼付及び表面欠陥のいずれか、又はすべてが×判定となった。   In Examples 1 to 6, by adjusting the proportion of carbon contained in the green mold and the surface hardness of the coating layer as described above, as shown in Table 3, the machinability is excellent with the judgment of ◎ or 、, sand It was possible to obtain a cast steel product in which the occurrence of seizure and surface defects was suppressed to be ○ or 判定. On the other hand, in Comparative Examples 1 to 3 in which the ratio of the carbon content contained in the green mold and the surface hardness of the coating layer deviate from the ranges specified by the present invention, any of machinability, sand burning and surface defects, Or all became x judgment.

1:生型
1a:上型
1b:下型
1c:製品キャビティ
1d:湯道
1e:見切り面
1f:被覆層
1g-1,1g-2:凹部
1i:空隙
1j:砂
1k:塗布液
1L:半硬化層
M:溶湯
1: Raw type
1a: Upper type
1b: Lower type
1c: Product cavity
1d: runner
1e: Face-off side
1f: Coating layer
1g-1, 1g-2: Recess
1i: Air gap
1j: Sand
1k: Coating solution
1L: Semi-hardened layer
M: Molten metal

Claims (9)

鋳鋼品を鋳造するための生型であって、
砂と、粘結材と、炭素分とを含む鋳物砂からなり、
少なくとも鋳鋼品を鋳造するキャビティを含む凹部に熱硬化性樹脂の被覆層が形成されており、
前記炭素分は、炭素粉、石炭、黒鉛、コークス、ピッチコークス、アスファルト、デキストリン、澱粉、鉱油、及び植物油から選択された1種又は2種以上に含まれる炭素成分であり、前記砂100質量部に対して3質量部以下(0質量部を含まない)含まれ、
前記被覆層が、株式会社ナカヤマ製の自硬性硬度計NK-009を使用して測定した50〜95の平均硬度、及び0.5〜2.5 mmの厚みを有することを特徴とする生型。
It is a green mold for casting cast steel products,
Foundry sand, which contains sand, caking agent, and carbon ,
A cover layer of a thermosetting resin is formed in a recess including at least a cavity for casting a cast steel product,
The carbon content is a carbon component contained in one or more selected from carbon powder, coal, graphite, coke, pitch coke, asphalt, dextrin, starch, mineral oil, and vegetable oil, and 100 parts by mass of the sand Up to 3 parts by mass (not including 0 parts by mass),
A green mold characterized in that the coating layer has an average hardness of 50 to 95 and a thickness of 0.5 to 2.5 mm measured using a self-hardening hardness tester NK-009 manufactured by Nakayama Co., Ltd.
請求項1に記載の生型において、前記被覆層を構成する熱硬化性樹脂の塗布量が固形分基準で100〜500 g/m2であることを特徴とする生型。 The green mold according to claim 1, wherein the coating amount of the thermosetting resin constituting the coating layer is 100 to 500 g / m 2 on a solids basis. 請求項1又は2に記載の生型において、大気中で800℃まで10℃/分の速度で昇温した後の前記被覆層の単位体積当たりの炭素残存量が20〜200 mg/cm3であることを特徴とする生型。 In the green form according to claim 1 or 2, the carbon remaining amount per unit volume of the coating layer is 20 to 200 mg / cm 3 after the temperature is raised to 800 ° C. at a rate of 10 ° C./min in the atmosphere. A raw pattern characterized by a certain thing. 請求項1〜3のいずれかに記載の生型を製造する方法であって、
砂と、粘結材と、砂100質量部に対して3質量部以下(0質量部を含まない)の炭素分とを含む鋳物砂を造型することにより、鋳鋼品を鋳造するためのキャビティを含む凹部を有する少なくとも一対の生型部を作製し、
