JP6525431B2 - Battery controller - Google Patents

Battery controller Download PDF

Info

Publication number
JP6525431B2
JP6525431B2 JP2016021873A JP2016021873A JP6525431B2 JP 6525431 B2 JP6525431 B2 JP 6525431B2 JP 2016021873 A JP2016021873 A JP 2016021873A JP 2016021873 A JP2016021873 A JP 2016021873A JP 6525431 B2 JP6525431 B2 JP 6525431B2
Authority
JP
Japan
Prior art keywords
battery
temperature
reference value
value
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016021873A
Other languages
Japanese (ja)
Other versions
JP2017143604A (en
Inventor
和治 栩川
和治 栩川
仁 大熊
仁 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Suzuki Motor Co Ltd
Original Assignee
Denso Corp
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Suzuki Motor Co Ltd filed Critical Denso Corp
Priority to JP2016021873A priority Critical patent/JP6525431B2/en
Priority to DE102017102458.1A priority patent/DE102017102458B4/en
Priority to CN201710069551.7A priority patent/CN107046306B/en
Publication of JP2017143604A publication Critical patent/JP2017143604A/en
Application granted granted Critical
Publication of JP6525431B2 publication Critical patent/JP6525431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、ハイブリッド自動車や電気自動車に搭載される高圧バッテリの充放電を制御するバッテリ制御装置に関する。   The present invention relates to a battery control device that controls charging and discharging of a high voltage battery mounted on a hybrid vehicle or an electric vehicle.

従来、ハイブリッド自動車や電気自動車に搭載される高圧バッテリの充放電電力量を制限し、過充電又は過放電を防止する技術が知られている。例えば特許文献1に開示された電気自動車は、バッテリに温度センサを設け、温度センサが検出したバッテリ温度に基づいて、発電機やエンジンからバッテリに充電される充電電力量を制限している。   Conventionally, there is known a technique for limiting the charge / discharge power amount of a high voltage battery mounted on a hybrid vehicle or an electric vehicle to prevent overcharge or overdischarge. For example, in the electric vehicle disclosed in Patent Document 1, the battery is provided with a temperature sensor, and based on the battery temperature detected by the temperature sensor, the amount of charging power charged to the battery from the generator or the engine is limited.

特開平7−67209号公報JP 7-67209 A

特許文献1の技術ではバッテリ温度として一つの値のみを用いて充電電力量を制限している。しかし、一般にバッテリは複数のセルの集合体で構成されているため、複数のセル間で温度ばらつきが生じる。そこで、どのセル温度を用いて充放電量を制限するのが適切であるか問題となる。
本発明はこのような点に鑑みて創作されたものであり、その目的は、複数のセル温度のばらつきを考慮して充放電量を適切に制限するバッテリ制御装置を提供することにある。
In the technique of Patent Document 1, only one value is used as the battery temperature to limit the amount of charging power. However, in general, a battery is composed of a plurality of cell clusters, so that temperature variations occur among the plurality of cells. Therefore, it becomes a problem which cell temperature is appropriate to limit the charge / discharge amount.
The present invention has been made in view of these points, and it is an object of the present invention to provide a battery control device that appropriately limits the charge / discharge amount in consideration of variations in temperature of a plurality of cells.

本発明のバッテリ制御装置は、最高/最低温度抽出部(42)、第1参照値比較部(43)、第2参照値比較部(44)、バッテリ温度選択部(45)、充放電制限値設定部(46)を備える。
最高/最低温度抽出部は、バッテリ(2)の複数のセル温度を複数の温度センサ(31〜36)から取得し、複数のセル温度のうちの最高温度であるバッテリ最高温度(TbMAX)、及び、複数のセル温度のうちの最低温度であるバッテリ最低温度(TbMIN)を抽出する
第1参照値比較部は、第1参照値とバッテリ最高温度とを比較する。第2参照値比較部は、第1参照値よりも低い第2参照値とバッテリ最低温度とを比較する。
The battery control apparatus according to the present invention includes a maximum / minimum temperature extraction unit (42), a first reference value comparison unit (43), a second reference value comparison unit (44), a battery temperature selection unit (45), a charge / discharge limit value A setting unit (46) is provided.
The maximum / minimum temperature extraction unit obtains the plurality of cell temperatures of the battery (2) from the plurality of temperature sensors (31 to 36), and the maximum temperature (Tb MAX ) of the plurality of cell temperatures. And extracting a minimum battery temperature (Tb MIN ) that is the lowest temperature among the plurality of cell temperatures. The first reference value comparison unit compares the first reference value with the maximum battery temperature. The second reference value comparison unit compares a second reference value lower than the first reference value with the battery minimum temperature.

バッテリ温度選択部は、第1参照値比較部及び第2参照値比較部による比較結果に基づき、バッテリ温度選択値(TbSEL)を設定する。充放電制限値設定部は、バッテリ温度選択値に基づいて、バッテリの充放電制限値を設定する。
バッテリ温度選択部は、バッテリ温度選択値を次のように設定する。
(1)バッテリ最高温度が第1参照値を超え、且つ、バッテリ最低温度が第2参照値以上であるとき、バッテリ温度選択値としてバッテリ最高温度を選択する。
(2)バッテリ最高温度が第1参照値以下であり、且つ、バッテリ最低温度が第2参照値未満であるとき、バッテリ温度選択値としてバッテリ最低温度を選択する。
The battery temperature selection unit sets the battery temperature selection value (Tb SEL ) based on the comparison result by the first reference value comparison unit and the second reference value comparison unit. The charge / discharge limit value setting unit sets the charge / discharge limit value of the battery based on the battery temperature selection value.
The battery temperature selection unit sets the battery temperature selection value as follows.
(1) When the maximum battery temperature exceeds the first reference value and the minimum battery temperature is equal to or higher than the second reference value, the maximum battery temperature is selected as the battery temperature selection value.
(2) When the battery maximum temperature is less than or equal to the first reference value and the battery minimum temperature is less than the second reference value, the battery minimum temperature is selected as the battery temperature selection value.

(1)の場合、温度の高いバッテリセルの過熱を防止することができる。(2)の場合、温度の低いバッテリセルの劣化を防止することができる。これにより、複数のセル温度のばらつきを考慮して充放電量を適切に制限し、バッテリの全てのセルについて過熱又は劣化を回避可能な領域で、バッテリを有効に使用することができる。   In the case of (1), overheating of the high temperature battery cell can be prevented. In the case of (2), it is possible to prevent the deterioration of the battery cell whose temperature is low. As a result, the charge / discharge amount can be appropriately limited in consideration of variations in a plurality of cell temperatures, and the battery can be effectively used in an area where overheating or deterioration of all the cells of the battery can be avoided.

また、好ましくは、バッテリ温度選択部は、バッテリ最高温度が第1参照値以下であり、且つ、バッテリ最低温度が第2参照値以上であるとき、バッテリ温度選択値の前回値を保持する。これにより、バッテリセルが過熱又は劣化に至る可能性が小さいと判断される場合の処理を簡潔にすることができる。   In addition, preferably, the battery temperature selection unit holds the previous value of the battery temperature selection value when the battery maximum temperature is equal to or less than the first reference value and the battery minimum temperature is equal to or more than the second reference value. This makes it possible to simplify the process when it is determined that the battery cell is unlikely to overheat or deteriorate.

さらに好ましくは、バッテリ温度選択部は、バッテリ温度選択値を次のように設定する。
(3)バッテリ最高温度が第1参照値を超え、且つ、バッテリ最低温度が第2参照値未満のとき、バッテリ温度選択値としてバッテリ最高温度を選択する。
これにより、温度の高いバッテリセルの過熱を優先して防止することができる。
More preferably, the battery temperature selection unit sets the battery temperature selection value as follows.
(3) When the battery maximum temperature exceeds the first reference value and the battery minimum temperature is less than the second reference value, the battery maximum temperature is selected as the battery temperature selection value.
Thereby, it is possible to prevent overheating of the battery cell having high temperature with priority.

一実施形態のバッテリ制御装置が搭載されるハイブリッド自動車の全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram of the hybrid vehicle by which the battery control apparatus of one Embodiment is mounted. 一実施形態のバッテリ制御装置の制御ブロック図。The control block diagram of the battery control unit of one embodiment. バッテリ最高温度及び最低温度の経時変化の例を示すタイムチャート。The time chart which shows the example of the battery top temperature and the minimum temperature time-dependent change. バッテリ温度選択値と充放電制限値との関係を示す特性マップ。The characteristic map which shows the relationship between a battery temperature selection value and a charging / discharging limit value. バッテリ制御装置による充放電制限処理のフローチャート。The flowchart of the charging / discharging restriction | limiting process by a battery control apparatus.

(一実施形態)
以下、バッテリ制御装置の実施形態を図面に基づいて説明する。この実施形態のバッテリ制御装置は、ハイブリッド自動車や電気自動車に搭載され、動力源であるモータジェネレータ(以下、「MG」)に電力を供給する高圧バッテリの充電状態等に関する制御を行う装置である。
(One embodiment)
Hereinafter, an embodiment of a battery control device will be described based on the drawings. The battery control device of this embodiment is a device that is mounted on a hybrid vehicle or an electric vehicle and performs control relating to the charging state or the like of a high voltage battery that supplies power to a motor generator (hereinafter, "MG") that is a power source.

最初に、本実施形態のバッテリ制御装置が搭載されるハイブリッド自動車の全体構成について、図1を参照して説明する。図1には、動力源としてエンジン8及び一つのMG7を備えたハイブリッド自動車90を例示する。なお他の実施形態のバッテリ制御装置は、二つ以上のMGを備えたハイブリッド自動車、或いは、エンジンを備えない電気自動車に搭載されてもよい。
図1のハイブリッド自動車90において、MG7の動力とエンジン8の動力とは動力伝達機構91で合成される。合成された動力は、ディファレンシャル装置92を介して車軸93に伝達され、駆動輪94を回転駆動する。
First, the overall configuration of a hybrid vehicle equipped with the battery control device of the present embodiment will be described with reference to FIG. FIG. 1 illustrates a hybrid vehicle 90 equipped with an engine 8 and one MG 7 as a power source. The battery control device according to still another embodiment may be mounted on a hybrid vehicle equipped with two or more MGs or an electric vehicle not equipped with an engine.
In the hybrid vehicle 90 of FIG. 1, the power of the MG 7 and the power of the engine 8 are synthesized by the power transmission mechanism 91. The synthesized power is transmitted to the axle 93 via the differential device 92 to rotationally drive the drive wheel 94.

MG7は、例えば永久磁石式同期型の三相交流電動機であり、直流電力と三相交流電力とを変換するインバータ6を介してバッテリ2と電気的に接続されている。
MG7は、バッテリ2が放電した電力を消費して、力行動作により動力を生成する。また、MG7は、ハイブリッド自動車90の減速時等に回生動作により発電する。MG7が発電した電力は、インバータ6を介してバッテリ2に充電される。
The MG 7 is, for example, a permanent magnet synchronous three-phase AC motor, and is electrically connected to the battery 2 via an inverter 6 that converts DC power and three-phase AC power.
The MG 7 consumes the power discharged by the battery 2 and generates power by a powering operation. Further, the MG 7 generates electric power by regeneration operation at the time of deceleration of the hybrid vehicle 90 or the like. The electric power generated by the MG 7 is charged to the battery 2 via the inverter 6.

インバータ6とMG7との間に流れる相電流は、図示しない電流センサによって検出される。また、MG7の電気角は、図示しないレゾルバ等の回転角センサによって検出され
る。MG制御装置5は、こうして検出された電流フィードバック信号(図中、「電流FB信号」)や電気角信号等を取得し、フィードバック制御により駆動信号を演算してインバータ6に出力する。
The phase current flowing between the inverter 6 and the MG 7 is detected by a current sensor (not shown). The electrical angle of the MG 7 is detected by a rotation angle sensor such as a resolver (not shown). The MG control device 5 acquires the current feedback signal (“current FB signal” in the figure) thus detected, the electrical angle signal, etc., calculates the drive signal by feedback control, and outputs it to the inverter 6.

フィードバック制御やPWM制御等の一般的なMG制御に関する技術は周知技術であるため、詳細な説明を省略する。また、図1において、車速やアクセル開度等に基づきエンジン8の運転を制御するエンジン制御装置や、バッテリ2、MG7、エンジン8の状態を統括的に管理する統括制御装置、及び、それらの制御装置に関する入出力信号の図示を省略する。   Techniques related to general MG control such as feedback control and PWM control are well known techniques, and thus detailed description will be omitted. Further, in FIG. 1, an engine control device that controls the operation of the engine 8 based on the vehicle speed, the accelerator opening degree, etc., a general control device that comprehensively manages the states of the battery 2, MG 7 and the engine 8, and their control Illustration of input and output signals related to the device is omitted.

バッテリ2は、例えばニッケル水素、リチウムイオン電池等の充放電可能な蓄電装置である。また、電気二重層キャパシタ等の蓄電装置もバッテリ2に含むものとして考える。これらの種類のバッテリ2は、一般に複数のセルの集合体で構成されている。バッテリ2は、インバータ6を介してMG7と電力を授受することにより、所定の制限値以内の範囲で充放電される。   The battery 2 is a chargeable / dischargeable power storage device such as, for example, a nickel hydrogen battery or a lithium ion battery. Also, it is considered that the battery 2 includes a storage device such as an electric double layer capacitor. These types of batteries 2 are generally configured of a plurality of cell clusters. Battery 2 is charged and discharged within a predetermined limit value by exchanging power with MG 7 via inverter 6.

なお、例えば補機用の低圧バッテリと区別する必要がある場合、バッテリ2は、「主機バッテリ」又は「高圧バッテリ」とも呼ばれる。しかし、本明細書では他のバッテリについて特に言及しないため、単に「バッテリ2」という。また、バッテリ2の直流電力は、インバータ6に供給される以外に、例えばDCDCコンバータで低電圧の直流電力に変換され、図示しない補機の電力源として用いられてもよい。   In addition, when it is necessary to distinguish, for example, from a low voltage battery for auxiliary equipment, the battery 2 is also referred to as a "main battery" or a "high voltage battery". However, in the present specification, it is simply referred to as “battery 2” because it does not particularly refer to other batteries. In addition to being supplied to inverter 6, DC power of battery 2 may be converted into DC power of low voltage by, for example, a DC-DC converter, and may be used as a power source of an accessory not shown.

バッテリ制御装置4は、バッテリ2の充電状態(いわゆるSOC)やバッテリ温度等の情報を取得し、それに基づいて、バッテリ2の過熱や劣化を防止するための充放電制限値を演算してMG制御装置5に通知する。MG制御装置5は、バッテリ2の充放電量が制限値を超えないようにインバータ6への駆動信号を調整する。   The battery control device 4 acquires information such as the state of charge (so-called SOC) of the battery 2 and the battery temperature, and based on that, calculates the charge / discharge limit value for preventing the overheat or deterioration of the battery 2 to perform MG control The device 5 is notified. MG control device 5 adjusts the drive signal to inverter 6 so that the charge / discharge amount of battery 2 does not exceed the limit value.

以上の全体構成を基本として、特に本実施形態のバッテリ制御装置4は、充放電制限値の演算に用いるバッテリ温度を決定する構成に特徴を有する。
特許文献1の従来技術では、充電制限の判断に用いるバッテリ温度として一つの値のみを用いている。しかし、上述の通り、バッテリ2は複数のセルの集合体で構成されているため、複数のセルの特性差によって温度ばらつきが生じる。また、バッテリ2の搭載配置によっても、例えば冷却ファンに近い側のセルと、その反対側のセルとでは温度ばらつきが生じる。
Based on the above overall configuration, in particular, the battery control device 4 of the present embodiment is characterized in the configuration for determining the battery temperature used for the calculation of the charge / discharge limit value.
In the prior art of Patent Document 1, only one value is used as the battery temperature used to determine the charge limit. However, as described above, since the battery 2 is configured by an assembly of a plurality of cells, temperature variations occur due to the characteristic difference between the plurality of cells. Further, the mounting arrangement of the battery 2 also causes temperature variations, for example, between the cell near the cooling fan and the cell on the opposite side.

そこで本実施形態では、複数のセル温度を検出する複数の温度センサ31〜36がバッテリ2に設けられる。温度センサ31〜36は、例えばサーミスタ等である。図1には6個の温度センサ31〜36を例示するが、複数の温度センサの数は2個以上のいくつでもよい。複数の温度センサ31〜36は、各セルに一対一に対応して設けられてもよいし、例えば二つのセルに対して一つずつ設けられてもよい。
また、バッテリ2の搭載配置によるセルの温度差が生じる場合、温度が最も高くなると推定される位置、及び、温度が最も低くなると推定される位置を含むように複数の温度センサ31〜36が配置されることが好ましい。
Therefore, in the present embodiment, the plurality of temperature sensors 31 to 36 that detect a plurality of cell temperatures are provided in the battery 2. The temperature sensors 31 to 36 are, for example, thermistors or the like. Although six temperature sensors 31 to 36 are illustrated in FIG. 1, the number of the plurality of temperature sensors may be two or more. The plurality of temperature sensors 31 to 36 may be provided in one-to-one correspondence with the cells, or may be provided, for example, one for each of the two cells.
Further, when the temperature difference of the cell occurs due to the mounting arrangement of the battery 2, the plurality of temperature sensors 31 to 36 are arranged so as to include the position where the temperature is estimated to be the highest and the position where the temperature is estimated to be the lowest. Preferably.

バッテリ制御装置4は、各温度センサ31〜36が検出した各セル温度Tb1〜Tb6を取得する。そして、取得した複数のセル温度に基づいて、充放電制限値の設定に用いるバッテリ温度を適切に選択することを特徴とする。
図2に示すように、バッテリ制御装置4は、A/D変換部41、最高/最低温度抽出部42、第1参照値比較部43、第2参照値比較部44、バッテリ温度選択部45、及び、充放電制限値設定部46等を有する。
The battery control device 4 acquires the cell temperatures Tb1 to Tb6 detected by the temperature sensors 31 to 36. And based on the acquired some cell temperature, it is characterized by selecting suitably the battery temperature used for the setting of a charging / discharging limit value.
As shown in FIG. 2, the battery control device 4 includes an A / D conversion unit 41, a maximum / minimum temperature extraction unit 42, a first reference value comparison unit 43, a second reference value comparison unit 44, a battery temperature selection unit 45, And the charge / discharge limit value setting unit 46 and the like.

通常、温度センサ31〜36によるセル温度Tb1〜Tb6の検出値は、アナログ信号としてバッテリ制御装置4に入力される。A/D変換部41は、入力されたアナログ信号を所定の変換周期でデジタル信号に変換し、サンプルホールドする。複数の温度センサの数は6個に限らないため、図2では、入力される複数の温度検出値を「Tb1、Tb2、Tb3・・・TbN」というように一般化して示す。なお、仮にデジタル信号を出力する温度センサを用いる場合、A/D変換部41を設けなくてもよい。   Usually, the detection values of the cell temperatures Tb1 to Tb6 by the temperature sensors 31 to 36 are input to the battery control device 4 as analog signals. The A / D conversion unit 41 converts the input analog signal into a digital signal at a predetermined conversion cycle, and performs sample and hold. Since the number of the plurality of temperature sensors is not limited to six, in FIG. 2, the plurality of input temperature detection values are generalized and expressed as “Tb1, Tb2, Tb3... TbN”. If a temperature sensor that outputs a digital signal is used, the A / D conversion unit 41 may not be provided.

最高/最低温度抽出部42は、複数のセル温度Tb1〜TbNを取得し、複数のセル温度Tb1〜TbNのうちの最高温度であるバッテリ最高温度TbMAX、及び、複数のセル温度Tb1〜TbNのうちの最低温度であるバッテリ最低温度TbMINを抽出する。
第1参照値比較部43及び第2参照値比較部44は、それぞれ、最高/最低温度抽出部42からバッテリ最高温度TbMAX及びバッテリ最低温度TbMINを取得する。
The maximum / minimum temperature extraction unit 42 obtains a plurality of cell temperatures Tb1 to TbN, and sets the battery maximum temperature Tb MAX , which is the maximum temperature among the plurality of cell temperatures Tb1 to TbN, and the plurality of cell temperatures Tb1 to TbN. The battery minimum temperature Tb MIN , which is the lowest temperature among them, is extracted.
The first reference value comparison unit 43 and the second reference value comparison unit 44 obtain the battery maximum temperature Tb MAX and the battery minimum temperature Tb MIN from the maximum / minimum temperature extraction unit 42, respectively.

第1参照値比較部43は、取得したバッテリ最高温度TbMAXと、内部に記憶している第1参照値Tref1とを比較する。
第2参照値比較部44は、取得したバッテリ最低温度TbMINと、内部に記憶している第2参照値Tref2とを比較する。第2参照値Tref2は、第1参照値Tref1よりも低く設定されている。
The first reference value comparison unit 43 compares the acquired battery maximum temperature Tb MAX with a first reference value Tref1 stored therein.
The second reference value comparison unit 44 compares the acquired battery minimum temperature Tb MIN with a second reference value Tref2 stored inside. The second reference value Tref2 is set lower than the first reference value Tref1.

バッテリ温度選択部45は、第1参照値比較部43及び第2参照値比較部44による比較結果に基づき、バッテリ温度選択値TbSELを設定する。バッテリ温度選択部45によるこの処理を「バッテリ温度選択処理」といい、詳細は後述する。
充放電制限値設定部46は、バッテリ温度選択値TbSELに基づいて、バッテリ2の充放電制限値を設定する。
The battery temperature selection unit 45 sets the battery temperature selection value Tb SEL based on the comparison result of the first reference value comparison unit 43 and the second reference value comparison unit 44. This process by the battery temperature selection unit 45 is referred to as "battery temperature selection process", and the details will be described later.
The charge / discharge limit value setting unit 46 sets the charge / discharge limit value of the battery 2 based on the battery temperature selection value Tb SEL .

続いて、バッテリ温度選択部45によるバッテリ温度選択処理について、図3のタイムチャート、及び、図4のバッテリ温度選択値TbSELと充放電制限値との特性マップを参照して説明する。
図3には、第1参照値Tref1及び第2参照値Tref2に対するバッテリ最高温度TbMAX及びバッテリ最低温度TbMINの経時変化のパターンを例示する。また、バッテリ最高温度TbMAX及びバッテリ最低温度TbMINの経時変化に伴って選択されるバッテリ温度選択値TbSELを太線で示し、特に注目するシーンA、シーンB、シーンCでの各バッテリ温度選択値TbSELを丸印で示す。
Subsequently, the battery temperature selection process by the battery temperature selection unit 45 will be described with reference to the time chart of FIG. 3 and the characteristic map of the battery temperature selection value Tb SEL and the charge / discharge limit value of FIG.
FIG. 3 exemplifies a temporal change pattern of the battery maximum temperature Tb MAX and the battery minimum temperature Tb MIN with respect to the first reference value Tref1 and the second reference value Tref2. Also, the battery temperature selection value Tb SEL selected according to the time-dependent change of the battery maximum temperature Tb MAX and the battery minimum temperature Tb MIN is indicated by a thick line, and each battery temperature selection in scene A, scene B, scene C to be particularly focused The values Tb SEL are indicated by circles.

図4の特性マップでは、「α<β<γ」の関係となる境界温度α、β、γが示される。バッテリ温度選択値TbSELがαとβとの間の中温領域では、充電量、放電量ともに制限値の絶対値が最大となる。すなわち、充電量Pc0までの充電、及び、放電量Pd0までの放電が最大限に許容される。 In the characteristic map of FIG. 4, boundary temperatures α, β, and γ that are in a relationship of “α <β <γ” are shown. In the middle temperature region where the battery temperature selection value Tb SEL is between α and β, the absolute value of the limit value is maximum for both the charge amount and the discharge amount. That is, the charge to the charge amount Pc0 and the discharge to the discharge amount Pd0 are maximally permitted.

バッテリ温度選択値TbSELがα未満の低温領域では、温度がαから低くなるに従い、充放電制限値の絶対値がPc0及びPd0から次第に小さくなる。
バッテリ温度選択値TbSELがβを超えγまでの高温領域では、温度がβから高くなるに従い、充放電制限値の絶対値が低温領域よりも急な勾配でPc0及びPd0から次第に小さくなる。バッテリ温度選択値TbSELがγ以上の領域では充放電制限値は0であり、充放電が完全に禁止される。
中温領域は正常温度範囲であり、低温領域及び高温領域は非正常範囲であると考えることができる。
In a low temperature region where the battery temperature selection value Tb SEL is less than α, as the temperature decreases from α, the absolute value of the charge / discharge limit value gradually decreases from Pc0 and Pd0.
In the high temperature range from the battery temperature selection value Tb SEL to β to γ, as the temperature rises from β, the absolute value of the charge / discharge limit value gradually decreases from Pc0 and Pd0 with a steep gradient than the low temperature range. The charge / discharge limit value is 0 in the region where the battery temperature selection value Tb SEL is equal to or greater than γ, and charge / discharge is completely prohibited.
The medium temperature range can be considered as a normal temperature range, and the low temperature range and the high temperature range as an abnormal range.

図4の特性マップに基づいてバッテリ2の充放電量を制限することにより、低温領域におけるバッテリセルの劣化、及び、高温領域におけるバッテリセルの過熱を防止することができる。
図3の第1参照値Tref1は、図4では中温領域の高温側の温度として設定される。また、第2参照値Tref2は、中温領域の低温側の温度として設定される。
By limiting the charge / discharge amount of the battery 2 based on the characteristic map of FIG. 4, deterioration of the battery cell in the low temperature region and overheating of the battery cell in the high temperature region can be prevented.
The first reference value Tref1 in FIG. 3 is set as the temperature on the high temperature side of the middle temperature region in FIG. 4. Further, the second reference value Tref2 is set as the temperature on the low temperature side of the middle temperature region.

図3の時間軸に沿って順に説明する。
MG駆動が開始された時刻t0では、バッテリ最高温度TbMAXは第1参照値Tref1以下であり、バッテリ最低温度TbMINは第2参照値Tref2以上である。バッテリ温度選択部45は、バッテリ温度選択値TbSELの初回値として、代表的には実線丸印で示すようにバッテリ最高温度TbMAXを選択する。或いは、破線丸印で示すように第1参照値Tref1を選択してもよい。
This will be described in order along the time axis of FIG.
At MG time driving is started t0, the battery maximum temperature Tb MAX is less than the first reference value Tref1, the minimum battery temperature Tb MIN is the second reference value Tref2 more. Battery temperature selection unit 45 as an initial value of the battery temperature selection value Tb SEL, typically selects the battery maximum temperature Tb MAX as indicated by the solid line circles. Alternatively, the first reference value Tref1 may be selected as indicated by a dashed circle.

時刻t0から時刻t1までの間、バッテリ最高温度TbMAXが第1参照値Tref1以下であり、且つ、バッテリ最低温度TbMINが第2参照値Tref2以上である状態が継続する。このとき、バッテリ温度選択部45は、バッテリ温度選択値TbSELの前回値を保持する。ここで、時刻t0以後に少なくとも1回以上の処理が実行されていることを前提とする。したがって、バッテリ温度選択値TbSELの初回値が維持される。 Between time t0 and time t1, the battery maximum temperature Tb MAX is equal to or smaller than the first reference value Tref1, and the state minimum battery temperature Tb MIN is the second reference value Tref2 above continues. At this time, the battery temperature selection unit 45 holds the previous value of the battery temperature selection value Tb SEL . Here, it is assumed that at least one process is performed after time t0. Therefore, the initial value of battery temperature selection value Tb SEL is maintained.

シーンAに代表されるように、時刻t1から時刻t2までの間、バッテリ最高温度TbMAXが第1参照値Tref1以下であり、且つ、バッテリ最低温度TbMINが第2参照値Tref2未満となる。このとき、バッテリ温度選択部45は、バッテリ温度選択値TbSELとしてバッテリ最低温度TbMINを選択する。
図4にて、シーンAでのバッテリ温度選択値TbSELは、低温領域に含まれる。したがって、バッテリ最低温度TbMINが第2参照値Tref2未満のとき、バッテリ温度選択値TbSELとしてバッテリ最低温度TbMINを選択することにより、温度の低いバッテリセルの劣化を防止することができる。
バッテリ最低温度TbMINが第2参照値Tref2に一致する時刻t2では、バッテリ温度選択値TbSELは第2参照値Tref2となる。
As represented in the scene A, the period from time t1 to time t2, the battery maximum temperature Tb MAX is equal to or smaller than the first reference value Tref1, and, the minimum battery temperature Tb MIN is less than the second reference value Tref2. At this time, the battery temperature selection unit 45 selects the battery minimum temperature Tb MIN as the battery temperature selection value Tb SEL .
In FIG. 4, the battery temperature selection value Tb SEL in scene A is included in the low temperature region. Therefore, when the battery minimum temperature Tb MIN is less than the second reference value Tref 2, deterioration of the battery cell with a low temperature can be prevented by selecting the battery minimum temperature Tb MIN as the battery temperature selection value Tb SEL .
At time t2 when the battery minimum temperature Tb MIN matches the second reference value Tref2, the battery temperature selection value Tb SEL becomes the second reference value Tref2.

次に、シーンBに代表されるように、時刻t2から時刻t3までの間、バッテリ最高温度TbMAXが第1参照値Tref1以下であり、且つ、バッテリ最低温度TbMINが第2参照値Tref2以上となる。このとき、バッテリ温度選択部45は、バッテリ温度選択値TbSELの前回値を保持する。ここで、時刻t2以後に少なくとも1回以上の処理が実行されていることを前提とする。したがって、時刻t2における第2参照値Tref2がバッテリ温度選択値TbSELとして維持される。
図4にて、シーンBでのバッテリ温度選択値TbSELは、バッテリセルの劣化や過熱のおそれがほとんどない中温領域に含まれる。したがって、シーンBでは最大限の充放電が許容される。
Next, as represented by scene B, from time t2 to time t3, the battery maximum temperature Tb MAX is less than or equal to the first reference value Tref1 and the battery minimum temperature Tb MIN is greater than or equal to the second reference value Tref2 It becomes. At this time, the battery temperature selection unit 45 holds the previous value of the battery temperature selection value Tb SEL . Here, it is assumed that at least one process is performed after time t2. Therefore, the second reference value Tref2 at time t2 is maintained as the battery temperature selection value Tb SEL .
In FIG. 4, the battery temperature selection value Tb SEL in the scene B is included in a medium temperature region in which there is little risk of deterioration or overheating of the battery cells. Therefore, in scene B, maximum charge and discharge are allowed.

バッテリ最低温度TbMINが再び第2参照値Tref2に一致する時刻t3から時刻t4までの間、バッテリ最高温度TbMAXが第1参照値Tref1以下であり、且つ、バッテリ最低温度TbMINが第2参照値Tref2未満となる。このとき、時刻t1から時刻t2までの間と同様に、バッテリ温度選択部45は、バッテリ温度選択値TbSELとしてバッテリ最低温度TbMINを選択する。 Between time t3 and time t4 when the battery minimum temperature Tb MIN matches the second reference value Tref2 again, the battery maximum temperature Tb MAX is less than the first reference value Tref1 and the battery minimum temperature Tb MIN is the second reference It becomes less than the value Tref2. At this time, as in the period from time t1 to time t2, the battery temperature selection unit 45 selects the battery minimum temperature Tb MIN as the battery temperature selection value Tb SEL .

シーンCに代表されるように、時刻t4の以後、バッテリ最高温度TbMAXが第1参照値Tref1を超え、且つ、バッテリ最低温度TbMINが第2参照値Tref2未満となる。このとき、バッテリ温度選択部45は、バッテリ温度選択値TbSELとしてバッテリ最高温度TbMAXを選択する。
図4にて、シーンCでのバッテリ温度選択値TbSELは、高温領域に含まれる。したがって、バッテリ最高温度TbMAXが第1参照値Tref1を超えているとき、バッテリ温度選択値TbSELとしてバッテリ最高温度TbMAXを選択することにより、温度の高いバッテリセルの過熱を防止することができる。
As represented in the scene C, the subsequent time t4, the battery maximum temperature Tb MAX exceeds the first reference value Tref1, and, the minimum battery temperature Tb MIN is less than the second reference value Tref2. At this time, the battery temperature selection unit 45 selects the battery maximum temperature Tb MAX as the battery temperature selection value Tb SEL .
In FIG. 4, the battery temperature selection value Tb SEL in scene C is included in the high temperature region. Therefore, when the battery maximum temperature Tb MAX exceeds the first reference value Tref 1, it is possible to prevent overheating of a battery cell having a high temperature by selecting the battery maximum temperature Tb MAX as the battery temperature selection value Tb SEL. .

なお、図3には例示されていないが、バッテリ最高温度TbMAXが第1参照値Tref1を超え、且つ、バッテリ最低温度TbMINが第2参照値Tref2以上であるときも、バッテリ温度選択値TbSELとしてバッテリ最高温度TbMAXが選択される。 Although not illustrated in FIG. 3, the battery temperature selection value Tb is also obtained when the battery maximum temperature Tb MAX exceeds the first reference value Tref1 and the battery minimum temperature Tb MIN is the second reference value Tref2 or more. The battery maximum temperature Tb MAX is selected as SEL .

次に、本実施形態のバッテリ制御装置4による充放電制限処理について、図5のフローチャートを参照して説明する。この処理ルーチンは、MG7の駆動中、周期的に、或いは何らかの動作をトリガとして繰り返し実行される。以下のフローチャートの説明で、記号「S」はステップを意味する。
ここで、図3のタイムチャートとの関係では、図3で例示した時刻t0、t1、t2、t3、t4の各間隔に対し、この処理ルーチンの処理周期は短く設定されているものとする。言い換えれば、上記各時刻の間に少なくとも1回以上の処理が実行されることを前提とする。したがって、時刻t0から時刻t1までの間、及び、時刻t2から時刻t3までの間におけるバッテリ温度選択値TbSELの前回値は、それぞれ、時刻t0及び時刻t2以後に選択されたものである。
Next, the charge / discharge limiting process by the battery control device 4 of the present embodiment will be described with reference to the flowchart of FIG. This processing routine is repeatedly executed periodically or triggered by some operation while the MG 7 is being driven. In the following description of the flow chart, the symbol "S" means a step.
Here, in relation to the time chart of FIG. 3, it is assumed that the processing cycle of this processing routine is set shorter for each interval of the times t0, t1, t2, t3, and t4 illustrated in FIG. In other words, it is premised that at least one process is performed during each time. Therefore, the previous values of the battery temperature selection value Tb SEL during the period from the time t0 to the time t1 and the period from the time t2 to the time t3 are respectively selected after the time t0 and the time t2.

S1では、最高/最低温度抽出部42は、バッテリ制御装置4に入力された複数のセル温度Tb1〜TbNの中からバッテリ最高温度TbMAX及びバッテリ最低温度TbMINを抽出する。
S2では、第1参照値比較部43は、バッテリ最高温度TbMAXが第1参照値Tref1を超えているか否か判断する。
S2でYESの場合、S3に移行する。S3では、バッテリ温度選択部45は、バッテリ温度選択値TbSELとしてバッテリ最高温度TbMAXを選択する。
S2でNOの場合、S4に移行する。
In S1, the maximum / minimum temperature extraction unit 42 extracts the battery maximum temperature Tb MAX and the battery minimum temperature Tb MIN from among the plurality of cell temperatures Tb1 to TbN input to the battery control device 4.
In S2, the first reference value comparing unit 43 determines whether the battery maximum temperature Tb MAX is greater than the first reference value Tref1.
In the case of YES in S2, the process proceeds to S3. In S3, the battery temperature selection unit 45 selects the battery maximum temperature Tb MAX as the battery temperature selection value Tb SEL .
If NO in S2, the process moves to S4.

S4では、第2参照値比較部44は、バッテリ最低温度TbMINが第2参照値Tref2未満であるか否か判断する。
S4でYESの場合、S5に移行する。S5では、バッテリ温度選択部45は、バッテリ温度選択値TbSELとしてバッテリ最低温度TbMINを選択する。
S4でNOの場合、S6に移行する。
In S4, the second reference value comparison section 44, the minimum battery temperature Tb MIN to determine whether it is less than the second reference value Tref2.
In the case of YES at S4, the process moves to S5. In S5, the battery temperature selection unit 45 selects the battery minimum temperature Tb MIN as the battery temperature selection value Tb SEL .
If NO in S4, the process proceeds to S6.

S6では、バッテリ温度選択部45は、バッテリ温度選択値TbSELの前回値を保持する。ただし、MG駆動開始後の初回処理では、バッテリ温度選択部45は、バッテリ温度選択値TbSELの初回値として、過熱防止を優先し、例えばバッテリ最高温度TbMAXを選択する。或いは、初回値として第1参照値Tref1を選択してもよい。
S7では、充放電制限値設定部46は、バッテリ温度選択値TbSELに基づき、図4の特性マップを用いて充放電制限値を設定する。
In S6, the battery temperature selection unit 45 holds the previous value of the battery temperature selection value Tb SEL . However, in the initial process after the start of MG driving, battery temperature selection unit 45 gives priority to overheat prevention as the initial value of battery temperature selection value Tb SEL , and selects, for example, battery maximum temperature Tb MAX . Alternatively, the first reference value Tref1 may be selected as the initial value.
At S7, the charge / discharge limit value setting unit 46 sets the charge / discharge limit value based on the battery temperature selection value Tb SEL using the characteristic map of FIG.

図5のフローチャートのS2〜S5の処理をまとめると、上述の図3、図4を参照した説明の通り、次のように言い表すことができる。
(1)バッテリ最高温度TbMAXが第1参照値Tref1を超え、且つ、バッテリ最低温度TbMINが第2参照値Tref2以上であるとき、バッテリ温度選択部45は、バッテリ温度選択値TbSELとしてバッテリ最高温度TbMAXを選択する。
これにより、温度の高いバッテリセルの過熱を防止することができる。
The processes of S2 to S5 in the flowchart of FIG. 5 can be expressed as follows as described above with reference to FIGS. 3 and 4.
(1) When the battery maximum temperature Tb MAX exceeds the first reference value Tref1 and the battery minimum temperature Tb MIN is the second reference value Tref2 or more, the battery temperature selection unit 45 sets the battery temperature selection value Tb SEL as the battery Select the maximum temperature Tb MAX .
This can prevent overheating of the high temperature battery cell.

(2)バッテリ最高温度TbMAXが第1参照値Tref1以下であり、且つ、バッテリ最低温度TbMINが第2参照値Tref2未満であるとき、バッテリ温度選択部45は、バッテリ温度選択値TbSELとしてバッテリ最低温度TbMINを選択する。
これにより、温度の低いバッテリセルの劣化を防止することができる。
(2) When battery maximum temperature Tb MAX is equal to or less than first reference value Tref1 and battery minimum temperature Tb MIN is less than second reference value Tref2, battery temperature selection unit 45 sets battery temperature selection value Tb SEL as Select the battery minimum temperature Tb MIN .
Thereby, deterioration of the low temperature battery cell can be prevented.

(3)バッテリ最高温度TbMAXが第1参照値Tref1を超え、且つ、バッテリ最低温度TbMINが第2参照値Tref2未満であるとき、バッテリ温度選択部45は、バッテリ温度選択値TbSELとしてバッテリ最高温度TbMAXを選択する。
これにより、温度の高いバッテリセルの過熱を優先して防止することができる。
(3) When the battery maximum temperature Tb MAX exceeds the first reference value Tref1 and the battery minimum temperature Tb MIN is less than the second reference value Tref2, the battery temperature selection unit 45 sets the battery temperature selection value Tb SEL as the battery. Select the maximum temperature Tb MAX .
Thereby, it is possible to prevent overheating of the battery cell having high temperature with priority.

また、フローチャートのS6の通り、バッテリ温度選択部45は、バッテリ最高温度TbMAXが第1参照値Tref1以下であり、且つ、バッテリ最低温度TbMINが第2参照値Tref2以上であるとき、バッテリ温度選択値TbSELの前回値を保持する。これにより、バッテリセルが過熱又は劣化に至る可能性が小さいと判断される場合の処理を簡潔にすることができる。 Further, as indicated by S6 in the flowchart, the battery temperature selection unit 45 determines the battery temperature when the battery maximum temperature Tb MAX is less than or equal to the first reference value Tref1 and the battery minimum temperature Tb MIN is greater than or equal to the second reference value Tref2. The previous value of the selected value Tb SEL is held. This makes it possible to simplify the process when it is determined that the battery cell is unlikely to overheat or deteriorate.

以上のように、本実施形態のバッテリ制御装置4は、バッテリ2の複数のセル温度のばらつきを考慮し、適切な充放電制限値を設定することができる。よって、バッテリ2の全てのセルについて過熱又は劣化を回避可能な領域で、バッテリ2を有効に使用することができる。   As described above, the battery control device 4 of the present embodiment can set an appropriate charge / discharge limit value in consideration of variations in the temperature of a plurality of cells of the battery 2. Therefore, battery 2 can be effectively used in an area where overheating or deterioration of all cells of battery 2 can be avoided.

(その他の実施形態)
上記実施形態では、第1参照値Tref1及び第2参照値Tref2は、正常温度範囲である中温領域に設定される。つまり、バッテリ最高温度TbMAXが第1参照値Tref1を上回ること、又は、バッテリ最低温度TbMINが第2参照値Tref2を下回ることは、バッテリ温度の異常を意味するものではない。
他の実施形態では、第1参照値Tref1よりも高い高温側の異常判定閾値と、第2参照値Tref2よりも低い低温側の異常判定閾値とを設定し、バッテリ制御装置が取得した複数のセル温度に基づく異常検出をあわせて実施するようにしてもよい。
(Other embodiments)
In the above embodiment, the first reference value Tref1 and the second reference value Tref2 are set in the middle temperature range which is the normal temperature range. In other words, the battery maximum temperature Tb MAX exceeds a first reference value Tref1, or minimum battery temperature Tb MIN to be less than the second reference value Tref2 is not intended to mean an abnormality of the battery temperature.
In another embodiment, a plurality of cells acquired by the battery control device are set on the high temperature side abnormality determination threshold higher than the first reference value Tref1 and the low temperature side abnormality determination threshold lower than the second reference value Tref2. The abnormality detection based on the temperature may be performed together.

以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。   As mentioned above, the present invention is not limited to the above-mentioned embodiment at all, and can be implemented in various forms in the range which does not deviate from the meaning of an invention.

2 ・・・バッテリ、
31〜36・・・セル温度センサ、
4 ・・・バッテリ制御装置、
42・・・最高/最低温度抽出部、
43・・・第1参照値比較部、
44・・・第2参照値比較部、
45・・・バッテリ温度選択部、
46・・・充放電制限値設定部、
90・・・ハイブリッド自動車。
2 ... battery
31 to 36 ... cell temperature sensor,
4 ・ ・ ・ Battery control device,
42 · · · maximum / minimum temperature extraction unit,
43: first reference value comparison unit,
44: Second reference value comparison unit,
45: Battery temperature selection unit,
46 ... charge / discharge limit value setting unit,
90 ・ ・ ・ Hybrid car.

Claims (3)

バッテリ(2)の複数のセル温度を複数の温度センサ(31〜36)から取得し、前記複数のセル温度のうちの最高温度であるバッテリ最高温度(TbMAX)、及び、前記複数のセル温度のうちの最低温度であるバッテリ最低温度(TbMIN)を抽出する最高/最低温度抽出部(42)と、
第1参照値と前記バッテリ最高温度とを比較する第1参照値比較部(43)と、
前記第1参照値よりも低い第2参照値と前記バッテリ最低温度とを比較する第2参照値比較部(44)と、
前記第1参照値比較部及び前記第2参照値比較部による比較結果に基づき、バッテリ温度選択値(TbSEL)を設定するバッテリ温度選択部(45)と、
前記バッテリ温度選択値に基づいて、前記バッテリの充放電制限値を設定する充放電制限値設定部(46)と、
を備え、
前記バッテリ温度選択部は、
前記バッテリ最高温度が前記第1参照値を超え、且つ、前記バッテリ最低温度が前記第2参照値以上であるとき、前記バッテリ温度選択値として前記バッテリ最高温度を選択し、
前記バッテリ最高温度が前記第1参照値以下であり、且つ、前記バッテリ最低温度が前記第2参照値未満であるとき、前記バッテリ温度選択値として前記バッテリ最低温度を選択するバッテリ制御装置。
A plurality of cell temperatures of the battery (2) are obtained from a plurality of temperature sensors (31 to 36), and a battery maximum temperature (Tb MAX ) which is the highest temperature among the plurality of cell temperatures, and the plurality of cell temperatures A maximum / minimum temperature extraction unit (42) for extracting a battery minimum temperature (Tb MIN ) which is the lowest temperature of
A first reference value comparison unit (43) that compares a first reference value with the battery maximum temperature;
A second reference value comparison unit (44) that compares the battery minimum temperature with a second reference value lower than the first reference value;
A battery temperature selection unit (45) for setting a battery temperature selection value (Tb SEL ) based on the comparison result by the first reference value comparison unit and the second reference value comparison unit;
A charge / discharge limit value setting unit (46) configured to set the charge / discharge limit value of the battery based on the battery temperature selection value;
Equipped with
The battery temperature selection unit
When the battery maximum temperature exceeds the first reference value and the battery minimum temperature is equal to or higher than the second reference value, the battery maximum temperature is selected as the battery temperature selection value;
The battery control device selects the battery minimum temperature as the battery temperature selection value when the battery maximum temperature is equal to or less than the first reference value and the battery minimum temperature is less than the second reference value.
前記バッテリ温度選択部は、
前記バッテリ最高温度が前記第1参照値以下であり、且つ、前記バッテリ最低温度が前記第2参照値以上であるとき、前記バッテリ温度選択値の前回値を保持する請求項1に記載のバッテリ制御装置。
The battery temperature selection unit
The battery control according to claim 1, wherein when the battery maximum temperature is equal to or less than the first reference value and the battery minimum temperature is equal to or more than the second reference value, the battery control according to claim 1 holds the previous value of the battery temperature selection value. apparatus.
前記バッテリ温度選択部は、
前記バッテリ最高温度が前記第1参照値を超え、且つ、前記バッテリ最低温度が前記第2参照値未満のとき、前記バッテリ温度選択値として前記バッテリ最高温度を選択する請求項1または2に記載のバッテリ制御装置。
The battery temperature selection unit
The battery maximum temperature is selected as the battery temperature selection value when the battery maximum temperature exceeds the first reference value and the battery minimum temperature is less than the second reference value. Battery control unit.
JP2016021873A 2016-02-08 2016-02-08 Battery controller Active JP6525431B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016021873A JP6525431B2 (en) 2016-02-08 2016-02-08 Battery controller
DE102017102458.1A DE102017102458B4 (en) 2016-02-08 2017-02-08 BATTERY CONTROL DEVICE
CN201710069551.7A CN107046306B (en) 2016-02-08 2017-02-08 Battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021873A JP6525431B2 (en) 2016-02-08 2016-02-08 Battery controller

Publications (2)

Publication Number Publication Date
JP2017143604A JP2017143604A (en) 2017-08-17
JP6525431B2 true JP6525431B2 (en) 2019-06-05

Family

ID=59382089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021873A Active JP6525431B2 (en) 2016-02-08 2016-02-08 Battery controller

Country Status (3)

Country Link
JP (1) JP6525431B2 (en)
CN (1) CN107046306B (en)
DE (1) DE102017102458B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962826B2 (en) * 2018-01-16 2021-11-05 トヨタ自動車株式会社 Battery system
CN111762065A (en) * 2020-06-23 2020-10-13 上海擎感智能科技有限公司 Battery protection method, system, computer readable storage medium and vehicle terminal

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767209A (en) 1993-08-20 1995-03-10 Mitsubishi Motors Corp Electric automobile
JP3783391B2 (en) * 1998-02-25 2006-06-07 トヨタ自動車株式会社 Secondary battery device
JP3781366B2 (en) * 2002-07-23 2006-05-31 本田技研工業株式会社 Secondary battery charge / discharge controller
JP5259190B2 (en) * 2004-11-29 2013-08-07 エルジー・ケム・リミテッド Joint battery condition and parameter estimation system and method
US7683582B2 (en) * 2005-07-28 2010-03-23 Ford Global Technologies, Llc System and method for thermal management of a vehicle power source
JP5089883B2 (en) * 2005-12-16 2012-12-05 日立ビークルエナジー株式会社 Battery management device
JP4586832B2 (en) * 2007-08-10 2010-11-24 トヨタ自動車株式会社 Electric vehicle
US9447722B2 (en) * 2014-04-18 2016-09-20 Ford Global Technologies, Llc Electric actuator current control responsive to temperature

Also Published As

Publication number Publication date
DE102017102458B4 (en) 2023-12-14
JP2017143604A (en) 2017-08-17
DE102017102458A1 (en) 2017-08-10
CN107046306A (en) 2017-08-15
CN107046306B (en) 2019-09-10

Similar Documents

Publication Publication Date Title
US9059595B2 (en) Charging control method for secondary battery and control device
JP4311363B2 (en) Power storage system and storage system abnormality processing method
JP5862631B2 (en) Power storage system
US8237398B2 (en) Electric system, charging device and charging method for electric system for discharging of a power storage mechanism for resetting a state of a charge
US8674659B2 (en) Charge control device and vehicle equipped with the same
JP5105031B2 (en) Power storage system
JP5470829B2 (en) Discrimination device for discriminating the state of a lithium ion battery
JP2009042176A (en) Electromotive vehicle
JP6662228B2 (en) Battery system
JP2009033830A (en) Controller and control method for electric system, program achieving the method, and recording medium recording the program
JP2015035841A (en) Power storage device charge and discharge controller of construction machine
JP6451582B2 (en) Charge / discharge control device for power storage device
US10576835B2 (en) Energy storage device, transport apparatus, and control method
JP6525431B2 (en) Battery controller
JP2005117765A (en) Protection controller for battery pack, and protection control method for battery pack
JP6024563B2 (en) Vehicle power supply control device
JP5092903B2 (en) Vehicle battery charge / discharge control device
JP2012221927A (en) Control unit of accumulator battery temperature control device
JP5668672B2 (en) Battery system and overdischarge detection method for battery system
JP6699533B2 (en) Battery system
JP5267882B2 (en) Power generation control device
JP2017011944A (en) Power generation control device of alternator
JP2008041509A (en) Deterioration detection device of battery
JP6455423B2 (en) Ni-MH secondary battery cooling system
JP2011135680A (en) Input/output controller for capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190430

R150 Certificate of patent or registration of utility model

Ref document number: 6525431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250