WO2011010559A1 - Phenol resin composition for shell molding, resin-coated sand for shell molding, and shell molding die obtained using the same - Google Patents

Phenol resin composition for shell molding, resin-coated sand for shell molding, and shell molding die obtained using the same Download PDF

Info

Publication number
WO2011010559A1
WO2011010559A1 PCT/JP2010/061591 JP2010061591W WO2011010559A1 WO 2011010559 A1 WO2011010559 A1 WO 2011010559A1 JP 2010061591 W JP2010061591 W JP 2010061591W WO 2011010559 A1 WO2011010559 A1 WO 2011010559A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
phenolic resin
shell mold
fatty acid
resin
Prior art date
Application number
PCT/JP2010/061591
Other languages
French (fr)
Japanese (ja)
Inventor
敬一 森
智宏 高間
Original Assignee
旭有機材工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材工業株式会社 filed Critical 旭有機材工業株式会社
Priority to CN2010800229203A priority Critical patent/CN102448637A/en
Priority to AU2010274450A priority patent/AU2010274450B2/en
Priority to JP2011523605A priority patent/JP5764490B2/en
Publication of WO2011010559A1 publication Critical patent/WO2011010559A1/en
Priority to US13/270,524 priority patent/US20120029113A1/en
Priority to US14/197,516 priority patent/US20140187667A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • B22C1/2253Condensation polymers of aldehydes and ketones with phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols

Definitions

  • the present invention relates to a phenolic resin composition for a shell mold, a resin-coated sand for a shell mold, and a mold for a shell mold using the same, and more particularly, a shell mold that can simultaneously solve the problems of thermal expansion and randomness.
  • the present invention relates to a phenol resin composition for resin, a resin-coated sand obtained using the same, a method for producing the same, and a mold for shell molding formed using the resin-coated sand.
  • a resin-coated sand obtained by kneading a refractory particle (casting sand) and a phenolic resin (binder) and, if necessary, a curing agent such as hexamethylenetetramine.
  • resin coated sand a resin-coated sand obtained by kneading a refractory particle (casting sand) and a phenolic resin (binder) and, if necessary, a curing agent such as hexamethylenetetramine.
  • shell molds have been commonly used that are heat molded using abbreviated RCS ”to form the desired shape.
  • Patent Document 2 proposes a method in which polyethylene glycol having a number average molecular weight of 1500 to 40,000 is present in RCS, thereby preventing cracking of the mold.
  • the improvement in sex was not sufficient, and there was still room for improvement.
  • Patent Document 3 by using RCS formed by coating the surface of foundry sand with a hardly disintegrable phenol-based resin produced using at least naphthols as phenols, mold release after casting is achieved. After the process, it becomes clear that the collection of the lump as shell shell becomes efficient, so that it is possible to improve the regeneration rate of the used shell sand and to stabilize the quality of the regenerated sand. Has been.
  • the present invention has been made in the background as described above, and the problem to be solved is a shell that has a low coefficient of thermal expansion and can advantageously provide a mold having higher properties.
  • Another object of the present invention is to provide a phenolic resin composition for molding, an RCS obtained by using the phenolic resin composition, a method for producing the RCS, and a mold for shell molding obtained by molding using the RCS.
  • a phenolic resin composition having useful properties can be obtained by combining a fatty acid amide with a phenolic resin obtained by reacting with a phenol, and in particular, molded by RCS obtained using the same.
  • the inventors have found that a characteristic with a higher characteristic can be advantageously realized while maintaining a low coefficient of thermal expansion, and thus completed the present invention.
  • the present invention is characterized by comprising a phenolic resin obtained by reacting phenols, naphthols and aldehydes and a fatty acid amide as essential components in order to solve the above-described problems.
  • the gist of the phenolic resin composition for a shell mold is as follows.
  • the phenols and the naphthols are used in a mass ratio of 95 to 50: 5 to 50. .
  • the naphthols are 1-naphthol and / or 2-naphthol.
  • the phenolic resin comprises the phenols (P), the naphthols (N), and the aldehydes (F) in a blending molar ratio thereof: F / (P + N) is formed by reacting at a ratio of 0.40 to 0.80.
  • the fatty acid amide is used in a ratio of 1 to 15 parts by mass with respect to 100 parts by mass of the phenolic resin.
  • the fatty acid amide is a monoamide, a substituted amide, or a bisamide.
  • the fatty acid amide is a fatty acid bisamide, and more preferably a saturated fatty acid bisamide.
  • the silane coupling agent is further blended.
  • RCS resin coated sand
  • the phenolic resin composition is present in a ratio of 0.2 to 10 parts by mass with respect to 100 parts by mass of the refractory particles. Used.
  • the gist of the present invention is also a shell mold, which is formed by using the RCS for shell mold as described above and heat-cured.
  • a method of manufacturing RCS for shell mold which includes a step of coating refractory particles by using them in a melt-mixed state or individually.
  • the catalyst is a divalent metal salt and / or oxalic acid.
  • a phenolic resin composition for a shell mold according to the present invention, a phenolic resin obtained by reacting a naphthol with an aldehyde together with a phenol is combined with a fatty acid amide.
  • a coating layer made of the same is formed on the surface of a predetermined refractory particle to form a shell mold RCS, and a mold is formed using this RCS. While maintaining the low coefficient of thermal expansion of the mold advantageously, it was possible to effectively improve the properties of the mold, so that the casting defect problem of vaning due to mold cracking could be solved simultaneously. It is.
  • the phenol resin used can be free from corrosive components such as hydrochloric acid, the target mold can be easily and safely produced without causing problems such as mold corrosion during molding. In addition, it has the characteristics that it can enjoy industrial usefulness such as the advantage that it can be manufactured easily.
  • the phenolic resin constituting the phenolic resin composition for shell mold according to the present invention uses phenols, naphthols, and aldehydes, and reacts them with a predetermined catalyst. Is obtained.
  • phenols that are one of the reaction components that give such phenolic resins conventionally known phenols, for example, phenols, alkylphenols such as cresol, xylenol, p-tert-butylphenol, nonylphenol, resorcinol, Examples thereof include polyhydric phenols such as bisphenol F and bisphenol A, and mixtures thereof, and one of them is used alone or in combination of two or more.
  • this invention has one characteristic in the place which used naphthols as a phenol component with such phenols further, and contributes to the improvement of the characteristic of the phenol-type resin obtained by this by this. It was possible.
  • naphthols 1-naphthol and 2-naphthol can be preferably used alone or as a mixture from the viewpoints of availability, cost and the like. From the standpoint of superiority, 1-naphthol is preferably used.
  • the ratio of phenols: naphthols is preferably in the range of 90-60: 10-40, more preferably 90-70: 10-30, from the viewpoint of mold strength.
  • examples of the aldehyde that can be reacted with the above-described phenols and naphthols include formalin, paraformaldehyde, trioxane, acetaldehyde, paraaldehyde, and propionaldehyde.
  • the aldehydes are not limited to those exemplified, and other known raw materials can be used as appropriate. These aldehydes may be used alone or in combination of two or more kinds of raw materials.
  • the above-described phenols (P) and naphthols (N) are reacted with the above-mentioned aldehydes (F) to obtain a desired good phenolic resin. It is recommended to react these phenols and naphthols with aldehydes in such a ratio that the molar ratio of F: (P + N) is 0.40 to 0.80. In particular, when the blending molar ratio: F / (P + N) is 0.75 or less, particularly 0.70 or less, the property can be further improved. By setting the value of F / (P + N) to 0.40 or more, the target phenol resin can be obtained in a sufficient yield, while by setting it to 0.80 or less. In the RCS for shell mold formed using the obtained phenol-based resin, the strength of the mold obtained by molding it can be advantageously improved.
  • a catalyst such as an acid catalyst are appropriately selected and used in the reaction of the above-described phenols and naphthols with aldehydes.
  • a catalyst it is recommended to use at least one of a divalent metal salt and oxalic acid.
  • the divalent metal salt for example, a metal salt having a divalent metal element such as lead naphthenate, zinc naphthenate, lead acetate, zinc acetate, zinc borate, lead oxide, zinc oxide, etc.
  • a combination of an acidic catalyst and a basic catalyst capable of forming such a metal salt can be exemplified.
  • oxalic acid is preferably used.
  • Such a catalyst composed of at least one selected from the group consisting of a divalent metal salt and oxalic acid is generally 0.01 to 5 parts by mass with respect to 100 parts by mass in total of phenols and naphthols. It is advantageously used in a proportion of parts, preferably 0.05 to 3 parts by mass.
  • the reaction of phenols and naphthols with aldehydes using a predetermined catalyst is carried out in the same manner as in the conventional phenol resin production method.
  • the phenolic resin thus obtained is in the form of a solid or liquid (for example, varnish or emulsion), for example, a curing agent such as hexamethylenetetramine or a curing catalyst. In the presence or absence, heat curing is achieved by heating.
  • a phenolic resin having a number average molecular weight obtained by gel permeation chromatography (GPC) analysis in the range of 400 to 1300 is preferably used.
  • the phenol-type resin composition for shell molds will be comprised. is there.
  • the use ratio of the phenolic resin and fatty acid amide is appropriately determined according to the required characteristics of the mold, but generally 1 to 15 parts by mass with respect to 100 parts by mass of the phenolic resin. A proportion of fatty acid amide will be used.
  • the fatty acid amide used in combination with the phenolic resin includes monoamides such as saturated fatty acid monoamide and unsaturated fatty acid monoamide; substituted amides; bisamides such as saturated fatty acid bisamide, unsaturated fatty acid bisamide, and aromatic bisamide. Among them, fatty acid bisamides, particularly saturated fatty acid bisamides, are preferably used.
  • saturated fatty acid monoamides include lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, etc., and unsaturated fatty acid monoamides.
  • specific examples of these include oleic acid amide, erucic acid amide and the like
  • specific examples of the substituted amide include N-stearyl stearic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide.
  • saturated fatty acid bisamides include methylene bis stearic acid amide, ethylene bis stearic acid amide, methylene bis lauric acid amide, methylene bis behenic acid amide, hexamethylene bis stearic acid amide, hexamethylene bis hydroxy stearic acid amide.
  • unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N , N′-dioleoyl adipate amide and the like
  • aromatic bisamide include xylylene bis stearic acid amide, xylylene bishydroxy stearic acid amide, N, '- distearyl isophthalic acid amide and the like.
  • such a phenolic resin and a fatty acid amide are used in combination for a shell mold, so that it is generally used for the purpose of improving the physical properties of the mold, if necessary.
  • Various additives used can be appropriately blended and used.
  • silane coupling agents such as ⁇ -aminopropyltriethoxysilane and ⁇ -glycidoxypropyltrimethoxysilane are blended and used.
  • Such a silane coupling agent is generally compounded in a proportion of about 0.01 to 5 parts by mass, preferably about 0.05 to 2.5 parts by mass with respect to 100 parts by mass of the phenolic resin. Will be.
  • the phenolic resin composition for shell mold as described above is kneaded with the predetermined refractory particles. Therefore, the amount of the phenolic resin composition for the shell mold in the RCS of the present invention is determined in consideration of the type of resin to be used, the required mold strength, and the like. In general, it is within the range of about 0.2 to 10 parts by weight, preferably 0.5 to 8 parts by weight, more preferably 0.5 to It is in the range of 5 parts by mass.
  • the kind of the refractory particles kneaded into such a phenolic resin composition for a shell mold is not particularly limited in the present invention. Since such refractory particles serve as a base material for a mold, any inorganic particles having a particle size suitable for casting and mold formation (molding) can be used for shell mold casting. Any known inorganic particles that have been produced can be used. Examples of such refractory particles include, in addition to commonly used silica sand, special sand such as olivine sand, zircon sand, chromite sand, and alumina sand, ferrochrome slag and ferronickel slag.
  • Slag-based particles such as converter slag, mullite-based porous particles such as Niiga Cera beads (trade name, ITOCHU CERATECH Co., Ltd.), or regenerated particles recovered and regenerated after casting, etc. Or in combination of two or more.
  • the manufacturing method is not particularly limited, and conventionally known methods such as a dry hot coating method, a semi-hot coating method, a cold coating method, and a powder solvent method are known.
  • a dry hot coating method in which an aqueous solution of hexamethylenetetramine (curing agent) is added, the massive contents are disintegrated into particles by air cooling, and calcium stearate (lubricant) is added.
  • the predetermined phenolic resin and the fatty acid amide constituting the shell mold resin composition according to the present invention are melt-mixed and used for coating the refractory particles, and separately used to coat the refractory particles. It is also possible to make them dampen.
  • the heating molding method is not particularly limited, and any conventionally known method can be advantageously used. Will get.
  • the RCS as described above is filled into a mold heated to 150 ° C. to 300 ° C. having a desired shape space for giving a target mold by a gravity dropping method, a blowing method, or the like and cured. Thereafter, the cured mold can be removed from the mold to obtain a casting mold. And in the casting_mold
  • the mold piece obtained above was set on a support base, and then the heating element (elema rod) was gradually heated from 200 ° C. and heated up to 800 ° C.
  • the laser displacement meter was set at a position 10 mm from the tip of the mold piece, and the data was directly taken into a personal computer.
  • the behavior of the displacement first, the mold piece is warped based on the expansion behavior due to the heating of the mold piece, and then begins to bend in a short time. Finally, the mold piece is almost at the center, that is, the heating element. It breaks at the heating part.
  • “Nariyori” as used herein is expressed by the maximum amount of bending obtained until fracture, and the larger the value, the easier the mold is deformed and the greater the flexibility. In addition, this measurement was performed in consideration of a measurement cycle in which the measurement of the next mold piece is started when the temperature of the heating element reaches around 200 ° C.
  • Phenol resin B was obtained according to the same procedure as in Resin Production Example 1, except that 8000 parts of phenol, 2000 parts of 1-naphthol, 4865 parts of 47% formalin and 30 parts of oxalic acid were added.
  • Phenol resin C was obtained according to the same procedure as in Resin Production Example 1, except that 8000 parts of phenol, 2000 parts of 1-naphthol, 3159 parts of 47% formalin and 30 parts of oxalic acid were added.
  • Phenol resin D was obtained according to the same procedure as in Resin Production Example 1, except that 9000 parts of phenol, 1000 parts of 1-naphthol, 4260 parts of 47% formalin and 30 parts of oxalic acid were added.
  • Phenol resin E was obtained according to the same procedure as in Resin Production Example 1, except that 6000 parts of phenol, 4000 parts of 1-naphthol, 3799 parts of 47% formalin and 15 parts of oxalic acid were added.
  • Phenol resin F was obtained according to the same procedure as in Resin Production Example 1 except that 8000 parts of phenol, 2000 parts of 2-naphthol, 4106 parts of 47% formalin and 30 parts of oxalic acid were added.
  • phenol resin G was obtained according to the same procedure as in Resin Production Example 1 except that 2000 parts of phenol, 8000 parts of bisphenol A (BPA), 2339 parts of 47% formalin and 30 parts of oxalic acid were added.
  • Example 2- A resin composition 2 was obtained according to the same procedure as in Example 1 except that the addition amount of ethylenebisstearic acid amide was 120 parts.
  • Example 3- Resin composition 3 was obtained according to the same procedure as in Example 1 except that the addition amount of ethylenebisstearic acid amide was 15 parts.
  • Example 4- Resin composition 4 was obtained according to the same procedure as in Example 1 except that ethylene bis stearic acid amide was changed to methylene bis stearic acid amide.
  • Resin composition 5 was obtained according to the same procedure as in Example 1 except that ethylene bis stearic acid amide was replaced with ethylene bis behenic acid amide.
  • Example 6- Resin composition 6 was obtained according to the same procedure as in Example 1 except that ethylene bis stearic acid amide was changed to ethylene bis erucic acid amide.
  • Example 7- Resin composition 7 was obtained according to the same procedure as in Example 1 except that ethylene bis stearic acid amide was changed to stearic acid amide.
  • Example 8- A resin composition 8 was obtained according to the same procedure as in Example 1 except that the phenol resin A was replaced with the phenol resin B.
  • Example 9- A resin composition 9 was obtained according to the same procedure as in Example 1 except that the phenol resin A was replaced with the phenol resin C.
  • Example 10- A resin composition 10 was obtained according to the same procedure as in Example 1 except that the phenol resin A was replaced with the phenol resin D.
  • Example 11- A resin composition 11 was obtained according to the same procedure as in Example 1 except that the phenol resin A was replaced with the phenol resin E.
  • Example 12- A resin composition 12 was obtained according to the same procedure as in Example 1 except that the phenol resin A was replaced with the phenol resin F.
  • Example 1 A resin composition 13 was obtained according to the same procedure as in Example 1 except that the phenol resin A was replaced with the phenol resin G.
  • Example 2 A resin composition 14 was obtained according to the same procedure as in Example 1 except that the fatty acid amides were not added to the phenol resin A.

Abstract

Provided are a phenol resin composition for shell molding, from which a molding die having a low thermal expansion coefficient and high deflectability can be advantageously formed, a resin-coated sand obtained using the same, and a shell molding die obtained using such a resin-coated sand. A naphthol is used together with a phenol. These phenol components are caused to react with an aldehyde to obtain a phenol resin. The phenol resin is combined with a fatty acid amide to constitute a phenol resin composition for shell molding, which is capable of exhibiting useful die characteristics.

Description

シェルモールド用フェノール系樹脂組成物及びシェルモールド用レジンコーテッドサンド並びにそれを用いて得られるシェルモールド用鋳型Phenolic resin composition for shell mold, resin-coated sand for shell mold, and mold for shell mold obtained using the same
 本発明は、シェルモールド用フェノール系樹脂組成物及びシェルモールド用レジンコーテッドサンド並びにそれを用いてなるシェルモールド用鋳型に係り、特に、熱膨張性及びなりより性の問題を同時に解決し得るシェルモールド用フェノール系樹脂組成物、及びそれを用いて得られるレジンコーテッドサンドとその製造方法、並びにそれを用いて造型してなるシェルモールド用鋳型に関するものである。 The present invention relates to a phenolic resin composition for a shell mold, a resin-coated sand for a shell mold, and a mold for a shell mold using the same, and more particularly, a shell mold that can simultaneously solve the problems of thermal expansion and randomness. The present invention relates to a phenol resin composition for resin, a resin-coated sand obtained using the same, a method for producing the same, and a mold for shell molding formed using the resin-coated sand.
 従来から、シェルモールド鋳造においては、耐火性粒子(鋳物砂)及びフェノール樹脂(バインダー)と共に、更に必要に応じて、ヘキサメチレンテトラミン等の硬化剤を混練して得られるレジンコーテッドサンド(以下、「RCS」と略称する)を用いて、それを加熱成形せしめ、所望の形状としてなるシェル鋳型が、一般的に使用されて来ている。 Conventionally, in shell mold casting, a resin-coated sand (hereinafter referred to as “hereinafter referred to as“ resin coated sand ”) obtained by kneading a refractory particle (casting sand) and a phenolic resin (binder) and, if necessary, a curing agent such as hexamethylenetetramine. In general, shell molds have been commonly used that are heat molded using abbreviated RCS ”to form the desired shape.
 しかしながら、この種の鋳型の中で、特に、内燃機関のシリンダーヘッドのような鋳物製品を鋳造する複雑な形状の鋳型の場合、それを用いた鋳造操作において、亀裂乃至は割れ(以下、鋳型の「割れ」と言う)が惹起され易いという問題があった。 However, among these types of molds, in particular, in the case of a mold having a complicated shape for casting a cast product such as a cylinder head of an internal combustion engine, in the casting operation using the mold, There is a problem that it is easy to cause "cracking").
 ところで、この鋳型の割れを防止するためには、鋳型の熱膨張率を低くすると共に、なりより性を大きくすればよいと考えられるものであるところ、特許文献1においては、バインダーの成分としてビスフェノールAやビスフェノールE等のビスフェノール類を用いることにより、急熱膨張率の低減を図り、以て低熱膨張性が実現され得ることが明らかにされている。しかしながら、そのような手法にあっては、鋳型の割れの問題は或る程度は解消され得るものの、なりより性においては、未だ充分なものではなかったのである。 By the way, in order to prevent the cracking of the mold, it is considered that the thermal expansion coefficient of the mold should be lowered and the property should be increased. However, in Patent Document 1, bisphenol is used as a binder component. It has been clarified that by using bisphenols such as A and bisphenol E, the rapid thermal expansion coefficient can be reduced and thus low thermal expansion can be realized. However, in such a technique, the problem of mold cracking can be solved to some extent, but it is still not sufficient in terms of sex.
 また、特許文献2においては、RCS中に、数平均分子量が1500~40000であるポリエチレングリコールを存在させ、それにより、鋳型の割れ(クラック)を防止する方法が提案されているが、熱膨張特性及びなりより性の向上が充分ではなく、未だ改善の余地を残すものであった。 Patent Document 2 proposes a method in which polyethylene glycol having a number average molecular weight of 1500 to 40,000 is present in RCS, thereby preventing cracking of the mold. However, the improvement in sex was not sufficient, and there was still room for improvement.
 一方、特許文献3には、フェノール類として少なくともナフトール類を用いて製造された難崩壊性のフェノール系樹脂にて、鋳物砂の表面を被覆してなるRCSを用いることにより、鋳造後の型ばらし工程後に、シェル殻としての固まりの回収が効率的となることから、使用済みのシェル砂の再生率の向上が図られ得、また再生された砂の品質も安定化され得ることが、明らかにされている。そして、その実施例においては、α-ナフトール若しくはβ-ナフトール、或いはそれらナフトール及びフェノールと、ホルマリンとを、塩酸やアンモニア水等の触媒を用いて反応せしめて得られた、ノボラック型フェノール系樹脂やレゾール型フェノール系樹脂が例示されているが、特に、そこで塩酸を触媒として用いた樹脂においては、樹脂製造時における反応の激しさによる安全性の問題や、鋳型造型時の金型腐食の問題が内在している。また、この特許文献3には、シュウ酸を触媒として得られるフェノール系樹脂及びそれを用いたRCSに関しては、何等明らかにされておらず、ましてや鋳型を製造する際に問題となる鋳型の割れという現象についても、何等明らかにされてはいない。 On the other hand, in Patent Document 3, by using RCS formed by coating the surface of foundry sand with a hardly disintegrable phenol-based resin produced using at least naphthols as phenols, mold release after casting is achieved. After the process, it becomes clear that the collection of the lump as shell shell becomes efficient, so that it is possible to improve the regeneration rate of the used shell sand and to stabilize the quality of the regenerated sand. Has been. In the examples, novolak-type phenolic resins obtained by reacting α-naphthol or β-naphthol, or naphthol and phenol with formalin using a catalyst such as hydrochloric acid or aqueous ammonia, Resole-type phenolic resins are exemplified, but especially in resins using hydrochloric acid as a catalyst, there are safety problems due to the intensity of reaction during resin production and mold corrosion problems during mold molding. Is inherent. In addition, this Patent Document 3 does not clarify anything about a phenolic resin obtained using oxalic acid as a catalyst and RCS using the same, and moreover, it is said that cracking of the mold is a problem when producing the mold. The phenomenon is not clarified at all.
特開昭59-178150号公報JP 59-178150 A 特開昭58-119433号公報JP 58-119433 A 特開昭63-30144号公報JP 63-30144 A
 ここにおいて、本発明は、かくの如き事情を背景にして為されたものであって、その解決課題とするところは、低熱膨張率であると共に、なりより性の大きい鋳型が有利に得られるシェルモールド用フェノール系樹脂組成物、及びそれを用いて得られるRCSとその製造方法、更には、かかるRCSを用いて造型して得られるシェルモールド用鋳型を提供することにある。 Here, the present invention has been made in the background as described above, and the problem to be solved is a shell that has a low coefficient of thermal expansion and can advantageously provide a mold having higher properties. Another object of the present invention is to provide a phenolic resin composition for molding, an RCS obtained by using the phenolic resin composition, a method for producing the RCS, and a mold for shell molding obtained by molding using the RCS.
 そして、本発明者等が、上述した如き課題の解決を図るべく、シェルモールド用フェノール系樹脂組成物について鋭意検討を重ねたところ、フェノール類とナフトール類とを併用してなるフェノール成分を、アルデヒド類と反応せしめて得られるフェノール系樹脂を用い、これに、脂肪酸アマイドを組み合わせることにより、有用な特性を有するフェノール系樹脂組成物が得られ、特に、それを用いて得られるRCSにて造型される鋳型において、低熱膨張率を維持しつつ、なりより性の大きな特性が有利に実現され得ることを見出し、本発明を完成するに至ったのである。 And when the present inventors repeated the earnest examination about the phenol-type resin composition for shell molds in order to aim at solution of the above-mentioned subject, the phenol ingredient which uses phenols and naphthols together is changed to aldehyde. A phenolic resin composition having useful properties can be obtained by combining a fatty acid amide with a phenolic resin obtained by reacting with a phenol, and in particular, molded by RCS obtained using the same. As a result, the inventors have found that a characteristic with a higher characteristic can be advantageously realized while maintaining a low coefficient of thermal expansion, and thus completed the present invention.
 すなわち、本発明は、上記せる課題を解決するために、フェノール類、ナフトール類及びアルデヒド類を反応させて得られるフェノール系樹脂と、脂肪酸アマイドとを、必須成分として構成してなることを特徴とするシェルモールド用フェノール系樹脂組成物を、その要旨とするものである。 That is, the present invention is characterized by comprising a phenolic resin obtained by reacting phenols, naphthols and aldehydes and a fatty acid amide as essential components in order to solve the above-described problems. The gist of the phenolic resin composition for a shell mold is as follows.
 なお、かかる本発明に従うシェルモールド用フェノール樹脂の望ましい態様の一つによれば、前記フェノール類と前記ナフトール類とが、質量比で、95~50:5~50の割合で用いられることとなる。 According to one of the desirable embodiments of the phenol resin for a shell mold according to the present invention, the phenols and the naphthols are used in a mass ratio of 95 to 50: 5 to 50. .
 また、本発明の他の望ましい態様によれば、前記ナフトール類は、1-ナフトール及び/又は2-ナフトールである。 According to another desirable embodiment of the present invention, the naphthols are 1-naphthol and / or 2-naphthol.
 そして、本発明の更に他の望ましい態様によれば、前記フェノール系樹脂は、前記フェノール類(P)と前記ナフトール類(N)と前記アルデヒド類(F)とを、それらの配合モル比:F/(P+N)が0.40~0.80となる割合において、反応せしめることによって、形成されている。 According to still another preferred aspect of the present invention, the phenolic resin comprises the phenols (P), the naphthols (N), and the aldehydes (F) in a blending molar ratio thereof: F / (P + N) is formed by reacting at a ratio of 0.40 to 0.80.
 さらに、本発明の別の望ましい態様によれば、前記脂肪酸アマイドは、前記フェノール系樹脂の100質量部に対して、1~15質量部の割合で用いられることとなる。 Furthermore, according to another desirable aspect of the present invention, the fatty acid amide is used in a ratio of 1 to 15 parts by mass with respect to 100 parts by mass of the phenolic resin.
 加えて、本発明の好ましい態様によれば、前記脂肪酸アマイドは、モノアマイド類、置換アマイド類、又はビスアマイド類である。 In addition, according to a preferred embodiment of the present invention, the fatty acid amide is a monoamide, a substituted amide, or a bisamide.
 更にまた、本発明の更に別の望ましい態様によれば、前記脂肪酸アマイドは、脂肪酸ビスアマイドであり、より望ましくは、飽和脂肪酸ビスアマイドである。 Furthermore, according to still another desirable aspect of the present invention, the fatty acid amide is a fatty acid bisamide, and more preferably a saturated fatty acid bisamide.
 加えて、本発明の別の好ましい態様によれば、シランカップリング剤が、更に配合せしめられることとなる。 In addition, according to another preferred embodiment of the present invention, the silane coupling agent is further blended.
 そして、本発明にあっては、上述せる如きシェルモールド用フェノール系樹脂組成物を用いて、耐火性粒子を被覆してなることを特徴とするシェルモールド用RCS(レジンコーテッドサンド)をも、その対象としている。 And in this invention, using the phenolic resin composition for shell molds as described above, RCS (resin coated sand) for shell molds, characterized in that it is coated with refractory particles, It is targeted.
 なお、かかる本発明に従うシェルモールド用RCSの望ましい態様の一つによれば、前記フェノール系樹脂組成物は、前記耐火性粒子の100質量部に対して、0.2~10質量部の割合において用いられる。 According to one desirable aspect of the RCS for shell mold according to the present invention, the phenolic resin composition is present in a ratio of 0.2 to 10 parts by mass with respect to 100 parts by mass of the refractory particles. Used.
 加えて、本発明にあっては、上述の如きシェルモールド用RCSを用いて造型し、加熱硬化させてなることを特徴とするシェルモールド用鋳型をも、その要旨としているのである。 In addition, the gist of the present invention is also a shell mold, which is formed by using the RCS for shell mold as described above and heat-cured.
 また、本発明にあっては、(a)フェノール類、ナフトール類及びアルデヒド類を所定の触媒の存在下に反応させて、フェノール系樹脂を得る工程と、(b)かかるフェノール系樹脂と脂肪酸アマイドとを、溶融混合して用いるか、又は個別に用いて、耐火性粒子を被覆する工程とを含むことを特徴とするシェルモールド用RCSの製造方法をも、その対象としている。 In the present invention, (a) a step of reacting phenols, naphthols and aldehydes in the presence of a predetermined catalyst to obtain a phenolic resin; and (b) such phenolic resin and fatty acid amide. And a method of manufacturing RCS for shell mold, which includes a step of coating refractory particles by using them in a melt-mixed state or individually.
 さらに、本発明の好ましい態様によれば、前記触媒は、2価金属塩及び/又はシュウ酸である。 Furthermore, according to a preferred embodiment of the present invention, the catalyst is a divalent metal salt and / or oxalic acid.
 このような本発明に従うシェルモールド用フェノール系樹脂組成物にあっては、フェノール類と共に、ナフトール類を、アルデヒド類と反応せしめて、得られるフェノール系樹脂を用い、これに、脂肪酸アマイドが組み合わされてなるものであるところから、それからなる被覆層を、所定の耐火性粒子の表面に形成せしめて、シェルモールド用RCSを構成し、そしてこのRCSを用いて、鋳型を造型することにより、得られる鋳型の低熱膨張率を有利に維持しつつ、鋳型のなりより性を効果的に向上せしめ得、以て、鋳型の割れに起因するベーニングという鋳造欠陥の問題が、同時に解決可能と為され得たのである。しかも、用いられるフェノール樹脂には、塩酸の如き腐食性成分を含まないようにすることが出来るために、造型時に金型腐食等の問題を惹起させることなく、目的とする鋳型を容易に且つ安全に製造出来るという利点等、産業上の有用性を有利に享受することが出来る特徴も有しているのである。 In such a phenolic resin composition for a shell mold according to the present invention, a phenolic resin obtained by reacting a naphthol with an aldehyde together with a phenol is combined with a fatty acid amide. Thus, a coating layer made of the same is formed on the surface of a predetermined refractory particle to form a shell mold RCS, and a mold is formed using this RCS. While maintaining the low coefficient of thermal expansion of the mold advantageously, it was possible to effectively improve the properties of the mold, so that the casting defect problem of vaning due to mold cracking could be solved simultaneously. It is. Moreover, since the phenol resin used can be free from corrosive components such as hydrochloric acid, the target mold can be easily and safely produced without causing problems such as mold corrosion during molding. In addition, it has the characteristics that it can enjoy industrial usefulness such as the advantage that it can be manufactured easily.
実施例において採用する、なりより性の測定法における測定形態を示す説明図である。It is explanatory drawing which shows the form of a measurement in the measuring method of the nature which is employ | adopted in an Example.
 ところで、本発明に従うシェルモールド用フェノール系樹脂組成物を構成するフェノール系樹脂は、上述せるように、フェノール類及びナフトール類と、アルデヒド類とを用いて、それらを、所定の触媒により反応させて、得られたものである。 By the way, as described above, the phenolic resin constituting the phenolic resin composition for shell mold according to the present invention uses phenols, naphthols, and aldehydes, and reacts them with a predetermined catalyst. Is obtained.
 そこにおいて、かかるフェノール系樹脂を与える反応成分の一つであるフェノール類としては、従来から公知のもの、例えば、フェノールの他、クレゾール、キシレノール、p-tert-ブチルフェノール、ノニルフェノール等のアルキルフェノール、レゾルシノール、ビスフェノールF、ビスフェノールA等の多価フェノール及びこれらの混合物等を挙げることが出来、それらの内の1種が単独で、或いは2種以上が組み合わされて、用いられることとなる。 Therein, as phenols that are one of the reaction components that give such phenolic resins, conventionally known phenols, for example, phenols, alkylphenols such as cresol, xylenol, p-tert-butylphenol, nonylphenol, resorcinol, Examples thereof include polyhydric phenols such as bisphenol F and bisphenol A, and mixtures thereof, and one of them is used alone or in combination of two or more.
 そして、本発明は、かくの如きフェノール類と共に、更に、ナフトール類を、フェノール成分として用いたところに一つの特徴を有し、これによって、得られるフェノール系樹脂の特性の向上に効果的に寄与せしめ得たのである。なお、そのようなナフトール類としては、入手の容易さ、コスト等の観点から、好ましくは1-ナフトールや2-ナフトールを単独で又は混合物として用いることが出来るが、中でもアルデヒド類との反応性に優れている等の観点から、1-ナフトールが好適に用いられる。また、それらフェノール類とナフトール類(1-ナフトール又は2-ナフトール)との割合は、質量比にて、フェノール類:ナフトール類=95~50:5~50となるように、換言すればナフトール類はフェノール成分全体の50質量%以下となるように、用いられることとなる。このナフトール類の使用割合が50質量%を超えるようになると、鋳造時におけるヤニの発生が増大する恐れがあるからであり、また、5質量%よりも少ない使用量となると、なりより性の効果が充分に発揮されないようになるからである。なお、フェノール類:ナフトール類の割合は、鋳型の強度の観点から、好ましくは90~60:10~40、更に好ましくは90~70:10~30の範囲で用いられる。 And this invention has one characteristic in the place which used naphthols as a phenol component with such phenols further, and contributes to the improvement of the characteristic of the phenol-type resin obtained by this by this. It was possible. As such naphthols, 1-naphthol and 2-naphthol can be preferably used alone or as a mixture from the viewpoints of availability, cost and the like. From the standpoint of superiority, 1-naphthol is preferably used. Further, the ratio of these phenols to naphthols (1-naphthol or 2-naphthol) is such that phenols: naphthols = 95-50: 5-50 in mass ratio, in other words, naphthols Will be used so that it may be 50 mass% or less of the whole phenol component. This is because if the use ratio of naphthols exceeds 50% by mass, the generation of spears during casting may increase, and if the use amount is less than 5% by mass, the effect of sex is more likely. This is because it will not be fully demonstrated. The ratio of phenols: naphthols is preferably in the range of 90-60: 10-40, more preferably 90-70: 10-30, from the viewpoint of mold strength.
 また、本発明に従うフェノール系樹脂を得るために、上記したフェノール類及びナフトール類に反応せしめられるアルデヒド類としては、ホルマリン、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、パラアルデヒド、プロピオンアルデヒド等を挙げることが出来る。勿論、このアルデヒド類としては、かかる例示のものに何等限定されるものではなく、それら以外の公知の原料も、適宜に用いられ得るものである。そして、それらアルデヒド類は、単独で用いられても、2種以上の原料を組み合わせて用いるようにされても、何等差支えない。 Moreover, in order to obtain the phenol resin according to the present invention, examples of the aldehyde that can be reacted with the above-described phenols and naphthols include formalin, paraformaldehyde, trioxane, acetaldehyde, paraaldehyde, and propionaldehyde. Of course, the aldehydes are not limited to those exemplified, and other known raw materials can be used as appropriate. These aldehydes may be used alone or in combination of two or more kinds of raw materials.
 さらに、本発明にあっては、前記したフェノール類(P)及びナフトール類(N)と、上記のアルデヒド類(F)とを反応せしめて、目的とする良好なフェノール系樹脂を得るべく、それらの配合モル比:F/(P+N)が、0.40~0.80となるような割合において、それらフェノール類及びナフトール類と、アルデヒド類とを反応せしめることが、推奨されるのである。中でも、特に、かかる配合モル比:F/(P+N)が0.75以下、とりわけ0.70以下となるようにすることにより、なりより性をより一層改善せしめることが可能となる。なお、かかるF/(P+N)の値が、0.40以上となるようにすることにより、目的とするフェノール系樹脂を充分な収率において得ることが出来る一方、0.80以下とすることにより、得られるフェノール系樹脂を用いて形成されるシェルモールド用RCSにおいて、それを造型して得られる鋳型の強度が、有利に向上せしめられ得るのである。 Furthermore, in the present invention, the above-described phenols (P) and naphthols (N) are reacted with the above-mentioned aldehydes (F) to obtain a desired good phenolic resin. It is recommended to react these phenols and naphthols with aldehydes in such a ratio that the molar ratio of F: (P + N) is 0.40 to 0.80. In particular, when the blending molar ratio: F / (P + N) is 0.75 or less, particularly 0.70 or less, the property can be further improved. By setting the value of F / (P + N) to 0.40 or more, the target phenol resin can be obtained in a sufficient yield, while by setting it to 0.80 or less. In the RCS for shell mold formed using the obtained phenol-based resin, the strength of the mold obtained by molding it can be advantageously improved.
 なお、本発明では、上記したフェノール類及びナフトール類とアルデヒド類との反応に際して、酸触媒の如き、従来から公知の各種の触媒が適宜に選択されて用いられることとなるが、特に、そのような触媒として、2価金属塩及びシュウ酸のうちの少なくとも何れか一方を用いることが推奨される。そのような特定の触媒を用いることによって、低熱膨張率を維持しつつ、なりより性のより一層の向上を図ることが可能となると共に、金型腐食等の問題の解消も有利に図ることが出来るのである。そこで、2価金属塩としては、例えば、ナフテン酸鉛、ナフテン酸亜鉛、酢酸鉛、酢酸亜鉛、ホウ酸亜鉛、酸化鉛、酸化亜鉛等のような2価金属元素を有する金属塩の他、このような金属塩を形成し得る酸性触媒と塩基性触媒との組合せ等を挙げることが出来る。これら特定の触媒の中でも、シュウ酸が好ましく用いられる。そして、このような2価金属塩及びシュウ酸からなる群から選ばれた少なくとも1種からなる触媒は、一般に、フェノール類及びナフトール類の合計の100質量部に対して、0.01~5質量部となる割合において、好ましくは0.05~3質量部となる割合において、有利に用いられることとなる。 In the present invention, conventionally known various catalysts such as an acid catalyst are appropriately selected and used in the reaction of the above-described phenols and naphthols with aldehydes. As such a catalyst, it is recommended to use at least one of a divalent metal salt and oxalic acid. By using such a specific catalyst, it is possible to further improve the property while maintaining a low coefficient of thermal expansion, and to advantageously solve problems such as mold corrosion. It can be done. Therefore, as the divalent metal salt, for example, a metal salt having a divalent metal element such as lead naphthenate, zinc naphthenate, lead acetate, zinc acetate, zinc borate, lead oxide, zinc oxide, etc. A combination of an acidic catalyst and a basic catalyst capable of forming such a metal salt can be exemplified. Among these specific catalysts, oxalic acid is preferably used. Such a catalyst composed of at least one selected from the group consisting of a divalent metal salt and oxalic acid is generally 0.01 to 5 parts by mass with respect to 100 parts by mass in total of phenols and naphthols. It is advantageously used in a proportion of parts, preferably 0.05 to 3 parts by mass.
 また、所定の触媒を用いて、フェノール類及びナフトール類とアルデヒド類とを反応させるには、従来のフェノール樹脂の製造方法と同様にして、行なわれることとなる。そして、そのようにして得られるフェノール系樹脂は、固体状又は液体状(例えば、ワニス状又はエマルジョン等)の形態を呈するものであって、例えば、ヘキサメチレンテトラミン等の硬化剤乃至は硬化触媒の存在下又は非存在下において、加熱せしめることにより、熱硬化性を発現するものである。なお、本発明においては、ゲル・パーミエーション・クロマトグラフィー(GPC)分析で得られる数平均分子量が、400~1300の範囲内であるフェノール系樹脂が、好ましく用いられることとなる。このフェノール系樹脂の数平均分子量が小さ過ぎる場合には、かかる樹脂を含む樹脂組成物を被覆してなるシェルモールド用RCSにおいて、造型時の充填性が損なわれて、得られる鋳型において、充分な強度が確保され得なくなる恐れがあり、一方、フェノール系樹脂の数平均分子量が大き過ぎる場合には、加熱時の樹脂の流動性が損なわれて、得られる鋳型において、充分な強度が確保され得ない恐れがある。 Also, the reaction of phenols and naphthols with aldehydes using a predetermined catalyst is carried out in the same manner as in the conventional phenol resin production method. The phenolic resin thus obtained is in the form of a solid or liquid (for example, varnish or emulsion), for example, a curing agent such as hexamethylenetetramine or a curing catalyst. In the presence or absence, heat curing is achieved by heating. In the present invention, a phenolic resin having a number average molecular weight obtained by gel permeation chromatography (GPC) analysis in the range of 400 to 1300 is preferably used. When the number average molecular weight of the phenolic resin is too small, in the RCS for shell mold formed by coating the resin composition containing the resin, the filling property at the time of molding is impaired, On the other hand, if the number average molecular weight of the phenolic resin is too large, the fluidity of the resin during heating is impaired, and sufficient strength can be secured in the obtained mold. There is no fear.
 そして、本発明にあっては、上記の如くして得られたフェノール系樹脂に対して、脂肪酸アマイドが必須成分として組み合わされて、シェルモールド用フェノール系樹脂組成物が構成されることとなるのである。このフェノール系樹脂と脂肪酸アマイドの組合せによって、得られるシェルモールド鋳型の低熱膨張率の維持と共に、そのなりより性の改善を有利に図ることが可能となる。なお、それらフェノール系樹脂と脂肪酸アマイドの使用比率は、鋳型の要求特性に応じて適宜に決定されることとなるが、一般に、フェノール系樹脂の100質量部に対して、1~15質量部の割合の脂肪酸アマイドが用いられることとなる。この脂肪酸アマイドの使用量が少なくなり過ぎると、脂肪酸アマイドを用いることによる作用乃至は効果が充分に奏され得なくなるからであり、また、その使用量が多くなり過ぎても、その使用量に見合う作用乃至は効果の向上を期待することが困難となるからである。 And in this invention, since the fatty acid amide is combined as an essential component with respect to the phenol-type resin obtained as mentioned above, the phenol-type resin composition for shell molds will be comprised. is there. By combining this phenolic resin and fatty acid amide, it is possible to maintain the low coefficient of thermal expansion of the resulting shell mold mold and to improve the properties as it is. The use ratio of the phenolic resin and fatty acid amide is appropriately determined according to the required characteristics of the mold, but generally 1 to 15 parts by mass with respect to 100 parts by mass of the phenolic resin. A proportion of fatty acid amide will be used. This is because if the amount of the fatty acid amide used is too small, the effects or effects of using the fatty acid amide cannot be sufficiently achieved, and even if the amount used is excessive, it is commensurate with the amount used. This is because it is difficult to expect an action or an improvement in the effect.
 また、このフェノール系樹脂と組み合わせて用いられる脂肪酸アマイドとしては、飽和脂肪酸モノアマイドや不飽和脂肪酸モノアマイド等のモノアマイド類;置換アマイド類;飽和脂肪酸ビスアマイド、不飽和脂肪酸ビスアマイド、芳香族系ビスアマイド等のビスアマイド類を例示することが出来、その中でも、脂肪酸ビスアマイド、特に、飽和脂肪酸ビスアマイドが、好適に用いられることとなる。 The fatty acid amide used in combination with the phenolic resin includes monoamides such as saturated fatty acid monoamide and unsaturated fatty acid monoamide; substituted amides; bisamides such as saturated fatty acid bisamide, unsaturated fatty acid bisamide, and aromatic bisamide. Among them, fatty acid bisamides, particularly saturated fatty acid bisamides, are preferably used.
 さらに、それら脂肪酸アマイドの中で、飽和脂肪酸モノアマイドの具体例としては、ラウリル酸アマイド、ミリスチン酸アマイド、パルミチン酸アマイド、ステアリン酸アマイド、ベヘン酸アマイド等を挙げることが出来、また、不飽和脂肪酸モノアマイドの具体例としては、オレイン酸アマイド、エルカ酸アマイド等を挙げることが出来、更に、置換アマイドの具体例としては、N-ステアリルステアリン酸アマイド、N-オレイルステアリン酸アマイド、N-ステアリルエルカ酸アマイド、メチロールステアリン酸アマイド、メチロールベヘン酸アマイド等を挙げることが出来る。加えて、飽和脂肪酸ビスアマイドの具体例としては、メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド、メチレンビスラウリル酸アマイド、メチレンビスベヘン酸アマイド、ヘキサメチレンビスステアリン酸アマイド、ヘキサメチレンビスヒドロキシステアリン酸アマイド、N,N’-ジステアリルアジピン酸アマイド等を挙げることが出来、また、不飽和脂肪酸ビスアマイドの具体例としては、エチレンビスオレイン酸アマイド、エチレンビスエルカ酸アマイド、ヘキサメチレンビスオレイン酸アマイド、N,N’-ジオレイルアジピン酸アマイド等を挙げることが出来、更に、芳香族ビスアマイドの具体例としては、キシリレンビスステアリン酸アマイド、キシリレンビスヒドロキシステアリン酸アマイド、N,N’-ジステアリルイソフタル酸アマイド等を挙げることが出来る。 Further, among these fatty acid amides, specific examples of saturated fatty acid monoamides include lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, etc., and unsaturated fatty acid monoamides. Specific examples of these include oleic acid amide, erucic acid amide and the like, and specific examples of the substituted amide include N-stearyl stearic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide. , Methylol stearic acid amide, methylol behenic acid amide and the like. In addition, specific examples of saturated fatty acid bisamides include methylene bis stearic acid amide, ethylene bis stearic acid amide, methylene bis lauric acid amide, methylene bis behenic acid amide, hexamethylene bis stearic acid amide, hexamethylene bis hydroxy stearic acid amide. N, N′-distearyladipate amide, etc., and specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N , N′-dioleoyl adipate amide and the like, and specific examples of the aromatic bisamide include xylylene bis stearic acid amide, xylylene bishydroxy stearic acid amide, N, '- distearyl isophthalic acid amide and the like.
 なお、本発明にあっては、そのようなフェノール系樹脂と脂肪酸アマイドとを組み合わせて、シェルモールド用に用いるために、必要に応じて、鋳型の物性改善等を目的として、従来より一般的に用いられている各種の添加剤が適宜に配合されて、用いられ得るものである。例えば、γ-アミノプロピルトリエトキシシランやγ-グリシドキシプロピルトリメトキシシラン等のシランカップリング剤等が配合されて、用いられる。そのようなシランカップリング剤は、一般に、フェノール系樹脂の100質量部に対して、0.01~5質量部程度、好ましくは0.05~2.5質量部程度となる割合において、配合せしめられることとなる。 In the present invention, such a phenolic resin and a fatty acid amide are used in combination for a shell mold, so that it is generally used for the purpose of improving the physical properties of the mold, if necessary. Various additives used can be appropriately blended and used. For example, silane coupling agents such as γ-aminopropyltriethoxysilane and γ-glycidoxypropyltrimethoxysilane are blended and used. Such a silane coupling agent is generally compounded in a proportion of about 0.01 to 5 parts by mass, preferably about 0.05 to 2.5 parts by mass with respect to 100 parts by mass of the phenolic resin. Will be.
 ところで、本発明に従うシェルモールド用RCSを製造するに際しては、所定の耐火性粒子に対して、上述せる如きシェルモールド用フェノール系樹脂組成物が混練せしめられることとなる。そこにおいて、本発明のRCS中のシェルモールド用フェノール系樹脂組成物の配合量は、使用する樹脂の種類や要求される鋳型の強度等を考慮して決定されるものであるため、一概に限定はされないが、一般的には、耐火性粒子:100質量部に対して0.2~10質量部程度の範囲内であり、好ましくは0.5~8質量部、更に好ましくは0.5~5質量部の範囲内である。 By the way, when producing the RCS for shell mold according to the present invention, the phenolic resin composition for shell mold as described above is kneaded with the predetermined refractory particles. Therefore, the amount of the phenolic resin composition for the shell mold in the RCS of the present invention is determined in consideration of the type of resin to be used, the required mold strength, and the like. In general, it is within the range of about 0.2 to 10 parts by weight, preferably 0.5 to 8 parts by weight, more preferably 0.5 to It is in the range of 5 parts by mass.
 また、そのようなシェルモールド用フェノール系樹脂組成物に混練せしめられる耐火性粒子に関して、その種類は、本発明にあっては、特に限定されるものではない。かかる耐火性粒子は、鋳型の基材を為すものであるところから、鋳造に耐え得る耐火性と鋳型形成(造型)に適した粒径を有する無機粒子であれば、従来からシェルモールド鋳造に用いられて来た公知の無機粒子が、何れも用いられ得るものである。そのような耐火性粒子としては、例えば、一般的によく用いられているケイ砂の他にも、オリビンサンドやジルコンサンド、クロマイトサンド、アルミナサンド等の特殊砂、フェロクロム系スラグやフェロニッケル系スラグ、転炉スラグ等のスラグ系粒子、ナイガイセラビーズ(商品名、伊藤忠セラテック株式会社)のようなムライト系多孔質粒子、或いはこれらを鋳造後に回収・再生した再生粒子等が挙げられ、これらが単独で、或いは2種以上を組み合わせて、用いられることとなる。 Further, the kind of the refractory particles kneaded into such a phenolic resin composition for a shell mold is not particularly limited in the present invention. Since such refractory particles serve as a base material for a mold, any inorganic particles having a particle size suitable for casting and mold formation (molding) can be used for shell mold casting. Any known inorganic particles that have been produced can be used. Examples of such refractory particles include, in addition to commonly used silica sand, special sand such as olivine sand, zircon sand, chromite sand, and alumina sand, ferrochrome slag and ferronickel slag. Slag-based particles such as converter slag, mullite-based porous particles such as Niiga Cera beads (trade name, ITOCHU CERATECH Co., Ltd.), or regenerated particles recovered and regenerated after casting, etc. Or in combination of two or more.
 そして、そのようなシェルモールド用RCSを製造するに際して、その製造方法は、特に限定されるものではなく、ドライホットコート法やセミホットコート法、コールドコート法、粉末溶剤法等の、従来から公知の方法が何れも採用され得るところであるが、本発明にあっては、特に、ワールミキサーやスピードミキサー等の混練機内で、予熱された耐火性粒子とシェルモールド用樹脂組成物とを混練した後、ヘキサメチレンテトラミン(硬化剤)水溶液を加えると共に、送風冷却により、塊状内容物を粒状に崩壊させて、ステアリン酸カルシウム(滑剤)を加える、所謂ドライホットコート法が推奨される。なお、本発明に従うシェルモールド用樹脂組成物を構成する所定のフェノール系樹脂と脂肪酸アマイドとは、溶融混合して、耐火性粒子の被覆に用いられる他、個別に用いて、耐火性粒子を被覆せしめるようにすることも可能である。 And when manufacturing such RCS for shell molds, the manufacturing method is not particularly limited, and conventionally known methods such as a dry hot coating method, a semi-hot coating method, a cold coating method, and a powder solvent method are known. Although any method can be employed, in the present invention, in particular, after kneading the preheated refractory particles and the resin composition for the shell mold in a kneader such as a whirl mixer or a speed mixer, A so-called dry hot coating method is recommended, in which an aqueous solution of hexamethylenetetramine (curing agent) is added, the massive contents are disintegrated into particles by air cooling, and calcium stearate (lubricant) is added. The predetermined phenolic resin and the fatty acid amide constituting the shell mold resin composition according to the present invention are melt-mixed and used for coating the refractory particles, and separately used to coat the refractory particles. It is also possible to make them dampen.
 さらに、上述せる如きシェルモールド用RCSを用いて、所定の鋳型を造型するに際して、その加熱造型方法としては、特に限定されるものではなく、従来から公知の手法が、何れも、有利に用いられ得ることとなる。例えば、上述せる如きRCSを、目的とする鋳型を与える所望の形状空間を有する、150℃~300℃に加熱された成形型内に、重力落下方式や吹込み方式等によって充填し、硬化させた後、かかる成形型から、硬化した鋳型を抜型して、鋳造用鋳型を得ることが出来るのである。そして、そのようにして得られた鋳型にあっては、上述したような優れた効果が、有利に発揮せしめられ得ることとなるのである。 Further, when forming a predetermined mold using the RCS for shell mold as described above, the heating molding method is not particularly limited, and any conventionally known method can be advantageously used. Will get. For example, the RCS as described above is filled into a mold heated to 150 ° C. to 300 ° C. having a desired shape space for giving a target mold by a gravity dropping method, a blowing method, or the like and cured. Thereafter, the cured mold can be removed from the mold to obtain a casting mold. And in the casting_mold | template obtained in that way, the outstanding effect as mentioned above will be able to be exhibited advantageously.
 以下に、本発明の実施例を幾つか示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等が加えられ得るものであることが、理解されるべきである。 Some examples of the present invention will be shown below to clarify the present invention more specifically. However, the present invention is not limited by the description of such examples. Needless to say. In addition to the following examples, the present invention includes various changes and modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention, in addition to the specific description described above. It should be understood that improvements and the like can be added.
 なお、以下の記載において、「部」及び「%」は、特に断らない限り、それぞれ「質量部」及び「質量%」を意味するものである。また、製造されたシェルモールド用RCSの各特性は、下記の試験法に従って測定したものである。 In the following description, “part” and “%” mean “part by mass” and “% by mass”, respectively, unless otherwise specified. Moreover, each characteristic of manufactured RCS for shell molds is measured according to the following test method.
-鋳型のなりより性評価-
 先ず、始めに、なりより性評価用の鋳型として、各RCSを用いた鋳型片(120mm×40mm×5mm)を、焼成条件:250℃×40秒間の下において作製し、当該鋳型を常温まで放置し、冷却した。
-Sexuality evaluation from the mold-
First, a mold piece (120 mm × 40 mm × 5 mm) using each RCS is produced under the firing conditions: 250 ° C. × 40 seconds as a mold for evaluating the nature, and the mold is left to room temperature. And cooled.
 次いで、図1に示されるように、上記で得られた鋳型片を支持台にセットした後、発熱体(エレマ棒)を200℃から徐々に加熱し、800℃まで昇温させ、その際に、当該鋳型片の先端部から10mmの位置にレーザー変位計をセットし、直接パソコンにデータを取り込んだ。変位の挙動としては、始めに、当該鋳型片が加熱されたことにより、膨張挙動に基づき当該鋳型片は反り、その後、やがて撓み始め、最終的に当該鋳型片はほぼ中央部、即ち発熱体の加熱部で破断する。ここで言う「なりより性」とは、破断するまでに得られた最大撓み量にて表され、その値が大きい程、鋳型が変形し易く、柔軟性に富むことを意味する。なお、本測定は、発熱体の温度が200℃付近になると、次の鋳型片の測定を開始するような測定周期も考慮して、測定を実施した。 Next, as shown in FIG. 1, the mold piece obtained above was set on a support base, and then the heating element (elema rod) was gradually heated from 200 ° C. and heated up to 800 ° C. The laser displacement meter was set at a position 10 mm from the tip of the mold piece, and the data was directly taken into a personal computer. As the behavior of the displacement, first, the mold piece is warped based on the expansion behavior due to the heating of the mold piece, and then begins to bend in a short time. Finally, the mold piece is almost at the center, that is, the heating element. It breaks at the heating part. “Nariyori” as used herein is expressed by the maximum amount of bending obtained until fracture, and the larger the value, the easier the mold is deformed and the greater the flexibility. In addition, this measurement was performed in consideration of a measurement cycle in which the measurement of the next mold piece is started when the temperature of the heating element reaches around 200 ° C.
-熱膨張率の評価-
 JACT試験法M-2熱膨張率測定試験法に記載の急熱膨張率測定試験法に従って行なった。焼成温度:280℃、焼成時間:120秒で作製したテストピース(28.3mmφ×51mmL、円周の約1/4カット)を、炉内温度:1000℃に調節された高温鋳物砂試験器中に設置し、1分後に取り出した。そして、曝熱前と曝熱後のテストピース長から、下記の計算式に従って、熱膨張率を算出した。
熱膨張率(%)=[(曝熱後-曝熱前)テストピース長]×100/(曝熱前のテストピース長)
-Evaluation of thermal expansion coefficient-
The test was carried out in accordance with the rapid thermal expansion coefficient measurement test method described in JACT test method M-2. Firing temperature: 280 ° C., Firing time: 120 seconds in a test piece (28.3 mmφ × 51 mm L, approximately ¼ cut of the circumference) in a high-temperature foundry sand tester adjusted to a furnace temperature of 1000 ° C. And was taken out after 1 minute. And the thermal expansion coefficient was computed from the test piece length before and after heat exposure according to the following formula.
Coefficient of thermal expansion (%) = [(test piece length after exposure-before exposure)] × 100 / (test piece length before exposure)
-樹脂製造例1-
 温度計、撹拌装置及びコンデンサーを備えた反応容器に、フェノールの8000部、1-ナフトールの2000部、47%ホルマリンの4106部及びシュウ酸の30部を投入した。次いで、反応容器を徐々に昇温して、還流温度に到達せしめた後、90分間還流反応させ、更に、常圧にて脱水を行なった後、減圧下にて180℃になるまで加熱して、未反応フェノールを除去することにより、フェノール樹脂Aを得た。
-Resin production example 1
A reaction vessel equipped with a thermometer, a stirrer and a condenser was charged with 8000 parts of phenol, 2000 parts of 1-naphthol, 4106 parts of 47% formalin and 30 parts of oxalic acid. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the reaction is refluxed for 90 minutes, followed by dehydration at normal pressure and heating to 180 ° C. under reduced pressure. The phenol resin A was obtained by removing unreacted phenol.
-樹脂製造例2-
 フェノールの8000部、1-ナフトールの2000部、47%ホルマリンの4865部及びシュウ酸の30部を投入したこと以外は、樹脂製造例1と同様の手順に従って、フェノール樹脂Bを得た。
-Resin production example 2-
Phenol resin B was obtained according to the same procedure as in Resin Production Example 1, except that 8000 parts of phenol, 2000 parts of 1-naphthol, 4865 parts of 47% formalin and 30 parts of oxalic acid were added.
-樹脂製造例3-
 フェノールの8000部、1-ナフトールの2000部、47%ホルマリンの3159部及びシュウ酸の30部を投入したこと以外は、樹脂製造例1と同様の手順に従って、フェノール樹脂Cを得た。
-Resin production example 3-
Phenol resin C was obtained according to the same procedure as in Resin Production Example 1, except that 8000 parts of phenol, 2000 parts of 1-naphthol, 3159 parts of 47% formalin and 30 parts of oxalic acid were added.
-樹脂製造例4-
 フェノールの9000部、1-ナフトールの1000部、47%ホルマリンの4260部及びシュウ酸の30部を投入したこと以外は、樹脂製造例1と同様の手順に従って、フェノール樹脂Dを得た。
-Resin production example 4-
Phenol resin D was obtained according to the same procedure as in Resin Production Example 1, except that 9000 parts of phenol, 1000 parts of 1-naphthol, 4260 parts of 47% formalin and 30 parts of oxalic acid were added.
-樹脂製造例5-
 フェノールの6000部、1-ナフトールの4000部、47%ホルマリンの3799部及びシュウ酸の15部を投入したこと以外は、樹脂製造例1と同様の手順に従って、フェノール樹脂Eを得た。
-Resin production example 5-
Phenol resin E was obtained according to the same procedure as in Resin Production Example 1, except that 6000 parts of phenol, 4000 parts of 1-naphthol, 3799 parts of 47% formalin and 15 parts of oxalic acid were added.
-樹脂製造例6-
 フェノールの8000部、2-ナフトールの2000部、47%ホルマリンの4106部及びシュウ酸の30部を投入したこと以外は、樹脂製造例1と同様の手順に従って、フェノール樹脂Fを得た。
-Resin production example 6-
Phenol resin F was obtained according to the same procedure as in Resin Production Example 1 except that 8000 parts of phenol, 2000 parts of 2-naphthol, 4106 parts of 47% formalin and 30 parts of oxalic acid were added.
-樹脂製造例7-
 フェノールの2000部、ビスフェノールA(BPA)の8000部、47%ホルマリンの2339部及びシュウ酸の30部を投入したこと以外は、樹脂製造例1と同様の手順に従って、フェノール樹脂Gを得た。
-Resin production example 7-
A phenol resin G was obtained according to the same procedure as in Resin Production Example 1 except that 2000 parts of phenol, 8000 parts of bisphenol A (BPA), 2339 parts of 47% formalin and 30 parts of oxalic acid were added.
-実施例1-
 フェノール樹脂Aの1000部に、エチレンビスステアリン酸アマイドの50部及びシランカップリング剤(3-アミノプロピルトリエトキシシラン)の10部を、加熱溶融混合せしめて、樹脂組成物1を得た。
-Example 1-
To 1000 parts of the phenol resin A, 50 parts of ethylenebisstearic acid amide and 10 parts of a silane coupling agent (3-aminopropyltriethoxysilane) were heated, melted and mixed to obtain a resin composition 1.
-実施例2-
 エチレンビスステアリン酸アマイドの添加量を120部としたこと以外は、実施例1と同様の手順に従って、樹脂組成物2を得た。
-Example 2-
A resin composition 2 was obtained according to the same procedure as in Example 1 except that the addition amount of ethylenebisstearic acid amide was 120 parts.
-実施例3-
 エチレンビスステアリン酸アマイドの添加量を15部としたこと以外は、実施例1と同様の手順に従って、樹脂組成物3を得た。
-Example 3-
Resin composition 3 was obtained according to the same procedure as in Example 1 except that the addition amount of ethylenebisstearic acid amide was 15 parts.
-実施例4-
 エチレンビスステアリン酸アマイドを、メチレンビスステアリン酸アマイドに替えたこと以外は、実施例1と同様の手順に従って、樹脂組成物4を得た。
-Example 4-
Resin composition 4 was obtained according to the same procedure as in Example 1 except that ethylene bis stearic acid amide was changed to methylene bis stearic acid amide.
-実施例5-
 エチレンビスステアリン酸アマイドを、エチレンビスベヘン酸アマイドに替えたこと以外は、実施例1と同様の手順に従って、樹脂組成物5を得た。
-Example 5
Resin composition 5 was obtained according to the same procedure as in Example 1 except that ethylene bis stearic acid amide was replaced with ethylene bis behenic acid amide.
-実施例6-
 エチレンビスステアリン酸アマイドを、エチレンビスエルカ酸アマイドに替えたこと以外は、実施例1と同様の手順に従って、樹脂組成物6を得た。
-Example 6-
Resin composition 6 was obtained according to the same procedure as in Example 1 except that ethylene bis stearic acid amide was changed to ethylene bis erucic acid amide.
-実施例7-
 エチレンビスステアリン酸アマイドを、ステアリン酸アマイドに替えたこと以外は、実施例1と同様の手順に従って、樹脂組成物7を得た。
-Example 7-
Resin composition 7 was obtained according to the same procedure as in Example 1 except that ethylene bis stearic acid amide was changed to stearic acid amide.
-実施例8-
 フェノール樹脂Aを、フェノール樹脂Bに替えたこと以外は、実施例1と同様の手順に従って、樹脂組成物8を得た。
-Example 8-
A resin composition 8 was obtained according to the same procedure as in Example 1 except that the phenol resin A was replaced with the phenol resin B.
-実施例9-
 フェノール樹脂Aを、フェノール樹脂Cに替えたこと以外は、実施例1と同様の手順に従って、樹脂組成物9を得た。
-Example 9-
A resin composition 9 was obtained according to the same procedure as in Example 1 except that the phenol resin A was replaced with the phenol resin C.
-実施例10-
 フェノール樹脂Aを、フェノール樹脂Dに替えたこと以外は、実施例1と同様の手順に従って、樹脂組成物10を得た。
-Example 10-
A resin composition 10 was obtained according to the same procedure as in Example 1 except that the phenol resin A was replaced with the phenol resin D.
-実施例11-
 フェノール樹脂Aを、フェノール樹脂Eに替えたこと以外は、実施例1と同様の手順に従って、樹脂組成物11を得た。
-Example 11-
A resin composition 11 was obtained according to the same procedure as in Example 1 except that the phenol resin A was replaced with the phenol resin E.
-実施例12-
 フェノール樹脂Aを、フェノール樹脂Fに替えたこと以外は、実施例1と同様の手順に従って、樹脂組成物12を得た。
-Example 12-
A resin composition 12 was obtained according to the same procedure as in Example 1 except that the phenol resin A was replaced with the phenol resin F.
-比較例1-
 フェノール樹脂Aを、フェノール樹脂Gに替えたこと以外は、実施例1と同様の手順に従って、樹脂組成物13を得た。
-Comparative Example 1-
A resin composition 13 was obtained according to the same procedure as in Example 1 except that the phenol resin A was replaced with the phenol resin G.
-比較例2-
 フェノール樹脂Aに、脂肪酸アマイド類の添加を行なわなかったこと以外は、実施例1と同様の手順に従って、樹脂組成物14を得た。
-Comparative Example 2-
A resin composition 14 was obtained according to the same procedure as in Example 1 except that the fatty acid amides were not added to the phenol resin A.
-比較例3-
 フェノール樹脂Dに、脂肪酸アマイド類の添加を行なわなかったこと以外は、実施例1と同様の手順に従って、樹脂組成物15を得た。
-Comparative Example 3-
Resin composition 15 was obtained according to the same procedure as in Example 1, except that fatty acid amides were not added to phenol resin D.
-比較例4-
 フェノール樹脂Eに、脂肪酸アマイド類の添加を行なわなかったこと以外は、実施例1と同様の手順に従って、樹脂組成物16を得た。
-Comparative Example 4-
Resin composition 16 was obtained according to the same procedure as in Example 1 except that fatty acid amides were not added to phenol resin E.
-比較例5-
 フェノール樹脂Fに、脂肪酸アマイド類の添加を行なわなかったこと以外は、実施例1と同様の手順に従って、樹脂組成物17を得た。
-Comparative Example 5-
Resin composition 17 was obtained according to the same procedure as in Example 1 except that fatty acid amides were not added to phenol resin F.
-RCS製造例1-
 130~140℃に加熱した耐火性粒子(再生硅砂)の7000部と、上述の実施例1~12及び比較例1~5において得られた樹脂組成物1~17の105部とを、実験用ワールミキサーに投入し、60秒間混錬した。次いで、ヘキサメチレンテトラミンの23部を水105部に溶解させたものを添加し、送風、冷却した後、ステアリン酸カルシウムの7部を添加して、それぞれ、シェルモールド用RCS(試料1~17)を得た。
-RCS Production Example 1-
7000 parts of refractory particles (recycled cinnabar) heated to 130 to 140 ° C. and 105 parts of the resin compositions 1 to 17 obtained in Examples 1 to 12 and Comparative Examples 1 to 5 described above were used for experiments. It was put into a whirl mixer and kneaded for 60 seconds. Next, 23 parts of hexamethylenetetramine dissolved in 105 parts of water were added, and after blowing and cooling, 7 parts of calcium stearate was added, and RCS for shell molds (samples 1 to 17) were respectively added. Obtained.
-RCS製造例2-
 130~140℃に加熱した耐火性粒子(再生硅砂)の7000部と共に、樹脂組成物18を与える、上述のフェノール樹脂Aの105部及びエチレンビスステアリン酸アマイドの5.25部を、実験用ワールミキサーにそれぞれ投入し、60秒間混錬した。次いで、ヘキサメチレンテトラミンの23部を水105部に溶解させたものを添加し、送風、冷却した後、ステアリン酸カルシウムの7部を添加して、シェルモールド用RCS(試料18)を得た。
-RCS Production Example 2-
Along with 7000 parts of refractory particles (recycled cinnabar) heated to 130-140 ° C., 105 parts of the above-mentioned phenolic resin A and 5.25 parts of ethylene bis-stearic acid amide give the resin composition 18. Each was put into a mixer and kneaded for 60 seconds. Next, 23 parts of hexamethylenetetramine dissolved in 105 parts of water was added, and after blowing and cooling, 7 parts of calcium stearate was added to obtain RCS for shell mold (sample 18).
-評価-
 上記で得られた各RCS(試料1~18)について、前述した試験法に従って、それぞれ、鋳型のなりより性及び熱膨張率の測定を行なった。その得られた結果を、下記表1及び表2に、フェノール樹脂の製造条件と共に、併せて示した。
-Evaluation-
For each RCS obtained above (samples 1 to 18), according to the test method described above, the properties of the mold and the coefficient of thermal expansion were measured. The obtained results are shown in Table 1 and Table 2 below together with the production conditions of the phenol resin.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 かかる表1及び表2の結果から明らかなように、本発明に従うRCSである、樹脂製造例1~6のフェノール樹脂A~Fと所定の脂肪酸アマイドとを組み合わせた樹脂組成物1~12を用いて得られたもの(試料1~12)にあっては、何れも、低熱膨張率を維持しつつ、なりより性が大きなものであった。一方、フェノール成分としてフェノールとビスフェノールAを用いて得られた樹脂製造例7のフェノール樹脂Gを用いたRCS(試料13)にあっては、なりより性が小さなものとなった。また、フェノール樹脂A,D,E,Fを用いても、脂肪酸アマイドが配合されていない樹脂組成物14~17を用いて得られたRCS(試料14~17)にあっても、なりより性が劣るものとなった。更に、樹脂組成物を与える、フェノール樹脂Aと脂肪酸アマイドを個別に耐火性粒子に配合して、調製されたRCS(試料18)を用いて得られたものにあっては、低熱膨張特性及びなりより性は、共に良好であった。
                                                                                
As is clear from the results of Tables 1 and 2, resin compositions 1 to 12, which are RCSs according to the present invention and combined with phenol resins A to F of resin production examples 1 to 6 and a predetermined fatty acid amide, were used. All of the samples (samples 1 to 12) obtained in this manner had a higher property while maintaining a low coefficient of thermal expansion. On the other hand, in the RCS (sample 13) using the phenol resin G of the resin production example 7 obtained by using phenol and bisphenol A as the phenol component, the properties were much smaller. Further, even if phenol resins A, D, E, and F are used, even in RCS (samples 14 to 17) obtained using resin compositions 14 to 17 not containing fatty acid amide, Became inferior. Furthermore, the resin obtained by using RCS (sample 18) prepared by individually blending phenolic resin A and fatty acid amide into refractory particles to give a resin composition has low thermal expansion characteristics and Both sexes were good.

Claims (14)

  1.  フェノール類、ナフトール類及びアルデヒド類を反応させて得られるフェノール系樹脂と、脂肪酸アマイドとを、必須成分として構成してなることを特徴とするシェルモールド用フェノール系樹脂組成物。 A phenolic resin composition for a shell mold comprising a phenolic resin obtained by reacting phenols, naphthols and aldehydes, and fatty acid amide as essential components.
  2.  前記フェノール類と前記ナフトール類とが、質量比で、95~50:5~50の割合で用いられる請求項1に記載のシェルモールド用フェノール系樹脂組成物。 The phenolic resin composition for a shell mold according to claim 1, wherein the phenols and the naphthols are used in a mass ratio of 95 to 50: 5 to 50.
  3.  前記ナフトール類が、1-ナフトール及び/又は2-ナフトールである請求項1又は請求項2に記載のシェルモールド用フェノール系樹脂組成物。 The phenolic resin composition for a shell mold according to claim 1 or 2, wherein the naphthols are 1-naphthol and / or 2-naphthol.
  4.  前記フェノール系樹脂が、前記フェノール類(P)と前記ナフトール類(N)と前記アルデヒド類(F)とを、それらの配合モル比:F/(P+N)が0.40~0.80となる割合において、反応せしめることによって、形成されている請求項1乃至請求項3のうちの何れか1項に記載のシェルモールド用フェノール系樹脂組成物。 In the phenolic resin, the phenols (P), the naphthols (N), and the aldehydes (F) are mixed at a molar ratio of F / (P + N) of 0.40 to 0.80. The phenolic resin composition for a shell mold according to any one of claims 1 to 3, wherein the phenolic resin composition is formed by reacting in proportion.
  5.  前記脂肪酸アマイドが、前記フェノール系樹脂の100質量部に対して1~15質量部の割合で用いられる請求項1乃至請求項4のうちの何れか1項に記載のシェルモールド用フェノール系樹脂組成物。 The phenolic resin composition for a shell mold according to any one of claims 1 to 4, wherein the fatty acid amide is used in a ratio of 1 to 15 parts by mass with respect to 100 parts by mass of the phenolic resin. object.
  6.  前記脂肪酸アマイドが、モノアマイド類、置換アマイド類、又はビスアマイド類である請求項1乃至請求項5のうちの何れか1項に記載のシェルモールド用フェノール系樹脂組成物。 The phenolic resin composition for a shell mold according to any one of claims 1 to 5, wherein the fatty acid amide is a monoamide, a substituted amide, or a bisamide.
  7.  前記脂肪酸アマイドが、脂肪酸ビスアマイドである請求項1乃至請求項6のうちの何れか1項に記載のシェルモールド用フェノール系樹脂組成物。 The phenolic resin composition for a shell mold according to any one of claims 1 to 6, wherein the fatty acid amide is a fatty acid bisamide.
  8.  前記脂肪酸ビスアマイドが、飽和脂肪酸ビスアマイドである請求項7に記載のシェルモールド用フェノール系樹脂組成物。 The phenolic resin composition for a shell mold according to claim 7, wherein the fatty acid bisamide is a saturated fatty acid bisamide.
  9.  シランカップリング剤が、更に配合せしめられている請求項1乃至請求項8のうちの何れか1項に記載のシェルモールド用フェノール系樹脂組成物。 The phenolic resin composition for a shell mold according to any one of claims 1 to 8, wherein a silane coupling agent is further blended.
  10.  請求項1乃至請求項9のうちの何れか1項に記載のシェルモールド用フェノール系樹脂組成物を用いて、耐火性粒子を被覆してなることを特徴とするシェルモールド用レジンコーテッドサンド。 A resin-coated sand for a shell mold, wherein the resin-coated sand for a shell mold is coated with a refractory particle using the phenol-based resin composition for a shell mold according to any one of claims 1 to 9.
  11.  前記フェノール系樹脂組成物が、前記耐火性粒子の100質量部に対して0.2~10質量部の割合において用いられる請求項10に記載のシェルモールド用レジンコーテッドサンド。 The resin-coated sand for shell mold according to claim 10, wherein the phenolic resin composition is used in a proportion of 0.2 to 10 parts by mass with respect to 100 parts by mass of the refractory particles.
  12.  請求項10又は請求項11に記載のシェルモールド用レジンコーテッドサンドを用いて造型し、加熱硬化させてなることを特徴とするシェルモールド用鋳型。 A mold for shell mold, which is formed by using the resin-coated sand for shell mold according to claim 10 or 11, and heat-cured.
  13.  フェノール類、ナフトール類及びアルデヒド類を所定の触媒の存在下に反応させて、フェノール系樹脂を得る工程と、かかるフェノール系樹脂と脂肪酸アマイドとを、溶融混合して用いるか、又は個別に用いて、耐火性粒子を被覆する工程とを含むことを特徴とするシェルモールド用レジンコーテッドサンドの製造方法。 Phenols, naphthols, and aldehydes are reacted in the presence of a predetermined catalyst to obtain a phenolic resin, and the phenolic resin and fatty acid amide are used by being melt mixed or used individually. And a step of coating the refractory particles. A method for producing a resin-coated sand for a shell mold.
  14.  前記触媒が、2価金属塩及び/又はシュウ酸である請求項13に記載のシェルモールド用レジンコーテッドサンドの製造方法。
                                                                                    
    The method for producing a resin-coated sand for a shell mold according to claim 13, wherein the catalyst is a divalent metal salt and / or oxalic acid.
PCT/JP2010/061591 2009-07-23 2010-07-08 Phenol resin composition for shell molding, resin-coated sand for shell molding, and shell molding die obtained using the same WO2011010559A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800229203A CN102448637A (en) 2009-07-23 2010-07-08 Phenol resin composition for shell molding, resin-coated sand for shell molding, and shell molding die obtained using the same
AU2010274450A AU2010274450B2 (en) 2009-07-23 2010-07-08 Phenol resin composition for shell molding, resin-coated sand for shell molding, and shell molding die obtained using the same
JP2011523605A JP5764490B2 (en) 2009-07-23 2010-07-08 Resin coated sand for shell mold, and mold for shell mold obtained using the same
US13/270,524 US20120029113A1 (en) 2009-07-23 2011-10-11 Phenolic resin composition for shell molding, resin coated sand for shell molding, and shell mold formed of the same
US14/197,516 US20140187667A1 (en) 2009-07-23 2014-03-05 Phenolic resin composition for shell molding, resin coated sand for shell molding, and shell mold formed of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-172135 2009-07-23
JP2009172135 2009-07-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/270,524 Continuation US20120029113A1 (en) 2009-07-23 2011-10-11 Phenolic resin composition for shell molding, resin coated sand for shell molding, and shell mold formed of the same

Publications (1)

Publication Number Publication Date
WO2011010559A1 true WO2011010559A1 (en) 2011-01-27

Family

ID=43499029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061591 WO2011010559A1 (en) 2009-07-23 2010-07-08 Phenol resin composition for shell molding, resin-coated sand for shell molding, and shell molding die obtained using the same

Country Status (7)

Country Link
US (2) US20120029113A1 (en)
JP (1) JP5764490B2 (en)
KR (1) KR20120046271A (en)
CN (1) CN102448637A (en)
AU (1) AU2010274450B2 (en)
MY (1) MY155464A (en)
WO (1) WO2011010559A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014161883A (en) * 2013-02-26 2014-09-08 Asahi Organic Chemicals Industry Co Ltd Resin-coated sand for high temperature easily collapsible shell mold, casting mold provided by using the same and manufacturing method of casting

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102688979A (en) * 2012-06-26 2012-09-26 长沙南托造型材料有限公司 Coated sand with long shelf life, and production method of coated sand
JP5933800B1 (en) * 2015-10-20 2016-06-15 山川産業株式会社 Mold-containing binder-containing sand and its production method
CN109128009A (en) * 2018-06-29 2019-01-04 宁夏共享化工有限公司 A kind of casting chaplet box resin curing agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266939A (en) * 1988-04-20 1989-10-24 Asahi Organic Chem Ind Co Ltd Molding material
JPH04331223A (en) * 1991-05-07 1992-11-19 Hitachi Chem Co Ltd Production of naphthol-modified phenolic resin
JP2007275988A (en) * 2006-03-14 2007-10-25 Hitachi Chem Co Ltd Resin composition and resin-coated sand for shell mold

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69218033T2 (en) * 1991-05-07 1997-09-18 Hitachi Chemical Co Ltd Process for the preparation of naphthol-modified phenolic resins
JPH0578437A (en) * 1991-09-18 1993-03-30 Meiwa Kasei Kk Phenolic novolak resin and curing agent for sealing semiconductor
JP3235813B2 (en) * 1994-08-04 2001-12-04 住友ベークライト株式会社 Phenolic resin composition
CN1124299C (en) * 2000-12-27 2003-10-15 中国科学院化学研究所 Novolak phenolic resin and its prepn
DE10112620A1 (en) * 2001-03-14 2002-09-19 Bakelite Ag Binder mixtures and their use
JP4545192B2 (en) * 2005-07-15 2010-09-15 株式会社小松製作所 Resin coated sand for cast steel, mold made of the sand, and steel casting cast by the mold
CN101291967B (en) * 2005-10-27 2010-08-04 旭有机材工业株式会社 Novolak type phenol resin for shell molding, method of producing the same and resin-coated sand

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266939A (en) * 1988-04-20 1989-10-24 Asahi Organic Chem Ind Co Ltd Molding material
JPH04331223A (en) * 1991-05-07 1992-11-19 Hitachi Chem Co Ltd Production of naphthol-modified phenolic resin
JP2007275988A (en) * 2006-03-14 2007-10-25 Hitachi Chem Co Ltd Resin composition and resin-coated sand for shell mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014161883A (en) * 2013-02-26 2014-09-08 Asahi Organic Chemicals Industry Co Ltd Resin-coated sand for high temperature easily collapsible shell mold, casting mold provided by using the same and manufacturing method of casting

Also Published As

Publication number Publication date
CN102448637A (en) 2012-05-09
KR20120046271A (en) 2012-05-09
AU2010274450B2 (en) 2013-06-06
MY155464A (en) 2015-10-15
US20140187667A1 (en) 2014-07-03
JP5764490B2 (en) 2015-08-19
JPWO2011010559A1 (en) 2012-12-27
US20120029113A1 (en) 2012-02-02
AU2010274450A1 (en) 2011-11-03

Similar Documents

Publication Publication Date Title
JP4033893B2 (en) NOVOLAC TYPE PHENOL RESIN FOR SHELL MOLD, PROCESS FOR PRODUCING THE SAME, AND RESIN COATED SAND
JP5125061B2 (en) Resin composition for shell mold and resin coated sand
JP6054774B2 (en) Resin-coated sand for high-temperature easily disintegratable shell mold, and mold and casting produced using the same
JP5764490B2 (en) Resin coated sand for shell mold, and mold for shell mold obtained using the same
JP6685685B2 (en) Phenolic resin composition for shell mold, resin coated sand for shell mold, and mold for shell mold
JP5486510B2 (en) Resin coated sand for shell mold and mold obtained using the same
US20050090578A1 (en) Heat-cured furan binder system
JP2017070967A (en) Phenolic resin composition for shell mold, resin coated sand for shell mold, and mold for shell mold prepared therewith
WO1988008763A1 (en) Hot box process for preparing foundry shapes
JP4749193B2 (en) Mold material for shell mold
JPH11244991A (en) Manufacture of resin coated sand
JP5491382B2 (en) Phenolic resin composition for shell mold, resin coated sand for shell mold, and mold obtained by using the same
JP4122545B2 (en) Binder composition for foundry sand
JP3758941B2 (en) Binder for shell mold and method for producing the same
JPS58184034A (en) Resin coated sand
JP2005095932A (en) Phenolic resin composition for shell mold, and resin-coated sand
JP2003062639A (en) Resin-coated sand for shell mold
JPH0144423B2 (en)
JP2022081962A (en) Resin-coated sand having improved mold collapsibility
JP2023147761A (en) Resin coated sand having excellent mold collapsibility
JP3881208B2 (en) Resin composition for mold and resin-coated sand for mold using the same
JP2003164943A (en) Novolac type phenolic resin composition for shell mold and resin-coated sand
JPH07106420B2 (en) Mold material
JP2003080342A (en) Novolak type phenol resin composition for shell mold and resin coated sand

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022920.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802179

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011523605

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 4264/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010274450

Country of ref document: AU

Date of ref document: 20100708

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127004501

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10802179

Country of ref document: EP

Kind code of ref document: A1