熱硬化性樹脂と有機溶媒とを含む塗布液を少なくとも前記凹部に塗布し、
前記凹部に塗布された熱硬化性樹脂を加熱硬化させて、株式会社ナカヤマ製の自硬性硬度計NK-009を使用して測定した50〜95の平均硬度を有する被覆層を形成することを特徴とする方法。
A method of producing a green form according to any one of claims 1 to 3, wherein
A cavity for casting a cast steel article is formed by molding a casting sand containing sand, a caking additive, and a carbon content of 3 parts by mass or less (not including 0 parts by mass) with respect to 100 parts by mass of sand. Producing at least a pair of green parts having recesses including
A coating liquid containing a thermosetting resin and an organic solvent is applied to at least the recess,
The thermosetting resin applied to the concave portion is heat cured to form a coating layer having an average hardness of 50 to 95 measured using a self- hardening hardness tester NK-009 manufactured by Nakayama Co. , Ltd. And how to.
請求項4に記載の生型の製造方法において、前記熱硬化性樹脂の加熱硬化を型合わせの前及び/又は後に行うことを特徴とする方法。   The method for producing a green mold according to claim 4, wherein the thermosetting of the thermosetting resin is performed before and / or after the mold alignment. 請求項5に記載の生型の製造方法において、前記熱硬化性樹脂を加熱硬化した後に少なくとも一対の生型部を型合わせすることを特徴とする方法。   The method of manufacturing a green mold according to claim 5, wherein at least a pair of green mold portions are mold-matched after the thermosetting resin is heat-cured. 請求項5に記載の生型の製造方法において、塗布した塗布液を乾燥してなる被覆層の硬化を、株式会社ナカヤマ製の自硬性硬度計NK-009を使用して測定した硬度として、30〜45の平均硬度となるまで加熱する第一の硬化工程と、一次硬化した被覆層をさらに加熱して平均硬度を50〜95とする第二の硬化工程とにより行うことを特徴とする方法。 In the method for producing a green mold according to claim 5, the curing of the coating layer formed by drying the applied coating solution is a hardness measured using a self- hardening hardness tester NK-009 manufactured by Nakayama Co. , Ltd. A method comprising: a first curing step of heating to an average hardness of -45; and a second curing step of further heating the primary-cured coating layer to set an average hardness of 50 to 95. 請求項4〜7のいずれかに記載の生型の製造方法において、前記塗布液の粘度が15〜100 mPa・sであることを特徴とする方法。   The method for producing a green mold according to any one of claims 4 to 7, wherein the viscosity of the coating liquid is 15 to 100 mPa · s. 請求項1〜3のいずれかに記載の生型を用いて鋳鋼品を製造することを特徴とする方法。
A method for producing a cast steel product using the green mold according to any one of claims 1 to 3.
JP2016510433A 2014-03-26 2015-03-25 Green die for casting cast steel article and method for producing the same, and method for producing cast steel article using the green die Expired - Fee Related JP6536568B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014063452 2014-03-26
JP2014063452 2014-03-26
PCT/JP2015/059156 WO2015147069A1 (en) 2014-03-26 2015-03-25 Green sand for casting of steel castings, method for producing same, and method for producing metal castings using said green sand

