WO2007010848A1 - Resin-coated sand for use in cast steel, casting mold made of the sand, steel casting casted using the casting mold - Google Patents

Resin-coated sand for use in cast steel, casting mold made of the sand, steel casting casted using the casting mold Download PDF

Info

Publication number
WO2007010848A1
WO2007010848A1 PCT/JP2006/314046 JP2006314046W WO2007010848A1 WO 2007010848 A1 WO2007010848 A1 WO 2007010848A1 JP 2006314046 W JP2006314046 W JP 2006314046W WO 2007010848 A1 WO2007010848 A1 WO 2007010848A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
sand
mold
resin
hot
Prior art date
Application number
PCT/JP2006/314046
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Tanaka
Ken Ogasawara
Eiji Nohara
Original Assignee
Komatsu Ltd.
Asahi Organic Chemicals Industry Co., Ltd.
Komatsu Castex Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd., Asahi Organic Chemicals Industry Co., Ltd., Komatsu Castex Ltd. filed Critical Komatsu Ltd.
Priority to JP2007525990A priority Critical patent/JP4545192B2/en
Priority to CN2006800257334A priority patent/CN101222992B/en
Publication of WO2007010848A1 publication Critical patent/WO2007010848A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • B22C1/2253Condensation polymers of aldehydes and ketones with phenols

Definitions

  • the present invention relates to a resin-coated sand suitable for steel, a steel-coated steel mold made of the resin-coated sand, and a steel product forged from the steel mold.
  • the present invention relates to a resin-coated sand that can effectively reduce the occurrence of hot cracks and hot water wrinkles that tend to occur in steel products, a steel mold made of the same sand, and a steel product made from the same mold.
  • water glass which is an inorganic binder
  • carbon dioxide gas is passed through to gel the water glass and cure the mold.
  • a dry seal mold method is known as another mold forming method for steel.
  • coconut resin is coated as an organic binder on dredged sand, and the resulting resin-coated sand (RCS) is filled into a preheated model.
  • RCS resin-coated sand
  • the resin coated with the sand is condensed by the heat of the model to form a shell layer.
  • the shell layer is further heated and cured together with the model, and then the shell layer is released from the model cover to produce a saddle shape.
  • Patent Document 1 An invention relating to a phenol resin composition used as a saddle type material in such a shell mold method is disclosed in JP-A-57-68240 (Patent Document 1).
  • the phenolic resin composition described in Patent Document 1 is a low-molecular composition composed of three components: phenol, bisphenol A, and a separated component or derivative in the residue generated when bisphenol A is produced. It is a phenolic resin composition exhibiting expansibility.
  • the mold is rich in flexibility and has better flexibility. have. Further, it is said that by performing forging using a mold having such characteristics, it is possible to suppress the occurrence of hot cracks and pinholes (gas defects) in the object.
  • the term “sexuality” refers to the property that the mold shrinks together with the bowl, and the performance of the bowl that can withstand the shrinkage and expansion of the molten metal.
  • the strength of the molten metal is quite different from that of the non-ferrous metal structure (for example, aluminum), and for the shell mold method.
  • Inventions relating to materials are disclosed in Japanese Patent Publication No. 31-7256 (Patent Document 2) and Japanese Patent Application Laid-Open No. 9-57391 (Patent Document 3).
  • the forging temperature is lower than that of steel. Specifically, when manufacturing steel products, the forging temperature is about 1500-1600 ° C, whereas for aluminum, the forging temperature is about 660-700 ° C, which is extremely low! ,.
  • Patent Document 2 adds 0.5 to 20% by weight of a substance that imparts or transmits oxygen (for example, lead tetraphosphate or potassium nitrate).
  • a substance that imparts or transmits oxygen for example, lead tetraphosphate or potassium nitrate.
  • the use of phenol resin as a binder in RCS is described.
  • the decomposition of the binder can be promoted to improve the saddle-type disintegration property.
  • the core binder can be thermally decomposed by forging a hollow aluminum bowl and then subjecting the obtained mold with a core to heat treatment (sand baking). As a result, the strength of the core is reduced, and the core can be easily taken out from the hollow casing.
  • Patent Document 3 shows sufficient saddle-shaped disintegration even in such a low temperature region.
  • RCS refractory particles, phenolic resin, oxygen-containing hydrocarbon compounds (lower carboxylic acids, etc.) with an oxygen content of 25% by weight or more, and alkali metal nitrates (nitric acid lithium, sodium nitrate, etc.)
  • RCS which has a saddle-type disintegration improver contained at a predetermined ratio as an essential component.
  • Patent Documents 2 and 3 are intended only to improve saddle-type disintegration in a non-ferrous metal having a low forging temperature such as aluminum described above. For this reason, there is no discussion at all regarding the problems related to hot cracks and hot water wrinkles that occur in the wrought goods, and specific means for suppressing the occurrence of hot cracks and hot water wrinkles are described. Absent.
  • potassium nitrate is exemplified as a substance that improves the disintegration property of the core.
  • This potassium nitrate is an explosive substance known as an explosive component.
  • potassium nitrate is generally known to sinter by heating above 900 ° C.
  • Patent Document 1 Japanese Patent Laid-Open No. 57-68240
  • Patent Document 2 Japanese Patent Publication No. 31-7256
  • Patent Document 3 JP-A-9-57391
  • the present invention has been made to solve the above conventional problems, and its specific purpose is as follows.
  • a resin-coated sand for steel that can prevent hot cracks and at the same time effectively reduce the occurrence of hot water wrinkles, a steel mold made using the sand, And to provide a steel product forged by the same mold.
  • the resin-coated sand provided by the present invention has, as a basic structure, cocoon sand, 2.5 to 5.0% by weight of phenolic greaves and potassium nitrate based on the cocoon sand. And vinsol is the main feature.
  • the phenolic component of the phenolic resin comprises bisphenol A, a residue generated during purification of the bisphenol A, and a derivative of the separated component in the residue.
  • Group power It is preferred to comprise at least one selected.
  • the compounding amount of the potassium nitrate is 2 to 50% by weight, and the compounding power of the vinsol is preferably 4.0 to 20% by weight with respect to the phenolic resin.
  • the steel mold provided by the present invention is a steel mold having a thickness of 6 to 15 mm and a surface area of 1000 cm 2 or more, wherein the resin-coated sand of the present invention is used.
  • the main feature is that it is molded by use. In this case, it is preferable that the hot strength of the saddle type is 120 to 175 NZcm 2 ! / ⁇ .
  • the steel product provided by the present invention is a steel product manufactured using the steel mold of the present invention, the steel product having a thickness of 6 to 15 mm, have a 1000 cm 2 or more surface area, and has a main feature in that hot cracks occur ⁇ surface in contact with the ⁇ is 70mm or less.
  • the steel product of the present invention has an excellent quality that the steel product's hot water is grade 1 or 2 based on JIS G 0588. Furthermore, the steel product of the present invention preferably has a weight of 35 kg or more. The invention's effect
  • the resin-coated sand (RCS) of the present invention contains dredged sand, 2.5 to 5.0% by weight of phenolic rosin, potassium nitrate, and vinsol.
  • vinsol is added in addition to the addition of potassium nitrate.
  • Vinsol resin is derived from pine trees and is a dark, high-melting thermoplastic. Products from Hercules Powder Company are sold on the market. This vinsol resin does not cure three-dimensionally even when it receives heat, so the cushioning effect Has fruit. In order to further enhance this cushioning property, a small amount of petroleum-based rosin rosin or the like can be used in combination. In the present invention, the added force of vinsol promotes softening of the shell cage shape by receiving heat and further improves the properties of the steel plate. On the other hand, vinsol has a tendency to increase the hot strength as rosin. When pouring molten metal, it is necessary to keep the hot strength low enough to maintain the shape of the bowl until the melt is solidified.
  • the hot strength of vinsol is efficiently suppressed by adding potassium nitrate as described above.
  • the potassium nitrate and vinsol additive is an indispensable requirement for synergistically exhibiting both the above-described properties and the vertical shape retention during solidification of the molten metal.
  • the mold itself can generate heat during fabrication.
  • the blending amount of potassium nitrate at this time is preferably 2 to 50% by weight based on phenol resin.
  • the phenolic component of the phenolic sebum is selected from, for example, bisphenol A, a residue generated during purification of the bisphenol A, and a derivative of a separation component in the residue. Contains at least one species.
  • a phenolic rosin By including such a phenolic rosin, it is possible to improve the shape of the bowl and to impart more properties. This makes it possible to deform the mold more appropriately as the molten metal solidifies and shrinks during fabrication. The occurrence of intercracking can be very effectively prevented.
  • the RCS of the present invention further contains vinsol.
  • the property can be further improved from the saddle shape, so that the occurrence of hot cracks can be more effectively prevented.
  • the blending amount of vinsol is preferably 4.0% by weight or more and 20% by weight or less with respect to the phenolic resin. 4. If the amount is less than 0% by weight, the desired improvement in the properties cannot be expected. If the amount exceeds 20% by weight, the hot strength is too low and the bowl shape tends to collapse, and the finished bowl has the desired shape. Is difficult to obtain.
  • the steel mold provided by the present invention is a mold used for forging steel products having a thickness of 6 to 15 mm and a surface area of 1000 cm 2 or more, and using the RCS of the present invention. Are molded. By performing forging using such a steel mold, it is possible to prevent the occurrence of hot cracks and hot water wrinkles as described above, and to produce a steel product having a good skin. it can
  • hot strength is 120 ⁇ 175NZcm 2. For this reason, it is possible to stably manufacture a steel plate having a desired shape by appropriately maintaining the shape of the steel plate when pouring molten steel.
  • the steel product of the present invention is a steel product having a surface area of 6 to 15 mm and a surface area of 1000 cm 2 or more, which is manufactured by using the steel mold. In addition, it is an excellent quality product with a hot crack generated on the surface of the surface in contact with the vertical shape of 70 mm or less.
  • the steel product of the present invention is a high-quality product that is suppressed so as to be grade 1 or 2 in the class classification based on SJIS G 0588.
  • the steel frame is manufactured to have a weight of 35 kg or more.
  • Such steel products have a surface area force of S4000 cm 2 or more when the average strength is about 10 mm.
  • Such a thin-walled steel frame having a weight of 35 kg or more and a relatively large size has a large amount of shrinkage at the time of forging, so it has been easy to generate hot cracks in the past.
  • the present invention is very useful for such a thin-walled steel frame, and can effectively suppress the occurrence of hot cracks and hot water wrinkles.
  • FIG. 1 is a front view schematically showing a measurement method using a hot deflection measuring device.
  • FIG. 2 A schematic cross-sectional view schematically showing a saddle-shaped configuration.
  • (a) is a front view schematically showing a forged large steel product, and (b) is a cross-sectional view with a plane perpendicular to the thickness direction of the same large steel product.
  • (C) is a II cross-sectional view shown in (a).
  • (a) is a cross-sectional view schematically showing a cross-section of a forged medium-sized steel product
  • (b) is a cross-sectional view taken along II-II shown in (a)
  • (c) is It is III-III sectional drawing shown to (a).
  • (a) is a cross-sectional view schematically showing a cross-section of a forged small steel product
  • (b) is a side view of the small steel product
  • (c) is a side view of the small steel product. It is a bottom view of steel products.
  • the RCS in a preferred embodiment of the present invention is 2.0 to 50% by weight of dredged sand, 2.5 to 5.0% by weight phenolic resin and 2.0 to 50% of the same phenolic resin. 4.0% by weight to 20% by weight of potassium nitrate and 20% by weight of the same phenolic resin. And so on.
  • This dredged sand may be natural sand or artificial sand, and is not particularly limited. Specific examples include, for example, dredged sand, olivine sand, zircon sand, chromite sand, alumina sand, Hue mouth chrome slag, Hue mouth-Neckel slag, converter slag, mullite artificial particles (for example, ITOCHU Ceratech Corporation) Trade names available from the company “Nyiga Sera Beads”), and these reclaimed sand. These may be used alone or in combination of two or more.
  • dredged sands it is preferable to use dredged sand, and it is more preferable to use dredged sand and recycled sand in combination. Furthermore, by mixing zircon sand, seizure during fabrication can be prevented.
  • the reclaimed sand is obtained by crushing a lump-shaped lump collected after spreading the reed-shaped sand with a known crusher such as a crusher and subjecting the obtained sand granules to a predetermined regenerating process.
  • a known crusher such as a crusher
  • the regeneration treatment include a wear-type regeneration treatment that removes deposits adhering to the surface of the sand, and a roasting regeneration treatment that removes the deposit by heat treatment.
  • the present invention is not limited to these, and any conventionally known treatment can be adopted as long as it can remove the adhering material of the sand.
  • the phenolic greaves function as a binder that binds and holds the particles of the fine sand.
  • the phenolic resin is not particularly limited as long as it is a resin mainly composed of a reaction product of phenols and aldehydes and having a property of being heat-cured in the presence or absence of a curing agent. Absent.
  • the phenolic resin is 2.5 to 5.0% by weight, more preferably 2.7% with respect to the sand.
  • phenolic resin examples include novolac-type phenolic resin, resol-type phenolic resin, nitrogen-containing resol-type phenolic resin, pendyl ether-type phenolic resin, low-expansion phenolic resin, and Modifications produced by mixing or reacting these phenolic resins with, for example, epoxy resins, urea resins, melamine resins, xylene resins, polyamide resins, epoxy compounds, melamine compounds, urea compounds, etc.
  • phenolic resin examples include novolac-type phenolic resin, resol-type phenolic resin, nitrogen-containing resol-type phenolic resin, pendyl ether-type phenolic resin, low-expansion phenolic resin, and Modifications produced by mixing or reacting these phenolic resins with, for example, epoxy resins, urea resins, melamine resins, xylene resins, polyamide resins, epoxy compounds, melamine compounds, urea compounds, etc.
  • phenolic resin may be used alone or in combination of two or more.
  • a non-self-curing resin such as a novolak-type phenol resin
  • hexamine hexamethylenetetramine
  • hexamine it is preferable to add hexamine at about 5 to 12% by weight with respect to the phenolic resin.
  • group resin Generally, it is a solid of a suitable shape, and is used as a resin liquid or a solution as needed. Also, it can be done by using both solid and liquid.
  • the phenol-based ⁇ is 30 to 90 weight 0/0 preferably comprises low expansion phenol ⁇ of 50 to 80 wt%.
  • This low-expansion phenol resin should contain at least one selected from the group power consisting of bisphenol A, a residue produced during purification of the bisphenol A, and derivatives of separated components in the residue.
  • a phenol rosin as disclosed in Patent Document 1 can be used.
  • phenol-based ⁇ is by Dale include such low expansion phenol ⁇ 30 to 90 weight 0/0, no sex better become ⁇ when molding the ⁇ Can be used.
  • the content of the low-expansion phenolic resin exceeds 90% by weight, there is a risk that a molding failure may occur due to a decrease in the curing rate of the phenolic resin when molding the mold.
  • the content of low-expansion phenolic resin is less than 30% by weight, baling tends to occur in the steel when forging.
  • the above-described phenolic resin is used in combination with amino-based, epoxy-based, and bull-based silane coupling agents and Z or lubricants, which are useful for improving the quality of the mold-type strength and lubricity. You can also.
  • silane coupling agent examples include y-aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyl trimethoxysilane, j8 — (3,4-epoxycyclohexenole) -etyltrimethoxysilane, vinyltrimethoxysilane, buturis (
  • the lubricant include ethylene bis stearic acid amide, methylene bis stearic acid amide, oxystearic acid amide, and methylol stearic acid amide.
  • Potassium nitrate which is one of the essential components of this embodiment, is 2 to 50% by weight, preferably 3 to 25% by weight, and more preferably 5%, based on the weight of phenolic resin (solid conversion). It mix
  • the amount of vinsol is preferably 10% by weight or more and 20% by weight or less, more preferably 10 to 15% by weight, based on the weight of phenolic resin (in terms of solid content). Merge. Thereby, the property can be further improved from the shape of the saddle. For this reason, generation of hot cracks can be more effectively prevented.
  • vinsol for example, a pine resin extract or a rosin-extracted rosin residue, specifically, a trade name “bin sol resin” (acid value 95) manufactured by Herxules can be used. In this case, if the content of vinsol in the phenolic greaves is less than 4.0% by weight, it is not possible to expect a further improvement in the properties as required by vinsol. On the other hand, if it exceeds 20% by weight, the hot strength of the mold becomes too low, or gas defects are likely to occur in the steel during forging.
  • the RCS of the present embodiment in addition to the above components, various additives such as anti-caking agents such as calcium stearate, mold release agents, deodorants, bengara, iron sand, etc. are necessary. Depending on the condition, it can be appropriately blended in a predetermined amount.
  • anti-caking agents such as calcium stearate, mold release agents, deodorants, bengara, iron sand, etc.
  • it can be appropriately blended in a predetermined amount.
  • the RCS for pig steel as described above is produced by various methods such as a dry hot coating method, a semi-hot coating method, a cold coating method, and a powder solvent method, which have been conventionally performed in the technical field. Can be produced. Among these, it is desirable to use a dry hot coating method in terms of productivity and quality.
  • preheated dredged sand is placed in a kneader such as a whirl mixer to adjust the temperature.
  • a phenolic resin for example, novolak-type phenol resin
  • potassium nitrate, vinsol, and other necessary additives are supplied in a predetermined amount into a kneader and melted and kneaded for a predetermined time to form a lump.
  • an aqueous hexamine solution is added with stirring and mixing, and the lumps are broken into sand particles by cooling with air blowing, and then calcium stearate is added and kneaded.
  • the RCS for steel according to the present embodiment as described above can be obtained.
  • potassium nitrate it is preferable to use it as an aqueous solution having an appropriate concentration, for example, an aqueous solution having a concentration of about 10 to 50% by weight, from the viewpoint of safety during handling.
  • the saddle mold of this embodiment can heat the saddle mold itself during fabrication because it contains potassium nitrate.
  • the steel mold is not limited to the core as described above, but can be formed as a main mold.
  • the specific molding conditions of the saddle are not particularly limited, and can be appropriately selected according to the usage conditions of the saddle.
  • such ⁇ for ⁇ for example configured to be hot strength force 12 0 ⁇ 175N / cm 2 of ⁇ during ⁇ .
  • the steel mold retains the shape of the steel mold when pouring molten steel, and stably produces steel products having a desired shape. Can be built.
  • the cold strength of the saddle type for steel is configured to be 900 to 1400 NZcm 2 , preferably 1000 to 1360 N / cm 2 . If the cold strength of the saddle is less than 900 N / cm 2 , baling tends to occur in the steel during forging. On the other hand, if the cold strength exceeds 140 ON / cm 2 , gas defects are likely to occur in the porridge.
  • the steel product forged using the steel mold as described above has a thickness of 6 to 15 mm and a surface area of 1000 cm 2 or more.
  • the hot crack generated on the surface of the surface in contact with the vertical shape is 70 mm or less per surface area of 1000 cm 2 , resulting in excellent quality.
  • the occurrence of hot water wrinkles is effectively suppressed in such steelware, and for example, the hot water wrinkle generation state is excellent such that the grade classification based on JIS G 0588 shows the first or second class. Has a smooth skin.
  • RCS was shaped to a size of 30 ⁇ ⁇ X 50mm, and then fired at 250 ° C for 2 minutes to prepare two test pieces 1 (TP1).
  • TP1 was allowed to cool to room temperature, and its coercive pressure was measured as the cold strength.
  • the other TP1 was detonated at 1000 ° C for 1 minute, and the coercive pressure immediately after that was measured as the hot strength.
  • the coefficient of thermal expansion was measured according to JACT test method M-2. That is, TP 1 of 30 mm ⁇ X 50 mm was produced in the same manner as described above, and the length of TP 1 (TP length before heat exposure) was measured. Next, TP 1 was installed in a high-temperature dredged sand testing machine adjusted to a furnace temperature of 1000 ° C. Then, the TP length (TP length after heat exposure) was measured every predetermined time with the same test machine, and the thermal expansion coefficient at each time was calculated by the following formula based on the measurement result.
  • Thermal expansion coefficient (%) (TP length after heat exposure TP length before heat exposure) TP length before heat exposure Z 100 [0067] After shaping RCS to a size of 50 x 120 x 5 mm, it was fired at 250 ° C for 40 seconds to produce TP2. The obtained TP2 was fixed to the hot deflection measuring device 10 in a cantilever state as shown in FIG. Subsequently, a preheated heater H was inserted into the lower surface of TP2 to perform heat exposure, and the amount of displacement by which the free end of TP2 was displaced upward and the heat exposure time corresponding to the amount of displacement were measured.
  • the main mold 1 as shown in Fig. 2 was made by the green mold method using the sand.
  • Test piece core 2 was molded by shell molding using RCS.
  • the main mold 1 can be divided into an upper mold 3 and a lower mold 4 in the vertical direction, and a cylindrical space is formed inside.
  • the test piece core 2 was coaxially attached to the internal space of the main mold 1 obtained.
  • molten steel was peeled from the pouring gate 5 and poured into a cylindrical steel frame having a thickness of about 10 mm.
  • low-alloy steel product SCSiMn2 equivalent material was used as the molten steel, and the molten steel was cast at a casting temperature of 1550 ⁇ 10 ° C.
  • the steel product thus obtained was 35 kg in weight, and the surface area of the thin wall portion was 4260 cm 2 .
  • the obtained steel product was observed, and the hot cracks occurring in the steel product having the longest crack length were measured.
  • the detection of hot cracks was performed in accordance with the penetrant testing method specified in JIS Z 2343. Based on the measured crack length, hot cracks were evaluated in the following five stages. For the detected hot cracks, the crack length per 1000 cm 2 surface area of the steel frame was calculated.
  • Evaluation index for hot crack When the crack length is Omm (no hot crack), give an evaluation of "5". Below, the crack length is 100mm or less as “4", and over 100mm and 200mm or less as “ “3”, more than 200 mm and less than 300 mm were evaluated as “2”, and more than 300 mm were evaluated as “1”.
  • novolac resin B is a novolak type phenol resin, which is a product name ⁇ SP5000HS '' manufactured by Asahi Organic Materials Co., Ltd., which exhibits low expansibility.
  • BP150 a product name “BP150” manufactured by Asahi Organic Materials Co., Ltd., which is a novolac type phenolic resin that exhibits low expansibility.
  • kneaded sand was produced that was formed into a bowl by a room temperature self-curing method that was not a shell mold method.
  • 0.9 kg of domestic cinnabar sand and 2.1 kg of reclaimed sand are introduced into the laboratory supplies Kawakita Mixer, and 9 g of product name “E40” manufactured by Asahi Organic Materials Co., Ltd. is added as an organic ester curing agent.
  • the mixture was kneaded for 30 seconds.
  • 45 g of the prepared alkali resole rosin was added and kneaded for 30 seconds to obtain kneaded sand.
  • Each test piece having a predetermined shape can be produced by shaping the obtained kneaded sand and curing it at room temperature.
  • FIG. 3 (b) is a cross-sectional view taken along a plane perpendicular to the thickness direction of the bracket 11 shown in Fig. 3 (a), and Fig. 3 (c) is shown in Fig. 3 (a). It is II sectional drawing shown in FIG. The obtained bracket 11 had an average thickness of about 12 mm, and the surface area of the thin portion was 15200 cm 2 .
  • the main mold was formed by a green mold method. Furthermore, a structural low alloy steel SCSiMn2 equivalent material was injected as a molten steel into a vertical mold, and the molten metal injection temperature was set to 1550 ⁇ 10 ° C.
  • brackets 11 For each of the obtained brackets 11, a hot crack was detected in accordance with the penetration flaw detection test method defined in JIS Z 2343, and the length of the detected crack was measured. In addition, the occurrence ratio of cracks per surface area of 1000 cm 2 in the thin wall portion was calculated. In addition, the bracket The raw hot water wrinkles were evaluated based on the appearance test method and grade classification of steel products and skins specified in JIS G 0588.
  • Example 2 and Comparative Example 2 the medium-sized steel product 12 (frame) shown in FIG. 4 and the small steel product 13 (small bracket) shown in FIG. 5 were produced.
  • the medium-sized steel products shown in Fig. 4 carbon steel steel products for welded structures SCW450 equivalent material was used as the molten steel, and the injection temperature of the molten metal was set to 1550 ⁇ 10 ° C.
  • a structural low alloy steel SCSiMn2 equivalent material was used as the molten steel, and the pouring temperature of the molten metal was set to 1550 ⁇ 10 ° C.
  • the other production conditions for these medium and small steel products were the same as those for the large steel products.
  • the obtained medium-sized steel product 12 had an average thickness of about 11 mm, and the surface area of the thin-walled portion was 700,000 cm 2 .
  • This medium-sized steel product 12 is a component that is very difficult to repair when a hot crack occurs in the hollow interior.
  • three items were evaluated: hot crack length, crack generation rate per 1000 cm 2 of thin-walled surface area, and hot water wrinkle generation state. Went.
  • the small steel product 13 had an average thickness of about 12 mm, and the surface area of the thin portion was 2 160 cm 2 .
  • This small steel product was evaluated for two items: the length of hot cracks and the occurrence of hot water wrinkles.
  • Table 4 summarizes the results of evaluations conducted on the large, medium, and small steel products.
  • Example 2 hot cracks did not occur and generation of hot water wrinkles was effectively suppressed.
  • Comparative Example 2 the occurrence of hot cracks in the steel product was confirmed.
  • FIGS. 4 and 5 the positions where hot cracks occurred in the steel product in Comparative Example 2 are shown in FIGS. 4 and 5, respectively. From this result, it has been clarified that a special effect can be obtained by the present invention.
  • the present invention is effectively applied to the case where a steel mold is formed by using a shell mold method using RCS and a steel frame is forged using the same mold, particularly when a thin steel frame is forged. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

A resin-coated san for use in cast steel, comprising a casting sand, a phenolic resin in an amount of 2.5 to 5.0% by weight relative to the amount of the casting sand, potassium nitrate and vinsole. A steel casting manufactured by the casting on a casting mold which is molded using the resin-coated sand can effectively prevent the occurrence of hot-cracking or bath wrinkle even in a thin and large-sized article.

Description

明 細 書  Specification
铸鋼用レジンコーテッドサンド、同サンドからなる铸型および同铸型により 铸造された鋼铸物  Resin coated sand for steel, steel mold made of the same sand and steel products made by the same mold
技術分野  Technical field
[0001] 本発明は、铸鋼に好適なレジンコーテッドサンド、同レジンコーテッドサンド製の铸 鋼用铸型及び同铸型から铸造される鋼铸物に関する。特に鋼铸物に発生しやすい 熱間亀裂及び湯じわの発生を効果的に低減できるレジンコーテッドサンド、同サンド からなる铸鋼用铸型および同铸型から铸造される鋼铸物に関する。  [0001] The present invention relates to a resin-coated sand suitable for steel, a steel-coated steel mold made of the resin-coated sand, and a steel product forged from the steel mold. In particular, the present invention relates to a resin-coated sand that can effectively reduce the occurrence of hot cracks and hot water wrinkles that tend to occur in steel products, a steel mold made of the same sand, and a steel product made from the same mold.
背景技術  Background art
[0002] 近年、自動車や建設機械などでは所望の強度を確保するとともに軽量ィ匕を図るた め、強度の高い鋼铸物が注目されている。特に、鋼铸物の重量を軽減するため、そ の中空薄肉化技術の確立が期待されている。铸鋼の分野において、この中空薄肉 化の技術としては、例えば以下に説明するシェルモールド法などが古くから知られて おり、従来力 多様な技術分野において採用されている。  [0002] In recent years, steel articles with high strength have been attracting attention in order to ensure a desired strength and to achieve light weight in automobiles and construction machines. In particular, in order to reduce the weight of steel objects, it is expected to establish a hollow thinning technology. In the field of pig steel, this hollow thinning technique, for example, the shell mold method described below has been known for a long time and has been used in various technical fields.
[0003] ところで、鋼铸物を製造する場合、铸造時における溶湯の凝固収縮量が鉄铸物ゃ アルミ合金铸物等と比べると倍近く大きいことが知られている。例えば、中空構造を有 する铸鋼を製造する場合には、溶湯の凝固収縮が起きることによって、その収縮が中 空部を形成する中子 (铸型)により拘束されてしまうことになる。このため、铸物に熱間 亀裂が発生するという問題があった。このように铸鋼に発生した熱間亀裂は、铸造後 に取り除いて所望の製品形状に仕上げ直すといった補修作業を必要とした。例えば 、補修作業としては、铸鋼に発生した熱間亀裂部を、先ずグラインダーやガウジング 等の処理により取り除く。次に、当該部位に肉盛溶接を行い、更にグラインダー処理 などを施す。これによつて、熱間亀裂を除去した所望形状の铸鋼を製造することがで きる。  [0003] By the way, when manufacturing steel products, it is known that the amount of solidification shrinkage of the molten metal at the time of forging is nearly twice as large as that of iron products and aluminum alloy products. For example, when manufacturing a pig steel having a hollow structure, solidification shrinkage of the molten metal occurs, so that the shrinkage is constrained by a core (saddle type) that forms a hollow portion. For this reason, there was a problem that hot cracks occurred in the porcelain. Thus, the hot cracks that occurred in the steel were required to be repaired by removing them after forging and refinishing them into the desired product shape. For example, as a repairing work, a hot crack generated in the steel is first removed by a grinder or gouging process. Next, build-up welding is performed on the part, and further grinder processing is performed. As a result, it is possible to manufacture a steel plate having a desired shape from which hot cracks have been removed.
[0004] しかし、このような铸鋼における熱間亀裂の補修作業が増加すると、铸鋼の生産性 を低下させ、またコストアップにも繋がるため、経済性の悪ィ匕を招くといった問題があ つた。さらに、複雑な形状の鋼铸物を製造する際には、熱間亀裂が発生した部位に 対して補修作業を行うことが非常に困難となる場合がある。このような場合には、改め て鋼铸物の铸造作業を始めから行わなければならな力つた。 [0004] However, if such hot crack repair work in steel is increased, the productivity of steel is reduced and the cost is increased, resulting in a problem of poor economic efficiency. I got it. Furthermore, when manufacturing steel frames with complex shapes, On the other hand, it may be very difficult to perform repair work. In such a case, it was necessary to start the forging work of steel products from the beginning.
[0005] このような問題に対処するために、例えば、铸鋼用铸型の造型時に炭酸ガス (CO  [0005] In order to deal with such problems, for example, carbon dioxide (CO
2 ガス)による水ガラス (硅酸ソーダ)の硬化を利用した COガス法と呼ばれる方式が採  (2 gas), a method called the CO gas method using the hardening of water glass (sodium oxalate) is adopted.
2  2
用されている。この炭酸ガス方式は、無機粘結剤である水ガラスを铸物砂に対して 5 重量%程度を配合して混練する。この混練物を造型した後に炭酸ガスを通気するこ とにより、水ガラスをゲルイ匕して铸型を硬化させる。  It is used. In this carbon dioxide gas system, water glass, which is an inorganic binder, is blended in an amount of about 5% by weight based on the sand. After forming this kneaded product, carbon dioxide gas is passed through to gel the water glass and cure the mold.
[0006] この炭酸ガス方式により造型された铸型を用いて铸鋼の製造を行えば、溶鋼が铸 型のキヤビティ内に注湯されて凝固収縮する際に、溶湯熱で無機粘結剤を軟化させ ることができる。これにより、铸型に使用される铸物砂がその空隙を埋める方向で移 動することができ、铸型自体が収縮して铸鋼の凝固収縮に対する中子の拘束力を小 さくすることが可能となる。しかし、このような炭酸ガス方式により成形される铸型(中 子)は、造型時に铸物砂が水分を含んだ湿態となる。このため、中子成形時には、铸 物砂を中子模型内に均等に充填することが難しくなる。しかも、この場合、铸型の密 度が必要以上に高くなつてしまう傾向があった。  [0006] When steel is manufactured using a steel mold made by this carbon dioxide gas method, when the molten steel is poured into the steel cavity and solidifies and shrinks, the inorganic binder is removed by the heat of the melt. Can be softened. As a result, the sand used in the mold can move in the direction of filling the gap, and the mold itself contracts, reducing the binding force of the core against solidification shrinkage of the steel. It becomes possible. However, in the mold (core) formed by such a carbon dioxide gas system, the glazed sand becomes a moisture state containing moisture at the time of molding. For this reason, it becomes difficult to uniformly fill the core model with the core sand during core molding. In addition, in this case, there was a tendency that the density of the saddle type became higher than necessary.
[0007] 従って、炭酸ガス方式で得られた铸型を用いて铸造を行っても、溶湯の凝固収縮 時に铸型が十分に収縮せず、熱間亀裂の防止効果が見込めない場合があった。さ らに、粘結剤として水ガラスを使用しているため、铸造時に中子を構成している铸物 砂が溶湯の熱によって焼結し、中子砂が強固に焼付いてしまうことがあった。このよう にして中子砂が焼付くと、铸鋼を製造した後に中子を崩壊して取り除くことが極めて 難しくなる。このため、生産性の低下を来すという問題があった。  [0007] Therefore, even when forging is performed using a mold obtained by the carbon dioxide method, the mold does not sufficiently contract when the molten metal solidifies and shrinkage, and the effect of preventing hot cracking may not be expected. . In addition, since water glass is used as a binder, the sand that forms the core during forging may sinter due to the heat of the molten metal and the core sand may be strongly baked. It was. If the core sand is baked in this way, it becomes extremely difficult to disintegrate and remove the core after producing the steel. For this reason, there has been a problem that productivity is lowered.
[0008] 一方、その他の铸鋼用铸型の造型方式としては、乾態のシヱルモールド法が知ら れている。このシェルモールド法は、铸物砂にフエノール系榭脂を有機粘結剤として コーティングし、得られたレジンコーテッドサンド (RCS)を予熱した模型に充填する。 铸物砂に被覆された榭脂は、模型の熱により縮重合してシェル層が形成される。この シェル層を模型とともに更に加熱して硬化させた後、模型カゝらシェル層を離型するこ とにより铸型を作製する。  [0008] On the other hand, a dry seal mold method is known as another mold forming method for steel. In this shell mold method, coconut resin is coated as an organic binder on dredged sand, and the resulting resin-coated sand (RCS) is filled into a preheated model. The resin coated with the sand is condensed by the heat of the model to form a shell layer. The shell layer is further heated and cured together with the model, and then the shell layer is released from the model cover to produce a saddle shape.
[0009] このようなシェルモールド法で作製した铸型を鋼铸造の中子として使用した場合、 粘結剤であるフエノール系榭脂が高温の铸造過程において分解される。このため、 铸造後の鋼铸物の中空部から中子を取り出す際に、中子を崩壊させやすくすること ができる。従って、中子の取り出しを容易に行えるという利点を有する。 [0009] When the mold produced by such a shell mold method is used as the core of a steel forging, Phenolic sebum, which is a binder, is decomposed in a high temperature forging process. For this reason, when taking out the core from the hollow portion of the steel frame after forging, the core can be easily collapsed. Therefore, there is an advantage that the core can be easily taken out.
[0010] このようなシェルモールド法にお!、て、铸型材料として用いられるフエノール榭脂組 成物に関する発明が、特開昭 57— 68240号公報 (特許文献 1)に開示されている。 この特許文献 1に記載されているフエノール榭脂組成物は、フエノールと、ビスフエノ ール Aと、ビスフエノール Aの生成時に生じる残渣中の分離成分又は誘導体との 3つ の成分で構成された低膨張性を示すフ ノール榭脂組成物である。  [0010] An invention relating to a phenol resin composition used as a saddle type material in such a shell mold method is disclosed in JP-A-57-68240 (Patent Document 1). The phenolic resin composition described in Patent Document 1 is a low-molecular composition composed of three components: phenol, bisphenol A, and a separated component or derivative in the residue generated when bisphenol A is produced. It is a phenolic resin composition exhibiting expansibility.
[0011] このような低膨張性のフエノール榭脂組成物を用いてシェルモールド法により铸型 を作製することにより、得られた铸型は可撓性に富み、良好ななりより性 (flexibility)を 有している。そして、このような特性を有する铸型を用いて铸造を行うことにより、铸物 の熱間亀裂やピンホール (ガス欠陥)の発生を抑制することができるとされて 、る。こ こで、なりより性とは铸型が铸物とともに収縮する性質、铸込んだ溶湯の収縮膨張に 耐え得る铸型の性能を言うとされて 、る。  [0011] By using such a low-expansion phenolic resin composition to make a mold by a shell mold method, the mold is rich in flexibility and has better flexibility. have. Further, it is said that by performing forging using a mold having such characteristics, it is possible to suppress the occurrence of hot cracks and pinholes (gas defects) in the object. Here, the term “sexuality” refers to the property that the mold shrinks together with the bowl, and the performance of the bowl that can withstand the shrinkage and expansion of the molten metal.
[0012] また近年では、鋼铸物の製造において、鋼铸物の軽量ィ匕を図るために鋼铸物の肉 厚をできる限り薄くすることが求められている。しかし、鋼铸物を铸造するに際し、軽 量ィ匕のために铸物の薄肉化が進むと、熱間亀裂が発生し易くなるという問題があった 。このため、例えば薄肉铸鋼品の製造を行う際に、特許文献 1に記載されているよう な低膨張性のフエノール榭脂組成物で造型した铸型を用いたとしても、その榭脂組 成物に基づく铸型の可撓性やなりより性に依存する熱間亀裂の防止効果のみでは、 薄肉铸鋼における熱間亀裂の発生を十分に防止することは難しかった。従って、特 に薄肉铸鋼品の铸造においては、熱間亀裂の発生をより効果的に防止できる技術 の開発が望まれていた。  [0012] In recent years, in the manufacture of steel products, it has been required to reduce the thickness of the steel products as much as possible in order to reduce the weight of the steel products. However, when forging steel products, there has been a problem that hot cracks are likely to occur if the thickness of the products is reduced due to light weight. Therefore, for example, when manufacturing a thin steel product, even if a mold made of a low expansion phenolic resin composition as described in Patent Document 1 is used, the composition of the resin It was difficult to sufficiently prevent the occurrence of hot cracks in thin-walled steel by only the effect of preventing the hot cracks depending on the flexibility of the saddle type based on the material and the nature. Therefore, particularly in the production of thin-walled steel products, it has been desired to develop a technology that can more effectively prevent the occurrence of hot cracks.
[0013] 更に、薄肉铸鋼品を製造する場合、注入した溶湯の熱が铸型(中子)に奪われ易く 、铸型のキヤビティ内において溶湯の流れが均等になされないことがあった。このよう に溶湯の流れが悪くなつて湯回り性 (湯流れ性)が低下すると、铸造した铸鋼品の表 面に凹凸状の湯じわが発生するという問題があった。湯じわとは、 JIS G 0588にお V、て「铸込温度の低すぎ、铸込速度の遅すぎなどによって生じる底の見えるしわ」と 規定されており、湯じわの発生状態に関して 1〜5級の等級分類がなされている。こ のように铸鋼に湯じわが発生する課題については、例えば前記特許文献 1に記載さ れた RCSでは完全な解決が期待できず、湯じわを効果的に低減する更なる技術の 開発が従来力 強く求められていた。 [0013] Furthermore, when manufacturing thin-walled steel products, the heat of the injected molten metal is easily taken away by the bowl (core), and the flow of the molten metal may not be made uniform in the bowl-shaped cavity. As described above, when the molten metal flow becomes poor and the hot water flowability (molten metal flowability) decreases, there is a problem that uneven hot water is generated on the surface of the forged steel product. “Yojiwa” means JIS G 0588 V, “Wrinkles with visible bottom caused by too low pour temperature, too low pour speed” It is defined and grades 1-5 are classified for the state of hot water wrinkles. As described above, for example, the RCS described in Patent Document 1 cannot be expected to completely solve the problem of hot water wrinkles occurring in the steel, and development of further technology for effectively reducing the hot water wrinkles. Has been strongly demanded.
[0014] ところで、上記のような鋼铸物の铸造とは溶湯材が全く異なるものである力 非鉄金 属からなる铸物(例えば、アルミニウム)の铸造にぉ 、てシェルモールド法用の铸型 材料に関する発明が、特公昭 31— 7256号公報 (特許文献 2)及び特開平 9— 5739 1号公報 (特許文献 3)に開示されている。このような非鉄铸物であるアルミニウムを铸 造する場合、その铸造温度が鋼铸物に比べて低いことが一般に知られている。具体 的には、鋼铸物を製造する場合は铸造温度が約 1500〜 1600°C強であるのに対し 、アルミニウムの場合は铸造温度が約 660〜700°C程度ときわめて低!、。  [0014] By the way, compared with the above-described steel structure forging, the strength of the molten metal is quite different from that of the non-ferrous metal structure (for example, aluminum), and for the shell mold method. Inventions relating to materials are disclosed in Japanese Patent Publication No. 31-7256 (Patent Document 2) and Japanese Patent Application Laid-Open No. 9-57391 (Patent Document 3). When producing such a non-ferrous aluminum, it is generally known that the forging temperature is lower than that of steel. Specifically, when manufacturing steel products, the forging temperature is about 1500-1600 ° C, whereas for aluminum, the forging temperature is about 660-700 ° C, which is extremely low! ,.
[0015] このアルミニウムの铸造においては、铸造温度が低いことにより、以下のような問題 が生じていた。即ち、シェルモールド法で作製した铸型を中子として用いた場合、ァ ルミ-ゥムの铸造温度では铸型の粘結剤(フエノール榭脂)の分解が起こらな ヽ。この ため、中空のアルミニウム铸物を製造する場合には、铸造後に中子が高い強度を保 持した状態で铸物の中空内部に残存することになる。従って、中子を铸物内から取り 出そうとして、これを崩壊させるために多大な労力やエネルギーが必要とされた。  [0015] In the forging of aluminum, the following problems have occurred due to the low forging temperature. In other words, when a mold made by the shell mold method is used as a core, decomposition of the mold-type binder (phenolic resin) does not occur at the production temperature of the film. For this reason, when producing a hollow aluminum casing, the core remains in the hollow interior of the casing in a state of maintaining high strength after forging. Therefore, a great deal of labor and energy was required to take the core out of the box and destroy it.
[0016] このような問題を解消するため、前記特許文献 2には、酸素を付与又は遁伝する物 質 (例えば、四三酸ィ匕鉛や硝酸カリウム等)を 0. 5〜20重量%添加したフエノール榭 脂を粘結剤として RCSに使用することが記載されている。このように酸素を付与又は 遁伝する物質を用いることにより、粘結剤の分解を促進させて铸型の崩壊性を改善 できるとしている。例えば、中空のアルミニウム铸物を铸造した後、得られた中子付き の铸型に熱処理 (砂焼き)を施すことによって、中子の粘結剤を熱分解させることもで きる。これにより、中子の強度を低下させ、中空铸物から中子の取り出しを容易に行う ことが可能となる。  [0016] In order to solve such problems, Patent Document 2 adds 0.5 to 20% by weight of a substance that imparts or transmits oxygen (for example, lead tetraphosphate or potassium nitrate). The use of phenol resin as a binder in RCS is described. By using a substance that imparts or transmits oxygen in this way, it is said that the decomposition of the binder can be promoted to improve the saddle-type disintegration property. For example, the core binder can be thermally decomposed by forging a hollow aluminum bowl and then subjecting the obtained mold with a core to heat treatment (sand baking). As a result, the strength of the core is reduced, and the core can be easily taken out from the hollow casing.
[0017] また、前記特許文献 3にお 、ては、特許文献 2に記載の RCSでは铸型に十分な熱 量が供給されな 、低温域の箇所で铸型の崩壊性が不十分になることを指摘して 、る 。その上で、特許文献 3は、このような低温域の箇所でも十分な铸型の崩壊性を示す RCSとして、耐火性粒子と、フエノール系榭脂と、酸素含有量が 25重量%以上の含 酸素炭化水素系化合物 (低級カルボン酸類等)及びアルカリ金属硝酸塩 (硝酸力リウ ム、硝酸ナトリウム等)を所定の割合で含む铸型崩壊性向上剤とを必須成分とする R CSを提案している。こうした崩壊性向上剤を RCSに含ませることにより、例えば 300 〜350°Cの低温域での铸型の崩壊性を向上させることができるとしている。 [0017] Further, in Patent Document 3, the RCS described in Patent Document 2 does not supply a sufficient amount of heat to the saddle, and the disintegration of the saddle is insufficient at a low temperature region. Point out that. On top of that, Patent Document 3 shows sufficient saddle-shaped disintegration even in such a low temperature region. As RCS, refractory particles, phenolic resin, oxygen-containing hydrocarbon compounds (lower carboxylic acids, etc.) with an oxygen content of 25% by weight or more, and alkali metal nitrates (nitric acid lithium, sodium nitrate, etc.) We have proposed RCS, which has a saddle-type disintegration improver contained at a predetermined ratio as an essential component. By including such a disintegration improver in the RCS, it is said that, for example, the saddle-shaped disintegration property in a low temperature range of 300 to 350 ° C. can be improved.
[0018] し力しながら、前記特許文献 2及び 3は、あくまでも上述のアルミニウムのような铸造 温度の低い非鉄金属における铸型の崩壊性を向上させることを目的としている。この ため、铸造した铸物に発生する熱間亀裂や湯じわに関する問題については全く議論 力 されておらず、熱間亀裂や湯じわの発生を抑制する具体的手段について格別 に記載されていない。 [0018] However, Patent Documents 2 and 3 are intended only to improve saddle-type disintegration in a non-ferrous metal having a low forging temperature such as aluminum described above. For this reason, there is no discussion at all regarding the problems related to hot cracks and hot water wrinkles that occur in the wrought goods, and specific means for suppressing the occurrence of hot cracks and hot water wrinkles are described. Absent.
[0019] なお、これら特許文献 2及び 3において、中子の崩壊性を向上させる物質として、硝 酸カリウムが共通して例示されている。この硝酸カリウムは、火薬成分として知られて いるように爆発性を有する物質である。さらに、硝酸カリウムは、 900°C以上の加熱に より焼結することが一般に知られて 、る。  In these Patent Documents 2 and 3, potassium nitrate is exemplified as a substance that improves the disintegration property of the core. This potassium nitrate is an explosive substance known as an explosive component. Furthermore, potassium nitrate is generally known to sinter by heating above 900 ° C.
[0020] 従って、従来では、硝酸カリウムを含有する铸型(中子)を、注湯温度がアルミ-ゥ ムの铸造よりも極めて高 ヽ鋼铸物の铸造に用いることは、硝酸カリウムの爆発性に対 する作業上の安全性に懸念があった。更に、铸鋼用铸型に硝酸カリウムを含ませると 、硝酸カリウムが铸造温度 900°C以上の温度で焼結して铸型の強度を高めてしま!/ヽ 、铸造後の中子の崩壊性を悪化させると考えられていた。これらの理由から、硝酸力 リウムは、従来では前記特許文献 2及び 3にて述べているとおりアルミニウムの铸造に 用いることはあっても、注湯温度が 900°Cを遙かに越える 1500°C以上でなされる鋼 铸物の铸造に対して用いることは考えられて 、なかった。  [0020] Therefore, in the past, the use of a steel mold (core) containing potassium nitrate for the production of steel products having a pouring temperature much higher than that of aluminum production would make potassium nitrate explosive. There was concern about the safety of the work. In addition, if potassium steel is included in the steel mold, the potassium nitrate will sinter at a temperature of 900 ° C or higher to increase the strength of the mold! It was thought to make it worse. For these reasons, as described in the above-mentioned Patent Documents 2 and 3, nitrate nitrate is used for the fabrication of aluminum, but the pouring temperature is much higher than 900 ° C. 1500 ° C It was not considered to be used for forging steel products made as described above.
特許文献 1:特開昭 57— 68240号公報  Patent Document 1: Japanese Patent Laid-Open No. 57-68240
特許文献 2:特公昭 31 - 7256号公報  Patent Document 2: Japanese Patent Publication No. 31-7256
特許文献 3 :特開平 9— 57391号公報  Patent Document 3: JP-A-9-57391
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0021] 本発明は、前記従来の課題を解消すべくなされたものであり、その具体的な目的は 、中空構造を有する铸鋼の製造において、熱間亀裂の発生を防ぎ、同時に湯じわの 発生も効果的に低減できる铸鋼用のレジンコーテッドサンド、同サンドを用いて造型 された铸型、および同铸型により铸造された鋼铸物を提供することにある。 [0021] The present invention has been made to solve the above conventional problems, and its specific purpose is as follows. In the manufacture of steel with a hollow structure, a resin-coated sand for steel that can prevent hot cracks and at the same time effectively reduce the occurrence of hot water wrinkles, a steel mold made using the sand, And to provide a steel product forged by the same mold.
課題を解決するための手段  Means for solving the problem
[0022] 上記目的を達成するために、本発明者らは多様な実験を繰り返した。その結果、従 来では全く予想だにしな力つた铸造温度が極めて高い鋼铸物の铸造に際しても、そ の中子用のレジンコーテッドサンドに硝酸アルカリとビンゾールを配合しても全く爆発 の懸念がなぐ且つそのなりより性が大幅に向上することを知った。  [0022] In order to achieve the above object, the present inventors repeated various experiments. As a result, even when steel structures with extremely high forging temperatures, which were unexpectedly powerful in the past, were produced, there was no concern about explosion even when resin-coated sand for the core was mixed with alkali nitrate and vinsol. I knew that the sex would be significantly improved.
[0023] すなわち、本発明により提供されるレジンコーテッドサンドは、基本的な構成として、 铸物砂と、同铸物砂に対する 2. 5〜5. 0重量%のフ ノール系榭脂と、硝酸カリウム と、ビンゾールとを含んでなることを最も主要な特徴とするものである。  [0023] That is, the resin-coated sand provided by the present invention has, as a basic structure, cocoon sand, 2.5 to 5.0% by weight of phenolic greaves and potassium nitrate based on the cocoon sand. And vinsol is the main feature.
[0024] また、本発明のレジンコーテッドサンドにおいて、前記フエノール系榭脂のフエノー ル成分は、ビスフエノール A、同ビスフエノール Aの精製時に生じる残渣、及び同残 渣中の分離成分の誘導体よりなる群力 選択される少なくとも 1種を含んでなることが 好ましい。  [0024] Further, in the resin-coated sand of the present invention, the phenolic component of the phenolic resin comprises bisphenol A, a residue generated during purification of the bisphenol A, and a derivative of the separated component in the residue. Group power It is preferred to comprise at least one selected.
[0025] 更に、前記硝酸カリウムの配合量は 2〜50重量%であって、前記ビンゾールの配合 量力 前記フエノール系榭脂に対して 4. 0〜20重量%であることが好ましい。  [0025] Further, the compounding amount of the potassium nitrate is 2 to 50% by weight, and the compounding power of the vinsol is preferably 4.0 to 20% by weight with respect to the phenolic resin.
[0026] また、本発明により提供される铸鋼用铸型は、厚さ 6〜 15mmで、 1000cm2以上の 表面積を有する铸鋼品の铸型であって、前記本発明のレジンコーテッドサンドを用い て造型されてなることを主要な特徴となしている。この場合、前記铸型の熱間強度が 120〜 175NZcm2であることが好まし!/ヽ。 [0026] Further, the steel mold provided by the present invention is a steel mold having a thickness of 6 to 15 mm and a surface area of 1000 cm 2 or more, wherein the resin-coated sand of the present invention is used. The main feature is that it is molded by use. In this case, it is preferable that the hot strength of the saddle type is 120 to 175 NZcm 2 ! / ヽ.
[0027] 更に、本発明により提供される鋼铸物は、前記本発明の铸鋼用铸型を使って铸造 される鋼铸物であって、同鋼铸物が厚さ 6〜 15mmで、 1000cm2以上の表面積を有 し、前記铸型と接する铸物面に発生する熱間亀裂が 70mm以下であることを主要な 特徴となしている。 [0027] Further, the steel product provided by the present invention is a steel product manufactured using the steel mold of the present invention, the steel product having a thickness of 6 to 15 mm, have a 1000 cm 2 or more surface area, and has a main feature in that hot cracks occur铸物surface in contact with the铸型is 70mm or less.
[0028] また、本発明の鋼铸物は、前記鋼铸物の湯じわが、 JIS G 0588に基づく等級分 類が 1〜2級であるという優れた品質を有するものとなる。更に、本発明の鋼铸物は、 前記鋼铸物の重量が 35kg以上であることが好ましい。 発明の効果 [0028] In addition, the steel product of the present invention has an excellent quality that the steel product's hot water is grade 1 or 2 based on JIS G 0588. Furthermore, the steel product of the present invention preferably has a weight of 35 kg or more. The invention's effect
[0029] 本発明のレジンコーテッドサンド (RCS)は、铸物砂と、同铸物砂に対する 2. 5〜5 . 0重量%のフエノール系榭脂と、硝酸カリウムと、ビンゾールを含んでいる。  [0029] The resin-coated sand (RCS) of the present invention contains dredged sand, 2.5 to 5.0% by weight of phenolic rosin, potassium nitrate, and vinsol.
[0030] 本発明者等は、前記のように鋼铸物の製造では全く用いられていな力つた硝酸カリ ゥムを RCSに含ませ、この RCSを用いて造型された铸型による鋼铸物の铸造につい て様々な実験を行った。その結果、 RCSにフエノール系榭脂を前記特許文献 2及び 3とは異なる所定の割合で含有させるとともに、硝酸カリウムを含有させることにより、 以下のようなことが明らかになった。即ち、溶湯の注入温度がアルミニウムの铸造より も極めて高!、 1500〜 1600°C強となる鋼铸物の铸造にお 、て、従来懸念されて!ヽた ような硝酸カリウムの爆発に対する危険性がないことが明らかとなった。また、硝酸力 リウムを铸鋼用铸型に含有させても、硝酸カリウムの焼結による铸型の崩壊性に対す る悪影響も見られないことも確認された。それどころか、硝酸カリウムを RCSに含有さ せて铸鋼用铸型を造型することにより、以下で説明するように熱間亀裂の発生防止、 及び湯じわの抑制に非常に有効であり、意外性のある格別の効果が得られることが 新たに明らかとなった。  [0030] As described above, the inventors of the present invention have included RCS containing strong potassium nitrate that has not been used in the manufacture of steel products as described above, and a steel product using a mold formed using this RCS. Various experiments were carried out on the fabrication of this. As a result, the following facts have been clarified by adding phenolic resin to RCS at a predetermined ratio different from those in Patent Documents 2 and 3 and potassium nitrate. That is, the injection temperature of molten metal is much higher than that of aluminum, and it has been a concern in the past for the production of steel products with a temperature of 1500-1600 ° C. It became clear that there was no. It was also confirmed that even when nitrate nitrate was included in the steel mold, there was no negative effect on the collapse of the mold due to the sintering of potassium nitrate. On the contrary, by forming a steel mold with potassium nitrate contained in RCS, as explained below, it is very effective in preventing hot cracks and suppressing hot water wrinkles. It was newly revealed that a certain special effect can be obtained.
[0031] これは、硝酸カリウムが 900°C以上で焼結するものの、それより遙かに高い鋼铸物 の铸造温度下では、焼結した硝酸カリウムが自己燃焼による発熱が生じて高温を維 持すると同時にフエノール榭脂の炭化を促進させるため、溶湯が冷却固化するときァ ルミ-ゥムゃ鉄類のほぼ 2倍の収縮量で収縮しても、その挙動によく馴染んで铸型自 体が収縮し、しかも铸物をしつかりと保持する、いわゆるなりより性が向上するがため であると考えられる。その結果、仮に薄肉で大型の中空铸物であっても熱間亀裂がき わめて発生しに《なる。また、同時に硝酸カリウムの自己発熱は铸型周辺の温度を 高温に維持するため、湯流れが局部的に滞ることがなくなり、湯じわの発生も大幅に 減少する。  [0031] This is because potassium nitrate sinters at 900 ° C or higher, but when the temperature of the steel product is much higher than that, the sintered potassium nitrate generates heat due to self-combustion and maintains a high temperature. At the same time, in order to promote the carbonization of phenol resin, even when the molten metal cools and solidifies, even if it shrinks by almost twice the shrinkage amount of aluminum-iron, the bowl itself contracts well by adapting to its behavior. In addition, it is thought that this is due to the fact that the so-called “smoothness” is improved because it holds the porridges firmly. As a result, even if it is a thin-walled and large hollow container, hot cracks are extremely generated. At the same time, the self-heating of potassium nitrate maintains the temperature around the bowl at a high temperature, so that the hot water flow does not stagnate locally and the generation of hot water wrinkles is greatly reduced.
[0032] 本発明にあっては、前記硝酸カリウムの添加にカ卩えてビンゾールを添カロしている。  [0032] In the present invention, vinsol is added in addition to the addition of potassium nitrate.
ビンゾールレジンは、松の木から誘導され、暗色で高融点の熱可塑性物質であり、米 国ハーキュレス'パウダ^ ~·カンパ-一(Hercules Powder Company)製の製品が巿販 されている。このビンゾールレジンは受熱しても三次元硬化しないため、クッション効 果を有している。このクッション性を更に高めるために、石油系榭脂ゃロジンなどを少 量併用することもできる。本発明にあってビンゾールの添力卩は受熱によりシェル铸型 の軟化を促進させ、铸鋼に対するなりより性を更に向上させる。一方、ビンゾールは 榭脂としての熱間強度が上がる傾向にあり、溶湯注入時には溶湯が固化するまで铸 型の形状を保持する程度の低い熱間強度に抑える必要がある。ここで、上述のように 硝酸カリウムを添加することによって、ビンゾールの熱間強度を効率的に抑制する。 つまり、硝酸カリウムとビンゾールの添カ卩は、上述のなりより性と溶湯の固化時におけ る铸型の形状保持との両機能を相乗的に発揮させるため必須の要件となる。 Vinsol resin is derived from pine trees and is a dark, high-melting thermoplastic. Products from Hercules Powder Company are sold on the market. This vinsol resin does not cure three-dimensionally even when it receives heat, so the cushioning effect Has fruit. In order to further enhance this cushioning property, a small amount of petroleum-based rosin rosin or the like can be used in combination. In the present invention, the added force of vinsol promotes softening of the shell cage shape by receiving heat and further improves the properties of the steel plate. On the other hand, vinsol has a tendency to increase the hot strength as rosin. When pouring molten metal, it is necessary to keep the hot strength low enough to maintain the shape of the bowl until the melt is solidified. Here, the hot strength of vinsol is efficiently suppressed by adding potassium nitrate as described above. In other words, the potassium nitrate and vinsol additive is an indispensable requirement for synergistically exhibiting both the above-described properties and the vertical shape retention during solidification of the molten metal.
[0033] すなわち、上記のような本発明の RCSであれば、シェルモールド法により铸型(中 子)を形成し、同铸型(中子)を用いて铸造を行った際に、硝酸カリウム及びビンゾー ルの作用により溶湯の凝固収縮時に铸型を適切なタイミングで変形させることができ る。カロえて、溶綱が注湯されたときに、フエノール榭脂の熱分解を促進して铸型の強 度を低下させることが可能となる。これにより、溶湯が凝固収縮する際に、その収縮が 铸型により拘束されないため、铸鋼に熱間亀裂が発生するのを防止することが可能と なる。  [0033] That is, in the case of the RCS of the present invention as described above, when a saddle shape (core) is formed by a shell mold method and forged using the same saddle shape (core), potassium nitrate and By the action of binzol, the mold can be deformed at an appropriate timing when the molten metal solidifies and contracts. When the molten steel is poured, it becomes possible to accelerate the thermal decomposition of phenolic resin and reduce the strength of the bowl. As a result, when the molten metal solidifies and shrinks, the shrinkage is not constrained by the saddle shape, so that it is possible to prevent hot cracks from occurring in the steel.
[0034] さらに、上記のように RCSに硝酸カリウムが含有されていることにより、铸造時に铸 型自体を発熱させることができる。これにより、溶湯を铸型に流し込んだ際に、湯回り 性の低下を防ぐとともに溶湯の熱の分布を均一にすることができる。このため、湯じわ の発生を抑制して良好な铸肌を有する鋼铸物を得ることができる。このときの硝酸カリ ゥムの配合量はフエノール榭脂に対して 2〜50重量%であることが好ましい。 2重量 %以下であると自己発熱量が低すぎて注湯時の湯回りが円滑になされず湯じわの発 生原因となり、 50重量%以上だと自己発熱量が大きすぎてフ ノール榭脂の熱分解 が進み、極めて崩壊しやすくなり、均整な铸造が不可能となる。  [0034] Furthermore, as described above, since the RCS contains potassium nitrate, the mold itself can generate heat during fabrication. As a result, when the molten metal is poured into a bowl shape, it is possible to prevent the molten metal from being lowered and to make the heat distribution of the molten metal uniform. For this reason, it is possible to obtain a steel frame having a good skin by suppressing the generation of hot water. The blending amount of potassium nitrate at this time is preferably 2 to 50% by weight based on phenol resin. If it is 2% by weight or less, the amount of self-heating is too low and the hot water during pouring will not be smooth, causing hot water wrinkles, and if it is 50% by weight or more, the amount of self-heating is too large. Fat pyrolysis progresses, making it extremely easy to disintegrate, making it impossible to produce a uniform forgery.
[0035] また、本発明では、フエノール系榭脂のフエノール成分は、例えば、ビスフエノール A、同ビスフ ノール Aの精製時に生じる残渣、及び同残渣中の分離成分の誘導体 よりなる群力 選択される少なくとも 1種を含んでいる。このようなフエノール系榭脂を 含ませることによって、铸型に良好ななりより性を付与することができる。これにより、 铸造時に溶湯の凝固収縮に伴って铸型をより適切に変形させることが可能となり、熱 間亀裂の発生を非常に効果的に防止することができる。 [0035] In the present invention, the phenolic component of the phenolic sebum is selected from, for example, bisphenol A, a residue generated during purification of the bisphenol A, and a derivative of a separation component in the residue. Contains at least one species. By including such a phenolic rosin, it is possible to improve the shape of the bowl and to impart more properties. This makes it possible to deform the mold more appropriately as the molten metal solidifies and shrinks during fabrication. The occurrence of intercracking can be very effectively prevented.
[0036] さらに本発明の RCSは、ビンゾールを更に含んでいる。これにより、铸型のなりより 性を更に向上させることができるため、熱間亀裂の発生をより一層効果的に防止でき る。この場合、ビンゾールの配合量は、フエノール系榭脂に対して 4. 0重量%以上、 20重量%以下であることが好ましい。 4. 0重量%よりも少ないと所望のなりより性の 向上が期待できず、 20重量%を越えると熱間強度が低下しすぎて铸型が崩れやすく なり、完成した铸物も所望の形状が得にくくなる。  [0036] Further, the RCS of the present invention further contains vinsol. As a result, the property can be further improved from the saddle shape, so that the occurrence of hot cracks can be more effectively prevented. In this case, the blending amount of vinsol is preferably 4.0% by weight or more and 20% by weight or less with respect to the phenolic resin. 4. If the amount is less than 0% by weight, the desired improvement in the properties cannot be expected. If the amount exceeds 20% by weight, the hot strength is too low and the bowl shape tends to collapse, and the finished bowl has the desired shape. Is difficult to obtain.
[0037] 本発明により提供される铸鋼用铸型は、厚さ 6〜15mmで、 1000cm2以上の表面 積を有する铸鋼品の铸造に用いる铸型であり、前記本発明の RCSを用いて造型さ れる。このような铸鋼用铸型を用いて铸造を行うことにより、前記のように、熱間亀裂 や湯じわが発生するのを防止し、良好な铸肌を有する鋼铸物を製造することができる [0037] The steel mold provided by the present invention is a mold used for forging steel products having a thickness of 6 to 15 mm and a surface area of 1000 cm 2 or more, and using the RCS of the present invention. Are molded. By performing forging using such a steel mold, it is possible to prevent the occurrence of hot cracks and hot water wrinkles as described above, and to produce a steel product having a good skin. it can
[0038] また、本発明の铸型は、熱間強度が 120〜175NZcm2である。このため、溶鋼の 注湯時に铸型の形状を適切に保持して、所望の形状を有する铸鋼を安定して製造 することができる。 [0038] Further,铸型of the present invention, hot strength is 120~175NZcm 2. For this reason, it is possible to stably manufacture a steel plate having a desired shape by appropriately maintaining the shape of the steel plate when pouring molten steel.
[0039] 本発明の鋼铸物は、前記铸鋼用铸型を用いて铸造された、厚さが 6〜15mmで且 つ 1000cm2以上の表面積を有する鋼铸物である。また、铸型と接する铸物面に発 生する熱間亀裂が 70mm以下となる品質に優れた铸物である。 [0039] The steel product of the present invention is a steel product having a surface area of 6 to 15 mm and a surface area of 1000 cm 2 or more, which is manufactured by using the steel mold. In addition, it is an excellent quality product with a hot crack generated on the surface of the surface in contact with the vertical shape of 70 mm or less.
特に、本発明の鋼铸物は、湯じわの発生力 SJIS G 0588に基づく等級分類で 1〜 2級となるように抑制された高品質の铸物である。  In particular, the steel product of the present invention is a high-quality product that is suppressed so as to be grade 1 or 2 in the class classification based on SJIS G 0588.
[0040] また、前記鋼铸物は、重量が 35kg以上となるように製造されている。このような鋼铸 物は、铸鋼の材質にもよる力 例えば肉厚の平均が約 10mmである場合に鋼铸物の 表面積力 S4000cm2以上となる。このような 35kg以上の重量を有し、サイズが比較的 大きな中空構造の薄肉鋼铸物は、铸造時の収縮量が大きいため、従来では熱間亀 裂が発生し易力つた。し力しながら、本発明は、このような薄肉鋼铸物に対して非常 に有用であり、熱間亀裂及び湯じわの発生を効果的に抑えることができる。 [0040] Further, the steel frame is manufactured to have a weight of 35 kg or more. Such steel products have a surface area force of S4000 cm 2 or more when the average strength is about 10 mm. Such a thin-walled steel frame having a weight of 35 kg or more and a relatively large size has a large amount of shrinkage at the time of forging, so it has been easy to generate hot cracks in the past. However, the present invention is very useful for such a thin-walled steel frame, and can effectively suppress the occurrence of hot cracks and hot water wrinkles.
図面の簡単な説明  Brief Description of Drawings
[0041] [図 1]熱間たわみ量測定装置による測定法を模式的に示す正面図である。 圆 2]铸型の構成を模式的に示す模式断面図である。 FIG. 1 is a front view schematically showing a measurement method using a hot deflection measuring device. [2] A schematic cross-sectional view schematically showing a saddle-shaped configuration.
圆 3] (a)は、铸造した大型铸鋼品を模式的に示す正面図であり、(b)は、同大型铸 鋼品の厚さ方向に対して垂直な面を断面とする断面図であり、(c)は、(a)に示した I I断面図である。  [3] (a) is a front view schematically showing a forged large steel product, and (b) is a cross-sectional view with a plane perpendicular to the thickness direction of the same large steel product. (C) is a II cross-sectional view shown in (a).
圆 4] (a)は、铸造した中型铸鋼品の断面を模式的に示す断面図であり、(b)は、(a) に示した Π— II断面図であり、(c)は、(a)に示した III— III断面図である。  圆 4] (a) is a cross-sectional view schematically showing a cross-section of a forged medium-sized steel product, (b) is a cross-sectional view taken along II-II shown in (a), and (c) is It is III-III sectional drawing shown to (a).
圆 5] (a)は、铸造した小型铸鋼品の断面を模式的に示す断面図であり、(b)は、同 小型铸鋼品の側面図であり、(c)は、同小型铸鋼品の下面図である。  [5] (a) is a cross-sectional view schematically showing a cross-section of a forged small steel product, (b) is a side view of the small steel product, and (c) is a side view of the small steel product. It is a bottom view of steel products.
圆 6]実施例 4及び比較例 2の大型铸鋼品に発生した湯じわの発生状態を観察した 写真の写しである。  圆 6] A copy of a photograph observing the state of the occurrence of water wrinkles generated in the large steel products of Example 4 and Comparative Example 2.
圆 7]実施例 4及び比較例 2の大型铸鋼品に発生した湯じわの長さを比較したグラフ である。  7] A graph comparing the lengths of the hot water wrinkles generated in the large steel products of Example 4 and Comparative Example 2.
符号の説明  Explanation of symbols
[0042] 1 主型  [0042] 1 main mold
2 中子  2 core
3 上型  3 Upper mold
4 下型  4 Lower mold
5 湯口  5 Gate
10 熱間たわみ量測定装置  10 Hot deflection measuring device
11 大型铸鋼品 (ブラケット)  11 Large steel products (brackets)
12 中型铸鋼品(フレーム)  12 Medium size steel products (frame)
13 小型铸鋼品 (小型ブラケット)  13 Small steel product (Small bracket)
H ヒーター 発明を実施するための最良の形態  H heater BEST MODE FOR CARRYING OUT THE INVENTION
[0043] 以下、本発明における好適な実施の形態について詳細に説明する。 [0043] Hereinafter, preferred embodiments of the present invention will be described in detail.
本発明の好適な実施形態における RCSは、铸物砂と、同铸物砂に対する 2. 5〜5 . 0重量%のフ ノール系榭脂と、同フ ノール系榭脂に対する 2. 0〜50重量%の 硝酸カリウムと、同フ ノール系榭脂に対する 4. 0重量%以上、 20重量%以下のビ ンゾールとを含んでいる。 The RCS in a preferred embodiment of the present invention is 2.0 to 50% by weight of dredged sand, 2.5 to 5.0% by weight phenolic resin and 2.0 to 50% of the same phenolic resin. 4.0% by weight to 20% by weight of potassium nitrate and 20% by weight of the same phenolic resin. And so on.
[0044] 前記铸物砂としては、従来力も铸型用に一般的に用いられている耐火性のものを 使用できる。この铸物砂は、天然砂であっても人工砂であってもよぐ特に限定される ものではない。具体的な例としては、例えば、硅砂、オリビンサンド、ジルコンサンド、 クロマイトサンド、アルミナサンド、フエ口クロム系スラグ、フエ口-ッケル系スラグ、転炉 スラグ、ムライト系人工粒子 (例えば、伊藤忠セラテック株式会社から入手できる商品 名「ナイガイセラビーズ」)、及び、これらの再生砂等が挙げられる。これらは単独で用 いても、 2種以上を組み合わせて用いてもよい。また、これらの铸物砂の中でも、硅砂 を用いることが好ましぐ特に、硅砂と再生砂を組み合わせて用いることがより好まし い。さらに、ジルコンサンドを混合することにより、铸造時における焼付きを防止するこ とがでさる。  [0044] As the sand, it is possible to use fire-resistant sand that has been conventionally used for dredging. This dredged sand may be natural sand or artificial sand, and is not particularly limited. Specific examples include, for example, dredged sand, olivine sand, zircon sand, chromite sand, alumina sand, Hue mouth chrome slag, Hue mouth-Neckel slag, converter slag, mullite artificial particles (for example, ITOCHU Ceratech Corporation) Trade names available from the company “Nyiga Sera Beads”), and these reclaimed sand. These may be used alone or in combination of two or more. Among these dredged sands, it is preferable to use dredged sand, and it is more preferable to use dredged sand and recycled sand in combination. Furthermore, by mixing zircon sand, seizure during fabrication can be prevented.
[0045] ここで、再生砂とは、铸型の铸ばらし後に集められた铸型塊をクラッシャー等の公知 の粉砕機で粉砕し、得られた砂粒体に所定の再生処理を施したものである。なお、 再生処理としては、一般に、铸物砂の表面に付着した付着物を研磨によって取り除く 磨耗式再生処理や、熱処理を施すことによって取り除く焙焼式再生処理等を例示す ることができる。しかし、本発明は、これらに何ら限定されるものではなぐ铸物砂の付 着物を取り除くことが可能な処理であれば、従来から公知の何れの処理も採用するこ とがでさる。  Here, the reclaimed sand is obtained by crushing a lump-shaped lump collected after spreading the reed-shaped sand with a known crusher such as a crusher and subjecting the obtained sand granules to a predetermined regenerating process. is there. In general, examples of the regeneration treatment include a wear-type regeneration treatment that removes deposits adhering to the surface of the sand, and a roasting regeneration treatment that removes the deposit by heat treatment. However, the present invention is not limited to these, and any conventionally known treatment can be adopted as long as it can remove the adhering material of the sand.
[0046] 前記フエノール系榭脂は、铸物砂の粒子を結合保持する結合剤として機能するも のである。フエノール系榭脂としては、フエノール類とアルデヒド類との反応生成物を 主成分とし、且つ、硬化剤の存在下又は非存在下で加熱硬化する性質を有する榭 脂であればよぐ特に制限はない。  [0046] The phenolic greaves function as a binder that binds and holds the particles of the fine sand. The phenolic resin is not particularly limited as long as it is a resin mainly composed of a reaction product of phenols and aldehydes and having a property of being heat-cured in the presence or absence of a curing agent. Absent.
[0047] このフエノール系榭脂は、铸物砂に対して 2. 5〜5. 0重量%、より好ましくは 2. 7 [0047] The phenolic resin is 2.5 to 5.0% by weight, more preferably 2.7% with respect to the sand.
〜3. 5重量%で配合させる。フ ノール系榭脂の铸物砂に対する含有量が 2. 5重量 %未満のときは、铸型に対して十分な強度を付与することができず、造型不良を引き 起こし易くなる。また、鋼铸物を铸造する際には、注湯時に铸型にクラックが発生しや すぐ铸物にベーニングと呼ばれる铸物欠陥が発生してしまうという問題がある。 Add to ~ 3.5% by weight. When the content of the phenolic sebum in the sand is less than 2.5% by weight, sufficient strength cannot be imparted to the mold and it becomes easy to cause molding defects. In addition, when steel frames are forged, there is a problem that cracks are generated in the mold during pouring, and a defect called vaning is immediately generated in the mold.
[0048] 一方、フ ノール系榭脂の铸物砂に対する含有量が 5. 0重量%を超えると、铸物 砂との混練が困難となる。また、铸造時には、フ ノール系榭脂のガス化により、ガス の発生量が多くなる。これにより、製造した鋼铸物にガス欠陥が多く発生してしまうと いう問題がある。 [0048] On the other hand, if the content of phenolic sebum in the sand is over 5.0% by weight, Kneading with sand becomes difficult. In addition, during production, the amount of gas generated increases due to the gasification of phenolic resin. As a result, there is a problem that many gas defects are generated in the manufactured steel frame.
[0049] フエノール系榭脂の具体例としては、ノボラック型フエノール榭脂、レゾール型フエノ ール榭脂、含窒素レゾール型フエノール榭脂、ペンジルエーテル型フエノール榭脂、 低膨張性フエノール榭脂、及びこれらフエノール榭脂と例えばエポキシ榭脂、尿素榭 脂、メラミン榭脂、キシレン榭脂、ポリアミド榭脂、エポキシ系化合物、メラミン系化合 物、尿素系化合物等とを混合又は反応して生成される変性フ ノール榭脂などが挙 げられる。  [0049] Specific examples of the phenolic resin include novolac-type phenolic resin, resol-type phenolic resin, nitrogen-containing resol-type phenolic resin, pendyl ether-type phenolic resin, low-expansion phenolic resin, and Modifications produced by mixing or reacting these phenolic resins with, for example, epoxy resins, urea resins, melamine resins, xylene resins, polyamide resins, epoxy compounds, melamine compounds, urea compounds, etc. For example, phenolic resin.
[0050] これらのフ ノール系榭脂は単独で用いてもよいし、 2種以上を組み合わせて用い てもよい。なお、ノボラック型フエノール榭脂等の自硬化性の無い榭脂を単独で用い る場合には、铸型の造型時に例えばへキサメチレンテトラミン (以下、へキサミンと略 記することがある)のような硬化剤を併用して熱硬化性を付与する必要がある。この場 合、へキサミンはフエノール系榭脂に対して 5〜 12重量%程度で配合させることが好 ましい。フエノール系榭脂の使用形態については特に制限はないが、一般的には適 当な形状の固体であり、必要に応じて榭脂液や溶液として用いられる。また、固液を 併用することちでさる。  [0050] These phenolic resin may be used alone or in combination of two or more. In addition, when a non-self-curing resin such as a novolak-type phenol resin is used alone, for example, hexamethylenetetramine (hereinafter sometimes abbreviated as hexamine) at the time of mold formation. It is necessary to impart thermosetting properties in combination with an appropriate curing agent. In this case, it is preferable to add hexamine at about 5 to 12% by weight with respect to the phenolic resin. Although there is no restriction | limiting in particular about the usage form of phenol type | system | group resin, Generally, it is a solid of a suitable shape, and is used as a resin liquid or a solution as needed. Also, it can be done by using both solid and liquid.
[0051] 前記フエノール系榭脂は、 30〜90重量0 /0、好ましくは 50〜80重量%の低膨張性 フエノール榭脂を含んでいる。この低膨張性フエノール榭脂としては、ビスフエノール A、同ビスフ ノール Aの精製時に生じる残渣、及び同残渣中の分離成分の誘導体 よりなる群力 選択される少なくとも 1種を含んでいれば良ぐ例えば前記特許文献 1 に開示されて 、るようなフエノール榭脂を用いることができる。 [0051] The phenol-based榭脂is 30 to 90 weight 0/0, preferably comprises low expansion phenol榭脂of 50 to 80 wt%. This low-expansion phenol resin should contain at least one selected from the group power consisting of bisphenol A, a residue produced during purification of the bisphenol A, and derivatives of separated components in the residue. For example, such a phenol rosin as disclosed in Patent Document 1 can be used.
[0052] フエノール系榭脂が、このような低膨張性フエノール榭脂を 30〜90重量0 /0で含ん でいることにより、铸型を造型したときに铸型に良好ななりより性を持たせることができ る。この場合、低膨張性フエノール榭脂の含有量が 90重量%を超えると、铸型の造 型時に、フエノール系榭脂の硬化速度の低下によって造型不良を引き起こす恐れが ある。一方、低膨張性フエノール榭脂の含有量が 30重量%未満であると、铸造を行 つた際に铸鋼にベーユングが発生し易くなる。 [0053] さらに、上記のフエノール系榭脂は、铸型の強度や滑性等の品質改善に有用なアミ ノ系、エポキシ系、ビュル系のシランカップリング剤及び Z又は滑剤と組み合わせて 用いることもできる。前記シランカップリング剤の代表的な例としては、 yーァミノプロ ピルトリエトキシシラン、 N— β— (アミノエチル) - γ—ァミノプロピルトリメトキシシラ ン、 γ—グリシドキシプロビルトリメトキシシラン、 j8 —(3, 4—エポキシシクロへキシノレ )—ェチルトリメトキシシラン、ビニルトリメトキシシラン、ビュルトリス( |8—メトキシ)シラ ン、ビュルトリス( —メトキシエトキシ)シランなどが挙げられる。また、前記滑剤の代 表的な例としては、エチレンビスステアリン酸アマイド、メチレンビスステアリン酸ァマイ ド、ォキシステアリン酸アマイド、メチロールステアリン酸アマイドなどが挙げられる。 [0052] phenol-based榭脂is, by Dale include such low expansion phenol榭脂30 to 90 weight 0/0, no sex better become铸型when molding the铸型Can be used. In this case, if the content of the low-expansion phenolic resin exceeds 90% by weight, there is a risk that a molding failure may occur due to a decrease in the curing rate of the phenolic resin when molding the mold. On the other hand, when the content of low-expansion phenolic resin is less than 30% by weight, baling tends to occur in the steel when forging. [0053] Further, the above-described phenolic resin is used in combination with amino-based, epoxy-based, and bull-based silane coupling agents and Z or lubricants, which are useful for improving the quality of the mold-type strength and lubricity. You can also. Representative examples of the silane coupling agent include y-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-glycidoxypropyl trimethoxysilane, j8 — (3,4-epoxycyclohexenole) -etyltrimethoxysilane, vinyltrimethoxysilane, buturis (| 8-methoxy) silane, butortris (—methoxyethoxy) silane, and the like. Representative examples of the lubricant include ethylene bis stearic acid amide, methylene bis stearic acid amide, oxystearic acid amide, and methylol stearic acid amide.
[0054] 本実施形態の必須成分の一つである硝酸カリウムは、フエノール系榭脂(固形分換 算)の重量に基づき、 2〜50重量%、好ましくは 3〜25重量%、更に好ましくは 5〜2 0重量%となるように配合する。硝酸カリウムのフエノール系榭脂に対する含有量が 2 重量%未満となると、十分な熱間亀裂防止効果を得ることができない。一方、 50重量 %を超えると、铸型が強度不足となり造型不良が生じることがある。また、 RCSの作製 時の爆発に対する安全性を考慮しても、硝酸カリウムの含有量は 50重量%以下にす ることが良い。 [0054] Potassium nitrate, which is one of the essential components of this embodiment, is 2 to 50% by weight, preferably 3 to 25% by weight, and more preferably 5%, based on the weight of phenolic resin (solid conversion). It mix | blends so that it may become ~ 20weight%. If the content of potassium nitrate with respect to phenolic resin is less than 2% by weight, sufficient hot cracking prevention effect cannot be obtained. On the other hand, if it exceeds 50% by weight, the saddle mold is insufficient in strength and may cause molding failure. Considering the safety against explosions during the production of RCS, the content of potassium nitrate should be 50% by weight or less.
[0055] ビンゾールは、その配合量がフエノール系榭脂(固形分換算)の重量に基づき、好 ましくは 10重量%以上、 20重量%以下、より好ましくは 10〜15重量%となるように配 合する。これにより、铸型のなりより性を更に向上させることができる。このため、熱間 亀裂の発生を一層効果的に防止することができる。ビンゾールとしては、例えば松脂 抽出物や松脂抽出榭脂残渣、具体的には、 Herxules社製の商品名「ビンゾールレ ジン」(酸価 95)等を用いることができる。この場合、ビンゾールのフエノール系榭脂に 対する含有量が 4. 0重量%より少ないと、ビンゾールによる所要のなりより性の向上 が期待できない。一方、 20重量%を超えると、铸型の熱間強度が低くなりすぎたり、 铸造を行った際に铸鋼にガス欠陥が発生し易くなる。  [0055] The amount of vinsol is preferably 10% by weight or more and 20% by weight or less, more preferably 10 to 15% by weight, based on the weight of phenolic resin (in terms of solid content). Merge. Thereby, the property can be further improved from the shape of the saddle. For this reason, generation of hot cracks can be more effectively prevented. As vinsol, for example, a pine resin extract or a rosin-extracted rosin residue, specifically, a trade name “bin sol resin” (acid value 95) manufactured by Herxules can be used. In this case, if the content of vinsol in the phenolic greaves is less than 4.0% by weight, it is not possible to expect a further improvement in the properties as required by vinsol. On the other hand, if it exceeds 20% by weight, the hot strength of the mold becomes too low, or gas defects are likely to occur in the steel during forging.
[0056] また、本実施形態の RCSにおいては、上記成分以外に、各種の添加剤、例えばス テアリン酸カルシウムなどの固結防止剤、離型剤、消臭剤、ベンガラ、砂鉄などを、必 要に応じて所定の量で適宜配合することができる。 [0057] なお、上記のような铸鋼用 RCSは、当該技術分野で従来実施されてきた作製方法 、例えばドライホットコート法、セミホットコート法、コールドコート法、粉末溶剤法など の様々な方法により作製することができる。これらの中でも、特にドライホットコート法 を用いることが、生産性、品質などの観点力も望ましい。 [0056] Further, in the RCS of the present embodiment, in addition to the above components, various additives such as anti-caking agents such as calcium stearate, mold release agents, deodorants, bengara, iron sand, etc. are necessary. Depending on the condition, it can be appropriately blended in a predetermined amount. [0057] It should be noted that the RCS for pig steel as described above is produced by various methods such as a dry hot coating method, a semi-hot coating method, a cold coating method, and a powder solvent method, which have been conventionally performed in the technical field. Can be produced. Among these, it is desirable to use a dry hot coating method in terms of productivity and quality.
[0058] 例えば、ワールミキサー等の混練機内に予熱された铸物砂を入れて温度を調整す る。次に、フエノール系榭脂(例えばノボラック型フエノール榭脂)、硝酸カリウム、ビン ゾール、その他必要な添加剤を混練機内に所定量で供給し、所定時間溶融混練し て塊状物を形成する。更に、撹拌混合下でへキサミン水溶液を添加するとともに送風 冷却して塊状物を砂粒状に崩壊させた後、ステアリン酸カルシウムをカ卩えて混練する 。これにより、上記のような本実施形態に係る铸鋼用 RCSを得ることができる。なお、 硝酸カリウムを供給する際には、取扱い時の安全性の点から、適当な濃度の水溶液 、例えば濃度が 10〜50重量%程度の水溶液として用いるのが好ましい。  [0058] For example, preheated dredged sand is placed in a kneader such as a whirl mixer to adjust the temperature. Next, a phenolic resin (for example, novolak-type phenol resin), potassium nitrate, vinsol, and other necessary additives are supplied in a predetermined amount into a kneader and melted and kneaded for a predetermined time to form a lump. Further, an aqueous hexamine solution is added with stirring and mixing, and the lumps are broken into sand particles by cooling with air blowing, and then calcium stearate is added and kneaded. Thereby, the RCS for steel according to the present embodiment as described above can be obtained. In addition, when supplying potassium nitrate, it is preferable to use it as an aqueous solution having an appropriate concentration, for example, an aqueous solution having a concentration of about 10 to 50% by weight, from the viewpoint of safety during handling.
[0059] そして、上記のような铸鋼用 RCSを用い、シェルモールド法に従って造型を行うこと により、所望の形状を有する铸鋼用铸型を得ることができる。このようにして得られた 本発明の铸型は、厚さが 6〜15mmで、表面積が 1000cm2以上となる铸鋼品の铸 造に対して非常に有用である。 [0059] Then, by using the above-described RCS for steel, and performing molding according to the shell mold method, a steel mold having a desired shape can be obtained. The mold of the present invention thus obtained is very useful for the production of steel products having a thickness of 6 to 15 mm and a surface area of 1000 cm 2 or more.
[0060] 即ち、このような铸鋼用铸型を中子として用いて铸造が行われる場合、前記硝酸力 リウムの作用と、低膨張性フエノール榭脂とビンゾールによる铸型のなりより性の向上 とにより、铸造される鋼铸物に熱間亀裂が発生するのを防ぐことができる。さらに、本 実施形態の铸型は、硝酸カリウムを含有していることにより、铸造時に铸型自体を発 熱させることができる。これにより、铸型に溶鋼を注湯した際に、湯回り性の低下を防 止して铸鋼に湯じわが発生するのを効果的に抑制し、良好な铸肌を有する鋼铸物を 製造することができる。なお、本発明において、铸鋼用铸型は、上記のような中子に 限られず、主型として造型することもできる。また、铸型の具体的な造型条件等につ いても特に限定されず、铸型の使用条件等に応じて適宜選択することができる。  [0060] That is, when forging is performed using such a steel mold as a core, the action of the nitrate nitrate is improved, and the characteristics of the mold by the low-expansion phenol resin and vinsol are improved. Thus, it is possible to prevent the occurrence of hot cracks in the steel frame to be forged. Furthermore, the saddle mold of this embodiment can heat the saddle mold itself during fabrication because it contains potassium nitrate. As a result, when molten steel is poured into the vertical mold, it is possible to effectively prevent the occurrence of hot water wrinkles in the molten steel by preventing deterioration of the hot water performance, and to produce a steel frame having a good skin. Can be manufactured. In the present invention, the steel mold is not limited to the core as described above, but can be formed as a main mold. Also, the specific molding conditions of the saddle are not particularly limited, and can be appropriately selected according to the usage conditions of the saddle.
[0061] このような铸鋼用铸型においては、例えば铸造時における铸型の熱間強度力 12 0〜175N/cm2となるように構成される。铸型がこのような熱間強度を有することによ り、溶鋼の注湯時に铸型の形状を保持し、所望の形状を有する鋼铸物を安定して製 造することができる。 [0061] In such铸鋼for铸型, for example configured to be hot strength force 12 0~175N / cm 2 of铸型during铸造. By having such hot strength, the steel mold retains the shape of the steel mold when pouring molten steel, and stably produces steel products having a desired shape. Can be built.
[0062] また、铸鋼用铸型の冷間強度については、 900〜1400NZcm2、好ましくは 1000 〜1360N/cm2となるように構成される。铸型の冷間強度が 900N/cm2未満にな ると、铸造を行った際に铸鋼にベーユングが発生し易くなる。一方、冷間強度が 140 ON/cm2を超えると、铸物にガス欠陥が発生し易くなる。 [0062] Further, the cold strength of the saddle type for steel is configured to be 900 to 1400 NZcm 2 , preferably 1000 to 1360 N / cm 2 . If the cold strength of the saddle is less than 900 N / cm 2 , baling tends to occur in the steel during forging. On the other hand, if the cold strength exceeds 140 ON / cm 2 , gas defects are likely to occur in the porridge.
[0063] そして、上記のような铸鋼用铸型を用いて铸造された鋼铸物は、厚さが 6〜15mm で、表面積が 1000cm2以上である。し力も、铸型と接する铸物面に発生する熱間亀 裂が 1000cm2の表面積当たりで 70mm以下である品質の優れた铸物となる。また、 このような鋼铸物は、湯じわの発生も効果的に抑えられており、例えば湯じわの発生 状態が、 JIS G 0588に基づく等級分類で 1〜2級を示すような良好な铸肌を有し ている。 [0063] The steel product forged using the steel mold as described above has a thickness of 6 to 15 mm and a surface area of 1000 cm 2 or more. In addition, the hot crack generated on the surface of the surface in contact with the vertical shape is 70 mm or less per surface area of 1000 cm 2 , resulting in excellent quality. In addition, the occurrence of hot water wrinkles is effectively suppressed in such steelware, and for example, the hot water wrinkle generation state is excellent such that the grade classification based on JIS G 0588 shows the first or second class. Has a smooth skin.
実施例  Example
[0064] 以下、本発明について実施例を挙げてより具体的に説明する。なお、以下の実施 例において、作製した各 RCSについては、それぞれ下記の試験を行なって、その特 性を評価した。  Hereinafter, the present invention will be described more specifically with reference to examples. In the following Examples, each RCS produced was subjected to the following tests to evaluate its characteristics.
[0065] <冷間強度及び熱間強度の測定 >  <Measurement of cold strength and hot strength>
RCSを 30πιπι φ X 50mmの大きさに賦形した後、 250°Cで 2分間焼成してテストピ ース 1 (TP1)を 2つ作製した。一方の TP1は、常温まで放冷した後、その抗圧力を冷 間強度として測定した。また、他方の TP1は、 1000°Cで 1分間爆熱し、その直後の 抗圧力を熱間強度として測定した。  RCS was shaped to a size of 30πιπι φ X 50mm, and then fired at 250 ° C for 2 minutes to prepare two test pieces 1 (TP1). One TP1 was allowed to cool to room temperature, and its coercive pressure was measured as the cold strength. The other TP1 was detonated at 1000 ° C for 1 minute, and the coercive pressure immediately after that was measured as the hot strength.
[0066] <熱膨張率の測定 >  [0066] <Measurement of thermal expansion coefficient>
熱膨張率は、 JACT試験法 M— 2に準じて測定した。即ち、前記と同様に 30mm φ X 50mmの TP 1を作製し、その TP 1の長さ(曝熱前の TP長)を測定した。次に、 TP 1を炉内温度 1000°Cに調節された高温铸物砂試験機内に設置した。そして、同試 験機で所定時間ごとに TPの長さ(曝熱後の TP長)を測定し、その測定結果に基づ いて下記の計算式により各時間における熱膨張率を算出した。  The coefficient of thermal expansion was measured according to JACT test method M-2. That is, TP 1 of 30 mm φ X 50 mm was produced in the same manner as described above, and the length of TP 1 (TP length before heat exposure) was measured. Next, TP 1 was installed in a high-temperature dredged sand testing machine adjusted to a furnace temperature of 1000 ° C. Then, the TP length (TP length after heat exposure) was measured every predetermined time with the same test machine, and the thermal expansion coefficient at each time was calculated by the following formula based on the measurement result.
熱膨張率 (%) = (曝熱後の TP長 曝熱前の TP長) Z曝熱前の TP長 X 100 [0067] くなりより'性の評価 > RCSを 50 X 120 X 5mmの大きさに賦形した後、 250°Cで 40秒間焼成して TP2を 作製した。得られた TP2を、図 1に示すように熱間たわみ量測定装置 10に片持はり の状態で固定した。続いて、予め加熱したヒーター Hを TP2の下面に挿入して曝熱 を行い、 TP2の自由端が上方向に変位した変位量と、その変位量に対応する曝熱 時間とを測定した。 Thermal expansion coefficient (%) = (TP length after heat exposure TP length before heat exposure) TP length before heat exposure Z 100 [0067] After shaping RCS to a size of 50 x 120 x 5 mm, it was fired at 250 ° C for 40 seconds to produce TP2. The obtained TP2 was fixed to the hot deflection measuring device 10 in a cantilever state as shown in FIG. Subsequently, a preheated heater H was inserted into the lower surface of TP2 to perform heat exposure, and the amount of displacement by which the free end of TP2 was displaced upward and the heat exposure time corresponding to the amount of displacement were measured.
[0068] <熱間亀裂の評価 > [0068] <Evaluation of hot crack>
図 2に示すような主型 1を、铸物砂を用いて生型法により造型した。また、テストピー ス中子 2を、 RCSを用いてシェルモールド法により造型した。なお、主型 1は、上型 3 と下型 4とに上下に分割でき、また内部に円筒形状の空間が形成されるように構成さ れている。  The main mold 1 as shown in Fig. 2 was made by the green mold method using the sand. Test piece core 2 was molded by shell molding using RCS. The main mold 1 can be divided into an upper mold 3 and a lower mold 4 in the vertical direction, and a cylindrical space is formed inside.
[0069] そして、得られた主型 1の内部空間にテストピース中子 2を同軸上に取り付けた。そ の後、湯口 5から溶鋼をむくり上げにより注湯することにより厚さが約 10mmの円筒形 状の鋼铸物を铸造した。このとき、溶鋼として低合金鋼铸鋼品 SCSiMn2相当材を用 い、また溶鋼の注入温度を 1550 ± 10°Cに設定して铸造を行った。このようにして铸 造して得られた鋼铸物は、重量が 35kgであり、薄肉部の表面積は 4260cm2であつ た。 [0069] Then, the test piece core 2 was coaxially attached to the internal space of the main mold 1 obtained. After that, molten steel was peeled from the pouring gate 5 and poured into a cylindrical steel frame having a thickness of about 10 mm. At this time, low-alloy steel product SCSiMn2 equivalent material was used as the molten steel, and the molten steel was cast at a casting temperature of 1550 ± 10 ° C. The steel product thus obtained was 35 kg in weight, and the surface area of the thin wall portion was 4260 cm 2 .
[0070] 铸造後、得られた鋼铸物を観察し、鋼铸物に発生している熱間亀裂の中で亀裂長 さが最も長いものを測定した。なお、熱間亀裂の検出は、 JIS Z 2343に規定されて いる浸透探傷試験方法に準じて実施した。この亀裂長さの測定値に基づいて、以下 の 5段階で熱間亀裂の評価を行った。また、検出された熱間亀裂について、鋼铸物 の表面積 1000cm2当たりの亀裂長さを算出した。 [0070] After forging, the obtained steel product was observed, and the hot cracks occurring in the steel product having the longest crack length were measured. The detection of hot cracks was performed in accordance with the penetrant testing method specified in JIS Z 2343. Based on the measured crack length, hot cracks were evaluated in the following five stages. For the detected hot cracks, the crack length per 1000 cm 2 surface area of the steel frame was calculated.
熱間亀裂の評価指標:亀裂長さが Omm (熱間亀裂無し)の場合に「5」の評価を与 え、以下、亀裂長さが 100mm以下を「4」、 100mmを超え 200mm以下を「3」、 200 mmを超え 300mm以下を「2」、 300mmを超えるものを「1」として評価した。  Evaluation index for hot crack: When the crack length is Omm (no hot crack), give an evaluation of "5". Below, the crack length is 100mm or less as "4", and over 100mm and 200mm or less as " “3”, more than 200 mm and less than 300 mm were evaluated as “2”, and more than 300 mm were evaluated as “1”.
[0071] <湯じわの評価 >  [0071] <Evaluation of Yujiwa>
前記熱間亀裂の評価のときと同様に鋼铸物を铸造し、得られた鋼铸物を目視により 観察した。そして、鋼铸物に湯じわが殆ど見られな力つたものを「〇」、湯じわが観察 されたものを「 X」として評価した。 [0072] [実施例 1] A steel product was produced in the same manner as in the evaluation of the hot crack, and the obtained steel product was visually observed. A steel bowl with strong power that was almost free of hot water wrinkles was evaluated as “◯”, and a hot water wrinkle observed was evaluated as “X”. [0072] [Example 1]
ワールミキサー (遠州鉄工株式会社製)内に、 150°Cに予熱した国内硅砂 7kgと、 旭有機材工業株式会社製のノボラック型フエノール榭脂(商品名「SP6905」;以下、 ノボラック榭脂 Aとする) 210gと、硝酸カリウム 21gと、 Herxules社の(商品名:ビンゾ 一ルレジン」を 40gとを投入し、これらを 40秒間混練した。次に、水 105gにへキサメ チレンテトラミン 20gを溶力した水溶液を同ワールミキサー内にカ卩えた。そして、ブロ ヮ一で送風しながら砂の塊状物が粒状に崩壊するまで混練した。続いて、同ワールミ キサー内にステアリン酸カルシウム 7gをカ卩えた後、さらに 5秒間混練することにより R CSを得た。  In a whirl mixer (manufactured by Enshu Iron Works Co., Ltd.), 7 kg of domestic silica sand preheated to 150 ° C, novolac type phenol resin (trade name “SP6905” manufactured by Asahi Organic Materials Co., Ltd.); 210 g, 21 g of potassium nitrate, and 40 g of Herxules (trade name: vinzo resin) were kneaded for 40 seconds. Next, an aqueous solution in which 20 g of hexamethylethylenetetramine was dissolved in 105 g of water. Then, the mixture was kneaded while blowing with a blower until the lump of sand collapsed into granules, and then 7 g of calcium stearate was placed in the whirl mixer. RCS was obtained by kneading for 5 seconds.
[0073] [実施例 2〜7及び比較例 1〜3]  [Examples 2 to 7 and Comparative Examples 1 to 3]
実施例 2〜7及び比較例 1〜3については、 RCSの配合とその成分を以下の表 1〜 3に示す配合量に変更することを除いて、前記実施例 1と同様にして各 RCSを作製し た。なお、表 1〜3において、ノボラック榭脂 Bとは、低膨張性を示す旭有機材工業株 式会社製の商品名「SP5000HS」であるノボラック型フエノール榭脂であり、ノボラッ ク榭脂 Cとは、低膨張性を示すノボラック型フエノール榭脂である旭有機材工業株式 会社製の商品名「BP150」である。  For Examples 2 to 7 and Comparative Examples 1 to 3, each RCS was changed in the same manner as in Example 1 except that the composition of RCS and its components were changed to the amounts shown in Tables 1 to 3 below. Produced. In Tables 1 to 3, novolac resin B is a novolak type phenol resin, which is a product name `` SP5000HS '' manufactured by Asahi Organic Materials Co., Ltd., which exhibits low expansibility. Is a product name “BP150” manufactured by Asahi Organic Materials Co., Ltd., which is a novolac type phenolic resin that exhibits low expansibility.
従来例 1  Conventional example 1
[0074] 従来例 1として、シェルモールド法ではなぐ常温自硬化法により铸型の造型を行う 混練砂を作製した。先ず、国内硅砂 0. 9kgと再生砂 2. 1kgとを実験室用品川卓上ミ キサー内に投入し、有機エステル系硬化剤として旭有機材工業株式会社製の商品 名「E40」を 9g添カ卩して 30秒間混練した。その後、調整したアルカリレゾール榭脂を 45g加え、さらに 30秒間混練することにより、混練砂を得た。得られた混練砂を賦形 し、常温で硬化させることにより、所定の形状を有する各テストピースを作製すること ができる。  [0074] As Conventional Example 1, kneaded sand was produced that was formed into a bowl by a room temperature self-curing method that was not a shell mold method. First, 0.9 kg of domestic cinnabar sand and 2.1 kg of reclaimed sand are introduced into the laboratory supplies Kawakita Mixer, and 9 g of product name “E40” manufactured by Asahi Organic Materials Co., Ltd. is added as an organic ester curing agent. The mixture was kneaded for 30 seconds. Thereafter, 45 g of the prepared alkali resole rosin was added and kneaded for 30 seconds to obtain kneaded sand. Each test piece having a predetermined shape can be produced by shaping the obtained kneaded sand and curing it at room temperature.
従来例 2  Conventional example 2
[0075] 従来例 2として、 CO ガス法により铸型の造型を行う混練砂を作製した。先ず、国内  [0075] As Conventional Example 2, kneaded sand that was formed into a bowl by the CO 2 gas method was produced. First, domestic
2  2
硅砂 1. 5kgと再生砂 1. 5kgとを実験室用品川卓上ミキサー内に投入し、水ガラス 16 5gを添加して 1分間混練した。得られた混練砂を模型に充填し、炭酸ガスを用いて 硬化させることにより、所定の形状を有する各テストピースを作製することができる。な お、硬化した各テストピースは、模型から取り出した後に 24時間放置して力も各測定 及び評価に供した。 1.5 kg of dredged sand and 1.5 kg of reclaimed sand were placed in a laboratory supplies Kawakita desktop mixer, and 65 g of water glass was added and kneaded for 1 minute. Fill the model with the obtained kneaded sand and use carbon dioxide gas By curing, each test piece having a predetermined shape can be produced. Each cured test piece was left for 24 hours after being removed from the model, and the force was also used for each measurement and evaluation.
[0076] 上記実施例 1 7、比較例 1 3及び従来例 1 , 2の試料に対して、冷間強度、熱間 強度、及び熱膨張率の測定と、なりより性、熱間亀裂、及び湯じわの評価とを行った 結果を以下の表 1 3に示す。  [0076] For the samples of Example 17 above, Comparative Example 13 and Conventional Examples 1 and 2, measurement of cold strength, hot strength, and coefficient of thermal expansion was performed. The results of the evaluation of hot water are shown in Table 13 below.
[0077] [表 1]  [0077] [Table 1]
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000021_0001
¾007
Figure imgf000022_0001
上記表 1 3において、実施例 1 7と比較例 1 3との比較から明らかであるように RCSに硝酸カリウムとビンゾールとのいずれかを含有させるだけでは、熱間亀裂の 発生と湯じわの発生との双方を同時に抑制することができないことが確認された。特 に、 RCSに硝酸カリウムにカ卩えてビンゾールを含ませることにより、なりより性を向上さ せて熱間亀裂の発生をより効果的に抑制できることも確認できる。さらに、実施例 1〜 4からも明らかなように、硝酸カリウムと、ビンゾールと、低膨張性のフエノール榭脂と を含ませた RCSでは、熱間亀裂防止効果が顕著である。特に、実施例 4〜7の RCS を用いることにより、熱間亀裂も湯じわも発生してない非常に高品質の鋼铸物が製造 可能であった。
¾007
Figure imgf000022_0001
In Tables 1 and 3 above, as is clear from the comparison between Example 17 and Comparative Example 1 3, hot cracks and hot water wrinkles are generated only by adding RCS to either potassium nitrate or vinsol. It was confirmed that both cannot be suppressed simultaneously. Special In addition, it can be confirmed that by adding vinsol in addition to potassium nitrate in RCS, it is possible to improve the nature and to suppress the occurrence of hot cracks more effectively. Further, as is clear from Examples 1 to 4, RCS containing potassium nitrate, vinsol, and low-expansion phenol resin has a remarkable effect of preventing hot cracking. In particular, by using the RCSs of Examples 4 to 7, it was possible to produce a very high quality steel product free from hot cracks and hot water.
[0081] ここで、実施例 1〜7と比較例 1とから、特に本発明にあってビンゾールの配合がなり より性の向上と熱間亀裂の防止に大きく貢献していることか理解できる。比較例 1によ れば、ビンゾールを配合せずに単に硝酸カリウムを配合するだけでは、なりより性に 劣り、熱間亀裂の評価も「2」と低くなり、また比較例 3からも理解できるように、硝酸力 リウムを配合せずにビンゾールだけを配合しただけでは、なりより性にっ 、てはまあま あであるが、熱間亀裂及び湯じわの発生を回避することができない。ここで、フエノー ル榭脂に対するビンゾールの配合量にっ 、てみると、ビンゾールが 5重量%より少な いと、比較例 1及び 2から理解できるとおり、なりより性に劣り、熱間亀裂の発生が多い 。一方、ビンゾールの配合量が 20重量%を越えると、熱間強度が低下しすぎて铸型 が崩れやすくなり、完成した铸物も所望の形状が得にくくなる。  Here, it can be understood from Examples 1 to 7 and Comparative Example 1 that, in particular, in the present invention, the formulation of vinsol greatly contributes to improvement of properties and prevention of hot cracking. According to Comparative Example 1, simply adding potassium nitrate without vinsol is inferior in nature, and the evaluation of hot cracks is as low as 2, and can be understood from Comparative Example 3. In addition, if only vinsol is added without adding nitric acid, the hot cracks and hot water wrinkles cannot be avoided. Here, if the amount of vinsol to phenol rosin is less than 5% by weight, as can be understood from Comparative Examples 1 and 2, the properties are inferior and hot cracks are generated. Many. On the other hand, if the amount of vinsol exceeds 20% by weight, the hot strength will be too low and the mold will be liable to collapse, making it difficult to obtain the desired shape for the finished product.
[0082] 次に、前記実施例 3、 4及び比較例 2の RCSと、従来例 1、 2の混練砂のそれぞれに ついて、所定形状の中子を造型し、同中子を用いて図 3に示すような実際の製品形 状を有する大型铸鋼品 11 (ブラケット)を铸造した。なお、図 3 (b)は、図 3 (a)に示す ブラケット 11の厚さ方向に対して垂直な面を断面とする断面図であり、また図 3 (c)は 、図 3 (a)に示した I—I断面図である。得られたブラケット 11は、肉厚の平均が約 12m mであり、薄肉部の表面積は 15200cm2であった。 Next, for each of the RCS of Examples 3 and 4 and Comparative Example 2 and the kneaded sand of Conventional Examples 1 and 2, a core having a predetermined shape is formed, and the core is used to form FIG. A large steel product 11 (bracket) having an actual product shape as shown in Fig. 1 was manufactured. Fig. 3 (b) is a cross-sectional view taken along a plane perpendicular to the thickness direction of the bracket 11 shown in Fig. 3 (a), and Fig. 3 (c) is shown in Fig. 3 (a). It is II sectional drawing shown in FIG. The obtained bracket 11 had an average thickness of about 12 mm, and the surface area of the thin portion was 15200 cm 2 .
[0083] また、図 3に示したブラケットを製造するに際し、主型は生型法により造型した。さら に、溶鋼として構造用低合金铸鋼品 SCSiMn2相当材を铸型に注入し、このときの 溶湯の注入温度は 1550± 10°Cに設定した。  [0083] When manufacturing the bracket shown in FIG. 3, the main mold was formed by a green mold method. Furthermore, a structural low alloy steel SCSiMn2 equivalent material was injected as a molten steel into a vertical mold, and the molten metal injection temperature was set to 1550 ± 10 ° C.
[0084] 得られた各ブラケット 11について、 JIS Z 2343に規定されている浸透探傷試験 方法に準じて熱間亀裂を検出し、検出された亀裂の長さを測定した。また、薄肉部の 表面積 1000cm2当たりにおける亀裂の発生割合を算出した。更に、ブラケットに発 生した湯じわについては、 JIS G 0588に規定されている铸鋼品铸肌の外観試験 方法及び等級分類に基づ!ヽて評価を行った。 [0084] For each of the obtained brackets 11, a hot crack was detected in accordance with the penetration flaw detection test method defined in JIS Z 2343, and the length of the detected crack was measured. In addition, the occurrence ratio of cracks per surface area of 1000 cm 2 in the thin wall portion was calculated. In addition, the bracket The raw hot water wrinkles were evaluated based on the appearance test method and grade classification of steel products and skins specified in JIS G 0588.
[0085] 一方、前記実施例 2及び比較例 2については、図 4に示した中型铸鋼品 12 (フレー ム)と、図 5に示した小型铸鋼品 13 (小型ブラケット)を铸造した。なお、図 4に示した 中型铸鋼品を製造するに際しては、溶鋼として溶接構造用炭素鋼铸鋼品 SCW450 相当材を用い、溶湯の注入温度は 1550± 10°Cに設定した。一方、図 5に示した小 型铸鋼品を製造するに際しては、溶鋼として構造用低合金铸鋼品 SCSiMn2相当材 を用い、溶湯の注入温度は 1550± 10°Cに設定した。これら中型及び小型铸鋼品に おけるその他の製造条件に関しては、前記大型铸鋼品の場合と同様とした。  On the other hand, in Example 2 and Comparative Example 2, the medium-sized steel product 12 (frame) shown in FIG. 4 and the small steel product 13 (small bracket) shown in FIG. 5 were produced. In the production of the medium-sized steel products shown in Fig. 4, carbon steel steel products for welded structures SCW450 equivalent material was used as the molten steel, and the injection temperature of the molten metal was set to 1550 ± 10 ° C. On the other hand, when manufacturing the small steel product shown in Fig. 5, a structural low alloy steel SCSiMn2 equivalent material was used as the molten steel, and the pouring temperature of the molten metal was set to 1550 ± 10 ° C. The other production conditions for these medium and small steel products were the same as those for the large steel products.
[0086] 得られた中型铸鋼品 12は、肉厚の平均が約 11mmであり、薄肉部の表面積は 70 00cm2であった。この中型铸鋼品 12は、中空内部に熱間亀裂が発生した場合に、 熱間亀裂の補修作業が非常に困難な部品である。この中型铸鋼品に対して、前記 大型铸鋼品と同様に、熱間亀裂の長さ、薄肉部の表面積 1000cm2当たりにおける 亀裂の発生割合、及び湯じわの発生状態の 3項目について評価を行った。 [0086] The obtained medium-sized steel product 12 had an average thickness of about 11 mm, and the surface area of the thin-walled portion was 700,000 cm 2 . This medium-sized steel product 12 is a component that is very difficult to repair when a hot crack occurs in the hollow interior. For this medium-sized steel product, as in the case of the large steel product, three items were evaluated: hot crack length, crack generation rate per 1000 cm 2 of thin-walled surface area, and hot water wrinkle generation state. Went.
[0087] また一方、小型铸鋼品 13は、肉厚の平均が約 12mmであり、薄肉部の表面積は 2 160cm2であった。この小型铸鋼品に対しては、熱間亀裂の長さ、及び湯じわの発 生状態の 2項目について評価を行った。 On the other hand, the small steel product 13 had an average thickness of about 12 mm, and the surface area of the thin portion was 2 160 cm 2 . This small steel product was evaluated for two items: the length of hot cracks and the occurrence of hot water wrinkles.
ここで、上記大型、中型、小型の铸鋼品に対して行った評価の結果を以下の表 4に まとめて示す。  Table 4 below summarizes the results of evaluations conducted on the large, medium, and small steel products.
[0088] [表 4] [0088] [Table 4]
Figure imgf000025_0001
Figure imgf000025_0001
[0089] 大型铸鋼品の評価において、比較例 1で得られた铸鋼品には熱間亀裂が観察され なかった。比較例 1及び従来例 2については、铸鋼品に熱間亀裂の発生は確認され たものの、その亀裂長さは比較的短いものであつたが、なりより性に劣っていた。それ に対して、比較例 2及び従来例 1で製造した大型铸鋼品には、長さの非常に長い熱 間亀裂が発生していた。 [0089] In the evaluation of the large steel product, no hot crack was observed in the steel product obtained in Comparative Example 1. In Comparative Example 1 and Conventional Example 2, although hot cracks were observed in the steel product, the crack length was relatively short, but it was inferior in nature. In contrast, the large steel products manufactured in Comparative Example 2 and Conventional Example 1 had very long hot cracks.
[0090] また、大型铸鋼品における湯じわの発生状態については、比較例 2の場合、図 6 (b )に铸鋼品の写真の写しを示すように、 JIS3〜4級であった。なお、図 6において、大 型铸鋼品の表面に白く現れている部分が湯じわを示している。また、従来例 1及び 2 における湯じわの発生状態は、 JIS4級であった。これらは、铸型に注湯した際に、溶 湯が中子により急激に冷却されて湯回り性が低下したことが原因と考えられる。それ に対して、実施例 2及び 4では、例えば図 6 (a)に実施例 4の大型铸鋼品の写真の写 しを示すように、湯じわの発生状態力 SJIS1〜2級であった。  [0090] In addition, in the case of Comparative Example 2, the state of occurrence of hot water wrinkles in large steel products was JIS grades 3 to 4 as shown in FIG. 6 (b). . In FIG. 6, the white portion on the surface of the large steel product indicates the water bath. In addition, in the conventional examples 1 and 2, the state of occurrence of hot water wrinkles was JIS4 class. These are thought to be due to the fact that the molten metal was rapidly cooled by the core when the pour was poured into a bowl, and the hot water performance decreased. On the other hand, in Examples 2 and 4, for example, as shown in a photograph of the large steel product of Example 4 in FIG. It was.
[0091] ここで、実施例 4と比較例 2の大型铸鋼品に発生した湯じわの長さを比較してみると 、図 7に示したように、実施例 4では湯じわの長さが大幅に低減しており、湯じわの発 生が効果的に抑制されていることが確認できる。以上の結果から、本発明によれば、 熱間亀裂防止効果と、湯じわに対する抑制効果とが顕著に得られることが明らかとな つた o  Here, when comparing the length of the hot water wrinkles generated in the large steel products of Example 4 and Comparative Example 2, as shown in FIG. It can be confirmed that the length has been greatly reduced, and the generation of hot water wrinkles has been effectively suppressed. From the above results, it has been clarified that according to the present invention, the effect of preventing hot cracking and the effect of suppressing hot water wrinkles can be obtained remarkably.
[0092] さらに、中型及び小型铸鋼品の評価結果から、実施例 2では、熱間亀裂が発生して おらず、また湯じわの発生も効果的に抑制されていることがわ力つた。これに対して、 比較例 2では、铸鋼品に熱間亀裂の発生が確認された。なお、参考のため、比較例 2で铸鋼品に熱間亀裂が発生した位置を図 4及び図 5のそれぞれに示した。この結 果からも、本発明により格別の効果が得られることが明らかとなった。  [0092] Further, from the evaluation results of the medium-sized and small-sized steel products, it was confirmed that in Example 2, hot cracks did not occur and generation of hot water wrinkles was effectively suppressed. . On the other hand, in Comparative Example 2, the occurrence of hot cracks in the steel product was confirmed. For reference, the positions where hot cracks occurred in the steel product in Comparative Example 2 are shown in FIGS. 4 and 5, respectively. From this result, it has been clarified that a special effect can be obtained by the present invention.
産業上の利用可能性  Industrial applicability
[0093] 本発明は、 RCSを用いてシェルモールド法により铸型を形成し、同铸型を用いて鋼 铸物を铸造する場合、特に薄肉の鋼铸物を铸造する場合に有効に適用することがで きる。 [0093] The present invention is effectively applied to the case where a steel mold is formed by using a shell mold method using RCS and a steel frame is forged using the same mold, particularly when a thin steel frame is forged. be able to.

Claims

請求の範囲 The scope of the claims
[1] 铸物砂と、同铸物砂に対する 2. 5〜5. 0重量%のフ ノール系榭脂と、硝酸力リウ ムと、ビンゾールとを含んでなることを特徴とする铸鋼用レジンコーテッドサンド。  [1] For dredged steel, characterized by comprising dredged sand, 2.5 to 5.0% by weight of phenolic resin, nitric acid lithium and vinsol relative to the dredged sand Resin coated sand.
[2] 前記フエノール系榭脂のフエノール成分は、ビスフエノール A、同ビスフエノール A の精製時に生じる残渣、及び同残渣中の分離成分の誘導体よりなる群から選択され る少なくとも 1種を含んでなることを特徴とする請求の範囲第 1項に記載の铸鋼用レジ ンコーテッドサンド。  [2] The phenolic component of the phenolic rosin comprises at least one selected from the group consisting of bisphenol A, a residue generated during purification of the bisphenol A, and a derivative of a separated component in the residue. The resin-coated sand for pig steel according to claim 1, characterized by the above-mentioned.
[3] 前記硝酸カリウムの配合量が、前記フ ノール系榭脂に対して 2〜50重量%である ことを特徴とする請求の範囲第 1項又は第 2項に記載の铸鋼用レジンコーテッドサン ド、。  [3] The resin-coated sun for pig steel according to claim 1 or 2, wherein a blending amount of the potassium nitrate is 2 to 50% by weight with respect to the phenolic resin. De ,.
[4] 前記ビンゾールの配合量力 前記フ ノール系榭脂に対して 4重量%以上、 20重 量%以下であることを特徴とする請求の範囲第 3項に記載の铸鋼用レジンコーテッド サンド。  [4] The resin-coated sand for pig steel according to claim 3, characterized in that it is 4 wt% or more and 20 wt% or less with respect to the phenolic resin.
[5] 厚さ 6〜15mmで、 1000cm2以上の表面積を有する铸鋼品の铸型であって、前記 請求の範囲第 1〜4項のいずれかに記載されたレジンコーテッドサンドを用いて造型 されてなることを特徴とする铸鋼用铸型。 [5] A steel mold having a thickness of 6 to 15 mm and a surface area of 1000 cm 2 or more, and molding using the resin-coated sand according to any one of claims 1 to 4 A steel mold for steel.
[6] 前記铸型の熱間強度が 120〜175NZcm2であることを特徴とする請求の範囲第[6] The hot strength of the saddle type is 120 to 175 NZcm 2 .
5項に記載の铸鋼用铸型。 A steel mold according to item 5.
[7] 請求の範囲第 5項又は第 6項に記載の铸鋼用铸型を使って铸造される鋼铸物であ つて、同鋼铸物が厚さ 6〜 15mmで、 1000cm2以上の表面積を有し、前記铸型と接 する铸物面に発生する熱間亀裂が 70mm以下であることを特徴とする鋼铸物。 [7] A steel product forged by using the steel mold according to claim 5 or 6 and having a thickness of 6 to 15 mm and not less than 1000 cm 2 A steel structure having a surface area and having a hot crack generated on the surface of the structure in contact with the mold shape of 70 mm or less.
[8] 前記鋼铸物の湯じわは、 JIS G 0588に基づく等級分類が 1〜2級である請求の 範囲第 7項に記載の鋼铸物。 [8] The steel product according to claim 7, wherein the steel product has a grade classification based on JIS G 0588 of 1 to 2 grades.
[9] 前記鋼铸物の重量が 35kg以上であることを特徴とする請求の範囲第 7項又は第 8 項に記載の鋼铸物。 [9] The steel product according to claim 7 or 8, wherein the steel product has a weight of 35 kg or more.
PCT/JP2006/314046 2005-07-15 2006-07-14 Resin-coated sand for use in cast steel, casting mold made of the sand, steel casting casted using the casting mold WO2007010848A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007525990A JP4545192B2 (en) 2005-07-15 2006-07-14 Resin coated sand for cast steel, mold made of the sand, and steel casting cast by the mold
CN2006800257334A CN101222992B (en) 2005-07-15 2006-07-14 Resin-coated sand for use in cast steel, casting mold made of the sand, steel casting casted using the casting mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-206838 2005-07-15
JP2005206838 2005-07-15

Publications (1)

Publication Number Publication Date
WO2007010848A1 true WO2007010848A1 (en) 2007-01-25

Family

ID=37668729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314046 WO2007010848A1 (en) 2005-07-15 2006-07-14 Resin-coated sand for use in cast steel, casting mold made of the sand, steel casting casted using the casting mold

Country Status (3)

Country Link
JP (1) JP4545192B2 (en)
CN (1) CN101222992B (en)
WO (1) WO2007010848A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022220133A1 (en) * 2021-04-15 2022-10-20

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101486068B (en) * 2009-02-12 2014-12-17 上海市机械制造工艺研究所有限公司 Alcohol group zircon powder coating for large casting
WO2011010559A1 (en) * 2009-07-23 2011-01-27 旭有機材工業株式会社 Phenol resin composition for shell molding, resin-coated sand for shell molding, and shell molding die obtained using the same
CN101823119B (en) * 2010-06-04 2012-01-25 华中科技大学 Coated sand for selective laser sintering (SLS) and preparation method thereof
CN102974759A (en) * 2012-11-28 2013-03-20 天津市宁河县鑫发工贸有限公司 Pre-coated sand hot core box casting process of small and medium-sized precise parts
CN103586395A (en) * 2013-10-16 2014-02-19 昌利锻造有限公司 Molding sand for automatic production line and preparation method thereof
CN103586399A (en) * 2013-10-16 2014-02-19 昌利锻造有限公司 Molding sand capable of quick air permeation and heat dissipation and preparation method thereof
CN110267752B (en) * 2017-02-10 2022-01-11 旭有机材株式会社 Mold material composition and method for producing mold using same
CN107252872A (en) * 2017-05-18 2017-10-17 西峡县众德汽车部件有限公司 One kind heating precoated sand and preparation method thereof
CN107214302A (en) * 2017-05-18 2017-09-29 西峡县众德汽车部件有限公司 A kind of new casting pouring method
CN108971416A (en) * 2018-09-03 2018-12-11 王韶华 A kind of casting High-temperature-reseasyng easyng collapse precoated sand
CN112355231B (en) * 2020-11-11 2022-03-29 南阳仁创再生资源有限公司 Water glass precoated sand for casting and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767619A (en) * 1980-10-15 1982-04-24 Dainippon Ink & Chem Inc Resin for covering sand for castings
JP2003164944A (en) * 2001-11-29 2003-06-10 Sumitomo Bakelite Co Ltd Novolac type phenolic resin for shell mold and resin- coated sand
JP2005169434A (en) * 2003-12-09 2005-06-30 Asahi Organic Chem Ind Co Ltd Resin-coated sand for stacked mold

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1025659C (en) * 1991-08-14 1994-08-17 吴正永 Foundry core sand binder for casting
CN1163327C (en) * 1999-12-03 2004-08-25 东风汽车公司 Composite disperser of sand in coating phenolic resin and its preparing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767619A (en) * 1980-10-15 1982-04-24 Dainippon Ink & Chem Inc Resin for covering sand for castings
JP2003164944A (en) * 2001-11-29 2003-06-10 Sumitomo Bakelite Co Ltd Novolac type phenolic resin for shell mold and resin- coated sand
JP2005169434A (en) * 2003-12-09 2005-06-30 Asahi Organic Chem Ind Co Ltd Resin-coated sand for stacked mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022220133A1 (en) * 2021-04-15 2022-10-20
WO2022220133A1 (en) * 2021-04-15 2022-10-20 旭有機材株式会社 Resin composition for molds
JP7247427B2 (en) 2021-04-15 2023-03-28 旭有機材株式会社 Mold resin composition

Also Published As

Publication number Publication date
JP4545192B2 (en) 2010-09-15
CN101222992A (en) 2008-07-16
CN101222992B (en) 2010-05-26
JPWO2007010848A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
WO2007010848A1 (en) Resin-coated sand for use in cast steel, casting mold made of the sand, steel casting casted using the casting mold
CN101134237B (en) Reinforcing phase metallic gradient composite material manufacturing process and equipment thereof
CN106552902B (en) Efficient anti-vein type precoated sand and preparation method thereof
MX2011000528A (en) Salt-based cores and method for the production thereof.
CN103008547B (en) Resin sand shell mold casting method of automotive turbocharger shell
EP2939759B1 (en) Method for producing structure for casting and structure such as mold
MX2014012219A (en) Salt-based cores, method for the production thereof and use thereof.
CN102836948A (en) Regenerated coated sand and preparation method thereof
JP5587794B2 (en) Composition containing specific metallocene and use thereof
EP2456582B1 (en) Method for producing a body made from a granular mixture
JPH10166106A (en) Two-layer shell mold and manufacture thereof
CN108642329B (en) Train gearbox and preparation method thereof
JP5159330B2 (en) Sand mold for centrifugal casting mold and method for producing rolling roll
WO2015147069A1 (en) Green sand for casting of steel castings, method for producing same, and method for producing metal castings using said green sand
JP4406161B2 (en) Resin coated sand for shell mold
US10913104B2 (en) Nanoparticle based sand conditioner composition and a method of synthesizing the same
TWI377099B (en)
JP6242212B2 (en) Method for producing mold composition and method for producing mold
CA3224939A1 (en) Inorganic binder system
JPS63174752A (en) Method and apparatus for continuous production of sand mold or core for casting suitable for non-coating casting
JP2014159353A (en) Composite material and method of producing the same
CN109402533A (en) A kind of aluminum matrix composite and preparation method thereof
Piwonka Molding Methods
Tibor et al. Some Considerations on Environmental Sand Cores with Inorganic Binder

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025733.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007525990

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781120

Country of ref document: EP

Kind code of ref document: A1