JP6525497B2 - METHOD FOR MANUFACTURING MULTILAYER FILM STRUCTURE, AND MULTILAYER FILM STRUCTURE - Google Patents
METHOD FOR MANUFACTURING MULTILAYER FILM STRUCTURE, AND MULTILAYER FILM STRUCTURE Download PDFInfo
- Publication number
- JP6525497B2 JP6525497B2 JP2013247580A JP2013247580A JP6525497B2 JP 6525497 B2 JP6525497 B2 JP 6525497B2 JP 2013247580 A JP2013247580 A JP 2013247580A JP 2013247580 A JP2013247580 A JP 2013247580A JP 6525497 B2 JP6525497 B2 JP 6525497B2
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- film
- multilayer film
- index film
- low refractive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000000034 method Methods 0.000 title claims description 13
- 239000007789 gas Substances 0.000 claims description 51
- 230000001590 oxidative effect Effects 0.000 claims description 27
- 238000005477 sputtering target Methods 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 23
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 238000002834 transmittance Methods 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 230000003595 spectral effect Effects 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 235000005811 Viola adunca Nutrition 0.000 claims description 4
- 235000013487 Viola odorata Nutrition 0.000 claims description 4
- 235000002254 Viola papilionacea Nutrition 0.000 claims description 4
- 238000010304 firing Methods 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 2
- 239000011863 silicon-based powder Substances 0.000 claims description 2
- 244000154870 Viola adunca Species 0.000 claims 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 26
- 229910010271 silicon carbide Inorganic materials 0.000 description 25
- 230000003287 optical effect Effects 0.000 description 20
- 239000010931 gold Substances 0.000 description 15
- 239000010410 layer Substances 0.000 description 15
- 239000010936 titanium Substances 0.000 description 14
- 239000011651 chromium Substances 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 11
- 230000008033 biological extinction Effects 0.000 description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 9
- 229910052737 gold Inorganic materials 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000003086 colorant Substances 0.000 description 6
- 230000035699 permeability Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 240000009038 Viola odorata Species 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000005034 decoration Methods 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 244000172533 Viola sororia Species 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Optical Filters (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、スパッタリングターゲットを用いて成膜する多層膜構造体の製造方法、及び多層膜構造体に関する。 The present invention relates to a method of manufacturing a multilayer film structure formed by using a sputtering target, and a multilayer film structure.
従来、高屈折率膜と低屈折率膜とを交互に形成し、所定のフィルタ特性を有する光学多層膜が知られている(例えば、特許文献1参照。)。通常、光学多層膜は、スパッタ法等により成膜されるが、高屈折率膜又は低屈折率膜を成膜する際には、2元構造以上のスパッタ機が必要であった。一元構造のスパッタ機ならば、都度ターゲットを交換しなければならず、都度ターゲットを交換する際には、ターゲット間でのコンタミネーションが発生する虞があり、優れた光学特性を有する光学多層膜を得ることは困難である。 Conventionally, an optical multilayer film having a predetermined filter characteristic is known in which high refractive index films and low refractive index films are alternately formed (see, for example, Patent Document 1). Usually, the optical multilayer film is formed by sputtering or the like, but when forming a high refractive index film or a low refractive index film, a sputtering machine having a binary structure or more is required. In the case of a single-layer sputtering system, it is necessary to replace the target each time, and when replacing the target each time, there is a possibility that contamination may occur between the targets, and an optical multilayer film having excellent optical characteristics may be obtained. It is difficult to get.
本発明は、このような従来の実情に鑑みて提案されたものであり、生産性を向上させることができる多層膜構造体の製造方法、及び優れた光学特性を有する多層膜構造体を提供する。 The present invention has been proposed in view of such conventional circumstances, and provides a method for producing a multilayer film structure capable of improving productivity, and a multilayer film structure having excellent optical properties. .
本発明者は、SixC(x=2.3±0.2)からなるスパッタリングターゲットを用いることにより、単一のスパッタリングターゲットで高屈折率膜と低屈折率膜とを形成することができ、優れた光学特性を有する多層膜を得ることができることを見出し、本発明を完成するに至った。 The inventor can form a high refractive index film and a low refractive index film with a single sputtering target by using a sputtering target consisting of SixC (x = 2.3 ± 0.2), which is excellent. It has been found that a multilayer film having the above optical properties can be obtained, and the present invention has been completed.
すなわち、本発明に係る多層膜構造体の製造方法は、SixC(x=2.3±0.2)からなるスパッタリングターゲットを用い、低濃度の酸化性ガス雰囲気中でSiCを主成分とする高屈折率膜を成膜する高屈折率膜成膜工程と、前記スパッタリングターゲットを用い、高濃度の酸化性ガス雰囲気中でSiO2を主成分とする低屈折率膜を成膜する低屈折率膜成膜工程とを交互に選択して、所望の金属の分光反射率に一致するように基体上に前記高屈折率膜と前記低屈折率膜とを交互に積層した多層膜を成膜することを特徴とする。 That is, the method for manufacturing a multilayer film structure according to the present invention uses a sputtering target consisting of Si x C (x = 2.3 ± 0.2) and uses SiC as the main component in an oxidizing gas atmosphere of low concentration. Forming a high refractive index film, and forming a low refractive index film mainly composed of SiO 2 in a high concentration oxidizing gas atmosphere using the sputtering target and RitsumakuNarumaku step selected alternately, forming a multilayer film formed by alternately laminating and the high refractive index film and the low refractive index film on the substrate to match the spectral reflectance of the desired metal It is characterized by
また、本発明に係る多層膜構造体の製造方法は、SixC(x=2.3±0.2)からなるスパッタリングターゲットを用い、低濃度の酸化性ガス雰囲気中でSiCを主成分とする高屈折率膜を成膜する高屈折率膜成膜工程と、前記スパッタリングターゲットを用い、高濃度の酸化性ガス雰囲気中でSiO2を主成分とする低屈折率膜を成膜する低屈折率膜成膜工程とを交互に選択して、青紫色光帯域の平均透過率が50%未満、及び可視光帯域の平均反射率が5%未満となるように基板上に前記高屈折率膜と前記低屈折率膜とを交互に積層した多層膜を成膜することを特徴とする。
The method for producing a multilayer film structure according to the present invention uses a sputtering target consisting of Si x C (x = 2.3 ± 0.2) and contains SiC as the main component in a low concentration oxidizing gas atmosphere. Forming a high refractive index film, and forming a low refractive index film mainly composed of SiO 2 in a high concentration oxidizing gas atmosphere using the sputtering target and RitsumakuNarumaku step selected alternately, blue average transmission violet light band is less than 50%, and the high refractive index film on the substrate such that the average reflectance in the visible light band is less than 5% characterized by depositing the multi-layer film formed by alternately laminating a low refractive index film and.
本発明によれば、単一のスパッタリングターゲットで高屈折率膜と低屈折率膜とを形成することができるため、生産性に優れるとともに、優れた光学特性を有する多層膜を得ることができる。 According to the present invention, since a high refractive index film and a low refractive index film can be formed with a single sputtering target, a multilayer film having excellent optical characteristics as well as excellent productivity can be obtained.
以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.多層膜構造体の製造方法
2.多層膜構造体
3.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. Method of manufacturing multilayer film structure Multilayer film structure 3. Example
<1.多層膜構造体の製造方法>
本実施の形態に係る多層膜構造体の製造方法は、SixC(x=2.3±0.2)からなるスパッタリングターゲットを用い、酸化性ガス種、及びガス量を層毎に制御し、基体上にSiCを主成分とする高屈折率膜とSiO2を主成分とする低屈折率膜とを有する多層膜を成膜する。
<1. Method of manufacturing multilayer film structure>
The method for manufacturing a multilayer film structure according to the present embodiment uses a sputtering target consisting of SixC (x = 2.3 ± 0.2), controls the oxidizing gas species and the gas amount for each layer, and the substrate A multilayer film having a high refractive index film mainly composed of SiC and a low refractive index film mainly composed of SiO 2 is formed thereon.
スパッタリングターゲットは、SixC(x=2.3±0.2)から構成される。すなわち、C原子に対するSi原子の原子数比(Si/C)は、2.1以上2.5以下である。原子数比(Si/C)が2.1未満となると、SiO2の割合が高い低屈折率膜を高速に成膜するのが困難となる。また、原子数比(Si/C)が2.5を超えると、SiCの割合が高い高屈折率膜を成膜するのが困難となる。 The sputtering target is composed of SixC (x = 2.3 ± 0.2). That is, the atomic ratio (Si / C) of Si atoms to C atoms is 2.1 or more and 2.5 or less. When the atomic ratio (Si / C) is less than 2.1, it is difficult to form a low refractive index film having a high proportion of SiO 2 at high speed. When the atomic ratio (Si / C) exceeds 2.5, it becomes difficult to form a high refractive index film having a high proportion of SiC.
また、スパッタリングターゲットの純度は、99wt%以上であることが好ましく、金属不純物(Al,Ca,Fe,Ni,Ti等)の合計は、1wt%以下であることが好ましい。また、密度は、2.5g/cm3以上であることが好まましく、抵抗率は、0.1Ω・cm以下であることが好ましい。 Further, the purity of the sputtering target is preferably 99 wt% or more, and the total of metal impurities (Al, Ca, Fe, Ni, Ti, etc.) is preferably 1 wt% or less. The density is preferably 2.5 g / cm 3 or more, and the resistivity is preferably 0.1 Ω · cm or less.
また、スパッタリングターゲットは、SiとSiCとが焼成されてなることが好ましい。具体的には、SiC粉末1モルに対してSi粉末を1.1〜1.5モルの割合で焼結することが好ましい。 In addition, it is preferable that the sputtering target be formed by firing Si and SiC. Specifically, it is preferable to sinter the Si powder in a ratio of 1.1 to 1.5 moles with respect to 1 mole of the SiC powder.
本実施の形態におけるスパッタ法としては、反応性スパッタ(Reactive Sputtering)を用いる。また、膜付着性を向上させるために、交流(高周波)を掛けるRFスパッタを用いてもよい。また、被着体の耐熱性に乏しい場合には、ターゲット側に磁石で磁界をつくり、プラズマを試料から分離するマグネトロンスパッタを用いてもよい。 As a sputtering method in the present embodiment, reactive sputtering is used. Also, in order to improve film adhesion, RF sputtering may be used which applies alternating current (high frequency). In the case where the heat resistance of the adherend is poor, magnetron sputtering may be used in which a magnetic field is generated by a magnet on the target side to separate plasma from a sample.
反応性スパッタに用いられる反応性ガスとしては、酸化性ガス及び不活性ガスの混合ガスが用いられる。酸化性ガスとしては、例えば、酸素、オゾン、炭酸ガス、又はこれらの混合ガス等が挙げられる。また、不活性ガスとしては、例えば、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、又はこれらの混合ガス等が挙げられる。これらの中でも、本実施の形態では、アルゴンガスと酸素との混合ガスが好ましく用いられる。 As a reactive gas used for reactive sputtering, a mixed gas of an oxidizing gas and an inert gas is used. As an oxidizing gas, oxygen, ozone, a carbon dioxide gas, or these mixed gas etc. are mentioned, for example. Moreover, as an inert gas, helium, neon, argon, krypton, xenon, or these mixed gas etc. are mentioned, for example. Among these, in the present embodiment, a mixed gas of argon gas and oxygen is preferably used.
本実施の形態では、酸化性ガスのガス量を調整して酸化性ガスの濃度を制御することにより、各層の屈折率、消衰係数等の光学特性を任意に制御する。具体的には、前述の単一のスパッタリングターゲットを用い、低濃度の酸化性ガス雰囲気中でSiCを主成分とする高屈折率膜を成膜し、高濃度の酸化性ガス雰囲気中でSiO2を主成分とする低屈折率膜を成膜する。低濃度の酸化性ガス雰囲気としては、例えばArガス流量が100〜1000cc、O2ガス流量が0〜100ccの混合ガス雰囲気を挙げることができる。また、高濃度の酸化性ガス雰囲気としては、例えばArガス流量が100〜1000cc、O2ガス流量が120〜200ccの混合ガス雰囲気を挙げることができる。 In the present embodiment, by adjusting the amount of oxidizing gas and controlling the concentration of the oxidizing gas, optical characteristics such as refractive index and extinction coefficient of each layer are arbitrarily controlled. Specifically, a high refractive index film mainly composed of SiC is formed in a low concentration oxidizing gas atmosphere using the single sputtering target described above, and SiO 2 is formed in the high concentration oxidizing gas atmosphere. Form a low refractive index film mainly composed of Examples of the low concentration oxidizing gas atmosphere include a mixed gas atmosphere having an Ar gas flow rate of 100 to 1000 cc and an O 2 gas flow rate of 0 to 100 cc. Further, as the high concentration oxidizing gas atmosphere, for example, a mixed gas atmosphere having an Ar gas flow rate of 100 to 1000 cc and an O 2 gas flow rate of 120 to 200 cc can be mentioned.
図1及び図2は、それぞれSi、SiC、及びSiO2の屈折率及び消衰係数を示すグラフである。SiCの屈折率及び消衰係数は、金属Siに近いが、SiCの屈折率及び消衰係数の波長分散は、Siより優れている。SixC(x=2.3±0.2)からなるスパッタリングターゲットを用いて成膜される膜組成は、SiaObCcで表され、例えば、酸化性ガスの流量がゼロである所謂メタルモードでは、SiCを主成分とする高屈折率膜となる。また、酸化性ガスの流量が比較的大きい所謂リアクティブモードでは、SiO2を主成分とする低屈折率膜となり、ターゲット中のC成分は、成膜時に雰囲気中の酸化性ガスと反応してCO2又はCOとなり、真空ポンプ等で排気される。 FIGS. 1 and 2 are graphs showing the refractive index and extinction coefficient of Si, SiC and SiO 2 respectively. The refractive index and extinction coefficient of SiC are close to metal Si, but the wavelength dispersion of the refractive index and extinction coefficient of SiC is superior to Si. A film composition formed by using a sputtering target consisting of Six C (x = 2.3 ± 0.2) is represented by Si a O b C c , for example, a so-called metal in which the flow rate of oxidizing gas is zero. In the mode, it becomes a high refractive index film mainly composed of SiC. Further, in a so-called reactive mode in which the flow rate of the oxidizing gas is relatively large, it becomes a low refractive index film mainly composed of SiO 2 , and the C component in the target reacts with the oxidizing gas in the atmosphere during film formation. It becomes CO 2 or CO and is exhausted by a vacuum pump or the like.
また、前述の単一のスパッタリングターゲットを用い、低濃度の酸化性ガス雰囲気中で高屈折率膜を成膜する高屈折率膜成膜工程と、高濃度の酸化性ガス雰囲気中で低屈折率膜を成膜する低屈折率膜成膜工程とを交互に選択し、基体上に高屈折率膜と低屈折率膜とを交互に積層してなる多層膜を成膜してもよい。例えば、5層構造の多層膜の場合、1、3、5層目の高屈折率膜成膜時の酸素量は、完全透明膜とした2、4層目の低屈折率膜成膜時の1/3以下とすることが好ましい。低屈折率膜成膜時に完全透明膜とする場合、アルゴンガスと酸素ガスとの混合ガス中の酸素ガスの含有割合は、10体積%以上60%以下であることが好ましい。また、各層の膜厚は、光学多層膜の設計に従って、10〜300nm程度の最適な値とすることが好ましい。 Also, a high refractive index film forming process for forming a high refractive index film in a low concentration oxidizing gas atmosphere using the single sputtering target described above, and a low refractive index in a high concentration oxidizing gas atmosphere Alternatively, a low refractive index film forming process of forming a film may be alternately selected, and a multilayer film formed by alternately laminating a high refractive index film and a low refractive index film may be formed on a substrate. For example, in the case of a multilayer film having a five-layer structure, the amount of oxygen at the time of film formation of the first, third, and fifth layers is equal to that at the time of film formation of the second and fourth layers. It is preferable to set it as 1/3 or less. In the case of forming a completely transparent film at the time of film formation of a low refractive index film, the content ratio of oxygen gas in a mixed gas of argon gas and oxygen gas is preferably 10% by volume or more and 60% or less. Further, the film thickness of each layer is preferably set to an optimum value of about 10 to 300 nm according to the design of the optical multilayer film.
本実施の形態における多層膜構造体の製造方法は、前述の単一のスパッタリングターゲットを用い、酸化性ガスの濃度を制御することにより、膜の吸収(消衰係数)や屈折率を層毎にフレキシブルに変化させることが可能である。これにより、光学多層膜の設計の自由度が上がり、様々ジャンルでの画期的な商品を生み出すことが可能となる。 The method for manufacturing a multilayer film structure according to the present embodiment uses the single sputtering target described above and controls the concentration of the oxidizing gas to make the absorption (extinction coefficient) and refractive index of the film layer by layer. It is possible to change it flexibly. This increases the degree of freedom in the design of the optical multilayer film, and makes it possible to produce innovative products in various genres.
<2.多層膜構造体>
以下、前述の製造方法を適用して成膜可能な多層膜構造体について説明する。本実施の形態に係る多層膜構造体は、基体と、基体上にSiCを主成分とする高屈折率膜とSiO2を主成分とする低屈折率膜とを有する多層膜とを備える。
<2. Multilayer film structure>
Hereinafter, a multilayer film structure which can be formed into a film by applying the above-described manufacturing method will be described. The multilayer film structure according to the present embodiment includes a substrate, and a multilayer film having a substrate, a high refractive index film mainly composed of SiC, and a low refractive index film mainly composed of SiO 2 on the substrate.
図1は、多層膜構造体の一例を示す概略断面図である。この多層膜構造体は、基体10と、多層膜20とを備え、多層膜20は、基体10上に、高屈折率膜21と、低屈折率膜22と、高屈折率膜23と、低屈折率膜24と、高屈折率膜25とをこの順に交互に積層してなる。 FIG. 1 is a schematic cross-sectional view showing an example of a multilayer film structure. The multilayer film structure includes a substrate 10 and a multilayer film 20. The multilayer film 20 has a high refractive index film 21, a low refractive index film 22, a high refractive index film 23, and a low refractive index on the substrate 10. The refractive index films 24 and the high refractive index films 25 are alternately stacked in this order.
基体10は、特に限定されず、ガラス基板、プラスチック基板、プラスチックフィルム等を用いることができる。また、基体表面は、用途に応じて適宜選択することができ、例えば金属調の加飾を得る場合、金属光沢を発現させるために平坦であることが好ましい。 The substrate 10 is not particularly limited, and a glass substrate, a plastic substrate, a plastic film or the like can be used. In addition, the substrate surface can be appropriately selected depending on the application, and, for example, in the case of obtaining metallic decoration, it is preferable to be flat in order to develop metallic gloss.
多層膜20は、高屈折率膜21,23,25と低屈折率膜22,24とが交互に積層してなる。これにより、光学干渉を利用した光学多層膜の設計が可能となり、金属調の構造色を発色したり、青色光帯域の透過を抑制したりすることができる。また、多層膜20は、3〜5層であることが好ましい。多層膜が3〜5層であることにより、製造コストを抑え、所望の光学特性を得ることができる。 The multilayer film 20 is formed by alternately laminating high refractive index films 21, 23, 25 and low refractive index films 22, 24. This makes it possible to design an optical multilayer film using optical interference, and to make it possible to develop a metallic structural color or to suppress transmission of a blue light band. The multilayer film 20 is preferably three to five layers. When the multilayer film is 3 to 5 layers, the manufacturing cost can be reduced and desired optical characteristics can be obtained.
高屈折率膜21,23,25は、SiCを主成分とする。SiCの屈折率及び消衰係数は、金属Siに近いが、SiCの屈折率及び消衰係数の波長分散は、Siより優れている。また、SiC単層膜は、膜厚50nm程度でゴールドに近い色を示す。 The high refractive index films 21, 23, 25 contain SiC as a main component. The refractive index and extinction coefficient of SiC are close to metal Si, but the wavelength dispersion of the refractive index and extinction coefficient of SiC is superior to Si. In addition, the single-layer SiC film exhibits a color close to gold with a film thickness of about 50 nm.
低屈折率膜22,24は、SiO2を主成分とする。SiO2単層膜は、無色透明であるが、酸化性ガスの濃度を変えることにより、各層の屈折率及び消衰係数を変化させることが可能である。 The low refractive index films 22 and 24 contain SiO 2 as a main component. The SiO 2 single layer film is colorless and transparent, but it is possible to change the refractive index and extinction coefficient of each layer by changing the concentration of the oxidizing gas.
本実施の形態における多層膜構造体によれば、金、銀、銅、プラチナ、チタン、クロム等の金属調の構造色を発色することができる。金属調の構造色は、例えば所望の金属の分光反射率に一致するようにSiCとSiO2とが交互に積層される光学多層膜の各膜厚を設計し、その設計に従って成膜することにより得ることができる。 According to the multilayer film structure in the present embodiment, a metallic structural color such as gold, silver, copper, platinum, titanium and chromium can be developed. For example, by designing each film thickness of an optical multilayer film in which SiC and SiO 2 are alternately laminated so that the metallic structural color matches the spectral reflectance of the desired metal, and forming the film according to the design You can get it.
金属調の加飾を得るために金属ターゲットを使用することもできるが、金属ターゲットを使用する方法では、基本的にその金属が有する色を着色することしかできず、色の数は有限である。また、導電性を有する金属材料を使用した場合、電波透過性が悪くなるため、例えば非接触型ICカードに加飾を施すことはできない。 Although a metal target can be used to obtain metallic decoration, the method using a metal target can basically only color the color that the metal has, and the number of colors is limited . In addition, when a metal material having conductivity is used, the radio wave transmission property is deteriorated, so that it is impossible to decorate a noncontact IC card, for example.
一方、本実施の形態の金属調の構造色を発色する多層膜は、金属膜ではないので、例えば非接触型ICカードに成膜しても良好な電波透過性を有し、良好な通信を行うことができる。また、多層膜は、SiC及びSiO2であるため、化学変化が極めて少なく、耐環境性能に優れる。さらに、SiCの特徴である硬い物性から膜の機械的強度にも優れる。また、代表的な金属色以外にも、膜構成や反応ガスを調整することにより、様々な色のバリエーションの加飾を実現することができる。 On the other hand, since the multilayer film which develops the metallic structural color of the present embodiment is not a metal film, it has good radio wave permeability even when forming a film on a non-contact IC card, for example. It can be carried out. In addition, since the multilayer film is made of SiC and SiO 2 , chemical changes are extremely small and the environmental performance is excellent. Furthermore, the mechanical properties of the film are excellent because of the hard physical properties that are characteristic of SiC. In addition to the typical metallic color, it is possible to realize various color variations by adjusting the film configuration and the reaction gas.
また、本実施の形態における多層膜構造体によれば、青色光帯域の透過を抑制することができる。青色光帯域の透過抑制は、例えば青色光帯域の反射率が大きい所望の分光反射率に一致するようにSiCとSiO2とが交互に積層される光学多層膜の各膜厚を設計し、その設計に従って成膜することにより得ることができる。例えば、基板側から10〜50nmの高屈折率膜、30〜120nmの低屈折率膜、50〜200nmの高屈折率膜、50〜200nmの低屈折率膜を設計し、高屈折率膜の成膜時、及び低屈折率膜の成膜時の酸素濃度をリアルタイムに変化させることにより、膜の屈折率を厚み方向で変化させることができ、ブルーライトカットフィルタなどの光学特性を、最小の膜構成で得ることができる。 Moreover, according to the multilayer film structure in the present embodiment, transmission of the blue light band can be suppressed. The transmission suppression of the blue light band is designed, for example, by designing each film thickness of an optical multilayer film in which SiC and SiO 2 are alternately stacked so that the reflectance of the blue light band matches the desired spectral reflectance. It can be obtained by film formation according to the design. For example, a high refractive index film of 10 to 50 nm, a low refractive index film of 30 to 120 nm, a high refractive index film of 50 to 200 nm, and a low refractive index film of 50 to 200 nm are designed from the substrate side By changing the oxygen concentration at the time of film formation and the film formation of a low refractive index film in real time, the film refractive index can be changed in the thickness direction, and the optical characteristics of the blue light cut filter etc. can be minimized. It can be obtained by configuration.
青色光帯域の透過を抑制する多層膜を、例えば液晶画面の保護ガラスとした場合、画面からの高いエネルギー強度を有するブルーライトを軽減することができる。また、450−680nmの可視光帯域の反射率が5%未満の光学フィルタとすることにより、画面のギラギラ感や映り込みを大きく軽減することができる。 When the multilayer film for suppressing transmission of the blue light band is, for example, a protective glass of a liquid crystal screen, blue light having high energy intensity from the screen can be reduced. Further, by setting the optical filter to have a reflectance of less than 5% in the visible light band of 450 to 680 nm, it is possible to greatly reduce the glaring feeling and the reflection of the screen.
<4.実施例>
以下、本発明の実施例について詳細に説明する。本実施例では、SixC(x=2.3)からなるスパッタリングターゲットを用い、金属調の構造色を発色する多層膜、及び青色光の透過を抑制する多層膜を成膜し、それぞれ評価した。なお、本発明はこれらの実施例に限定されるものではない。
<4. Example>
Hereinafter, examples of the present invention will be described in detail. In this example, using a sputtering target consisting of SixC (x = 2.3), a multilayer film that develops a metallic structural color and a multilayer film that suppresses transmission of blue light were formed and evaluated. The present invention is not limited to these examples.
[スパッタリングターゲット]
スパッタリングターゲットは、ケイ素(Si)1に対して炭化ケイ素(SiC)を1.3の割合で焼成したものを用いた。純度は99wt%以上であり、金属不純物(Al,Ca,Fe,Ni,Ti)の合計は1wt%以下であった。また、密度は2.5g/cm3以上であり、抵抗率は0.1Ω・cm以下であった。
[Sputtering target]
As a sputtering target, one obtained by firing silicon carbide (SiC) at a ratio of 1.3 to silicon (Si) 1 was used. The purity was 99 wt% or more, and the total of metal impurities (Al, Ca, Fe, Ni, Ti) was 1 wt% or less. Moreover, the density was 2.5 g / cm 3 or more, and the resistivity was 0.1 Ω · cm or less.
<金属調の構造色を発色する多層膜>
DC/RFマグネトロンスパッタを用い、表面が平坦なガラス基板上に高屈折率膜と高屈折率膜とが交互に積層された5層構造の多層膜を成膜した。この多層膜は、金属調の構造色を発色する加飾膜として機能する。
<Multilayer film that develops a metallic structural color>
Using a DC / RF magnetron sputtering, a multilayer film having a five-layer structure in which a high refractive index film and a high refractive index film were alternately laminated was formed on a flat glass substrate. This multilayer film functions as a decorative film that develops a metallic structural color.
多層膜は、金(Au)、銅(Cu)、チタン(Ti)、及びクロム(Cr)の4種について、各分光反射率の文献値と一致させるように、一般的な光学多層膜のシミュレーションソフトを用いて設計した。シミュレーションは、高屈折率膜をSiC、低屈折率膜をSiO2として行った。その結果、例えば、金(Au)を発色する多層膜の設計は、基板側から50nmの高屈折率膜、125nmの低屈折率膜、42nmの高屈折率膜、136nmの低屈折率膜、及び36nmの高屈折率膜であった。 The multilayer film is a simulation of a general optical multilayer film so as to match the document values of each spectral reflectance for four types of gold (Au), copper (Cu), titanium (Ti), and chromium (Cr). Designed using software. The simulation was performed using a high refractive index film as SiC and a low refractive index film as SiO 2 . As a result, for example, in the design of a multilayer film that develops gold (Au), a high refractive index film of 50 nm, a low refractive index film of 125 nm, a high refractive index film of 42 nm, a low refractive index film of 136 nm, and It was a 36 nm high refractive index film.
高屈折率膜の成膜条件は、Arガス:100〜1000cc、O2ガス:0〜100cc、LFパワー:5〜10kw、RFパワー:0〜5kwとし、低屈折率膜の成膜条件は、Arガス:100〜1000cc、O2ガス:120〜200cc、LFパワー:5〜10kw、RFパワー:0〜5kwとした。 The film formation conditions for the high refractive index film are Ar gas: 100 to 1000 cc, O 2 gas: 0 to 100 cc, LF power: 5 to 10 kw, RF power: 0 to 5 kw, and the film formation conditions for the low refractive index film are Ar gas: 100 to 1000 cc, O 2 gas: 120 to 200 cc, LF power: 5 to 10 kw, RF power: 0 to 5 kw.
図4〜図7は、それぞれ金(Au)、銅(Cu)、チタン(Ti)、及びクロム(Cr)を発色する多層膜の反射率の実測値及び設計値を示すグラフである。また、図8は、金(Au)、銅(Cu)、チタン(Ti)、及びクロム(Cr)を発色する各多層膜の写真である。図4〜図7に示すように、金、銅、チタン、クロムの分光反射率は、文献値とほぼ一致した。また、図8に示すように金属光沢を有する金属調加飾を実現することができた。 FIG. 4 to FIG. 7 are graphs showing measured values and designed values of the reflectivity of the multilayer film that develops gold (Au), copper (Cu), titanium (Ti), and chromium (Cr), respectively. Moreover, FIG. 8 is a photograph of each multilayer film which colors gold (Au), copper (Cu), titanium (Ti), and chromium (Cr). As shown in FIGS. 4 to 7, the spectral reflectances of gold, copper, titanium, and chromium almost coincided with the literature values. In addition, as shown in FIG. 8, it was possible to realize metallic decoration having metallic luster.
<青色光帯域の透過を抑制する多層膜>
DC/RFマグネトロンスパッタを用い、表面が平坦なガラス基板上に高屈折率膜と高屈折率膜とが交互に積層された5層構造の多層膜を成膜した。この多層膜は、青色波長域を反射するブルーライトカットフィルタとして機能する。
<Multilayer film that suppresses transmission of blue light band>
Using a DC / RF magnetron sputtering, a multilayer film having a five-layer structure in which a high refractive index film and a high refractive index film were alternately laminated was formed on a flat glass substrate. This multilayer film functions as a blue light cut filter that reflects the blue wavelength range.
多層膜の設計は、基板側から10〜50nmの高屈折率膜、30〜120nmの低屈折率膜、50〜200nmの高屈折率膜、50〜200nmの低屈折率膜とした。高屈折率膜の成膜条件は、Arガス:100〜1000cc、O2ガス:0〜100cc、LFパワー:5〜10kw、RFパワー:0〜5kwとし、低屈折率膜の成膜条件は、Arガス:100〜1000cc、O2ガス:120〜200cc、LFパワー:5〜10kw、RFパワー:0〜5kwとした。なお、この場合の高屈折率膜や低屈折率膜については、成膜中の酸素濃度をリアルタイムに変化させることで、膜の屈折率を厚み方向で変化させることが可能であり、それによりブルーライトカットフィルタなどの光学特性を、最小の膜構成で高めることが可能となる。 The multilayer film was designed to have a high refractive index film of 10 to 50 nm, a low refractive index film of 30 to 120 nm, a high refractive index film of 50 to 200 nm, and a low refractive index film of 50 to 200 nm from the substrate side. The film formation conditions for the high refractive index film are Ar gas: 100 to 1000 cc, O 2 gas: 0 to 100 cc, LF power: 5 to 10 kw, RF power: 0 to 5 kw, and the film formation conditions for the low refractive index film are Ar gas: 100 to 1000 cc, O 2 gas: 120 to 200 cc, LF power: 5 to 10 kw, RF power: 0 to 5 kw. In this case, for the high refractive index film and the low refractive index film, it is possible to change the refractive index of the film in the thickness direction by changing the oxygen concentration during film formation in real time. It is possible to enhance optical characteristics such as a light cut filter with a minimum film configuration.
図9及び図10は、それぞれブルーライトカットフィルタの透過率及び反射率を示すグラフである。400−450nmの青紫色光帯域の透過率は45.05%、450−500nmの青色光帯域の透過率は83.78%、500−590nmの緑色光帯域の透過率は93.49%、及び590−680nmの赤色光帯域の透過率は95.01%であった。450−680nmの可視光帯域の透過率は90.76%であり、可視光帯域の透過率に対する青色光帯域のカット比は7.7%であり、可視光帯域の透過率に対する青紫色光帯域のカット比は48.2%であった。 9 and 10 are graphs showing the transmittance and the reflectance of the blue light cut filter, respectively. The transmission of the blue-violet light band of 400-450 nm is 45.05%, the transmission of the blue light band of 450-500 nm is 83.78%, the transmission of the green light band of 500-590 nm is 93.49%, and The transmittance of the red light band of 590-680 nm was 95.01%. The transmittance of the visible light band at 450 to 680 nm is 90.76%, the cut ratio of the blue light band to the transmittance of the visible light band is 7.7%, and the blue-violet light band to the transmittance of the visible light band The cut ratio of was 48.2%.
また、450−500nmの青色光帯域の反射率は6.22%、500−590nmの緑色光帯域の反射率は3.28%、及び590−680nmの赤色光帯域の反射率は4.02%であった。また、450−680nmの可視光帯域の反射率は4.51%であった。なおこのデータは基板の裏面反射4%程度を含むものである。 Also, the reflectance of the blue light band of 450-500 nm is 6.22%, the reflectance of the green light band of 500-590 nm is 3.28%, and the reflectance of the red light band of 590-680 nm is 4.02% Met. Moreover, the reflectance of a 450-680 nm visible light band was 4.51%. This data includes about 4% of back surface reflection of the substrate.
図9及び図10に示すように、ブルーライトカットフィルタは、400−450nmの青紫色光帯域の透過率、及び450−500nmの青色光帯域の透過率を効果的に抑制することができた。また、450−680nmの可視光帯域の反射率(膜界面)は3%未満と低い。このため、ブルーライトカットフィルタを例えば画像パネルの保護ガラスとした場合、画面のギラギラ感や映り込みを大きく軽減することができる。より具体的には、蛍光灯光が画面に映り込んだ場合でも、その部分の反射を抑え、視認性を向上させることができる。 As shown in FIGS. 9 and 10, the blue light cut filter was able to effectively suppress the transmittance of the blue-violet light band of 400-450 nm and the transmittance of the blue light band of 450-500 nm. In addition, the reflectance (film interface) in the visible light band of 450 to 680 nm is as low as less than 3%. For this reason, when the blue light cut filter is used as, for example, a protective glass of an image panel, it is possible to greatly reduce the glare and reflection of the screen. More specifically, even when the fluorescent light is reflected on the screen, the reflection of the portion can be suppressed to improve the visibility.
また、図11及び図12は、それぞれ信頼性試験後のブルーライトカットフィルタの透過率及び反射率を示すグラフである。信頼性試験としては、60℃、95%、1000時間の高温高湿試験を行った。ブルーライトカットフィルタは、耐熱性の高いSiC、及びSiO2を主成分として形成されているため、高温高湿の環境下でも光学特性の劣化を抑制することができる。 11 and 12 are graphs showing the transmittance and the reflectance of the blue light cut filter after the reliability test, respectively. As a reliability test, a high temperature and high humidity test of 60 ° C., 95% and 1000 hours was conducted. The blue light cut filter is formed mainly of SiC and SiO 2 having high heat resistance, so that deterioration of optical characteristics can be suppressed even under a high temperature and high humidity environment.
また、図13及び図14は、それぞれ低屈折率膜成膜工程における酸素濃度に対するブルーライトカットフィルタの透過率及び反射率を示すグラフである。多層膜の設計は、前述のブルーライトカットフィルタと同様とした。また、高屈折率膜の成膜条件も、前述のブルーライトカットフィルタと同様とした。そして、低屈折率膜の成膜条件の酸素供給量を変更し、酸素供給量以外の成膜条件は、前述のブルーライトカットフィルタと同様とした。 Further, FIG. 13 and FIG. 14 are graphs showing the transmittance and the reflectance of the blue light cut filter with respect to the oxygen concentration in the low refractive index film forming step, respectively. The design of the multilayer film was the same as the blue light cut filter described above. In addition, the film formation conditions for the high refractive index film were the same as those of the blue light cut filter described above. Then, the oxygen supply amount under the film forming conditions of the low refractive index film was changed, and the film forming conditions other than the oxygen supply amount were the same as those of the blue light cut filter described above.
高屈折率膜の成膜時の酸素供給量を0cc〜100ccとし、低屈折率膜の成膜時の酸素供給量を120cc〜200ccとして多層膜を成膜した結果、多層膜を成膜しなかったガラス基板に比べ、可視光帯域の透過率を向上させ、青色光帯域の透過率を抑制することができた。また、酸素供給量を増加させることにより、透過率が増加することが分かった。これは、酸素供給量を各層で最適化させることにより、ブルーライト領域を膜吸収によりカットさせつつも、他の可視光領域に対しては膜吸収を軽減することが可能となったためと考えられる。 The multilayer film is formed as a result of forming the multilayer film by setting the oxygen supply amount at the time of film formation of the high refractive index film to 0 cc to 100 cc and the oxygen supply amount at the film formation of the low refractive index film to 120 cc to 200 cc. The transmittance of the visible light band can be improved and the transmittance of the blue light band can be suppressed as compared with the glass substrate. In addition, it was found that the permeability was increased by increasing the oxygen supply amount. This is considered to be because, by optimizing the oxygen supply amount in each layer, it is possible to reduce the film absorption to other visible light regions while cutting the blue light region by film absorption. .
10 基体、20 多層膜、21 高屈折率膜、22 低屈折率膜、23 高屈折率膜、24 低屈折率膜、25 高屈折率膜
Reference Signs List 10 substrate, 20 multilayer film, 21 high refractive index film, 22 low refractive index film, 23 high refractive index film, 24 low refractive index film, 25 high refractive index film
Claims (8)
前記低屈折率膜成膜工程では、前記酸化性ガスの含有割合が、10体積%以上60体積%以下である請求項1又は2記載の多層膜構造体の製造方法。 The oxidizing gas is oxygen,
The method for manufacturing a multilayer film structure according to claim 1 or 2, wherein in the low refractive index film forming step, the content ratio of the oxidizing gas is 10% by volume or more and 60% by volume or less.
The multilayer film has a high refractive index film of 10 to 50 nm, a low refractive index film of 30 to 120 nm, a high refractive index film of 50 to 200 nm, and a low refractive index film of 50 to 200 nm from the substrate side. The manufacturing method of the multilayer film structure of 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013247580A JP6525497B2 (en) | 2013-11-29 | 2013-11-29 | METHOD FOR MANUFACTURING MULTILAYER FILM STRUCTURE, AND MULTILAYER FILM STRUCTURE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013247580A JP6525497B2 (en) | 2013-11-29 | 2013-11-29 | METHOD FOR MANUFACTURING MULTILAYER FILM STRUCTURE, AND MULTILAYER FILM STRUCTURE |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015105403A JP2015105403A (en) | 2015-06-08 |
JP6525497B2 true JP6525497B2 (en) | 2019-06-05 |
Family
ID=53435726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013247580A Active JP6525497B2 (en) | 2013-11-29 | 2013-11-29 | METHOD FOR MANUFACTURING MULTILAYER FILM STRUCTURE, AND MULTILAYER FILM STRUCTURE |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6525497B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63113507A (en) * | 1986-10-31 | 1988-05-18 | Hitachi Ltd | Light guide and its production |
JP2000104163A (en) * | 1998-09-28 | 2000-04-11 | Bridgestone Corp | Formation of dry plated laminated film |
JP2004084033A (en) * | 2002-08-28 | 2004-03-18 | Nippon Sheet Glass Co Ltd | METHOD FOR DEPOSITING SiO2 FILM AND ARTICLE WITH SiO2 FILM DEPOSITED BY THE METHOD |
JP4763962B2 (en) * | 2003-08-18 | 2011-08-31 | 株式会社東芝 | Sputtering target for forming oxide film and manufacturing method of oxide film using the same |
JP2009083183A (en) * | 2007-09-28 | 2009-04-23 | Toppan Printing Co Ltd | Optical membrane laminate |
-
2013
- 2013-11-29 JP JP2013247580A patent/JP6525497B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015105403A (en) | 2015-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI403762B (en) | Absorptive multilayer film nd filter and method for fabricating the same | |
US9482798B2 (en) | Plasmonic nano-color coating layer and method for fabricating the same | |
CN108291988B (en) | Nano double-material electromagnetic spectrum frequency shifter | |
KR20010041308A (en) | Light absorptive antireflector and method for its production | |
JPH05254887A (en) | Transparent laminated substrate, its use and laminating method, method and device for laminating on base material, and hafnium oxynitride | |
JP2002055213A (en) | High reflectance mirror | |
JP2005298833A (en) | Multilayer film-coated substrate and its manufacturing method | |
CN111630014A (en) | Coated article with metamaterial containing layer, coating with metamaterial containing layer, and/or method of making same | |
NO173932B (en) | PROCEDURE FOR THE PREPARATION OF A COATED ARTICLE INCORPORATED TITANOXYNITRID MOVIES AND USE THEREOF | |
JP6767661B2 (en) | Gray tones low emissivity glass | |
JPH06102558B2 (en) | Colored glass plates | |
JP2002323606A (en) | Functional thin film having optical and electrical properties | |
US20170087927A1 (en) | Layered product | |
JPH05502738A (en) | Magnesium film reflective material | |
JP2007112673A (en) | Oxide sintered compact, oxide film using same and laminate comprising the oxide film | |
CN107207331A (en) | Glass plate and compound glass with stacked film | |
JP6525497B2 (en) | METHOD FOR MANUFACTURING MULTILAYER FILM STRUCTURE, AND MULTILAYER FILM STRUCTURE | |
CN116819661A (en) | Optical film with variable spectral characteristics and method for adjusting spectral characteristics of optical film | |
JP2004334012A (en) | Antireflection film and optical filter | |
JPH1096801A (en) | Light-absorbing reflection preventing body and its production | |
KR20180091832A (en) | Method and plant for obtaining colored glazing | |
JPS63134232A (en) | Infrared reflecting article having high transmittance | |
JP6480239B2 (en) | Method of manufacturing multilayer film structure | |
JP7128220B2 (en) | Method for manufacturing multilayer structure | |
JPH07248415A (en) | Production of optical thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161004 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170711 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190507 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6525497 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |