JP6530188B2 - Waste water treatment apparatus and waste water treatment method - Google Patents

Waste water treatment apparatus and waste water treatment method Download PDF

Info

Publication number
JP6530188B2
JP6530188B2 JP2014265999A JP2014265999A JP6530188B2 JP 6530188 B2 JP6530188 B2 JP 6530188B2 JP 2014265999 A JP2014265999 A JP 2014265999A JP 2014265999 A JP2014265999 A JP 2014265999A JP 6530188 B2 JP6530188 B2 JP 6530188B2
Authority
JP
Japan
Prior art keywords
biological treatment
sludge
treatment tank
bod
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014265999A
Other languages
Japanese (ja)
Other versions
JP2016123920A (en
Inventor
敬介 村上
敬介 村上
啓徳 油井
啓徳 油井
江口 正浩
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2014265999A priority Critical patent/JP6530188B2/en
Publication of JP2016123920A publication Critical patent/JP2016123920A/en
Application granted granted Critical
Publication of JP6530188B2 publication Critical patent/JP6530188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、有機物含有排水を処理する排水処理装置及び排水処理方法の技術に関する。   BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a technique of a wastewater treatment apparatus and wastewater treatment method for treating organic matter-containing wastewater.

近年、有機物含有排水の処理技術として用いられている活性汚泥法において、汚泥と処理水の固液分離を沈殿池ではなく膜により行う、膜分離活性汚泥法が開発され、普及しつつある。通常の活性汚泥法では、汚泥の沈降性が悪化すると、沈殿池での固液分離が不十分となり、処理水へSS(Suspended Solids,懸濁物質)が流出し、処理水水質が悪化するという問題がある。一方、膜分離活性汚泥法では、膜により固液分離を行うため、汚泥の沈降性に依らず、清澄な処理水を得ることができるという利点がある。   BACKGROUND ART In recent years, in an activated sludge method used as a treatment technology for organic matter-containing wastewater, a membrane separation activated sludge method has been developed and spread, in which solid-liquid separation of sludge and treated water is performed by a membrane instead of a sedimentation tank. In the normal activated sludge method, when the settling property of the sludge is deteriorated, solid-liquid separation in the sedimentation tank becomes insufficient, SS (Suspended Solids, suspended matter) flows out to the treated water, and the treated water quality is deteriorated. There's a problem. On the other hand, in the membrane separation activated sludge method, since solid-liquid separation is performed by a membrane, there is an advantage that clear treated water can be obtained regardless of the settling property of the sludge.

また、有機物含有排水を高負荷処理する活性汚泥法として、槽内に添加した担体に微生物を付着させて排水処理を行う担体法も普及しつつある。一般的な活性汚泥法におけるBOD容積負荷は、0.5〜0.8kg/m/dであるが、担体法を用いると1.0kg/m/d以上のBOD容積負荷で運転することが可能となる。 In addition, as an activated sludge method for treating organic matter-containing wastewater under a high load, a carrier method in which microorganisms are attached to a carrier added in a tank to treat wastewater is also spreading. BOD volume load in general activated sludge method, it is a 0.5~0.8kg / m 3 / d, to operate in use when 1.0kg / m 3 / d or more BOD volume load carrier method Is possible.

担体を用いた生物処理(以下、担体法と呼ぶ場合がある)と膜分離活性汚泥処理(以下、MBR処理と呼ぶ場合がある)とを組み合わせた技術では、担体法による高速処理が可能であると共に、MBR処理による清澄な処理水が得られるという2つの特長を持つことが可能となる。   In the technology combining biological treatment (hereinafter sometimes referred to as carrier method) using a carrier and membrane separation activated sludge treatment (hereinafter sometimes referred to as MBR treatment), high-speed treatment by the carrier method is possible. At the same time, it is possible to have two features that clear treated water can be obtained by MBR treatment.

例えば、特許文献1には、担体法とMBR処理とを組み合わせた排水処理装置において、担体法におけるBOD容積負荷を1kg/m・日以上で運転し、MBR処理における溶解性BOD汚泥負荷を0.1kg−BOD/kg−MLSS・日以下で運転することが開示されている。そして、特許文献1のようにMBR処理の溶解性BOD汚泥負荷を小さくすることで、汚泥の増加速度と汚泥の自己消化速度が釣り合い、汚泥の発生量を低減させることが可能となる。 For example, in Patent Document 1, in a waste water treatment apparatus combining a carrier method and MBR treatment, BOD volume load in the carrier method is operated at 1 kg / m 3 · day or more, and soluble BOD sludge load in MBR treatment is 0 It is disclosed to operate at 1 kg-BOD / kg-MLSS-day or less. And by making soluble BOD sludge load of MBR processing small like patent document 1, the increase rate of sludge and the self-digestion rate of sludge balance, and it becomes possible to reduce the generation amount of sludge.

特許第4667583号公報Patent No. 4667583

しかし、発明者らによる検討の結果、MBR処理の溶解性BOD汚泥負荷を小さくすることで、汚泥の発生量を低減させることは可能であるものの、それと同時に汚泥の自己消化に伴う槽内TOC成分(膜詰まり物質)の発生及び蓄積が起こり、そのTOC成分がMBR処理に用いられる膜に付着して、膜の目詰まりが起こり易くなるという問題が生じることが分かった。   However, as a result of studies by the inventors, although it is possible to reduce the amount of sludge generated by reducing the soluble BOD sludge load of the MBR treatment, at the same time, the in-tank TOC component accompanying the autolysis of the sludge It has been found that the occurrence and accumulation of (membrane clogging substance) occurs, the TOC component adheres to the membrane used for MBR processing, and the membrane clogging becomes apt to occur.

そこで、本発明の目的は、担体法及びMBR処理を組み合わせた排水処理装置及び排水処理方法において、汚泥発生量の増加を抑えながら、MBR処理に用いられる膜の目詰まりを抑制することが可能な排水処理装置及び排水処理方法を提供することである。   Therefore, an object of the present invention is to provide a waste water treatment apparatus and a waste water treatment method combining a carrier method and MBR treatment, which can suppress clogging of a membrane used for MBR treatment while suppressing an increase in the amount of generated sludge. A waste water treatment apparatus and a waste water treatment method are provided.

本発明の排水処理装置は、有機物含有排水を担体の存在下で生物処理する第1生物処理槽と、前記第1生物処理槽で処理された第1処理水を生物処理する第2生物処理槽、及び前記第2生物処理槽で処理された第2処理水を分離膜により汚泥と第3処理水とに分離する膜分離モジュールを有する膜分離生物処理ユニットと、前記第2生物処理槽内の汚泥を引き抜く汚泥引き抜き手段と、を備え、前記汚泥引き抜き手段は、前記第2生物処理槽での溶解性BOD汚泥負荷が0.05kg−BOD/kg−MLSS/d以上であって0.10kg−BOD/kg−MLSS/d未満で運転されるように、且つ前記第2生物処理槽内の汚泥滞留時間(SRT)が10〜15日の範囲となるように前記第2生物処理槽内の汚泥を引き抜き、当該汚泥を前記第1生物処理槽に返送することなく、前記膜分離生物処理ユニット外へ排出する排水処理装置である。 The waste water treatment apparatus of the present invention comprises a first biological treatment tank for biological treatment of organic matter-containing wastewater in the presence of a carrier, and a second biological treatment tank for biological treatment of the first treated water treated in the first biological treatment tank. And a membrane separation biological treatment unit having a membrane separation module for separating the second treated water treated in the second biological treatment tank into sludge and third treated water by a separation membrane, and the inside of the second biological treatment tank Sludge extraction means for extracting sludge, wherein the sludge extraction means has a soluble BOD sludge load of 0.05 kg-BOD / kg-MLSS / d or more in the second biological treatment tank and is 0.10 kg- Sludge in the second biological treatment tank so that the sludge retention time (SRT) in the second biological treatment tank is in a range of 10 to 15 days so as to be operated at less than BOD / kg-MLSS / d Pull out the sludge Serial without returning to the first biological treatment tank, a wastewater treatment apparatus for discharging into the membrane separation biological treatment unit outside.

また、前記廃水処理装置において、前記汚泥引き抜き手段は、前記第2生物処理槽内の汚泥濃度が3000〜5000mg/Lの範囲となるように、前記第2生物処理槽内の汚泥を引き抜くことが好ましい。 Further, in the waste water treatment apparatus, the sludge withdrawal means, sludge concentration in the second biological treatment tank is such that the range of 3000~5000mg / L, pulling the sludge of the second biological treatment tank Is preferred.

また、本発明の排水処理方法は、有機物含有排水を担体の存在下で生物処理する第1生物処理工程と、前記生物処理手段で処理された第1処理水を生物処理する第2生物処理工程、及び前記第2生物処理工程で処理された第2処理水を分離膜により汚泥と第3処理水とに分離する膜分離工程を有する膜分離生物処理工程と、前記第2生物処理工程で生成した汚泥を引き抜く汚泥引き抜き工程と、を備え、前記汚泥引き抜き工程では、第2生物処理工程における溶解性BOD汚泥負荷が0.05kg−BOD/kg−MLSS/d以上であって0.10kg−BOD/kg−MLSS/d未満で運転されるように、且つ前記第2生物処理工程における汚泥滞留時間(SRT)が10〜15日の範囲となるように前記第2生物処理工程で生成した汚泥を引き抜き、当該汚泥を前記第1生物処理工程に返送することなく、前記膜分離生物処理工程外へ排出する排水処理方法である。 In the waste water treatment method of the present invention, a first biological treatment step of biological treatment of organic matter-containing waste water in the presence of a carrier, and a second biological treatment step of biological treatment of the first treated water treated by the biological treatment means. And a membrane separation biological treatment step having a membrane separation step of separating the second treated water treated in the second biological treatment step into sludge and third treated water by a separation membrane, and produced in the second biological treatment step Removing sludge, and in the sludge extraction step, the soluble BOD sludge load in the second biological treatment step is 0.05 kg-BOD / kg-MLSS / d or more and 0.10 kg-BOD / as is operated at less than kg-MLSS / d, and the sludge residence time in the second biological treatment step (SRT) is generated in the to be in the range of 10 to 15 days the second biological treatment process Pull the mud, without returning the sludge to the first biological treatment process, a waste water treatment method for discharging into the membrane separation biological treatment step outside.

また、前記廃水処理方法において、前記汚泥引き抜き工程では、前記第2生物処理工程における汚泥濃度が3000〜5000mg/Lの範囲となるように、前記第2生物処理工程で生成した汚泥を引き抜くことが好ましい。 Further, in the wastewater treatment method, in the sludge withdrawal process, the so sludge concentration becomes range of 3000~5000mg / L in the second biological treatment process, pulling out the sludge generated in the second biological treatment process Is preferred.

本発明によれば、担体法及びMBR処理を組み合わせた排水処理装置及び排水処理方法において、汚泥発生量の増加を抑えながら、MBR処理に用いられる膜の目詰まりを抑制することが可能となる。   According to the present invention, in the waste water treatment apparatus and the waste water treatment method combining the carrier method and the MBR treatment, it is possible to suppress the clogging of the membrane used for the MBR treatment while suppressing the increase in the amount of generated sludge.

本実施形態に係る処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the processing apparatus which concerns on this embodiment. 本実施形態に係る排水処理装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the waste-water-treatment apparatus which concerns on this embodiment. 本実施形態に係る排水処理装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the waste-water-treatment apparatus which concerns on this embodiment. 実施例1及び比較例1〜2の膜モジュールの膜吸引圧力の推移を示す図である。It is a figure which shows transition of the membrane suction pressure of the membrane module of Example 1 and Comparative Examples 1-2. 実施例1及び比較例1〜2の第2生物処理槽内の汚泥をろ過して得られたろ液中のTOC濃度の推移を示す図である。It is a figure which shows transition of the TOC density | concentration in the filtrate obtained by filtering the sludge in the 2nd biological treatment tank of Example 1 and Comparative Examples 1-2. 実施例2の膜モジュールの膜吸引圧力の推移を示す図である。FIG. 10 is a view showing the transition of the membrane suction pressure of the membrane module of Example 2. 実施例2の第2生物処理槽内の汚泥をろ過して得られたろ液中のTOC濃度の推移を示す図である。It is a figure which shows transition of TOC density | concentration in the filtrate obtained by filtering the sludge in the 2nd biological treatment tank of Example 2. FIG. 比較例3の膜モジュールの膜吸引圧力の推移を示す図である。It is a figure which shows transition of the membrane suction pressure of the membrane module of the comparative example 3. FIG. 実施例3の膜モジュールの膜吸引圧力の推移を示す図である。FIG. 16 is a view showing the transition of the membrane suction pressure of the membrane module of Example 3. 実施例3の第2生物処理槽内の汚泥をろ過して得られたろ液中のTOC濃度の推移を示す図である。It is a figure which shows transition of the TOC density | concentration in the filtrate obtained by filtering the sludge in the 2nd biological treatment tank of Example 3. FIG.

以下、本発明の実施の形態について説明する。なお、本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described. In addition, this embodiment is an example which implements this invention, Comprising: This invention is not limited to this embodiment.

図1は、本実施形態に係る排水処理装置の構成の一例を示す模式図である。図1に示すように、排水処理装置1は、排水流入ライン(10a,10b)、第1生物処理槽12、第2生物処理槽14及び分離膜モジュール16を有する分離膜生物処理ユニット、処理水排出ライン18、処理水排出ポンプ20、汚泥排出ポンプ22及び汚泥排出ライン24を備える汚泥引き抜き装置(汚泥引き抜き手段)等から構成される。   FIG. 1: is a schematic diagram which shows an example of a structure of the waste-water-treatment apparatus which concerns on this embodiment. As shown in FIG. 1, the waste water treatment apparatus 1 comprises a separation membrane biological treatment unit having a waste water inflow line (10a, 10b), a first biological treatment tank 12, a second biological treatment tank 14 and a separation membrane module 16, treated water It comprises a sludge extraction device (sludge extraction means) and the like provided with a discharge line 18, a treated water discharge pump 20, a sludge discharge pump 22 and a sludge discharge line 24.

図1に示す第1生物処理槽12内には担体26が投入されている。また、図1に示す第1生物処理槽12及び第2生物処理槽14は、ブロワ(28a,28b)及び空気流入ライン(30a,30b)を有する曝気装置を備えている。図1に示す分離膜モジュール16は第2生物処理槽14内に設置されている。また、分離膜モジュール16内には、不図示の分離膜が設けられている。   A carrier 26 is charged into the first biological treatment tank 12 shown in FIG. Moreover, the 1st biological treatment tank 12 and the 2nd biological treatment tank 14 which are shown in FIG. 1 are equipped with the aeration apparatus which has a blower (28a, 28b) and an air inflow line (30a, 30b). The separation membrane module 16 shown in FIG. 1 is installed in the second biological treatment tank 14. Further, in the separation membrane module 16, a separation membrane (not shown) is provided.

第1生物処理槽12の排水入口には、排水流入ライン10aが接続されている。排水流入ライン10bの一端は第1生物処理槽12の処理水出口に接続され、他端は第2生物処理槽14の処理水入口に接続されている。また、第2生物処理槽14内に設置された分離膜モジュール16の排出口には、処理水排出ライン18が接続されている。処理水排出ライン18には処理水排出ポンプ20が介装されている。また、第1及び第2生物処理槽(12,14)の底部には、空気流入ライン(30a,30b)が接続されている。空気流入ライン(30a,30b)にはブロワ(28a,28b)が介装されている。また、第2生物処理装置の汚泥排出口には、汚泥排出ライン24が接続されている。汚泥排出ライン24には汚泥排出ポンプ22が介装されている。   A drainage inlet line 10 a is connected to the drainage inlet of the first biological treatment tank 12. One end of the drainage inflow line 10 b is connected to the treated water outlet of the first biological treatment tank 12, and the other end is connected to the treated water inlet of the second biological treatment tank 14. A treated water discharge line 18 is connected to the discharge port of the separation membrane module 16 installed in the second biological treatment tank 14. A treated water discharge pump 20 is interposed in the treated water discharge line 18. In addition, an air inflow line (30a, 30b) is connected to the bottom of the first and second biological treatment tanks (12, 14). Blowers (28a, 28b) are interposed in the air inflow lines (30a, 30b). Moreover, the sludge discharge line 24 is connected to the sludge discharge port of a 2nd biological treatment apparatus. A sludge discharge pump 22 is interposed in the sludge discharge line 24.

本実施形態の処理対象である有機物含有排水は、一般的に生物処理可能な有機物を含む排水であれば特に制限されるものではなく、例えば、下水、電子産業排水や化学工場排水や食品工場排水等の工場排水等が挙げられる。処理対象となる排水中の有機物濃度は特に制限されるものではないが、生物処理速度の観点から、BOD濃度で300〜2000mg/Lの範囲であることが好ましい。   The organic substance-containing wastewater to be treated in the present embodiment is not particularly limited as long as it is generally a wastewater containing bioprocessable organic substances, and, for example, sewage, electronic industry wastewater, chemical factory wastewater, food factory wastewater Factory drainage etc. The concentration of the organic substance in the waste water to be treated is not particularly limited, but it is preferably in the range of 300 to 2000 mg / L as the BOD concentration from the viewpoint of the biological treatment rate.

以下に、本実施形態の排水処理装置1の動作について説明する。   Below, operation | movement of the waste water treatment apparatus 1 of this embodiment is demonstrated.

有機物含有排水は、排水流入ライン10aを通り、第1生物処理槽12に導入される。また、ブロワ28aを稼働させ、空気が空気流入ライン30aを通り、第1生物処理槽12内に供給される。生物処理槽12内では、好気性条件下で、排水中の有機物(溶解性BOD)が、担体26に付着した分散性細菌等により、酸化分解される(細菌の菌体や二酸化炭素等へと変化する)。第1生物処理槽12で処理された第1処理水は排水流入ライン10bを通り、第2生物処理槽14に導入される。また、ブロワ28bを稼働させ、空気が空気流入ライン30bを通り、第2生物処理槽14内に供給される。そして、第2生物処理槽14では、好気性条件下で、第1処理水中に残存している有機物が分散性細菌等により酸化分解される。次に、処理水排出ポンプ20を稼働させ、第2生物処理槽14で処理された第2処理水を分離膜モジュール16に通水する。第2処理水は分離膜モジュール16内の分離膜により第3処理水と汚泥とに固液分離される。第3処理水は処理水排出ライン18から系外へ排出される。また、汚泥排出ポンプ22を稼働させ、第2生物処理槽14内の汚泥が汚泥排出ライン24から引き抜かれる。第2生物処理槽14から引き抜かれた汚泥は、第1生物処理槽12に返送されることなく、膜分離生物処理ユニットの系外へ排出され、脱水・乾燥処理等が行われる。   The organic matter-containing drainage is introduced into the first biological treatment tank 12 through the drainage inflow line 10 a. Also, the blower 28 a is operated, and air is supplied into the first biological treatment tank 12 through the air inflow line 30 a. In the biological treatment tank 12, under aerobic conditions, the organic matter (soluble BOD) in the waste water is oxidatively decomposed by the dispersible bacteria etc. attached to the carrier 26 (bacterial cells, carbon dioxide etc.) Change). The first treated water treated in the first biological treatment tank 12 is introduced into the second biological treatment tank 14 through the drainage inflow line 10 b. Further, the blower 28 b is operated, and air is supplied into the second biological treatment tank 14 through the air inflow line 30 b. Then, in the second biological treatment tank 14, the organic matter remaining in the first treated water is oxidatively decomposed by the dispersible bacteria and the like under aerobic conditions. Next, the treated water discharge pump 20 is operated to feed the second treated water treated in the second biological treatment tank 14 to the separation membrane module 16. The second treated water is solid-liquid separated into third treated water and sludge by the separation membrane in the separation membrane module 16. The third treated water is discharged from the treated water discharge line 18 to the outside of the system. Further, the sludge discharge pump 22 is operated, and the sludge in the second biological treatment tank 14 is drawn out from the sludge discharge line 24. The sludge extracted from the second biological treatment tank 14 is discharged out of the system of the membrane separated biological treatment unit without being returned to the first biological treatment tank 12, and dewatering and drying treatment and the like are performed.

本実施形態では、第2生物処理槽14の溶解性BOD汚泥負荷(以下、単にBOD汚泥負荷と呼ぶ)が0.05kg−BOD/kg−MLSS/d以上、好ましくは0.05kg−BOD/kg−MLSS/d以上であって0.10kg−BOD/kg−MLSS/d未満、より好ましくは0.05kg−BOD/kg−MLSS/d以上であって0.07kg−BOD/kg−MLSS/d未満で運転されるように、汚泥引き抜き装置により、第2生物処理槽14内の汚泥が引き抜かれる。汚泥引き抜き装置により引き抜いた汚泥の一部または全部を第1生物処理槽12に返送すると、引き抜き汚泥中の汚泥および膜詰まり要因となるTOC成分が再度第二生物処理槽へ戻ることとなり、上記のBOD汚泥負荷で運転することができなくなるため、本実施形態では、引き抜いた汚泥を第1生物処理槽12に返送することなく、膜分離生物処理ユニットの系外へ排出する必要がある。   In the present embodiment, the soluble BOD sludge load (hereinafter simply referred to as BOD sludge load) of the second biological treatment tank 14 is 0.05 kg-BOD / kg-MLSS / d or more, preferably 0.05 kg-BOD / kg. -MLSS / d or more and less than 0.10 kg-BOD / kg-MLSS / d, more preferably 0.05 kg-BOD / kg-MLSS / d or more and 0.07 kg-BOD / kg-MLSS / d The sludge extraction device pulls out the sludge in the second biological treatment tank 14 so as to be operated at less than. When a part or all of the sludge extracted by the sludge extraction device is returned to the first biological treatment tank 12, the sludge in the extracted sludge and the TOC component that causes the film clogging will be returned to the second biological treatment tank again. In the present embodiment, it is necessary to discharge the extracted sludge out of the system of the membrane separation biological treatment unit without returning it to the first biological treatment tank 12 because it can not be operated with BOD sludge load.

本発明者らは、第2生物処理槽14のBOD汚泥負荷が0.05kg−BOD/kg−MLSS/d未満で運転されることで、第2生物処理槽14内の汚泥発生量は低い状態で維持されるが、汚泥の自己消化が促進され、槽内にTOC成分が発生することを見出した。また、このTOC成分は、第2生物処理槽14内で処理されずに蓄積し、分離膜モジュール16内の分離膜の目詰まりの原因になることも見出した。そこで、本実施形態のように、第2生物処理槽14のBOD汚泥負荷が0.05kg−BOD/kg−MLSS/d以上で運転されるように、第2生物処理槽14内の汚泥を引き抜くことにより、汚泥発生量を抑えながら、汚泥の自己消化を抑制することが可能となる。その結果、槽内にTOC成分の発生・蓄積が抑制され、分離膜の目詰まりが抑えられる。特に、第2生物処理槽14のBOD汚泥負荷が0.05kg−BOD/kg−MLSS/d以上であって0.10kg−BOD/kg−MLSS/d未満の範囲で運転されることにより、0.10kg−BOD/kg−MLSS/d以上で運転される場合と比較して、より汚泥発生量が抑制され、0.05〜0.10kg−BOD/kg−MLSS/dで運転されることにより、0.05kg−BOD/kg−MLSS/d未満で運転される場合と比較して、槽内のTOC成分の発生量がより抑制される。   The inventors of the present invention operate the BOD sludge load of the second biological treatment tank 14 at less than 0.05 kg-BOD / kg-MLSS / d, so that the amount of sludge generated in the second biological treatment tank 14 is low. It was found that the self-digestion of sludge was promoted and TOC components were generated in the tank. It has also been found that the TOC component accumulates without being processed in the second biological treatment tank 14 and causes clogging of the separation membrane in the separation membrane module 16. Therefore, as in the present embodiment, the sludge in the second biological treatment tank 14 is drawn out so that the BOD sludge load of the second biological treatment tank 14 is operated at 0.05 kg-BOD / kg-MLSS / d or more. Thus, it is possible to suppress the self-digestion of sludge while suppressing the amount of generated sludge. As a result, generation and accumulation of TOC components in the tank are suppressed, and clogging of the separation membrane is suppressed. In particular, the BOD sludge load of the second biological treatment tank 14 is 0.05 kg-BOD / kg-MLSS / d or more and 0 or less by operating in a range of less than 0.10 kg-BOD / kg-MLSS / d. . Compared with the case of operating at 10 kg-BOD / kg-MLSS / d or more, the amount of sludge generation is further suppressed, and by operating at 0.05-0.10 kg-BOD / kg-MLSS / d As compared with the case of operating at less than 0.05 kg-BOD / kg-MLSS / d, the generation amount of TOC component in the tank is further suppressed.

一般的に、第2生物処理槽14に導入される第1処理水中のBOD濃度が一定であれば、生物処理に伴って、第2生物処理槽14内の汚泥量が増加するため、第2生物処理槽14のBOD汚泥負荷は低下していく傾向にある。したがって、本実施形態のように、汚泥引き抜き装置により、第2生物処理槽14から連続的又は間欠的に汚泥を引き抜いて、第2生物処理槽14のBOD汚泥負荷が0.05kg−BOD/kg−MLSS/d以上で運転されるように調整する必要がある。なお、第1生物処理槽12の前段に原水調整槽を設置して、排水中のBOD濃度を所定値に調整した上で、排水流入ライン10aに送液することが望ましい。これにより、第2生物処理槽14に導入される第1処理水中のBOD濃度の変動を抑制することが可能となる。   Generally, if the BOD concentration in the first treated water introduced into the second biological treatment tank 14 is constant, the amount of sludge in the second biological treatment tank 14 increases with the biological treatment, so the second The BOD sludge load of the biological treatment tank 14 tends to decrease. Therefore, as in the present embodiment, the sludge is continuously or intermittently withdrawn from the second biological treatment tank 14 by the sludge extraction device, and the BOD sludge load of the second biological treatment tank 14 is 0.05 kg-BOD / kg. Need to be adjusted to operate at MLSS / d or higher. In addition, it is desirable to install a raw water adjustment tank in the front | former stage of the 1st biological treatment tank 12, adjust the BOD density | concentration in waste water to predetermined value, and then liquid-feed to the waste water inflow line 10a. This makes it possible to suppress the fluctuation of the BOD concentration in the first treated water introduced into the second biological treatment tank 14.

本実施形態では、例えば、BOD汚泥負荷を定期的に測定し(算出方法は実施例を参照)、その値に基づいて、汚泥引き抜き装置から引き抜く汚泥量を調節してもよいが、通常、第2生物処理槽14に流入する第1処理水のBOD濃度はほとんど変動しないため、汚泥滞留時間及び汚泥濃度が以下に示す範囲となるように第2生物処理槽14から汚泥を引き抜くことで、BOD汚泥負荷を0.05kg−BOD/kg−MLSS/d以上にして運転することが可能となる。   In the present embodiment, for example, the BOD sludge load may be periodically measured (see the example for the calculation method), and the amount of sludge withdrawn from the sludge extraction device may be adjusted based on the value, but usually [2] Since the BOD concentration of the first treated water flowing into the biological treatment tank 14 hardly changes, by pulling out the sludge from the second biological treatment tank 14 so that the sludge residence time and the sludge concentration become the ranges shown below, the BOD It is possible to operate with a sludge load of 0.05 kg-BOD / kg-MLSS / d or more.

本実施形態では、BOD汚泥負荷を0.05kg−BOD/kg−MLSS/d以上とする観点から、第2生物処理槽14内の汚泥滞留時間(SRT)が、例えば5日から30日範囲、好ましくは5日から20日の範囲、より好ましくは10日から15日の範囲となるように第2生物処理槽14内から汚泥の引き抜きを行う。引き抜きは常時一定量ずつ引き抜いても良いし、タイマーなどを用いて毎日または数日に一度、設定SRTとなるような量を引き抜いても良い。汚泥滞留時間の算出方法は実施例を参照。   In the present embodiment, the sludge residence time (SRT) in the second biological treatment tank 14 is, for example, in the range of 5 days to 30 days, from the viewpoint of setting the BOD sludge load to 0.05 kg-BOD / kg-MLSS / d or more. The sludge is extracted from the inside of the second biological treatment tank 14 so as to be preferably in the range of 5 days to 20 days, more preferably in the range of 10 days to 15 days. The removal may be always a fixed amount, or may be a set SRT every day or several days using a timer or the like. See the examples for how to calculate the sludge retention time.

また、本実施形態では、BOD汚泥負荷を0.05kg−BOD/kg−MLSS/d以上とする観点から、第2生物処理槽14内の汚泥濃度(MLSS)が、例えば10000mg/L以下、好ましくは3000mg/Lから5000mg/Lの範囲となるように第2生物処理槽14内から汚泥の引き抜きを行う。汚泥濃度は例えば下水試験方法 活性汚泥浮遊物質測定方法(遠心分離法、ガラス繊維ろ紙法など)により測定される。   Moreover, in the present embodiment, the sludge concentration (MLSS) in the second biological treatment tank 14 is, for example, 10000 mg / L or less, preferably, from the viewpoint of setting the BOD sludge load to 0.05 kg-BOD / kg-MLSS / d or more. The sludge is extracted from the inside of the second biological treatment tank 14 so as to be in the range of 3000 mg / L to 5000 mg / L. The sludge concentration is measured, for example, by a sewage test method, activated sludge floating substance measurement method (centrifugal separation method, glass fiber filter method, etc.).

本実施形態では、担体法(第1生物処理槽)とMBR(分離膜生物処理ユニット)の組み合わせの技術において、MBRでの汚泥発生量を低減し、膜目詰まりを抑制することが可能となるため、全体BOD容積負荷を1.5kg/m/d以上、好ましくは1.0kg/m/d以上で運転することが可能となる。全体BOD容積負荷とは、第1生物処理槽12と第2生物処理槽14の槽容積の合計に対して1日に流入するBOD量のことであり、この値が高いと一日に多くの有機物を処理することが可能となる。全体BOD容積負荷の算出方法は実施例を参照。 In this embodiment, in the technology of combination of carrier method (first biological treatment tank) and MBR (separation membrane biological treatment unit), it becomes possible to reduce the amount of sludge generated in MBR and to suppress membrane clogging. Therefore, it becomes possible to operate at an overall BOD volume load of 1.5 kg / m 3 / d or more, preferably 1.0 kg / m 3 / d or more. The overall BOD volume load is the amount of BOD that flows into one day relative to the sum of the tank volumes of the first biological treatment tank 12 and the second biological treatment tank 14. It becomes possible to process organic matter. See the examples for how to calculate the overall BOD volume load.

第1生物処理槽12および第2生物処理槽14のpHは、一般的な生物処理に適応する範囲であれば特に制限されるものではないが、例えば6〜9の範囲が好ましく、6.5〜7.5の範囲がより好ましい。第1生物処理槽12や第2生物処理槽14のpH調整は、各槽にpH調整剤を添加することにより行われる。pH調整剤としては、塩酸等の酸剤、水酸化ナトリウム等のアルカリ剤等が挙げられる。   The pH of the first biological treatment tank 12 and the second biological treatment tank 14 is not particularly limited as long as it is a range adapted to general biological treatment, but for example, the range of 6 to 9 is preferable, and 6.5 The range of -7.5 is more preferable. The pH adjustment of the first biological treatment tank 12 and the second biological treatment tank 14 is performed by adding a pH adjuster to each tank. Examples of pH adjusters include acid agents such as hydrochloric acid, and alkali agents such as sodium hydroxide.

第1生物処理槽12および第2生物処理槽14の溶存酸素(DO)は、一般的な生物処理に必要な酸素量であれば特に制限されるものではないが、例えば、0.5mg/L以上であることが好ましく、1mg/L以上であることがより好ましい。   The dissolved oxygen (DO) in the first biological treatment tank 12 and the second biological treatment tank 14 is not particularly limited as long as it is the amount of oxygen necessary for general biological treatment, for example, 0.5 mg / L It is preferably at least 1 mg, more preferably at least 1 mg / L.

第1生物処理槽12および第2生物処理槽14の水温は、一般的な生物処理に適応する範囲であれば特に制限されるものではないが、例えば、15〜35℃の範囲が好ましく、20〜30℃の範囲がより好ましい。   The water temperature of the first biological treatment tank 12 and the second biological treatment tank 14 is not particularly limited as long as it is a range applicable to general biological treatment, but for example, a range of 15 to 35 ° C. is preferable, 20 The range of -30 ° C is more preferable.

第1生物処理槽12および第2生物処理槽14に栄養剤を添加することが好ましい。栄養剤としては、微生物の分解活性を良好に維持するものであれば特に制限されるものではないが、例えば、窒素源、リン源、その他無機塩類などが挙げられる。   It is preferable to add a nutrient to the first biological treatment tank 12 and the second biological treatment tank 14. The nutrient is not particularly limited as long as it maintains the decomposition activity of the microorganism well, and examples thereof include nitrogen sources, phosphorus sources, and other inorganic salts.

第1生物処理槽12へ投入される担体26は、とくに制限されるものではなく、公知の各種の担体が使用される。本実施形態では、担体26が第1生物処理槽12内を流動する流動式、又は担体26を充填したカートリッジ等を第1生物処理槽12内に設置する固定式のいずれでもよい。また、担体26の形状、材質ともに制限されるものではないが、微生物の付着性の観点から多孔質の担体26が望ましく、具体的には多孔質のポリウレタン製流動式スポンジ担体26などが挙げられる。   The carrier 26 to be charged into the first biological treatment tank 12 is not particularly limited, and various known carriers may be used. In the present embodiment, either a fluid type in which the carrier 26 flows in the first biological treatment tank 12 or a fixed type in which a cartridge or the like filled with the carrier 26 is installed in the first biological treatment tank 12 may be used. Further, the shape and the material of the carrier 26 are not limited, but the porous carrier 26 is desirable from the viewpoint of the adhesion of the microorganism, and specifically, the porous polyurethane sponge 26 made of polyurethane and the like can be mentioned. .

本実施形態の膜分離生物処理ユニットは、分離膜モジュール16を第2生物処理槽14内に設置した槽内型の装置を例示しているが、これに制限されず、分離膜モジュール16を第2生物処理槽14外に設置した槽外型の装置であってもよい。これらのうち、装置の設置面積や運転動力の観点から槽内型の膜分離生物処理ユニットを使用することが望ましい。分離膜モジュール16に設けられる分離膜は、従来から知られているもの等が使用されるが、設置面積を小さくすることが可能な点から、中空糸膜エレメントが望ましい。また、膜材質についても特に限定はないが、強度や薬品耐性に優れる点から、ポリフッ化ビニルデン多孔質膜が望ましい。   Although the membrane separation biological processing unit of this embodiment exemplifies an in-tank type device in which the separation membrane module 16 is installed in the second biological treatment tank 14, the present invention is not limited thereto. 2) The apparatus of the tank outside type installed out of the biological treatment tank 14 may be sufficient. Among these, it is preferable to use an in-tank type membrane separation biological treatment unit from the viewpoint of the installation area of the device and the operation power. As the separation membrane provided in the separation membrane module 16, although conventionally known ones and the like are used, a hollow fiber membrane element is preferable in that the installation area can be reduced. Also, the film material is not particularly limited, but a polyvinylidene fluoride porous film is desirable from the viewpoint of excellent strength and chemical resistance.

本実施形態では、第1生物処理槽12及び第2生物処理槽14に曝気装置を設置して、好気条件で生物処理を行う例について説明したが、これに制限されるものではなく、嫌気条件で生物処理を行っても良い。この場合、曝気装置に代えて、第1生物処理槽12及び第2生物処理槽14に撹拌装置を設置することが望ましい。   In the present embodiment, an example has been described in which an aeration apparatus is installed in the first biological treatment tank 12 and the second biological treatment tank 14 and biological treatment is performed under aerobic conditions, but the present invention is not limited thereto. Biological treatment may be performed under the conditions. In this case, it is desirable to install a stirrer in the first biological treatment tank 12 and the second biological treatment tank 14 instead of the aeration apparatus.

本実施形態の汚泥引き抜き装置は、第2生物処理槽14から汚泥を引き抜くことができる装置構成であれば、図1に示す汚泥排出ポンプ22及び汚泥排出ライン24を備える装置構成に限定されるものではなく、例えば、汚泥排出ライン24に開閉弁を設置し、開閉弁を開放することで、汚泥排出ライン24から汚泥を自然流下させる装置構成としてもよい。   The sludge extracting apparatus of the present embodiment is limited to the apparatus configuration including the sludge discharge pump 22 and the sludge discharge line 24 shown in FIG. 1 as long as the apparatus configuration can extract sludge from the second biological treatment tank 14 Instead, for example, an on-off valve may be installed in the sludge discharge line 24 and the on-off valve may be opened to allow the sludge to naturally flow down from the sludge discharge line 24.

図2は、本実施形態に係る排水処理装置の構成の他の一例を示す模式図である。図2に示す排水処理装置2において、図1に示す排水処理装置1と同様の構成については、同一の符号を付し、その説明を省略する。図2に示す排水処理装置2は、排水流入ライン(10a,10b,10c)、第1生物処理槽12、第2生物処理槽(14a、14b)及び分離膜モジュール16を有する分離膜生物処理ユニット、処理水排出ライン18、処理水排出ポンプ20、汚泥排出ポンプ22及び汚泥排出ライン24を有する汚泥引き抜き装置、汚泥返送ポンプ32及び汚泥返送ライン34を有する汚泥返送装置等から構成される。   FIG. 2 is a schematic view showing another example of the configuration of the wastewater treatment device according to the present embodiment. In the waste water treatment apparatus 2 shown in FIG. 2, about the structure similar to the waste water treatment apparatus 1 shown in FIG. 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted. The waste water treatment apparatus 2 shown in FIG. 2 is a separation membrane biological treatment unit having a waste water inflow line (10a, 10b, 10c), a first biological treatment tank 12, a second biological treatment tank (14a, 14b) and a separation membrane module 16. The system includes a sludge extraction device having a treated water discharge line 18, a treated water discharge pump 20, a sludge discharge pump 22 and a sludge discharge line 24, a sludge return device having a sludge return pump 32 and a sludge return line 34, and the like.

図2に示す第1生物処理槽12内には担体26が投入されている。また、図2に示す第1生物処理槽12及び第2生物処理槽(14a,14b)は、ブロワ(28a,28b,28c)及び空気流入ライン(30a,30b,30c)を有する曝気装置を備えている。   A carrier 26 is charged into the first biological treatment tank 12 shown in FIG. Further, the first biological treatment tank 12 and the second biological treatment tank (14a, 14b) shown in FIG. 2 are provided with an aeration device having blowers (28a, 28b, 28c) and air inflow lines (30a, 30b, 30c). ing.

本実施形態では、第2生物処理槽は2つの槽(14a,14b)から構成されており、分離膜モジュール16は後段の第2生物処理槽14bに設置されている。なお、第2生物処理槽は3つ以上の槽から構成されていてもよい。また、分離膜モジュール16は、第2生物処理槽を構成する各槽に設置されてもよいし、第2生物処理槽を構成する各槽のうちのいずれか1つに設置されてもよい。また、分離膜モジュール16内には、不図示の分離膜が設けられている。   In the present embodiment, the second biological treatment tank is composed of two tanks (14a, 14b), and the separation membrane module 16 is installed in the second biological treatment tank 14b in the latter stage. The second biological treatment tank may be composed of three or more tanks. Moreover, the separation membrane module 16 may be installed in each tank which comprises a 2nd biological treatment tank, and may be installed in any one of each tank which comprises a 2nd biological treatment tank. Further, in the separation membrane module 16, a separation membrane (not shown) is provided.

第1生物処理槽12の排水入口には、排水流入ライン10aが接続されている。排水流入ライン10bの一端は第1生物処理槽12の処理水出口に接続され、他端は第2生物処理槽14aの処理水入口に接続されている。また、排水流入ライン10cの一端は第2生物処理槽14aの処理水出口に接続され、他端は第2生物処理槽14bの処理水入口に接続されている。また、第2生物処理槽14b内に設置された分離膜モジュール16の排出口には、処理水排出ライン18が接続されている。処理水排出ライン18には処理水排出ポンプ20が介装されている。また、第1及び第2生物処理槽(12,14a,14b)の底部には、空気流入ライン(30a,30b,30c)が接続されている。空気流入ライン(30a,30b,30c)にはブロワ(28a,28b,28c)が介装されている。また、第2生物処理槽14bの汚泥排出口には、汚泥排出ライン24が接続されている。汚泥排出ライン24には汚泥排出ポンプ22が介装されている。また、汚泥返送ライン34の一端が、第2生物処理槽14bの汚泥返送出口に接続され、他端が第2生物処理槽14aの汚泥返送入口に接続されている。汚泥返送ライン34には、汚泥返送ポンプ32が介装されている。   A drainage inlet line 10 a is connected to the drainage inlet of the first biological treatment tank 12. One end of the drainage inflow line 10b is connected to the treated water outlet of the first biological treatment tank 12, and the other end is connected to the treated water inlet of the second biological treatment tank 14a. Further, one end of the drainage inflow line 10c is connected to the treated water outlet of the second biological treatment tank 14a, and the other end is connected to the treated water inlet of the second biological treatment tank 14b. A treated water discharge line 18 is connected to the discharge port of the separation membrane module 16 installed in the second biological treatment tank 14 b. A treated water discharge pump 20 is interposed in the treated water discharge line 18. Further, an air inflow line (30a, 30b, 30c) is connected to the bottom of the first and second biological treatment tanks (12, 14a, 14b). Blowers (28a, 28b, 28c) are interposed in the air inflow lines (30a, 30b, 30c). Moreover, the sludge discharge line 24 is connected to the sludge discharge port of the 2nd biological treatment tank 14b. A sludge discharge pump 22 is interposed in the sludge discharge line 24. Further, one end of the sludge return line 34 is connected to the sludge return outlet of the second biological treatment tank 14 b, and the other end is connected to the sludge return inlet of the second biological treatment tank 14 a. A sludge return pump 32 is interposed in the sludge return line 34.

有機物含有排水は、排水流入ライン10aを通り、第1生物処理槽12に導入される。第1生物処理槽12内では、好気性条件下で、排水中の有機物(溶解性BOD)が、担体26に付着した分散性細菌等により、酸化分解される(細菌の菌体や二酸化炭素等へと変化する)。第1生物処理槽12で処理された第1処理水は排水流入ライン(10b,10c)を通り、第2生物処理槽(14a,14b)に導入される。第2生物処理槽(14a,14b)では、好気性条件下で、第1処理水中に残存している有機物が分散性細菌等により酸化分解される。次に、処理水排出ポンプ20を稼働させ、第2生物処理槽14bで処理された第2処理水を分離膜モジュール16に通水する。第2処理水は分離膜モジュール16内の分離膜により第3処理水と汚泥とに固液分離される。第3処理水は処理水排出ライン18から系外へ排出される。また、汚泥排出ポンプ22を稼働させ、第2生物処理槽14b内の汚泥が汚泥排出ライン24から引き抜かれ、第1生物処理槽12に返送されることなく系外へ排出される。また、本実施形態では、第2生物処理槽(14a,14b)の汚泥濃度を均一化する等のために、汚泥返送ポンプ32を稼働させ、後段の第2生物処理槽14b内の汚泥を汚泥返送ライン34を通して、前段の第2生物処理槽14aに返送することが望ましい。なお、汚泥の返送量は特に制限されるものではないが、第2生物処理槽(14a,14b)内の汚泥濃度を均一化する等の点で、分離膜モジュール16の通水量の3倍以上とすること望ましい。   The organic matter-containing drainage is introduced into the first biological treatment tank 12 through the drainage inflow line 10 a. In the first biological treatment tank 12, the organic matter (soluble BOD) in the waste water is oxidized and decomposed under aerobic conditions by the dispersible bacteria etc. attached to the carrier 26 (bacterial bacteria, carbon dioxide, etc. Change)). The first treated water treated in the first biological treatment tank 12 passes through the drainage inflow line (10b, 10c) and is introduced into the second biological treatment tank (14a, 14b). In the second biological treatment tank (14a, 14b), the organic matter remaining in the first treated water is oxidatively decomposed by the dispersible bacteria and the like under aerobic conditions. Next, the treated water discharge pump 20 is operated to pass the second treated water treated in the second biological treatment tank 14 b to the separation membrane module 16. The second treated water is solid-liquid separated into third treated water and sludge by the separation membrane in the separation membrane module 16. The third treated water is discharged from the treated water discharge line 18 to the outside of the system. In addition, the sludge discharge pump 22 is operated, and the sludge in the second biological treatment tank 14 b is withdrawn from the sludge discharge line 24 and discharged out of the system without being returned to the first biological treatment tank 12. Further, in the present embodiment, the sludge return pump 32 is operated to equalize the sludge concentration of the second biological treatment tank (14a, 14b), and the sludge in the second biological treatment tank 14b in the latter stage is sludged. It is desirable to return to the second biological treatment tank 14 a in the previous stage through the return line 34. Although the amount of sludge returned is not particularly limited, it is three times or more the amount of water passing through the separation membrane module 16 in terms of equalizing the sludge concentration in the second biological treatment tank (14a, 14b), etc. It is desirable to do.

本実施形態のように第2生物処理槽が複数の槽(14a,14b)から構成する場合、各槽のBOD汚泥負荷が0.05kg−BOD/kg−MLSS/d以上で運転される必要がある。本実施形態では、汚泥返送装置により第2生物処理槽14a及び第2生物処理槽14bの汚泥濃度は均一化されているため、後段の第2生物処理槽14bのBOD汚泥負荷が0.05kg−BOD/kg−MLSS/d以上で運転されるように、汚泥引き抜き装置により、第2生物処理槽14b内の汚泥が引き抜かれれば、前段の第2生物処理槽14aのBOD汚泥負荷が0.05kg−BOD/kg−MLSS/d以上で運転されることになる。なお、前段の第2生物処理槽14aにも、汚泥排出ポンプ22及び汚泥排出ライン24を有する汚泥引き抜き装置を設置して、第2生物処理槽14aのBOD汚泥負荷が0.05kg−BOD/kg−MLSS/d以上で運転されるように、汚泥引き抜き装置により、第2生物処理槽14a内の汚泥を引き抜いてもよい。   When the second biological treatment tank is composed of a plurality of tanks (14a, 14b) as in the present embodiment, the BOD sludge load of each tank needs to be operated at 0.05 kg-BOD / kg-MLSS / d or more. is there. In the present embodiment, since the sludge concentration in the second biological treatment tank 14a and the second biological treatment tank 14b is equalized by the sludge return device, the BOD sludge load of the second biological treatment tank 14b in the latter stage is 0.05 kg- If the sludge in the second biological treatment tank 14b is withdrawn by the sludge extraction device so that the BOD / kg-MLSS / d or more is operated, the BOD sludge load of the second biological treatment tank 14a in the previous stage is 0.05 kg. -It will be operated at BOD / kg-MLSS / d or more. In addition, the sludge extraction device which has the sludge discharge pump 22 and the sludge discharge line 24 is installed also in the second biological treatment tank 14a of the former stage, and the BOD sludge load of the second biological treatment tank 14a is 0.05 kg-BOD / kg. -The sludge in the second biological treatment tank 14a may be withdrawn by a sludge extraction device so as to be operated at -MLSS / d or more.

図3は、本実施形態に係る排水処理装置の構成の他の一例を示す模式図である。図3に示す排水処理装置3において、図1に示す排水処理装置1と同様の構成については、同一の符号を付し、その説明を省略する。図3に示す排水処理装置3は、排水流入ライン(10a,10b)、第1生物処理槽12、第2生物処理槽14及び分離膜モジュール16を有する分離膜生物処理ユニット、処理水排出ライン18、処理水排出ポンプ20、汚泥排出ポンプ22及び汚泥排出ライン24を有する汚泥引き抜き装置、排水バイパスライン36等から構成される。図3に示す第1生物処理槽12内には担体26が投入されている。また、図3に示す第1生物処理槽12及び第2生物処理槽14は、ブロワ(28a,28b)及び空気流入ライン(30a,30b)を有する曝気装置を備えている。分離膜モジュール16は第2生物処理槽14に設置されている。また、分離膜モジュール16内には、不図示の分離膜が設けられている。   FIG. 3 is a schematic view showing another example of the configuration of the wastewater treatment device according to the present embodiment. In the waste water treatment apparatus 3 shown in FIG. 3, about the structure similar to the waste water treatment apparatus 1 shown in FIG. 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted. The waste water treatment apparatus 3 shown in FIG. 3 includes a separation membrane biological treatment unit having a waste water inflow line (10a, 10b), a first biological treatment tank 12, a second biological treatment tank 14, and a separation membrane module 16, a treated water discharge line 18 A sludge extraction device having a treated water discharge pump 20, a sludge discharge pump 22, and a sludge discharge line 24, and a drainage bypass line 36 and the like. A carrier 26 is charged into the first biological treatment tank 12 shown in FIG. Moreover, the 1st biological treatment tank 12 and the 2nd biological treatment tank 14 which are shown in FIG. 3 are equipped with the aeration apparatus which has a blower (28a, 28b) and an air inflow line (30a, 30b). The separation membrane module 16 is installed in the second biological treatment tank 14. Further, in the separation membrane module 16, a separation membrane (not shown) is provided.

図3に示す排水処理装置3では、排水バイパスライン36の一端が排水流入ライン10aに接続され、他端が、第2生物処理槽14に接続されている。その他の形態は図1の排水処理装置1と同様である。   In the waste water treatment apparatus 3 shown in FIG. 3, one end of the waste water bypass line 36 is connected to the waste water inflow line 10 a, and the other end is connected to the second biological treatment tank 14. The other form is the same as that of the waste water treatment apparatus 1 of FIG.

図3に示す排水処理装置3では、例えば、第2生物処理槽14内に流入する第1処理水中のBOD濃度が低下した場合、汚泥引き抜き装置による汚泥引き抜き量を抑えることで、第2生物処理槽14内のBOD汚泥負荷が0.05kg−BOD/kg−MLSS/d以上となるように運転することは可能であるが、さらに、排水バイパスライン36から有機物含有排水を第2生物処理槽14に直接供給し、第2生物処理槽14内のBOD濃度を増加させることで、汚泥引き抜き量を変更することなく第2生物処理槽14内のBOD汚泥負荷を0.05kg−BOD/kg−MLSS/d以上とすることが可能となる。   In the waste water treatment apparatus 3 shown in FIG. 3, for example, when the BOD concentration in the first treated water flowing into the second biological treatment tank 14 decreases, the second biological treatment is performed by suppressing the amount of sludge drawn by the sludge drawing device. Although it is possible to operate so that the BOD sludge load in the tank 14 is 0.05 kg-BOD / kg-MLSS / d or more, furthermore, organic matter-containing wastewater from the wastewater bypass line 36 is treated as the second biological treatment tank 14 The BOD sludge load in the second biological treatment tank 14 is 0.05 kg-BOD / kg-MLSS without changing the sludge removal amount by directly supplying to the BOD and increasing the BOD concentration in the second biological treatment tank 14 It becomes possible to make it / d or more.

本実施形態では、第2生物処理槽14を単槽としているが、図2に示すように複数の槽から構成されるものであってもよい。この場合、排水バイパスライン36は排水流入ライン10aから各第2生物処理槽へ接続される。排水バイパスライン36を通る排水の流入量は、第2生物処理槽14のBOD汚泥負荷により適宜設定されるものであるが、排水流入ライン10aを通る排水の流入量の10%〜30%の範囲とすることが望ましい。   In this embodiment, although the 2nd biological treatment tank 14 is made into a single tank, as shown in FIG. 2, you may be comprised from a several tank. In this case, the drainage bypass line 36 is connected to the second biological treatment tanks from the drainage inflow line 10a. Although the inflow of drainage through the drainage bypass line 36 is appropriately set by the BOD sludge load of the second biological treatment tank 14, the range of 10% to 30% of the inflow of drainage through the drainage inflow line 10a It is desirable to

以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples, but the present invention is not limited to the following examples.

(実施例1)
実施例1では、図1に示す排水処理装置を用いた。実施例1では、容積12Lの第1生物処理槽と、容積26Lの第2生物処理槽とを準備した。第1生物処理槽にはスポンジ担体を2.4L投入した。分離膜モジュールに設けられる分離膜として、PVDF中空糸膜を使用した。処理対象となる有機物含有排水(原水)はBOD濃度1000mg/Lの人工基質を含むものであり、60L/dの通水量とした。実施例1では、第2生物処理槽の汚泥濃度が3000〜5000mg/Lの範囲、第2生物処理槽の汚泥滞留時間が5〜10日の範囲となるように汚泥を引き抜き、第2生物処理槽のBOD汚泥負荷を0.05kg−BOD/kg−MLSS/d以上であって0.09kg−BOD/kg−MLSS/d未満の範囲にして運転した。
Example 1
In Example 1, the waste water treatment apparatus shown in FIG. 1 was used. In Example 1, a first biological treatment tank having a volume of 12 L and a second biological treatment tank having a volume of 26 L were prepared. In the first biological treatment tank, 2.4 L of a sponge carrier was charged. A PVDF hollow fiber membrane was used as a separation membrane provided in the separation membrane module. The organic substance-containing wastewater (raw water) to be treated contains an artificial substrate with a BOD concentration of 1000 mg / L, and the water flow rate was 60 L / d. In Example 1, the sludge is extracted so that the sludge concentration of the second biological treatment tank is in the range of 3000 to 5000 mg / L, and the sludge retention time of the second biological treatment tank is in the range of 5 to 10 days, and the second biological treatment is performed. The tank was operated at a BOD sludge load of 0.05 kg-BOD / kg-MLSS / d or more and less than 0.09 kg-BOD / kg-MLSS / d.

<排水処理装置の運転条件>
全体BOD容積負荷:1.5kg/m/d
ろ過Flux:0.4m/d
第2生物処理槽の汚泥濃度(MBRのMLSS):3000〜5000mg/L
第2生物処理槽の汚泥滞留時間(MBRのSRT):5〜10日
第2生物処理槽のBOD汚泥負荷(MBRのBOD汚泥負荷):0.05kg−BOD/kg−MLSS/d以上〜0.09kg−BOD/kg−MLSS/d未満
<Operating conditions of wastewater treatment equipment>
Total BOD volume load: 1.5 kg / m 3 / d
Filtration Flux: 0.4m / d
Sludge concentration in the second biological treatment tank (MLSS of MBR): 3000 to 5000 mg / L
Sludge retention time of second biological treatment tank (SRT of MBR): 5 to 10 days BOD sludge load of second biological treatment tank (BOD sludge load of MBR): 0.05 kg-BOD / kg-MLSS / d or more-0 .09 kg-BOD / kg-MLSS / d or less

全体BOD容積負荷とは、第1生物処理槽及び第2生物処理槽の合計槽容積に対して1日に流入するBOD量であり、以下のように算出される。
全体BOD容積負荷=BOD濃度×流入水量(又は処理水量)/合計槽容積
なお、BOD濃度×流入水量はBOD流入量となる。
The total BOD volume load is the amount of BOD flowing into one day with respect to the total tank volume of the first biological treatment tank and the second biological treatment tank, and is calculated as follows.
Overall BOD volume load = BOD concentration × influent water amount (or treated water amount) / total tank volume BOD concentration × influent water amount is the BOD inflow amount.

MBRのBOD汚泥負荷とは、第2生物処理槽(MBR槽)内の汚泥に対して1日に流入するBOD量であり、以下のように算出される。
MBRのBOD汚泥負荷=(MBR槽に流入する流入水のBOD濃度×流入水量(又は処理水量))/(汚泥濃度(MLSS)×槽容積)
なお、汚泥濃度(MLSS)×槽容積は槽内汚泥量となる。
The BOD sludge load of the MBR is the amount of BOD flowing into the sludge in the second biological treatment tank (MBR tank) on one day, and is calculated as follows.
BOD sludge load of MBR = (BOD concentration of inflowing water to MBR tank × inflowing water volume (or treated water volume)) / (sludge concentration (MLSS) × tank volume)
The sludge concentration (MLSS) × tank volume is the amount of sludge in the tank.

SRTは、槽内の汚泥が余剰汚泥(引抜汚泥)として系外へ排出されるまでの時間であり、以下のように算出される。
SRT=(槽内汚泥濃度×槽容積)/((引抜汚泥濃度×引抜水量)+(処理水中のSS×処理水量))
ここで、第2生物処理槽では、膜分離により汚泥が除去されるため、通常処理水中のSSはゼロであるから、汚泥滞留時間は、以下のようになる。
MBRのSRT=(槽内汚泥濃度×槽容積)/(引抜汚泥濃度×引抜水量)
SRT is the time until the sludge in the tank is discharged out of the system as excess sludge (extracted sludge), and is calculated as follows.
SRT = (in-tank sludge concentration × tank volume) / ((extracted sludge concentration × extracted water amount) + (SS × treated water amount in treated water))
Here, since sludge is removed by membrane separation in the second biological treatment tank, SS in the treated water is usually zero, so the sludge retention time is as follows.
SRT of MBR = (Sludge concentration in tank × tank volume) / (extracted sludge concentration × withdrawn amount)

ろ過Fluxは、分離膜の単位膜面積当たりの処理水量であり、以下のように算出される。
ろ過Flux=処理水流量/分離膜の膜面積
The filtration flux is the amount of treated water per unit membrane area of the separation membrane, and is calculated as follows.
Filtration Flux = flow rate of treated water / membrane area of separation membrane

(比較例1)
比較例1では第2生物処理槽の汚泥濃度(MBRのMLSS)が10000mg/L、第2生物処理槽の汚泥滞留時間(MBRのSRT)が30日となるように汚泥を引き抜き、第2生物処理装置のBOD汚泥負荷(MBRのBOD汚泥負荷)を0.01kg−BOD/kg−MLSS/d以下にして運転した。それ以外の条件は、実施例1と同様の条件とした。
(Comparative example 1)
In Comparative Example 1, the sludge is extracted so that the sludge concentration (MLSS of MBR) of the second biological treatment tank is 10000 mg / L, and the sludge retention time (SRT of MBR) of the second biological treatment tank is 30 days, The BOD sludge load (BOD sludge load of MBR) of the processing apparatus was operated at 0.01 kg-BOD / kg-MLSS / d or less. The other conditions were the same as in Example 1.

(比較例2)
比較例2では、図3に示す排水処理装置を用いた。比較例2で用いた第1生物処理槽及び第2生物処理槽の容積は、実施例1と同じとした。比較例2では、流量5〜8L/dの原水を排水バイパスラインから第2生物処理槽へ直接供給した。また、第2生物処理槽の汚泥濃度(MBRのMLSS)が10000mg/L、第2生物処理槽の汚泥滞留時間(MBRのSRT)が30日となるように汚泥を引き抜き、第2生物処理装置のBOD汚泥負荷(MBRのBOD汚泥負荷)を0.03〜0.04kg−BOD/kg−MLSS/dの範囲にして運転した。それ以外の条件は、実施例1と同様の条件とした。
(Comparative example 2)
In Comparative Example 2, the waste water treatment apparatus shown in FIG. 3 was used. The volumes of the first biological treatment tank and the second biological treatment tank used in Comparative Example 2 were the same as in Example 1. In Comparative Example 2, raw water with a flow rate of 5 to 8 L / d was directly supplied from the drainage bypass line to the second biological treatment tank. In addition, the sludge is extracted so that the sludge concentration (MLSS of MBR) in the second biological treatment tank is 10000 mg / L and the sludge retention time (SRT in MBR) of the second biological treatment tank is 30 days, and the second biological treatment device BOD sludge load (BOD sludge load of MBR) was made into the range of 0.03-0.04 kg-BOD / kg-MLSS / d. The other conditions were the same as in Example 1.

表1に実施例1及び比較例1〜2の運転条件をまとめた。   The operating conditions of Example 1 and Comparative Examples 1 and 2 are summarized in Table 1.

表2に実施例1及び比較例1〜2の処理水水質と汚泥転換率(g−MLSS/g−BOD)をまとめた。汚泥転換率はBOD処理量に対する第2生物処理槽で発生する汚泥量であり、以下のように表される。なお、以下の全ての実施例及び比較例も同様である。
汚泥転換率=第2生物処理槽の発生汚泥量/BOD処理量
発生汚泥量=((所定期間経過後の第2生物処理槽の汚泥濃度−初期の第2生物処理槽の汚泥濃度)×第2生物処理槽の槽容積)+(引抜汚泥濃度×引抜水量)
BOD処理量=(原水BOD濃度−第2生物処理から排出される処理水BOD濃度)×処理流量
ここで、実施例1及び比較例1〜2の所定期間経過後の第2生物処理槽の汚泥濃度は、12日目の第2生物処理槽の汚泥濃度である。
The treated water quality and sludge conversion rate (g-MLSS / g-BOD) of Example 1 and Comparative Examples 1 and 2 are summarized in Table 2. The sludge conversion rate is the amount of sludge generated in the second biological treatment tank relative to the BOD treatment amount, and is expressed as follows. The same applies to all the following examples and comparative examples.
Sludge conversion rate = generated sludge amount of second biological treatment tank / BOD treated amount generated sludge amount = ((sludge concentration of the second biological treatment tank after a predetermined period has elapsed-sludge concentration of the second biological treatment tank at the initial stage) x second 2 tank volume of biological treatment tank) + (extracted sludge concentration × amount of extracted water)
BOD treatment amount = (raw water BOD concentration-treated water BOD concentration discharged from the second biological treatment) x treatment flow rate where the sludge of the second biological treatment tank after a predetermined period of Example 1 and Comparative Examples 1 and 2 has elapsed The concentration is the sludge concentration of the second biological treatment tank on the 12th day.

図4は、実施例1及び比較例1〜2の膜モジュールの膜吸引圧力の推移を示す図である。膜モジュールの膜吸引圧力は、処理水排出ラインに設置した圧力計(長野計器社製、GC67型)により測定した値である。   FIG. 4: is a figure which shows transition of the membrane suction pressure of the membrane module of Example 1 and Comparative Examples 1-2. The membrane suction pressure of the membrane module is a value measured by a pressure gauge (Model GC67 manufactured by Nagano Keiki Co., Ltd.) installed in the treated water discharge line.

また、実施例1及び比較例1〜2の第2生物処理槽内の汚泥を5Cのろ紙でろ過し、得られたろ液中のTOC濃度を測定した。   Moreover, the sludge in the 2nd biological treatment tank of Example 1 and Comparative Examples 1-2 was filtered with a 5 C filter paper, and the TOC density | concentration in the obtained filtrate was measured.

図5は、実施例1及び比較例1〜2の第2生物処理槽内の汚泥をろ過して得られたろ液中のTOC濃度の推移を示す図である。図5の横軸の運転日数は装置の運転日数を表している。なお、以下の全ての実施例及び比較例も上記同様に測定してTOC濃度を求めた。   FIG. 5: is a figure which shows transition of the TOC density | concentration in the filtrate obtained by filtering the sludge in the 2nd biological treatment tank of Example 1 and Comparative Examples 1-2. The operating days on the horizontal axis of FIG. 5 represent the operating days of the apparatus. The TOC concentration was determined by measuring all the following examples and comparative examples in the same manner as described above.

実施例1では、表2から分かるように、処理水BODは10mg/L未満、処理水TOCは15mg/L、汚泥転換率は0.212(g−MLSS/g−BOD)であった。また、実施例1では、図4から分かるように、運転日数12日間の間、膜吸引圧力の上昇は見られず、安定した運転を行うことができた。さらに、実施例1では、図5から分かるように、運転日数12日間の間、第2生物処理槽内の汚泥をろ過して得られたろ液中のTOCは100mg/L程度で安定していた。   In Example 1, as understood from Table 2, the treated water BOD was less than 10 mg / L, the treated water TOC was 15 mg / L, and the sludge conversion rate was 0.212 (g-MLSS / g-BOD). Further, in Example 1, as can be seen from FIG. 4, no increase in the membrane suction pressure was observed during 12 days of operation days, and stable operation could be performed. Furthermore, in Example 1, as can be seen from FIG. 5, the TOC in the filtrate obtained by filtering the sludge in the second biological treatment tank was stable at about 100 mg / L for 12 days of operation days .

比較例1では、表2から分かるように、処理水BODは10mg/L未満、処理水TOCは17mg/L、汚泥転換率は0.207であり、実施例1と同様の値を示した。しかし、比較例1では、図4から分かるように、運転日数12日間の間に、膜吸引圧力が上昇し、安定した運転を行うことができなかった。さらに、比較例1では、図5から分かるように、運転日数12日間の間に、第2生物処理槽内の汚泥をろ過して得られたろ液中のTOCは上昇し、300mg/L程度まで達した。なお、運転4日目の第2生物処理槽内の汚泥をビーカーに300mL採水し、エアストーンにて2L/minで曝気し、曝気直後、曝気開始から1時間後、曝気開始から3日後の汚泥を、5Cろ紙でろ過して得られたろ液中のTOC濃度を測定した。曝気開始直後のTOC濃度は151mg/Lであった。曝気開始から1時間後のTOC濃度は150mg/Lであり、曝気開始直後のTOC濃度と変化が無かったが、3日後のTOC濃度は191mg/Lであり、曝気開始直後のTOC濃度より増加していた。このことから、第2生物処理槽内で一度発生したTOC成分は、生物分解されること無く第2生物処理槽内に蓄積されることがわかった。   In Comparative Example 1, as seen from Table 2, the treated water BOD was less than 10 mg / L, the treated water TOC was 17 mg / L, and the sludge conversion rate was 0.207, which were similar to those of Example 1. However, in Comparative Example 1, as can be seen from FIG. 4, the film suction pressure increased during 12 days of operation days, and stable operation could not be performed. Furthermore, in Comparative Example 1, as can be seen from FIG. 5, the TOC in the filtrate obtained by filtering the sludge in the second biological treatment tank rises during the operation days of 12 days, to about 300 mg / L. Reached. In addition, 300 mL of sludge in the second biological treatment tank on the 4th day of operation is collected in a beaker, aerated with air stone at 2 L / min, immediately after aeration, 1 hour after aeration start, 3 days after aeration start The sludge was filtered through 5 C filter paper, and the TOC concentration in the filtrate obtained was measured. The TOC concentration immediately after the start of aeration was 151 mg / L. The TOC concentration one hour after the start of aeration was 150 mg / L, and there was no change from the TOC concentration immediately after the start of aeration, but the TOC concentration three days after was 191 mg / L, which was higher than the TOC concentration immediately after the start of aeration. It was From this, it was found that the TOC component generated once in the second biological treatment tank is accumulated in the second biological treatment tank without being biodegradable.

比較例2も、表2からわかるように、処理水水質及び汚泥転換率は実施例1と同様の結果であった。しかし、図4から分かるように、運転日数12日間の間に、膜吸引圧力が上昇し、安定した運転を行うことができなかった。さらに、比較例2では、図5から分かるように、運転日数12日間の間に、第2生物処理槽内の汚泥をろ過して得られたろ液中のTOCは上昇し、300mg/L程度まで達した。   Also in Comparative Example 2, as can be seen from Table 2, the treated water quality and the sludge conversion rate were the same as in Example 1. However, as can be seen from FIG. 4, the membrane suction pressure increased during 12 days of operation days, and stable operation could not be performed. Furthermore, in Comparative Example 2, as can be seen from FIG. 5, TOC in the filtrate obtained by filtering the sludge in the second biological treatment tank rises during the operation days of 12 days, to about 300 mg / L. Reached.

以上のように、実施例1及び比較例1〜2のいずれも汚泥転換率が低く抑えられている(汚泥発生量の増加がおさえられている)が、実施例1のように、第2生物処理槽から汚泥を排出し、第2生物処理装置のBOD汚泥負荷を0.05kg−BOD/kg−MLSS/d以上にして運転することで、比較例1及び2のように第2生物処理装置のBOD汚泥負荷(MBRのBOD汚泥負荷)を0.05kg−BOD/kg−MLSS/d未満にして運転する場合と比較して、分離膜の目詰まりを抑制することができた。これは、第2生物処理装置のBOD汚泥負荷を0.05kg−BOD/kg−MLSS/d以上にして運転することで、TOC成分が第2生物処理槽内に蓄積されることが抑えられたため、TOC成分が分離膜に付着する量が少なくなり、膜の目詰まりの発生が抑えられたと考えられる。   As described above, the sludge conversion rate is suppressed to a low level in all of Example 1 and Comparative Examples 1 and 2 (the increase in the amount of sludge generation is suppressed). The second biological treatment apparatus as in Comparative Examples 1 and 2 by discharging sludge from the treatment tank and operating the BOD sludge load of the second biological treatment apparatus at 0.05 kg-BOD / kg-MLSS / d or more. The clogging of the separation membrane was able to be suppressed as compared with the case where the BOD sludge load (BOD sludge load of MBR) is less than 0.05 kg-BOD / kg-MLSS / d. This is because by operating the BOD sludge load of the second biological treatment apparatus at 0.05 kg-BOD / kg-MLSS / d or more, accumulation of TOC components in the second biological treatment tank is suppressed. It is considered that the amount of TOC component adhering to the separation membrane decreases, and the occurrence of clogging of the membrane is suppressed.

(実施例2)
実施例2では、図1に示す排水処理装置を用いた。実施例2では、容積0.9Lの第1生物処理槽と、容積1.5Lの第2生物処理槽とを準備した。第1生物処理槽にはスポンジ担体を0.1L投入した。分離膜モジュールに設けられる分離膜として、PVDF中空糸膜を使用した。処理対象となる有機物含有排水はBOD濃度120mg/Lの人工基質を含むものであり、30L/dの通水量とした。実施例2では、第2生物処理槽の汚泥濃度が5000mg/L、第2生物処理槽内の汚泥滞留時間が10日となるように汚泥の引き抜きを行い、第2生物処理槽のBOD汚泥負荷を0.09kg−BOD/kg−MLSS/d以上であって0.10kg−BOD/kg−MLSS/d未満の範囲にして運転した。
(Example 2)
In Example 2, the waste water treatment apparatus shown in FIG. 1 was used. In Example 2, a first biological treatment tank having a volume of 0.9 L and a second biological treatment tank having a volume of 1.5 L were prepared. In the first biological treatment tank, 0.1 L of a sponge carrier was charged. A PVDF hollow fiber membrane was used as a separation membrane provided in the separation membrane module. The organic matter-containing wastewater to be treated contains an artificial substrate with a BOD concentration of 120 mg / L, and the water flow rate was 30 L / d. In Example 2, the sludge is extracted so that the sludge concentration in the second biological treatment tank is 5000 mg / L and the sludge residence time in the second biological treatment tank is 10 days, and the BOD sludge load in the second biological treatment tank Was operated in the range of 0.09 kg-BOD / kg-MLSS / d or more and less than 0.10 kg-BOD / kg-MLSS / d.

<排水処理装置の運転条件>
全体BOD容積負荷:1.5kg/m/d
ろ過Flux:0.5m/d
第2生物処理槽の汚泥濃度(MBRのMLSS):5000mg/L
第2生物処理槽の汚泥滞留時間(MBRのSRT):10日
第2生物処理槽のBOD汚泥負荷(MBRのBOD汚泥負荷):0.09kg−BOD/kg−MLSS/d以上〜0.10kg−BOD/kg−MLSS/d未満
<Operating conditions of wastewater treatment equipment>
Total BOD volume load: 1.5 kg / m 3 / d
Filtration Flux: 0.5m / d
Sludge concentration in second biological treatment tank (MLSS in MBR): 5000 mg / L
Sludge retention time of second biological treatment tank (SRT of MBR): 10 days BOD sludge load of second biological treatment tank (BOD sludge load of MBR): 0.09 kg-BOD / kg-MLSS / d or more-0.10 kg -Less than BOD / kg-MLSS / d

表3に実施例2の運転条件をまとめた。   The operating conditions of Example 2 are summarized in Table 3.

表4に実施例2の処理水水質と汚泥転換率(g−MLSS/g−BOD)をまとめた。   Table 4 summarizes the treated water quality and sludge conversion rate (g-MLSS / g-BOD) of Example 2.

図6は、実施例2の膜モジュールの膜吸引圧力の推移を示す図である。また、図7は、実施例2の第2生物処理槽内の汚泥をろ過して得られたろ液中のTOC濃度の推移を示す図である。   FIG. 6 is a diagram showing the transition of the membrane suction pressure of the membrane module of Example 2. Moreover, FIG. 7 is a figure which shows transition of TOC density | concentration in the filtrate obtained by filtering the sludge in the 2nd biological treatment tank of Example 2. As shown in FIG.

実施例2では、表4から分かるように、処理水BODは5mg/L未満、処理水TOCは2mg/L、汚泥転換率は0.186(g−MLSS/g−BOD)であった。また、実施例2では、図6から分かるように、運転日数20日間の間、膜吸引圧力の上昇は見られず、安定した運転を行うことができた。さらに、実施例2では、図7から分かるように、運転日数20日間の間、第2生物処理槽内の汚泥をろ過して得られたろ液中のTOCは20mg/L程度で安定していた。   In Example 2, as understood from Table 4, the treated water BOD was less than 5 mg / L, the treated water TOC was 2 mg / L, and the sludge conversion rate was 0.186 (g-MLSS / g-BOD). Further, in Example 2, as can be seen from FIG. 6, no increase in the membrane suction pressure was observed during 20 days of operation days, and stable operation could be performed. Furthermore, in Example 2, as can be seen from FIG. 7, the TOC in the filtrate obtained by filtering the sludge in the second biological treatment tank was stable at about 20 mg / L for 20 days of operation days .

以下の比較例3及び4において、第2生物処理槽のBOD容積負荷、MLSS、SRTを変更し、第2生物処理槽で発生する汚泥量の影響を検討した。   In Comparative Examples 3 and 4 below, the BOD volume load, MLSS, and SRT of the second biological treatment tank were changed, and the influence of the amount of sludge generated in the second biological treatment tank was examined.

(比較例3)
比較例3では、第2生物処理槽のみから構成される排水処理装置を用いて試験を行った。比較例3では、50Lの容積の第2生物処理槽のみを準備した。分離膜モジュールに設けられる分離膜として、PVDF中空糸膜を使用した。処理対象となる有機物含有排水はBOD濃度1000mg/Lの人工基質を含むものであり、60L/dの通水量とした。比較例3では、第2生物処理槽の汚泥濃度が10000mg/L、第2生物処理槽の汚泥滞留時間が30日となるように汚泥を引き抜き、第2生物処理槽のBOD汚泥負荷を0.12kg−BOD/kg−MLSS/d以上にして運転した。
(Comparative example 3)
In the comparative example 3, it tested using the waste-water-treatment apparatus comprised only from a 2nd biological treatment tank. In Comparative Example 3, only the second biological treatment tank with a volume of 50 L was prepared. A PVDF hollow fiber membrane was used as a separation membrane provided in the separation membrane module. The organic matter-containing wastewater to be treated contains an artificial substrate having a BOD concentration of 1000 mg / L, and the water flow rate was 60 L / d. In Comparative Example 3, the sludge is extracted so that the sludge concentration of the second biological treatment tank is 10000 mg / L and the sludge retention time of the second biological treatment tank is 30 days, and the BOD sludge load of the second biological treatment tank is 0. It was operated at 12 kg-BOD / kg-MLSS / d or more.

<排水処理装置の運転条件>
全体BOD容積負荷(第2生物処理槽BOD容積負荷):1.2kg/m/d
ろ過Flux:0.4m/d
第2生物処理槽の汚泥濃度(MBRのMLSS):10000mg/L
第2生物処理槽の汚泥滞留時間(MBRのSRT):30日
第2生物処理槽のBOD汚泥負荷(MBRのBOD汚泥負荷):0.12kg−BOD/kg−MLSS/d以上
<Operating conditions of wastewater treatment equipment>
Total BOD volume load (2nd biological treatment tank BOD volume load): 1.2 kg / m 3 / d
Filtration Flux: 0.4m / d
Sludge concentration in the second biological treatment tank (MLSS in MBR): 10000 mg / L
Sludge retention time (SBR of MBR) of the second biological treatment tank: 30 days BOD sludge load of the second biological treatment tank (BOD sludge load of the MBR): 0.12 kg-BOD / kg-MLSS / d or more

表5に比較例3の運転条件をまとめた。   Table 5 summarizes the operating conditions of Comparative Example 3.

表6に比較例3の処理水水質と汚泥転換率(g−MLSS/g−BOD)をまとめた。   Table 6 summarizes the treated water quality and the sludge conversion rate (g-MLSS / g-BOD) of Comparative Example 3.

図8は、比較例3の膜モジュールの膜吸引圧力の推移を示す図である。   FIG. 8 is a diagram showing the transition of the membrane suction pressure of the membrane module of Comparative Example 3.

比較例3では、表6から分かるように、処理水BODは10mg/L未満、処理水TOCは18mg/Lであった。しかし、汚泥転換率は0.394(g−MLSS/g−BOD)であり、実施例1と比較して高い汚泥変換率となった。これは、実施例1と比較して、高いBOD汚泥負荷で運転したことにより、第2生物処理槽内での汚泥発生量が増加したためであると考えられる。但し、比較例3では、図8から分かるように、運転日数12日間の間、膜吸引圧力の上昇は見られず、安定した運転を行うことができた。これは、比較例3のように高いBOD汚泥負荷で運転することにより、第2生物処理槽内で汚泥の自己分解に伴うTOC成分の発生が抑制されたためであると考えられる。   In Comparative Example 3, as seen from Table 6, the treated water BOD was less than 10 mg / L, and the treated water TOC was 18 mg / L. However, the sludge conversion rate was 0.394 (g-MLSS / g-BOD), and the sludge conversion rate was high compared to Example 1. This is considered to be because the amount of sludge generated in the second biological treatment tank was increased by operating at a high BOD sludge load as compared with Example 1. However, in Comparative Example 3, as can be seen from FIG. 8, the membrane suction pressure did not increase for 12 days of operation days, and stable operation could be performed. It is considered that this is because the operation with a high BOD sludge load as in Comparative Example 3 suppresses the generation of the TOC component accompanying the autolysis of the sludge in the second biological treatment tank.

(実施例3)
実施例3では、図3に示す排水処理装置を用いた。実施例3では、容積12Lの第1生物処理槽と、容積26Lの第2生物処理槽とを準備した。第1生物処理槽にはスポンジ担体を2.4L投入した。分離膜モジュールに設けられる分離膜として、PVDF中空糸膜を使用した。処理対象となる有機物含有排水はBOD濃度1000mg/Lの人工基質を含むものであり、60L/dの通水量とした。実施例3では、流量8〜10L/dの排水を排水バイパスラインから第2生物処理槽へ直接供給した。そして、実施例3では、第2生物処理槽の汚泥濃度が9000mg/L、第2生物処理槽の汚泥滞留時間が30日となるように汚泥を引き抜き、第2生物処理槽のBOD汚泥負荷を0.06kg−BOD/kg−MLSS/dにして運転した。
(Example 3)
In Example 3, the waste water treatment apparatus shown in FIG. 3 was used. In Example 3, a first biological treatment tank having a volume of 12 L and a second biological treatment tank having a volume of 26 L were prepared. In the first biological treatment tank, 2.4 L of a sponge carrier was charged. A PVDF hollow fiber membrane was used as a separation membrane provided in the separation membrane module. The organic matter-containing wastewater to be treated contains an artificial substrate having a BOD concentration of 1000 mg / L, and the water flow rate was 60 L / d. In Example 3, waste water with a flow rate of 8 to 10 L / d was supplied directly from the waste water bypass line to the second biological treatment tank. Then, in Example 3, the sludge is extracted so that the sludge concentration of the second biological treatment tank is 9000 mg / L and the sludge retention time of the second biological treatment tank is 30 days, and the BOD sludge load of the second biological treatment tank is It was operated at 0.06 kg-BOD / kg-MLSS / d.

<排水処理装置の運転条件>
全体BOD容積負荷:1.5kg/m/d
ろ過Flux:0.4m/d
第2生物処理槽の汚泥濃度(MBRのMLSS):9000mg/L
第2生物処理槽の汚泥滞留時間(MBRのSRT):30日
第2生物処理槽のBOD汚泥負荷(MBRのBOD汚泥負荷):0.06kg−BOD/kg−MLSS/d
<Operating conditions of wastewater treatment equipment>
Total BOD volume load: 1.5 kg / m 3 / d
Filtration Flux: 0.4m / d
Sludge concentration in the second biological treatment tank (MLSS in MBR): 9000 mg / L
Sludge retention time of second biological treatment tank (SBR of MBR): 30 days BOD sludge load of second biological treatment tank (BOD sludge load of MBR): 0.06 kg-BOD / kg-MLSS / d

表7に実施例3の運転条件をまとめた。   The operating conditions of Example 3 are summarized in Table 7.

表8に実施例3の処理水水質と汚泥転換率(g−MLSS/g−BOD)をまとめた。   Table 8 summarizes the treated water quality and sludge conversion rate (g-MLSS / g-BOD) of Example 3.

図9は、実施例3の膜モジュールの膜吸引圧力の推移を示す図である。また、図10は、実施例3の第2生物処理槽内の汚泥をろ過して得られたろ液中のTOC濃度の推移を示す図である。   FIG. 9 is a diagram showing the transition of the membrane suction pressure of the membrane module of Example 3. Moreover, FIG. 10 is a figure which shows transition of TOC density | concentration in the filtrate obtained by filtering the sludge in the 2nd biological treatment tank of Example 3. FIG.

実施例3では、表8から分かるように、処理水BODは10mg/L未満、処理水TOCは17mg/L、汚泥転換率は0.207(g−MLSS/g−BOD)であった。また、実施例3では、図9から分かるように、運転日数5日間の間、膜吸引圧力の上昇は見られず、安定した運転を行うことができた。さらに、実施例3では、図10から分かるように、運転日数5日間の間、第2生物処理槽内の汚泥をろ過して得られたろ液中のTOCは120mg/L程度で安定していた。但し、実施例1よりSRTおよびMLSSが高い状態ある実施例3の方が、膜吸引圧力の上昇およびろ液中のTOCいずれも高くなった。また、汚泥変換率が上昇した比較例3の結果も考慮すれば、分離膜の目詰まりの抑制及び汚泥発生量の低減の点で、BOD汚泥負荷を0.05〜0.1の範囲、及びSRTを10〜15の範囲、MLSSを3000〜5000の範囲とすることが好ましい。   In Example 3, as shown in Table 8, the treated water BOD was less than 10 mg / L, the treated water TOC was 17 mg / L, and the sludge conversion rate was 0.207 (g-MLSS / g-BOD). Further, in Example 3, as can be seen from FIG. 9, no increase in the membrane suction pressure was observed for 5 days of operation days, and stable operation could be performed. Furthermore, in Example 3, as can be seen from FIG. 10, the TOC in the filtrate obtained by filtering the sludge in the second biological treatment tank was stable at about 120 mg / L for 5 days of operation days . However, in Example 3 in which SRT and MLSS were higher than Example 1, both the increase in membrane suction pressure and the TOC in the filtrate were higher. Further, considering the result of Comparative Example 3 in which the sludge conversion rate is increased, the BOD sludge load is in the range of 0.05 to 0.1 in terms of suppression of clogging of separation membrane and reduction of sludge generation amount, and It is preferable to make SRT into the range of 10-15, and to make MLSS into the range of 3000-5000.

1〜3 排水処理装置、10a,10b,10c 排水流入ライン、12 第1生物処理槽、14,14a,14b第2生物処理槽、16 分離膜モジュール、18 処理水排出ライン、20 処理水排出ポンプ、22 汚泥排出ポンプ、24 汚泥排出ライン、26 担体、28a,28b ブロワ、30a,30b 空気流入ライン、32 汚泥返送ポンプ、34 汚泥返送ライン、36 排水バイパスライン。   1 to 3 Waste water treatment apparatus, 10a, 10b, 10c Waste water inflow line, 12 first biological treatment tank, 14, 14a, 14b second biological treatment tank, 16 separation membrane modules, 18 treated water discharge line, 20 treated water discharge pump 22, 22 sludge discharge pumps, 24 sludge discharge lines, 26 carriers, 28a, 28b blowers, 30a, 30b air inflow lines, 32 sludge return pumps, 34 sludge return lines, 36 drainage bypass lines.

Claims (4)

有機物含有排水を担体の存在下で生物処理する第1生物処理槽と、
前記第1生物処理槽で処理された第1処理水を生物処理する第2生物処理槽、及び前記第2生物処理槽で処理された第2処理水を分離膜により汚泥と第3処理水とに分離する膜分離モジュールを有する膜分離生物処理ユニットと、
前記第2生物処理槽内の汚泥を引き抜く汚泥引き抜き手段と、を備え、
前記汚泥引き抜き手段は、前記第2生物処理槽での溶解性BOD汚泥負荷が0.05kg−BOD/kg−MLSS/d以上であって0.10kg−BOD/kg−MLSS/d未満で運転されるように、且つ前記第2生物処理槽内の汚泥滞留時間(SRT)が10〜15日の範囲となるように前記第2生物処理槽内の汚泥を引き抜き、当該汚泥を前記第1生物処理槽に返送することなく、前記膜分離生物処理ユニット外へ排出することを特徴とする排水処理装置。
A first biological treatment tank for biological treatment of organic matter-containing wastewater in the presence of a carrier;
A second biological treatment tank for biological treatment of the first treated water treated in the first biological treatment tank, and a second treated water treated in the second biological treatment tank with a separation membrane using sludge and third treated water A membrane separation biological processing unit having a membrane separation module for separating into
Sludge extraction means for extracting the sludge in the second biological treatment tank;
The sludge extracting means is operated at a soluble BOD sludge load of 0.05 kg-BOD / kg-MLSS / d or more and less than 0.10 kg-BOD / kg-MLSS / d in the second biological treatment tank. And the sludge in the second biological treatment tank is extracted so that the sludge retention time (SRT) in the second biological treatment tank is in the range of 10 to 15 days, and the sludge is subjected to the first biological treatment The waste water treatment apparatus characterized in that the waste water is discharged to the outside of the membrane separation biological treatment unit without being returned to the tank.
前記汚泥引き抜き手段は、前記第2生物処理槽内の汚泥濃度が3000〜5000mg/Lの範囲となるように、前記第2生物処理槽内の汚泥を引き抜くことを特徴とする請求項1記載の排水処理装置。 The sludge withdrawal means, as sludge concentration in the second biological treatment tank is range of 3000~5000mg / L, according to claim 1, wherein the withdrawal of the sludge of the second biological treatment tank Waste water treatment equipment. 有機物含有排水を担体の存在下で生物処理する第1生物処理工程と、
前記生物処理手段で処理された第1処理水を生物処理する第2生物処理工程、及び前記第2生物処理工程で処理された第2処理水を分離膜により汚泥と第3処理水とに分離する膜分離工程を有する膜分離生物処理工程と、
前記第2生物処理工程で生成した汚泥を引き抜く汚泥引き抜き工程と、を備え、
前記汚泥引き抜き工程では、第2生物処理工程における溶解性BOD汚泥負荷が0.05kg−BOD/kg−MLSS/d以上であって0.10kg−BOD/kg−MLSS/d未満で運転されるように、且つ前記第2生物処理工程における汚泥滞留時間(SRT)が10〜15日の範囲となるように前記第2生物処理工程で生成した汚泥を引き抜き、当該汚泥を前記第1生物処理工程に返送することなく、前記膜分離生物処理工程外へ排出することを特徴とする排水処理方法。
A first biological treatment step of biological treatment of organic matter-containing wastewater in the presence of a carrier;
A second biological treatment step of biological treatment of the first treated water treated by the biological treatment means, and separation of the second treated water treated in the second biological treatment step into sludge and third treated water by a separation membrane A membrane separation biological treatment step having a membrane separation step;
And d) a sludge extraction step of extracting sludge generated in the second biological treatment step;
In the sludge extraction step, the soluble BOD sludge load in the second biological treatment step is 0.05 kg-BOD / kg-MLSS / d or more and less than 0.10 kg-BOD / kg-MLSS / d The sludge generated in the second biological treatment step is extracted so that the sludge retention time (SRT) in the second biological treatment step is in the range of 10 to 15 days, and the sludge is used as the first biological treatment step. The waste water treatment method characterized in that the waste water is discharged out of the membrane separation biological treatment process without being returned.
前記汚泥引き抜き工程では、前記第2生物処理工程における汚泥濃度が3000〜5000mg/Lの範囲となるように、前記第2生物処理工程で生成した汚泥を引き抜くことを特徴とする請求項3記載の排水処理方法。 In the sludge drawing process, the so sludge concentration becomes range of 3000~5000mg / L in the second biological treatment process, according to claim 3, wherein the withdrawal of the sludge generated in the second biological treatment process Wastewater treatment method.
JP2014265999A 2014-12-26 2014-12-26 Waste water treatment apparatus and waste water treatment method Active JP6530188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014265999A JP6530188B2 (en) 2014-12-26 2014-12-26 Waste water treatment apparatus and waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014265999A JP6530188B2 (en) 2014-12-26 2014-12-26 Waste water treatment apparatus and waste water treatment method

Publications (2)

Publication Number Publication Date
JP2016123920A JP2016123920A (en) 2016-07-11
JP6530188B2 true JP6530188B2 (en) 2019-06-12

Family

ID=56356851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014265999A Active JP6530188B2 (en) 2014-12-26 2014-12-26 Waste water treatment apparatus and waste water treatment method

Country Status (1)

Country Link
JP (1) JP6530188B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1009495B (en) * 2017-06-01 2019-03-29 Αριστοτελειο Πανεπιστημιο Θεσσαλονικης-Ειδικος Λογαριασμος Κονδυλιων Ερευνας Method for fouling prevention of membranes in membrane bioreactors
JP2019048254A (en) * 2017-09-08 2019-03-28 オルガノ株式会社 Method and device for treating organic wastewater
JP2023180565A (en) * 2022-06-09 2023-12-21 オルガノ株式会社 Raw water treatment method and raw water treatment apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667583B2 (en) * 1999-11-19 2011-04-13 株式会社クラレ Waste water treatment apparatus and waste water treatment method
TW500698B (en) * 1999-11-19 2002-09-01 Kuraray Co Apparatus and method for waste water treatment
JP4314984B2 (en) * 2003-12-03 2009-08-19 栗田工業株式会社 Organic wastewater treatment method and apparatus
JP4830307B2 (en) * 2005-02-01 2011-12-07 東レ株式会社 Method and apparatus for processing soluble organic substance-containing liquid
JP5772337B2 (en) * 2010-07-21 2015-09-02 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
JP2012206040A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Treatment method and treatment apparatus of organic matter containing wastewater
JP5817177B2 (en) * 2011-03-30 2015-11-18 栗田工業株式会社 Organic wastewater treatment equipment
JP2012254412A (en) * 2011-06-09 2012-12-27 Kurita Water Ind Ltd Method and apparatus for biologically treating organic wastewater
JP2014213265A (en) * 2013-04-25 2014-11-17 栗田工業株式会社 Method and device for biologically treating organic matter-containing water

Also Published As

Publication number Publication date
JP2016123920A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
Mutamim et al. Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review
JP5315587B2 (en) Apparatus and method for treating wastewater containing organic matter
JP4874231B2 (en) Water treatment system
KR101467476B1 (en) Method for biological processing of water containing organic material
JP2008246386A (en) Organic wastewater treatment apparatus
JP2008264772A (en) Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
JP5879901B2 (en) Organic wastewater recovery processing apparatus and recovery processing method
JP4997724B2 (en) Organic wastewater treatment method
CN104129887A (en) Reclaimed water recycling system based on membrane bioreactor
JP6530188B2 (en) Waste water treatment apparatus and waste water treatment method
CN102209689A (en) Water treatment device and water treatment method
US20220234930A1 (en) Method for Purifying Contaminated Water
JP2007289847A (en) Raw tap water purification method and its apparatus
JP5307066B2 (en) Waste water treatment method and waste water treatment system
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
WO2003043941A1 (en) Apparatus and method for treating organic waste water
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP5105608B2 (en) Waste water treatment system and operation method thereof
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP2005144290A (en) Method for controlling mlss
JP2009189943A (en) Water treatment method and apparatus
JP5466864B2 (en) Water treatment apparatus and water treatment method
CN211004968U (en) Electroplating wastewater zero discharge device
JP2008238042A (en) Method for reducing amount of organic sludge
JP4102681B2 (en) Water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190516

R150 Certificate of patent or registration of utility model

Ref document number: 6530188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250