Publications (2)

Publication Number Publication Date
JPWO2015147069A1 JPWO2015147069A1 (en) 2017-04-13
JP6536568B2 true JP6536568B2 (en) 2019-07-03

Family

ID=54195580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016510433A Expired - Fee Related JP6536568B2 (en) 2014-03-26 2015-03-25 Green die for casting cast steel article and method for producing the same, and method for producing cast steel article using the green die

Country Status (6)

Country Link
US (1) US20170080481A1 (en)
EP (1) EP3124134A4 (en)
JP (1) JP6536568B2 (en)
KR (1) KR102228467B1 (en)
CN (1) CN106132587B (en)
WO (1) WO2015147069A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6662293B2 (en) 2014-08-29 2020-03-11 日立金属株式会社 Casting green mold and method of manufacturing cast article using the same
US11021187B2 (en) 2017-12-08 2021-06-01 ILJIN USA Corporation Steering knuckle and method of making the same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2273326A (en) * 1940-07-08 1942-02-17 Cortner M Hardy Sand mold
US2313674A (en) * 1942-09-11 1943-03-09 Borden Co Coating foundry mold surfaces
US2425978A (en) * 1943-11-13 1947-08-19 Hercules Powder Co Ltd Foundry mold coating
US2988525A (en) * 1957-07-09 1961-06-13 American Colloid Co Foundry mold composition
US3086874A (en) * 1961-03-21 1963-04-23 Whitehead Bros Co Green molding sand additive
GB1127030A (en) * 1965-12-30 1968-09-11 Foseco Int Treatment of ingot moulds
JPS4724852Y1 (en) * 1968-12-06 1972-08-04
JPS5110815B2 (en) * 1972-05-22 1976-04-07
JPS5332827A (en) * 1976-09-09 1978-03-28 Nakata Giken Kk Moulding method by using waterrsoluble paste as binder
CA1144338A (en) * 1978-05-25 1983-04-12 Enno H. Page Expendable cores for die casting
JPS6156752A (en) * 1984-08-24 1986-03-22 Sintokogio Ltd Casting mold and molding method thereof
US4636262A (en) * 1986-03-11 1987-01-13 Reed Edgar H Additive for green molding sand
JPS63177939A (en) * 1987-01-17 1988-07-22 Idemitsu Kosan Co Ltd Additive for casting sand mold
IT1207835B (en) * 1987-03-04 1989-06-01 Mi Chi Sa Mineraria Chimica Sa GREEN FORMING LAND ADDITIVE.
JPH0452048A (en) * 1990-06-18 1992-02-20 Kurodaito Kogyo Kk Mold and molding method thereof
JPH08257678A (en) * 1995-03-23 1996-10-08 Mitsubishi Heavy Ind Ltd Manufacture of die
CN1351910A (en) * 2000-11-09 2002-06-05 毛立仁 Composite alloy material guide and guard board and its producing method
JP4205940B2 (en) * 2002-12-19 2009-01-07 アイシン高丘株式会社 Method for producing gray cast iron with excellent vibration damping capacity and strength
CN100436001C (en) * 2006-04-26 2008-11-26 孙荣玖 Process for manufacturing rare earth high-carbon low-alloy steel liner
US8137607B2 (en) * 2006-11-07 2012-03-20 Ford Motor Company Process for making reusable tooling
JP2009125799A (en) * 2007-11-28 2009-06-11 Aisin Takaoka Ltd Method for producing green sand mold
JP2013103268A (en) * 2011-11-16 2013-05-30 Daido Castings:Kk Chromite coating used as mold wash material
US10946435B2 (en) * 2013-09-30 2021-03-16 Hitachi Metals, Ltd. Green sand mold and its production method, and production method of iron-based casting

Also Published As

Publication number Publication date
JPWO2015147069A1 (en) 2017-04-13
WO2015147069A1 (en) 2015-10-01
EP3124134A4 (en) 2017-11-22
KR102228467B1 (en) 2021-03-15
US20170080481A1 (en) 2017-03-23
KR20160138089A (en) 2016-12-02
CN106132587B (en) 2018-11-06
EP3124134A1 (en) 2017-02-01
CN106132587A (en) 2016-11-16

Similar Documents

Publication Publication Date Title
KR101490996B1 (en) Coating compounds for casting moulds and cores that prevent reaction gas defects
JP4359430B2 (en) Investment casting mold and manufacturing method thereof
JP6662293B2 (en) Casting green mold and method of manufacturing cast article using the same
CN104148583A (en) Investment casting method
WO2007010848A1 (en) Resin-coated sand for use in cast steel, casting mold made of the sand, steel casting casted using the casting mold
JP6536568B2 (en) Green die for casting cast steel article and method for producing the same, and method for producing cast steel article using the green die
EP2939759A1 (en) Method for producing structure for casting and structure such as mold
WO2013178923A1 (en) Gypsum composition for refractory moulds
CN108188345B (en) Gear ring forming method
JP7012671B2 (en) Refractory coating composition for molding on temporary molds or cores for steel casting operations
RU2427444C1 (en) Method of producing piston rings and cylinder sleeve billets
CN101433942B (en) Mould sand for casting and method of use thereof
CN110614347B (en) Investment casting process of fan-shaped impeller
KR102576599B1 (en) Manufacturing of soluble core for high pressure casting and method using the same
RU2753188C2 (en) Method for manufacturing shell mold
RU2465093C1 (en) Method of producing multilayer investment shell casting moulds
JPH04371341A (en) Laminated molding material for precision casting and mold and manufacture thereof
WO2016129006A1 (en) Process for the production of cores of silica for components of aeronautical and industrial turbines
RU2393938C1 (en) Forming material
SU1222394A1 (en) Composition for producing antistick coating on moulds
CN104325077A (en) Casting method of vehicle engine piston
JP2020156655A (en) Manufacture method of wax model
US2127533A (en) Method and means for foundry practice
CN104259390A (en) Casting method of automobile hoods
UA102805C2 (en) Heat-insulating coating of metal molds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R150 Certificate of patent or registration of utility model

Ref document number: 6536568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees