JP6528476B2 - Coating apparatus and coating method - Google Patents

Coating apparatus and coating method Download PDF

Info

Publication number
JP6528476B2
JP6528476B2 JP2015048772A JP2015048772A JP6528476B2 JP 6528476 B2 JP6528476 B2 JP 6528476B2 JP 2015048772 A JP2015048772 A JP 2015048772A JP 2015048772 A JP2015048772 A JP 2015048772A JP 6528476 B2 JP6528476 B2 JP 6528476B2
Authority
JP
Japan
Prior art keywords
application
liquid
droplet
coating
application member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015048772A
Other languages
Japanese (ja)
Other versions
JP2015192996A (en
Inventor
内田 拓也
拓也 内田
智史 寺嶋
智史 寺嶋
村田 真一
真一 村田
祐樹 楠浦
祐樹 楠浦
高橋 亨
亨 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2015048772A priority Critical patent/JP6528476B2/en
Publication of JP2015192996A publication Critical patent/JP2015192996A/en
Application granted granted Critical
Publication of JP6528476B2 publication Critical patent/JP6528476B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は塗布装置及び塗布方法に関する。   The present invention relates to a coating apparatus and a coating method.

塗装装置などの塗布装置として、液体吐出ヘッド(液滴吐出ヘッド)などの液体吐出手段(液滴吐出手段)を備えるものが知られている。   As a coating apparatus such as a coating apparatus, one including a liquid discharge means (droplet discharge means) such as a liquid discharge head (droplet discharge head) is known.

例えば、回転する円筒状の被塗布物に対し回転軸である円筒中心方向に向かって塗液を吐出し、被塗布物表面に塗液の液滴が重なりを持つように塗布するものが知られている(特許文献1)。   For example, it is known that the coating liquid is discharged toward the center of the cylinder, which is the axis of rotation, to the rotating cylindrical object to be coated, and the droplets of the coating liquid are applied to the surface of the object to overlap. (Patent Document 1).

特開平11−19554公報Japanese Patent Application Publication No. 11-19554

しかしながら、特許文献1に開示の構成にあっては、より高速での塗布を実現するために被塗布物の回転数を上げると、回転体の表面に回転方向の気流が生じ、その気流により被塗布物に着弾しない液滴が発生してその部位に塗布ムラが生じてしまう。このために塗布スピードを上げて生産性を上げることができないという課題がある。   However, in the configuration disclosed in Patent Document 1, when the number of rotations of the object to be coated is increased to realize application at higher speed, an air flow in the rotation direction is generated on the surface of the rotating body, and the air flow is generated by the air flow. Droplets that do not land on the coated material are generated, and coating unevenness occurs on the site. Therefore, there is a problem that the application speed can not be increased to increase the productivity.

本発明は上記の課題に鑑みてなされたものであり、塗布ムラを抑えたまま、塗布作業の生産性を向上させることを目的とする。   This invention is made in view of said subject, and it aims at improving productivity of application | coating operation, suppressing application | coating nonuniformity.

上記の課題を解決するため、本発明に係る塗布装置は、
被塗布部材に対して塗布液の液滴を吐出する液体吐出手段を備え、
前記液体吐出手段は、液滴吐出方向が、前記液滴を吐出するノズルと前記被塗布部材の回転中心とを結ぶ直線と前記被塗布部材の塗布面が交差する点よりも前記被塗布部材の回転方向上流側に向かう方向になる状態で配置され、
前記液体吐出手段は、前記液滴が前記被塗布部材の回転中心に対する法線上から着弾する位置に配置されている
構成とした。
To solve the above problem, a coating apparatus according to the present onset Ming,
Liquid discharge means for discharging droplets of the application liquid to the application member;
The liquid discharge means is a member for applying the liquid droplet from the point where the droplet discharge direction intersects the straight line connecting the nozzle that discharges the droplet and the rotation center of the member to be coated and the application surface of the member to be coated. It is arranged in a state where it is directed to the upstream side in the rotational direction,
The liquid discharge means is disposed at a position where the liquid droplet lands on a normal to the rotation center of the application member.

本発明によれば、塗布ムラを抑えたまま、塗布作業の生産性を向上させることができる。   According to the present invention, the productivity of the coating operation can be improved while suppressing the coating unevenness.

本発明の一実施形態の説明に供する被塗布部材の回転中心方向から見た模式的説明図である。It is a typical explanatory view seen from the rotation center direction of the application member in which it uses for explanation of one embodiment of the present invention. 同実施形態の作用説明に供する説明図である。FIG. 7 is an explanatory view provided to explain an operation of the embodiment. 同じく作用説明に供する説明図である。FIG. 同じく作用説明に供する説明図である。FIG. 同じく作用説明に供する説明図である。FIG. 同実施形態との比較例の説明に供する説明図である。It is an explanatory view provided for explanation of a comparative example with the embodiment. 同じく作用説明に供する説明図である。FIG. 同実施形態との他の比較例の説明に供する説明図である。FIG. 21 is an explanatory view serving to explain another comparative example with the embodiment. 同じく作用説明に供する説明図である。FIG. 本発明に係る塗布装置の模式的説明図である。It is a schematic explanatory drawing of the coating device which concerns on this invention. 同塗布装置の可動部の拡大説明図である。It is an expansion explanatory view of the movable part of the coating device. 滴測定手段の配置の説明に供する模式的説明図である。It is a typical explanatory view given to explanation of arrangement of a drop measurement means. 液体吐出ヘッドの一例の模式的説明図である。FIG. 2 is a schematic explanatory view of an example of a liquid discharge head. 同ヘッドのノズル板の平面説明図である。It is plane explanatory drawing of the nozzle plate of the head. 同じく流路板の平面説明図である。It is a plane explanatory view of a channel board similarly. 被塗装部材の回転速度設定処理の説明に供するフロー図である。FIG. 6 is a flowchart for explaining the rotational speed setting process of the member to be coated; 塗布動作に係る制御(処理)の説明に供するフロー図である。FIG. 6 is a flowchart for describing control (process) related to a coating operation. 図17に続く説明に供するフロー図である。FIG. 18 is a flow chart provided for explanation following FIG. 17; 図17の塗布動作を行ったときの塗布状態を説明する説明図である。FIG. 18 is an explanatory view for explaining a coating state when the coating operation of FIG. 17 is performed. 同じく塗布状態を説明する説明図である。It is explanatory drawing which similarly demonstrates an application | coating state. 同じく塗布状態を説明する説明図である。It is explanatory drawing which similarly demonstrates an application | coating state. 同じく塗布状態を説明する説明図である。It is explanatory drawing which similarly demonstrates an application | coating state. 具体的実施例1及び比較例1、2の説明に供するヘッド仕様の説明図である。It is explanatory drawing of the head specification used for description of specific Example 1 and Comparative Examples 1 and 2. FIG. 実施例1及び比較例1、2のヘッドと被塗布部材の配置並びに回転方向の説明に供する説明図である。It is an explanatory view which is provided for explanation of arrangement of a head of Example 1 and comparative examples 1 and 2 and a member to be coated, and a rotation direction. 実施例1の作用説明に供する説明図である。FIG. 7 is an explanatory view provided for explaining the operation of the first embodiment. 比較例2の作用説明に供する説明図である。FIG. 14 is an explanatory view for describing an operation of comparative example 2;

以下、本発明の実施形態について添付図面を参照して説明する。本発明の一実施形態について図1を参照して説明する。図1は同実施形態の説明に供する被塗布部材の回転中心方向から見た模式的説明図である。   Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. One embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic explanatory view seen from the rotation center direction of the application member to be used for explaining the embodiment.

本実施形態の塗布装置は、被塗布部材51の周面に塗布液の液滴61を吐出する液体吐出手段である液体吐出ヘッド1を備えている。被塗布部材51は、矢印方向(B方向)に回転される円柱状(円筒状を含む)部材である。   The coating apparatus of the present embodiment is provided with a liquid discharge head 1 which is a liquid discharge means for discharging droplets 61 of a coating liquid on the circumferential surface of a member to be coated 51. The application member 51 is a cylindrical (including cylindrical) member that is rotated in the arrow direction (direction B).

ここで、液体吐出ヘッド1は、液滴吐出方向Aが、液滴61を吐出するノズル40と被塗布部材51の回転中心Oとを結ぶ直線aが被塗布部材51の周面(塗布面)と交差する点よりも、被塗布部材51の回転方向上流側に向かう方向になる状態で配置されている。 Here, in the liquid discharge head 1, a straight line a connecting the nozzle 40 for discharging the droplet 61 and the rotation center O of the application member 51 is the circumferential surface (application surface) of the application member 51. Are arranged in a direction toward the upstream side in the rotational direction of the application member 51 from the point of intersection thereof.

また、液体吐出ヘッド1は、滴吐出方向が重力方向(鉛直方向)で真下に向かう方向になる状態で配置されている。   In addition, the liquid discharge head 1 is disposed in a state in which the droplet discharge direction is a direction directed downward in the gravity direction (vertical direction).

また、液体吐出ヘッド1は、被塗布部材51の回転方向を時計回り方向とするとき、ノズル40が第2象限に配置されている。このとき、液体吐出ヘッド1は、ノズル40が、重力方向で被塗布部材51の最も高い位置c又は位置cよりも低い位置になる。   Further, in the liquid discharge head 1, when the rotation direction of the application member 51 is clockwise, the nozzle 40 is disposed in the second quadrant. At this time, in the liquid discharge head 1, the nozzle 40 is at a position lower than the highest position c or the position c in the direction of gravity.

また、液体吐出ヘッド1は、液滴61が被塗布部材51の回転中心Oに対する法線d上から着弾する位置に配置されている。ここでは、液滴61の滴吐出速度と被塗布部材51の回転速度、及び液体吐出ヘッド1の位置を、液滴61が法線d上から着弾するように設定している。   In addition, the liquid discharge head 1 is disposed at a position where the droplet 61 lands from above the normal line d to the rotation center O of the application member 51. Here, the droplet discharge speed of the droplet 61, the rotation speed of the application member 51, and the position of the liquid discharge head 1 are set so that the droplet 61 lands on the normal line d.

次に、このように構成した実施形態の作用について説明する。   Next, the operation of the embodiment configured as described above will be described.

まず、液体吐出ヘッド1から吐出された液滴61が被塗布部材51の周面(塗布面)に着弾完了するまでの液滴61の挙動について説明する。   First, the behavior of the droplet 61 discharged from the liquid discharge head 1 until the droplet 61 lands on the circumferential surface (application surface) of the application member 51 will be described.

液体吐出ヘッド1のノズル40から吐出された液滴61は、ノズル40が形成された面に垂直な方向(図1では鉛直方向下向き)に飛翔する。   The droplets 61 ejected from the nozzles 40 of the liquid ejection head 1 fly in a direction perpendicular to the surface on which the nozzles 40 are formed (vertically downward in FIG. 1).

このとき、被塗布部材51の回転によって被塗布部材51の塗装面近傍には回転方向の気流が生じている。   At this time, an air flow in the rotational direction is generated in the vicinity of the coated surface of the application member 51 due to the rotation of the application member 51.

これにより、液滴61が被塗布部材51の塗装面に近づいて行くに従って、被塗布部材51の回転によって生じている上記気流により、図1に太い矢印で示す気流方向に徐々に流される。   As a result, as the droplet 61 approaches the coating surface of the application member 51, the air flow generated by the rotation of the application member 51 gradually flows in the air flow direction indicated by a thick arrow in FIG.

このとき、ノズル40からの吐出方向が被塗布部材51の回転中心Oに向けられていたとすると、気流に流された液滴は被塗布部材51から遠ざかる方向に流される。そして気流の速度がある速度以上になると、被塗布部材51上に着弾しなくなる。   At this time, assuming that the discharge direction from the nozzle 40 is directed to the rotation center O of the application member 51, the droplets flowed in the air flow are moved away from the application member 51. When the speed of the air flow is equal to or higher than a certain speed, the air does not land on the application member 51.

実際の液滴には、滴速度や滴量にばらつきがあるため、気流が速くなるにつれて徐々に着弾抜けが増えて塗布ムラの原因となる。   Actual droplets have variations in droplet velocity and droplet amount, so as the air flow becomes faster, the amount of landing drops gradually increases, which causes application unevenness.

これに対し、図1に示した本実施形態の塗布装置では、液滴吐出方向Aが、液滴61を吐出するノズル40と被塗布部材51の回転中心Oとを結ぶ直線aが被塗布部材51の周面(塗布面)と交差する点よりも、被塗布部材51の回転方向上流側に向かう方向にしたことにより、液滴61が気流に流されたとしても液滴61はむしろ被塗布部材51に近づくことになって、液滴61の被塗布部材51への着弾率を格段に上がる。これにより、塗装ムラのない高速塗布が可能となる。 On the other hand, in the coating apparatus according to this embodiment shown in FIG. 1, the droplet discharge direction A is a straight line connecting the nozzle 40 for discharging the droplets 61 and the rotation center O of the application member 51 By setting the direction toward the upstream side in the rotational direction of the application member 51 with respect to the point intersecting with the circumferential surface (application surface) of 51, the droplet 61 is rather applied By approaching the member 51, the landing rate of the droplet 61 on the application member 51 is dramatically increased. This enables high-speed application without coating unevenness.

また、液体吐出ヘッド1は、滴吐出方向が重力方向(鉛直方向)で真下に向かう方向になる状態で配置されていることにより、気流の作用方向は重力に逆らう向きとなるので、より速い気流(被塗布部材51の回転速度)であったとしても、着弾率を維持することができる。   In addition, since the liquid discharge head 1 is disposed in a state in which the droplet discharge direction is directed downward in the gravity direction (vertical direction), the action direction of the air flow is against the gravity, so that the air flow is faster. Even if (the rotational speed of the application member 51), the landing rate can be maintained.

また、液体吐出ヘッド1は、ノズル40が、重力方向で被塗布部材51の最も高い位置c又は位置cよりも低い位置にすることにより、液滴61を吐出位置(ノズル40)よりも上方に飛ばすほどの強い気流でない限りは、確実に被塗布部材51に着弾することができる。   Further, the liquid discharge head 1 sets the droplet 61 above the discharge position (nozzle 40) by setting the nozzle 40 at a position lower than the highest position c or position c of the application member 51 in the gravity direction. As long as the air flow is not strong enough to fly, the ink can be landed on the application member 51 with certainty.

また、液体吐出ヘッド1から液滴61を吐出するときに、図1に示すように、微小なミスト62が発生してしまうことがあるが、軽量であるこのミスト62は被塗布部材51の回転によって生じる気流により流され、被塗布部材51の塗布面に着弾することなく吹き飛ばされる。これにより、液滴61を確実に着弾させ、ミスト62の着弾はさせないことにより、均一な塗装が可能となる。   In addition, when the droplet 61 is discharged from the liquid discharge head 1, as shown in FIG. 1, a minute mist 62 may be generated, but the light weight mist 62 is a rotation of the application member 51. It is made to flow by the air flow which arises by this, and is blown off, without landing on the application surface of application member 51. As a result, the droplets 61 can be landed reliably, and the mist 62 can not be landed, thereby enabling uniform coating.

さらに、ここでは気流によって流された液滴61が法線方向から被塗布部材51の塗装面に着弾するように液体吐出ヘッド1を配置している。   Furthermore, here, the liquid discharge head 1 is disposed such that the droplets 61 made to flow by the air flow land on the coated surface of the application member 51 in the normal direction.

これにより、図2に示すように、液滴61が塗装面に対してほぼ垂直に液滴61が接触を始めると同時に、被塗布部材51が回転しているため、図3に示すように、被塗布部材51の回転方向に薄く引き伸ばされていく。そして、図4及び図5に示すように、液滴61の着弾が完了したときには、塗布面でほぼ均一な厚みに薄く引き延ばされた塗布滴67とすることができる。   Thereby, as shown in FIG. 2, the droplet 61 starts contacting the droplet 61 almost perpendicularly to the coated surface, and at the same time the coated member 51 is rotated, as shown in FIG. It is thinly stretched in the rotational direction of the application member 51. Then, as shown in FIG. 4 and FIG. 5, when the landing of the droplets 61 is completed, it is possible to make the coated droplet 67 thinly drawn to a substantially uniform thickness on the coating surface.

これに対して、液滴61が被塗布部材51の法線方向から塗布面に着弾しない場合の着弾状態について図6ないし図9を参照して説明する。   On the other hand, the landing state in the case where the droplet 61 does not land on the application surface in the normal direction of the application member 51 will be described with reference to FIGS. 6 to 9.

前記実施形態のように液体吐出ヘッド1を配置した場合であっても、例えば被塗布部材51の回転速度が速い(あるいは、滴速度が遅い)ときには、液滴61の飛翔経路は図6に示すようになる。すなわち、液滴61は、塗布面に対して回転方向上流側から下流側に向かって鋭角で侵入して着弾することになる。   Even when the liquid discharge head 1 is disposed as in the embodiment, for example, when the rotational speed of the application member 51 is high (or the drop speed is low), the flight path of the droplet 61 is shown in FIG. It will be. That is, the droplet 61 intrudes at an acute angle from the upstream side to the downstream side in the rotational direction with respect to the application surface and lands there.

このとき、塗布面の移動方向に対して塗布面と液滴61の速度差が小さくなるため、図7に示すように、着弾した液滴61の引き伸ばしの程度が小さくなり、膜厚が厚くなって、均一な薄膜を形成することは難しくなる。   At this time, since the velocity difference between the application surface and the droplet 61 is small in the moving direction of the application surface, as shown in FIG. 7, the degree of stretching of the landed droplet 61 becomes small and the film thickness becomes thick. It becomes difficult to form a uniform thin film.

一方、例えば被塗布部材51の回転速度が遅い(あるいは、滴速度が速い)ときには、液滴61の飛翔経路は図8に示すようになる。すなわち、液滴61は、塗布面に対して回転方向下流側から上流側に向かって鋭角で侵入して着弾することになる。   On the other hand, for example, when the rotational speed of the application member 51 is low (or the drop speed is high), the flight path of the droplet 61 is as shown in FIG. That is, the droplet 61 intrudes at an acute angle from the downstream side to the upstream side in the rotational direction with respect to the application surface and lands there.

このとき液滴61の飛翔方向と被塗布部材51の回転方向はほぼ逆方向となり、両者の相対速度は極めて大きくなる。このような状態で被塗布部材51に着弾した液滴61は、図9に示すように着弾形状が歪んでしまい膜厚の均一性が若干低下してしまう。   At this time, the flight direction of the droplets 61 and the rotation direction of the application member 51 are substantially opposite to each other, and the relative velocity between them becomes extremely large. The droplet 61 landed on the application member 51 in such a state is distorted in the landing shape as shown in FIG. 9 and the uniformity of the film thickness is slightly reduced.

また、被塗布部材51の回転速度を遅くした場合は、被塗布部材51周囲の気流も小さくなるため、液滴61を吐出するときに生じたミスト62が塗布面に着弾してしまうことがある。この場合、膜厚の均一性が更に低下することになる。   In addition, when the rotational speed of the application member 51 is reduced, the air flow around the application member 51 also decreases, and therefore the mist 62 generated when discharging the droplet 61 may land on the application surface. . In this case, the uniformity of the film thickness will be further reduced.

以上のように、液滴61が法線方向から被塗布部材51の塗装面に着弾するようにすることで、被塗布部材51への均一な薄膜塗布できるようになる。   As described above, when the droplets 61 land on the coated surface of the application member 51 in the normal direction, uniform thin film application to the application member 51 can be performed.

次に、本発明に係る塗布装置について図10ないし図12を参照して説明する。図10は同塗布装置の模式的説明図、図11は同塗布装置の可動部の拡大説明図、図12は滴測定手段の配置の説明に供する模式的説明図である。   Next, a coating apparatus according to the present invention will be described with reference to FIGS. 10 to 12. FIG. 10 is a schematic explanatory view of the coating apparatus, FIG. 11 is an enlarged explanatory view of a movable part of the coating apparatus, and FIG. 12 is a schematic explanatory view for explaining the arrangement of the drop measuring means.

液体吐出ヘッド1には、塗装液を貯留する図示しない液体タンクから塗布液が供給される。この液体吐出ヘッド1に対応してトリガセンサ58が配置されている。   The coating liquid is supplied to the liquid discharge head 1 from a liquid tank (not shown) that stores the coating liquid. A trigger sensor 58 is disposed corresponding to the liquid discharge head 1.

ワークステージ54は、液体吐出ヘッド1に対して矢印方向に往復移動可能に配置されている。   The work stage 54 is disposed to be reciprocally movable in the arrow direction with respect to the liquid discharge head 1.

ワークステージ54は、ステージ57上に、被塗布部材51を軸心方向両端部で支持する回転可能なホルダ56、56と、ホルダ56を介して被塗布部材51を回転させる駆動モータ57とを備えている。   The work stage 54 includes, on the stage 57, rotatable holders 56, 56 for supporting the application member 51 at both axial ends, and a drive motor 57 for rotating the application member 51 via the holder 56. ing.

また、ステージ57の底面側には、トリガセンサ58によって検知されるセンサドグ52、53が設けられている。トリガセンサ58でセンサドグ52、53のエッジ52R,52L,53R,53Lを検知して塗布開始及び塗布終了を制御している。   Further, on the bottom side of the stage 57, sensor dogs 52 and 53 detected by the trigger sensor 58 are provided. The trigger sensor 58 detects the edges 52R, 52L, 53R, 53L of the sensor dogs 52, 53 to control the application start and the application end.

また、図12に示すように、液体吐出ヘッド1から吐出された液滴61の飛翔速度と方向を測定するカメラ70及び図示しない照明より構成される液滴測定手段を備えている。   Further, as shown in FIG. 12, the camera includes a camera 70 for measuring the flying speed and direction of the droplets 61 discharged from the liquid discharge head 1 and a droplet measuring means constituted by illumination not shown.

次に、液体吐出ヘッドの一例について図13ないし図15を参照して説明する。図13は同液体吐出ヘッドの模式的説明図、図14は同ヘッドのノズル板の平面説明図、図15は同じく流路板の平面説明図である。   Next, an example of the liquid discharge head will be described with reference to FIG. 13 to FIG. FIG. 13 is a schematic explanatory view of the liquid discharge head, FIG. 14 is a plan explanatory view of a nozzle plate of the same head, and FIG. 15 is a plan explanatory view of a flow path plate.

液体吐出ヘッド1は、駆動ユニット3と、この駆動ユニット3に接合した液室ユニット2とを備えている。   The liquid discharge head 1 includes a drive unit 3 and a liquid chamber unit 2 joined to the drive unit 3.

駆動ユニット3は、基板15上に複数の圧電素子駆動部(以下駆動部)14a及び支柱部14bを交互に配置してなり、これらの駆動部14a及び支柱部14bは所定の間隔をおいて基板15に接合されている。   The drive unit 3 is formed by alternately arranging a plurality of piezoelectric element drive units (hereinafter referred to as drive units) 14a and columns 14b on a substrate 15, and the drivers 14a and columns 14b are spaced apart from each other by a predetermined distance. It is joined to 15.

液室ユニット2は、液滴61を吐出する複数のノズル40を有するノズル板11と、ノズル40が通じる個別液室30が形成されている流路板12と、個別液室30に対応し、かつ駆動ユニット3の駆動部14aの振動を個別液室30に伝える振動板部材13から構成されている。   The liquid chamber unit 2 corresponds to a nozzle plate 11 having a plurality of nozzles 40 for discharging the droplets 61, a flow path plate 12 in which an individual liquid chamber 30 to which the nozzles 40 communicate is formed, and an individual liquid chamber 30; In addition, the diaphragm unit 13 is configured to transmit the vibration of the drive unit 14 a of the drive unit 3 to the individual liquid chamber 30.

これらの液室ユニット2を構成するノズル板11、流路板12、振動板13は、流路板上面に接着剤16を塗布し、接着剤16を介して高い精度で接合される。   The nozzle plate 11, the flow path plate 12, and the diaphragm 13 that constitute the liquid chamber unit 2 apply the adhesive 16 on the upper surface of the flow path plate and are joined with high accuracy via the adhesive 16.

また、駆動ユニット3の各圧電素子駆動部14a及び支柱部14b上面に接着剤16を介して液室ユニット2を高い精度で接着接合している。   In addition, the liquid chamber unit 2 is bonded with high precision to the upper surfaces of the piezoelectric element drive portions 14 a and the support portions 14 b of the drive unit 3 via the adhesive 16.

この液体吐出ヘッド1は、図示しない貯留タンクから塗布液を供給して個別液室30に充填し、駆動部14aを選択的に駆動することによって、ノズル40から液滴61が吐出される。   The liquid discharge head 1 supplies the application liquid from a storage tank (not shown) to fill the individual liquid chamber 30 and selectively drives the drive unit 14 a to discharge droplets 61 from the nozzle 40.

ここで、液体吐出ヘッド1は、ワークステージ54に保持された被塗布部材51に対して、前述した図1に示すように、被塗布部材51の回転中心軸に直交する断面における象限において第2象限に配置されている。これにより、液体吐出ヘッド1の複数のノズル40が配列されたノズル列は、被塗布部材51の回転中心軸の斜め上方に位置し、また、被塗装部材の回転中心軸に沿う方向では回転中心軸に平行であり、更に、液滴61の吐出方向が鉛直下向きになる状態で配置されている。   Here, as shown in FIG. 1 described above with respect to the application target member 51 held by the work stage 54, the liquid discharge head 1 is second in a quadrant in a cross section orthogonal to the rotation center axis of the application target member 51. It is arranged in the quadrant. Thus, the nozzle array in which the plurality of nozzles 40 of the liquid discharge head 1 are arranged is positioned obliquely above the rotation center axis of the application member 51, and the rotation center in the direction along the rotation center axis of the application member It is parallel to the axis, and is further disposed in a state where the discharge direction of the droplets 61 is vertically downward.

次に、このように構成した塗布装置における塗布動作について説明する。   Next, the coating operation in the coating apparatus configured as described above will be described.

まず、液体吐出ヘッド1から吐出させた液滴61を被塗布部材51の塗装領域65に垂直着弾させる制御に必要な圧電素子駆動部14aに印加する駆動波形を設定する。   First, a drive waveform to be applied to the piezoelectric element drive unit 14 a necessary for control of vertically depositing the droplets 61 discharged from the liquid discharge head 1 on the coated area 65 of the application member 51 is set.

液滴61として吐出する塗布液は、生成後経過時間により粘度が変化する。そのため、一定の滴速度及び滴サイズで液滴61を吐出するためには、塗布液生成後の経過時間に応じて、圧電素子駆動部14aに印加する駆動波形を調整する(例えば駆動電圧を高くする)ことが必要になる。   The viscosity of the coating liquid discharged as droplets 61 changes with the elapsed time after generation. Therefore, in order to discharge the droplets 61 at a constant droplet velocity and droplet size, the drive waveform applied to the piezoelectric element drive unit 14a is adjusted according to the elapsed time after the formation of the coating solution (for example, the drive voltage is increased Needs to be

そこで、予め実験によって、塗布液生成後の経過時間と駆動波形のデータをテーブル化して図示しない制御部の記憶手段に格納保持している。   Therefore, the elapsed time after the generation of the coating liquid and the data of the drive waveform are tabulated in advance and stored and held in storage means of a control unit (not shown).

次に、被塗装部材の回転速度設定処理について図16のフロー図を参照して説明する。   Next, the rotational speed setting process of the member to be coated will be described with reference to the flow chart of FIG.

まず、回転速度設定に使用するダミーの被塗布部材51をワークステージ54にセットし、塗布装置の最高速度でモータ55により回転駆動する。   First, the dummy application member 51 to be used for setting the rotational speed is set on the work stage 54 and rotationally driven by the motor 55 at the maximum speed of the coating apparatus.

そして、塗布液粘度に相関する塗布液生成後の経過時間に対応する駆動波形及び一定の駆動周波数で液体吐出ヘッド1を駆動する。これにより、液体吐出ヘッド1から一定の滴吐出速度及び滴サイズにて、液滴61が一定周波数の連続して吐出される。   Then, the liquid discharge head 1 is driven with a drive waveform and a constant drive frequency corresponding to the elapsed time after the generation of the coating liquid, which correlates with the viscosity of the coating liquid. As a result, the droplets 61 are continuously ejected from the liquid ejection head 1 at a constant frequency and at a constant droplet ejection speed and droplet size.

このとき、吐出された液滴61の着弾方向をカメラ70により測定する。液滴61の着弾方向が塗布面に対して垂直(法線方向)でなければ、ダミーの被塗布部材51の回転速度を予め実験等で求めている一定速度分下げる。   At this time, the impact direction of the discharged droplets 61 is measured by the camera 70. If the landing direction of the droplets 61 is not perpendicular (normal direction) to the application surface, the rotational speed of the dummy application member 51 is reduced by a constant speed obtained in advance by experiment or the like.

同様にして、液滴61の着弾方向測定と回転速度の低減を、液滴61の塗布面に対する着弾方向が塗布面に対して垂直になる(法線方向になる)まで繰り返す。   Similarly, the measurement of the impact direction of the droplet 61 and the reduction of the rotational speed are repeated until the impact direction of the droplet 61 with respect to the application surface is perpendicular to the application surface (normal direction).

そして、液滴61の着弾方向が塗布面に対して垂直になったときの回転速度を、図示しない制御部(コントローラ)の記憶手段に格納保存する。   Then, the rotational speed when the landing direction of the droplets 61 becomes perpendicular to the application surface is stored and stored in the storage unit of the control unit (controller) (not shown).

次に、塗布動作に係る制御(処理)について図17及び図18のフロー図並びに図19ないし図22の説明図も参照して説明する。   Next, control (process) related to the coating operation will be described with reference to the flow charts of FIG. 17 and FIG. 18 and the explanatory views of FIG. 19 to FIG.

被塗布部材51を塗布装置のワークステージ54にセットし、モータ55を駆動して被塗布部材51を上述したようにして設定して回転速度にて回転させる。   The application member 51 is set on the work stage 54 of the application apparatus, and the motor 55 is driven to set the application member 51 as described above and rotate it at the rotational speed.

そして、図示しない走査モータによって、ワークステージ54を予め実験等で求めて設定した設定速度にて、液体吐出ヘッド1によって液滴が吐出される位置への移動を開始する。   Then, the scanning motor (not shown) starts moving the work stage 54 to a position where droplets are discharged by the liquid discharge head 1 at a set speed determined and set in advance by experiments or the like.

その後、センサドグ52のエッジ52L(図11参照)が、トリガセンサ58によって検知されると、図19にも示すように、液体吐出ヘッド1の1番目のノズル40(40−1)から、塗布液生成後経過時間に対応した駆動波形及び一定の吐出周期にて液滴61の吐出を始める(図19参照)。   Thereafter, when the edge 52L (see FIG. 11) of the sensor dog 52 is detected by the trigger sensor 58, as shown in FIG. 19, the coating liquid from the first nozzle 40 (40-1) of the liquid ejection head 1 Discharge of the droplets 61 is started with a drive waveform corresponding to an elapsed time after generation and a fixed discharge cycle (see FIG. 19).

そして、ワークステージ54がノズル間距離分移動すると、上記吐出周期で2番目のノズル40(40−2)からの吐出を開始する。同様にして、ワークステージ54を一定の速度で移動しつつ、ノズル間距離分の移動毎に順次ノズル40からの吐出を開始する。このときの被塗布部材51の塗布面の状態の例を図20及び図21に示している。   Then, when the work stage 54 moves by the distance between the nozzles, discharge from the second nozzle 40 (40-2) is started in the discharge cycle. Similarly, while moving the work stage 54 at a constant speed, discharge from the nozzles 40 is sequentially started every movement of the distance between nozzles. An example of the state of the application surface of the application member 51 at this time is shown in FIG. 20 and FIG.

その後、センサドグ53のエッジ53Lがトリガセンサ58によって検知されると、1番目のノズル40(40−1)からの吐出を停止する。そして、ワークステージ54がノズル間距離分移動すると、2番目のノズル40(40−2)からの吐出を停止する。同様にして、ワークステージ54の一定速度での移動を継続したまま、全てのノズル40の吐出を停止する。このときの被塗布部材51の塗布面の状態の例を図22に示している。   Thereafter, when the edge 53L of the sensor dog 53 is detected by the trigger sensor 58, the discharge from the first nozzle 40 (40-1) is stopped. Then, when the work stage 54 moves by the distance between the nozzles, the discharge from the second nozzle 40 (40-2) is stopped. Similarly, the discharge of all the nozzles 40 is stopped while the movement of the work stage 54 at a constant speed is continued. An example of the state of the application surface of the application member 51 at this time is shown in FIG.

そして、ワークステージ54を往路での移動を停止する。これにより、図22(b)に示すように被塗布部材51に往路で塗布液が塗布される。   Then, the movement of the work stage 54 on the forward path is stopped. As a result, as shown in FIG. 22B, the application liquid is applied to the application member 51 in the forward path.

その後、ワークステージ54の上述した往路方向と逆方向(復路方向)への移動を開始し、センサドグ53のエッジ53R(図11参照)が、トリガセンサ58によって検知されると、最後のノズル40(40−N)から順次ノズル間距離分移動ごとに液滴61の吐出を開始する。そして、同様にして、センサドグ52のエッジ52Rがトリガセンサ58によって検知されると、最後のノズル40(40−N)から順次ノズル間距離分移動ごとに液滴61の吐出停止を行う。全てのノズル40からの吐出及び吐出停止を行った後、ワークステージ54の復路での移動を停止する。   Thereafter, the movement of the work stage 54 in the opposite direction (return direction) to the above-described forward direction is started, and the edge 53R (see FIG. 11) of the sensor dog 53 is detected by the trigger sensor 58. Starting from 40-N), the discharge of the droplets 61 is started each time the nozzle distance is moved. Then, similarly, when the edge 52R of the sensor dog 52 is detected by the trigger sensor 58, the ejection of the droplets 61 is sequentially stopped from the last nozzle 40 (40-N) for each movement of the inter-nozzle distance. After the discharge from all the nozzles 40 and the discharge stop are performed, the movement of the work stage 54 in the return path is stopped.

これにより、往路で塗布された塗布膜上に復路でも往路と同様に塗布が行われて、被塗布部材51の塗布領域65への塗布が完了する。   Thereby, the application is performed on the coating film applied in the forward pass as well as in the forward pass, and the application to the application region 65 of the application member 51 is completed.

そこで、被塗布部材51を塗布装置から取出す。   Therefore, the application member 51 is removed from the coating apparatus.

次に、本発明の作用効果について図23ないし図26も参照して説明する。   Next, the operation and effects of the present invention will be described with reference to FIGS.

下記の液体吐出ヘッド、塗布液、被塗布部材を組み込んで構成した実施例1及び比較例12,3の塗布装置によって、下記の塗布条件で被塗布部材に塗布を行なった。   Coating was performed on a member to be coated under the following coating conditions using the coating devices of Example 1 and Comparative Examples 12 and 3 in which the following liquid discharge head, coating liquid, and member to be coated were incorporated.

<液体吐出ヘッド>
図23に示す形状特性・構成要素、吐出特性、インク要求特性のヘッド仕様を有するものを使用した。
<塗布液>
粘度:5.06mPa・s
<被塗布部材>
(1)外径:φ12.7mm
(2)塗布範囲:345mm
<塗装条件>
(1)被塗布物回転数:2000rpm
(2)被塗布物送り速度:29mm・s
(3)ヘッド吐出周波数:6000Hz
(4)ヘッドから吐出される液滴飛翔距離:2mm
(5)膜厚:10μm
<Liquid discharge head>
One having the head specifications of the shape characteristics / components, the ejection characteristics, and the ink requirement characteristics shown in FIG. 23 was used.
<Coating solution>
Viscosity: 5.06 mPa · s
<Application member>
(1) Outer diameter: φ12.7 mm
(2) Application range: 345 mm
<Painting conditions>
(1) Rotation speed of the object to be coated: 2000 rpm
(2) Object feed speed: 29 mm · s
(3) Head ejection frequency: 6000 Hz
(4) Droplet flight distance discharged from head: 2 mm
(5) Film thickness: 10 μm

<実施例1>
図24(a)に示すように、被塗布部材51の回転中心0の法線から3mmオフセットした位置に液体吐出ヘッド1を配置し、塗布液を吐出する方向が、ヘッド1と被塗布部材51の回転中心を結ぶ直線と被塗布部材51の塗布面が交差する点よりも被塗布部材51の回転方向(矢印B方向)上流に向かう方向に配置して塗装を行った。
Example 1
As shown in FIG. 24A, the liquid discharge head 1 is disposed at a position offset by 3 mm from the normal to the rotation center 0 of the application member 51, and the direction in which the application liquid is discharged is the head 1 and the application member 51. The coating was performed by arranging in a direction toward the rotation direction (direction of arrow B) of the application member 51 from the point where the straight line connecting the rotation centers of these and the application surface of the application member 51 intersects.

<比較例2>
図24(b)に示すように、被塗布部材51の回転中心0の法線位置に液体吐出ヘッド1を配置した条件で塗装を行った。被塗布部材51の回転方向は、実施例1と逆方向(矢印C方向)とした。
Comparative Example 2
As shown in FIG. 24 (b), the coating was performed under the condition that the liquid discharge head 1 was disposed at the normal position of the rotation center 0 of the application member 51. The rotation direction of the application member 51 was the reverse direction (the arrow C direction) to that of the first embodiment.

<比較例3>
図26に示すように、被塗布部材51の回転中心0の法線から3mmオフセットした位置に液体吐出ヘッド1を配置し、塗布液を吐出する方向が、ヘッド1と被塗布部材51の回転中心を結ぶ直線と被塗布部材51の塗布面が交差する点よりも被塗布部材51の回転方向下流に向かう方向に配置して塗装を行った。すなわち、被塗布部材51の回転方向を、実施例1と逆方向(矢印C方向)として塗装を行った。
Comparative Example 3
As shown in FIG. 26, the liquid ejection head 1 is disposed at a position 3 mm offset from the normal to the rotation center 0 of the application member 51, and the direction of ejection of the application liquid is the rotation center of the head 1 and the application member 51. The coating was performed in a direction toward the downstream of the rotational direction of the application member 51 from the point where the straight line connecting the two and the application surface of the application member 51 intersect. That is, the coating was performed by setting the rotation direction of the application member 51 as the reverse direction (the direction of the arrow C) to that of the first embodiment.

上記実施例1及び比較例1、2における塗着効率を、被塗布部材51を1本塗装するのに必要な塗装液重量から被塗布部材51に残存している重量を測定して算出した。   The coating efficiency in Example 1 and Comparative Examples 1 and 2 was calculated by measuring the weight remaining on the coated member 51 based on the weight of the coating liquid required to coat one coated member 51.

すなわち、まず、
(1)被塗布部材51を1本塗装するのと同じ条件で吐出を行い、吐出された塗装液の全量を容器で受けた。
(2)吐出前後の容器の重量差を測定し、吐出された塗装液の重量G3を求めた。
(3)続いて、塗装液の入った容器を焼成炉に入れ、焼成した後の重量を測定した。
(4)容器の初期重量との差より、吐出された塗装液の乾燥重量G5を求めた。
First of all,
(1) The discharge was performed under the same conditions as the case where one coating member 51 was coated, and the container received the entire amount of the discharged coating liquid.
(2) The weight difference between the containers before and after the discharge was measured to determine the weight G3 of the discharged coating liquid.
(3) Subsequently, the container containing the coating liquid was placed in a baking furnace, and the weight after baking was measured.
(4) The dry weight G5 of the discharged coating liquid was determined from the difference from the initial weight of the container.

次に、
(5)実施例1、比較例1、比較例2の3つの条件で、被塗装部材51へ塗装を行った。
(6)被塗装部材51の塗装前後の重量差を測定し、被塗装部材51へ塗着された塗装液の重量G31を求めた。
(7)続いて、塗装液が塗着された被塗装部材51を焼成炉に入れ、焼成した後の重量を測定した。
(8)被塗装部材51の初期重量との差より、被塗装部材51へ塗着された塗装液の乾燥重量G51を求めた。
next,
(5) The member to be painted 51 was painted under the three conditions of Example 1, Comparative Example 1 and Comparative Example 2.
(6) The weight difference between before and after painting of the member to be painted 51 was measured, and the weight G31 of the coating liquid applied to the member to be painted 51 was determined.
(7) Then, the to-be-coated member 51 to which the coating liquid was applied was put into a baking furnace, and the weight after baking was measured.
(8) The dry weight G51 of the coating liquid applied to the coated member 51 was determined from the difference from the initial weight of the coated member 51.

そして、
(9)G51/G5×100(%)の計算を行って、実施例1、比較例1、比較例2の各条件における塗着効率を求めた。
And
(9) Calculation of G51 / G5 × 100 (%) was performed to determine the coating efficiency under each condition of Example 1, Comparative Example 1, and Comparative Example 2.

なお、焼成前の重量は、溶剤の揮発状態の影響を受けて変化するため、あくまでも参考値である。   In addition, since the weight before baking changes under the influence of the volatilization state of a solvent, it is a reference value to the last.

上述したようにして算出した塗着効率は、実施例1では80%、比較例1では45%、比較例2では15%であった。   The application efficiency calculated as described above was 80% in Example 1, 45% in Comparative Example 1, and 15% in Comparative Example 2.

これより、実施例1では、塗布液の飛散は少ないことが確認でき、上記のとおり塗着効率は非常に良好な結果となる。   From this, in Example 1, it can be confirmed that the scattering of the coating liquid is small, and as described above, the application efficiency is very good.

これは、実施例1の構成にすることで、図25(b)に示すように、液滴300にかかる被塗布部材51の回転時の気流301による力P1と液滴300の推進力及び重力の合計値P2による合成力Pが小さくなる。したがって、図25(a)に矢印303で示すように、吐出された液滴300の飛翔が安定して行われて、被塗布部材51の塗装面に向かって直進することによる効果と推測される。   This is because, as shown in FIG. 25B, the configuration of the first embodiment causes the force P1 by the air flow 301 during the rotation of the application member 51 applied to the droplet 300 and the driving force and gravity of the droplet 300. The resultant force P due to the sum value P2 of Therefore, as indicated by an arrow 303 in FIG. 25A, it is assumed that the ejected droplet 300 stably flies, and is an effect by going straight toward the coated surface of the application member 51. .

これに対し、比較例1では、塗布液の飛散が実施例1よりも多く、上記のとおり塗着効率も実施例1に比べて低下する。   On the other hand, in Comparative Example 1, scattering of the coating solution is larger than in Example 1, and as described above, the coating efficiency is also reduced as compared with Example 1.

また、比較例2では、塗布液の飛散が多いことが確認され、上記のとおり塗着効率は非常に悪い結果となる。   Moreover, in the comparative example 2, it is confirmed that there is much scattering of a coating liquid, and as above-mentioned, a deposition efficiency will be a very bad result.

これは、図26(b)に示すように、液滴300にかかる被塗布部材51の回転時の気流302による力P1と液滴300の推進力及び重力の合計値P2による合成力Pが、被塗布部材51の周面に沿う方向の向きになり、また、被塗布部材51が小径でありかつ高速回転で塗布したときに、液体吐出ヘッド1と被塗布部材51周辺の気流が強く発生する。したがって、図26(a)に矢印304で示すように、吐出された液滴300が気流302に乗って被塗布部材51の周面に沿って流れて、塗装面に着弾しないためと推測される。   This is because, as shown in FIG. 26B, the combined force P by the sum P2 of the force P1 by the air flow 302 applied to the droplet 300 during rotation of the application member 51 and the propelling force of the droplet 300 and gravity is It is oriented in the direction along the peripheral surface of the application member 51, and when the application member 51 has a small diameter and is applied at high speed, airflow around the liquid discharge head 1 and the application member 51 is strongly generated. . Therefore, as indicated by an arrow 304 in FIG. 26A, it is presumed that the discharged droplet 300 gets on the air flow 302 and flows along the circumferential surface of the application member 51 and does not land on the coated surface. .

1 … 液体吐出ヘッド
11 … ノズル板
40 … ノズル
51 … 被塗布部材
54 … ワークステージ
55 … モータ
56 … ホルダ
57 … ステージ
58 … トリガセンサ
61 … 液滴
62 … ミスト
67 … 着弾後の塗装滴
1 ... liquid ejection head 11 ... nozzle plate 40 ... nozzle 51 ... application member 54 ... work stage 55 ... motor 56 ... holder 57 ... stage 58 ... trigger sensor 61 ... droplet 62 ... mist 67 ... coating droplet after landing

Claims (6)

被塗布部材に対して塗布液の液滴を吐出する液体吐出手段を備え、
前記液体吐出手段は、液滴吐出方向が、前記液滴を吐出するノズルと前記被塗布部材の回転中心とを結ぶ直線と前記被塗布部材の塗布面が交差する点よりも前記被塗布部材の回転方向上流側に向かう方向になる状態で配置され、
前記液体吐出手段は、前記液滴が前記被塗布部材の回転中心に対する法線上から着弾する位置に配置されている
ことを特徴とする塗布装置。
Liquid discharge means for discharging droplets of the application liquid to the application member;
The liquid discharge means is a member for applying the liquid droplet from the point where the droplet discharge direction intersects the straight line connecting the nozzle that discharges the droplet and the rotation center of the member to be coated and the application surface of the member to be coated. It is arranged in a state where it is directed to the upstream side in the rotational direction,
The coating device according to claim 1, wherein the liquid discharging means is disposed at a position where the droplet lands on a normal to the rotation center of the application member.
前記液体吐出手段は、滴吐出方向が重力方向で下方向になる状態で配置されている
ことを特徴とする請求項1に記載の塗布装置。
The coating apparatus according to claim 1, wherein the liquid discharge unit is disposed in a state in which the droplet discharge direction is downward in the gravity direction.
前記液体吐出手段は、滴吐出方向が重力方向で真下に向かう方向になる状態で配置されている
ことを特徴とする請求項1に記載の塗布装置。
The coating apparatus according to claim 1, wherein the liquid discharge unit is disposed in a state in which the droplet discharge direction is a direction directed downward in the gravity direction.
前記液体吐出手段は、前記ノズルが、重力方向で前記被塗布部材の最も高い位置よりも低い位置になる状態で配置されている
ことを特徴とする請求項1ないし3のいずれかに記載の塗布装置。
The application according to any one of claims 1 to 3, wherein the liquid discharging means is disposed in a state where the nozzle is lower than the highest position of the application member in the gravity direction. apparatus.
前記液体吐出手段は、前記被塗布部材の回転方向を時計回り方向とするとき、前記ノズルが第2象限に配置されている
ことを特徴とする請求項1ないし4のいずれかに記載の塗布装置。
The coating device according to any one of claims 1 to 4, wherein the nozzle is disposed in a second quadrant when the liquid discharging means sets the rotation direction of the application member clockwise. .
被塗布部材に対し、液体吐出手段から塗布液の液滴を吐出して、前記被塗布部材に前記塗布液を塗布する塗布方法であって、
前記液体吐出手段から、前記液滴を吐出するノズルと前記被塗布部材の回転中心とを結ぶ法線と前記被塗布部材の塗布面とが交差する点よりも、前記被塗布部材の回転方向上流側に向かう方向を滴吐出方向として、前記液滴を吐出し、前記液滴を前記被塗布部材の回転中心に対する法線上から着弾させる
ことを特徴とする塗布方法。
A method of applying a coating liquid to a member to be coated by discharging a droplet of the coating liquid from a liquid discharge unit to the member to be coated,
The rotational direction upstream of the application member from the point at which the normal line connecting the nozzle for discharging the liquid droplets from the liquid ejection means and the rotation center of the application member intersects the application surface of the application member A coating method comprising: discharging the droplet with a direction toward the side being a droplet discharge direction, and causing the droplet to land from a normal to the rotation center of the member to be coated.
JP2015048772A 2014-03-17 2015-03-11 Coating apparatus and coating method Expired - Fee Related JP6528476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015048772A JP6528476B2 (en) 2014-03-17 2015-03-11 Coating apparatus and coating method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014054146 2014-03-17
JP2014054146 2014-03-17
JP2015048772A JP6528476B2 (en) 2014-03-17 2015-03-11 Coating apparatus and coating method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019070345A Division JP6780731B2 (en) 2014-03-17 2019-04-02 Discharge device

Publications (2)

Publication Number Publication Date
JP2015192996A JP2015192996A (en) 2015-11-05
JP6528476B2 true JP6528476B2 (en) 2019-06-12

Family

ID=54432561

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015048772A Expired - Fee Related JP6528476B2 (en) 2014-03-17 2015-03-11 Coating apparatus and coating method
JP2019070345A Active JP6780731B2 (en) 2014-03-17 2019-04-02 Discharge device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019070345A Active JP6780731B2 (en) 2014-03-17 2019-04-02 Discharge device

Country Status (1)

Country Link
JP (2) JP6528476B2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124931A (en) * 1975-04-24 1976-10-30 Sony Corp Typogiaph indication method
JPS6058704B2 (en) * 1980-01-28 1985-12-21 株式会社リコー Multi-head of inkjet printing device
JPH01137234U (en) * 1988-03-08 1989-09-20
JPH1081005A (en) * 1996-09-09 1998-03-31 Canon Inc Recording device
JPH1119554A (en) * 1997-07-03 1999-01-26 Mitsubishi Chem Corp Method and apparatus for applying coating solution
JPH11254665A (en) * 1998-01-08 1999-09-21 Xerox Corp Liquid ink marking engine
GB0101186D0 (en) * 2001-01-17 2001-02-28 Dolphin Packaging Materials Lt Printing process and apparatus
JP2008173915A (en) * 2007-01-22 2008-07-31 Canon Finetech Inc Recording head and inkjet recording device
JP4442641B2 (en) * 2007-06-04 2010-03-31 富士ゼロックス株式会社 Electrophotographic photosensitive member manufacturing method, electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP5048413B2 (en) * 2007-07-30 2012-10-17 株式会社リコー Image forming apparatus
JP5165527B2 (en) * 2008-10-15 2013-03-21 株式会社ミマキエンジニアリング Three-dimensional printer and printing method using the same
JP5548426B2 (en) * 2009-10-29 2014-07-16 株式会社日立製作所 Inkjet coating apparatus and method
JP5656312B2 (en) * 2010-02-26 2015-01-21 株式会社ミマキエンジニアリング Three-dimensional printer and control method thereof
JP5878782B2 (en) * 2012-02-17 2016-03-08 昭和アルミニウム缶株式会社 Image forming system

Also Published As

Publication number Publication date
JP2019104014A (en) 2019-06-27
JP2015192996A (en) 2015-11-05
JP6780731B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
JP6538649B2 (en) Coating apparatus and coating method
US20220080445A1 (en) Coating method and corresponding coating device
TWI606764B (en) Material deposition system and method for depositing materials on a substrate
CN103008175B (en) Coating apparatus and coating method
US11584139B2 (en) Printing apparatus and printing method
JP6528476B2 (en) Coating apparatus and coating method
JPH1119554A (en) Method and apparatus for applying coating solution
JP4923820B2 (en) Functional material coating apparatus and functional material coating method
JP2016123942A (en) Ink jet printing method and ink jet coater
TWI490046B (en) Slurry coating apparatus and slurry coating method
JP2010221186A (en) Coating apparatus and method of manufacturing coating body
JP5121425B2 (en) Alignment film coating device
JP6917245B2 (en) Coating device, coating method
JP4848841B2 (en) Film forming apparatus and film forming method
JP4415301B2 (en) Coating equipment
JP2020040037A (en) Liquid droplet application equipment and liquid droplet application method
JP4994094B2 (en) Droplet coating apparatus and droplet coating method
JP2010099636A (en) Liquid droplet discharging device and image forming device
JP2017013283A (en) Application device
JP2022087954A (en) Painting system
TW201819054A (en) Coating film forming method and inkjet coating device
JP2005324115A (en) Coater
JP2019111494A (en) Applicator and application method
JP2019063698A (en) Liquid discharge nozzle
JP2012187539A (en) Method and device for forming pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190429

R151 Written notification of patent or utility model registration

Ref document number: 6528476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees