JP6455423B2 - Ni-MH secondary battery cooling system - Google Patents

Ni-MH secondary battery cooling system Download PDF

Info

Publication number
JP6455423B2
JP6455423B2 JP2015257644A JP2015257644A JP6455423B2 JP 6455423 B2 JP6455423 B2 JP 6455423B2 JP 2015257644 A JP2015257644 A JP 2015257644A JP 2015257644 A JP2015257644 A JP 2015257644A JP 6455423 B2 JP6455423 B2 JP 6455423B2
Authority
JP
Japan
Prior art keywords
battery
value
heat generation
current
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015257644A
Other languages
Japanese (ja)
Other versions
JP2017120747A (en
Inventor
松本 潤一
潤一 松本
卓朗 林
卓朗 林
竜也 古川
竜也 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015257644A priority Critical patent/JP6455423B2/en
Publication of JP2017120747A publication Critical patent/JP2017120747A/en
Application granted granted Critical
Publication of JP6455423B2 publication Critical patent/JP6455423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Description

本発明は、冷却風を電池に供給することによって電池を冷却する技術に関する。   The present invention relates to a technique for cooling a battery by supplying cooling air to the battery.

特開2008−27888号公報(特許文献1)には、冷却風をバッテリに供給することによってバッテリを冷却する冷却装置が開示されている。この冷却装置は、バッテリに冷却風を供給するための冷却ファンと、冷却ファンの風量を制御する制御装置とを備える。制御装置は、バッテリの内部抵抗に起因する発熱量を算出し、算出された発熱量に基づいて冷却ファンの風量を制御する。   Japanese Patent Laying-Open No. 2008-27888 (Patent Document 1) discloses a cooling device that cools a battery by supplying cooling air to the battery. The cooling device includes a cooling fan for supplying cooling air to the battery and a control device for controlling the air volume of the cooling fan. The control device calculates the amount of heat generated due to the internal resistance of the battery, and controls the air volume of the cooling fan based on the calculated amount of heat generated.

特開2008−27888号公報JP 2008-27888 A 国際公開第2014/162345号パンフレットInternational Publication No. 2014/162345 Pamphlet 特開2005−63682号公報JP-A-2005-63682

しかしながら、特許文献1に開示された冷却装置を用いてニッケル水素(Ni−MH)二次電池を冷却する場合には、ニッケル水素二次電池の発熱量に対して冷却ファンの風量が適切に調整されず、ニッケル水素二次電池が高温状態になることが懸念される。   However, when the nickel-metal hydride (Ni-MH) secondary battery is cooled using the cooling device disclosed in Patent Document 1, the airflow of the cooling fan is appropriately adjusted with respect to the heat generation amount of the nickel-hydrogen secondary battery. However, there is a concern that the nickel-hydrogen secondary battery will be in a high temperature state.

すなわち、一般的に、ニッケル水素二次電池においては、蓄電量を示すSOC(State Of Charge)が高い状態であると、内部抵抗に起因する発熱以外に、副反応(溶媒(HO)の電気分解反応および再酸化反応)に起因する発熱が生じ易い状態となることが知られている。しかしながら、特許文献1に開示された冷却装置においては、冷却ファンの風量を制御する際に、内部抵抗に起因する発熱量は考慮されるが、副反応に起因する発熱量は考慮されない。その結果、SOCが高く副反応に起因する発熱が生じ易い状況においても、副反応に起因する発熱量に見合うだけの冷却ファンの風量の増加が行なわれず、ニッケル水素二次電池が高温状態になることが懸念される。 That is, in general, in a nickel metal hydride secondary battery, if the SOC (State Of Charge) indicating the amount of stored electricity is high, in addition to heat generation due to internal resistance, side reactions (solvent (H 2 O) It is known that heat generation due to electrolysis reaction and reoxidation reaction is likely to occur. However, in the cooling device disclosed in Patent Document 1, when the air volume of the cooling fan is controlled, the amount of heat generated due to internal resistance is considered, but the amount of heat generated due to side reactions is not considered. As a result, even in a situation where the SOC is high and heat generation due to the side reaction is likely to occur, the air flow of the cooling fan is not increased to match the heat generation amount due to the side reaction, and the nickel metal hydride secondary battery is in a high temperature state. There is concern.

本発明は、上述の課題を解決するためになされたものであって、その目的は、ニッケル水素二次電池が高温状態になることを抑制することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to suppress the nickel-hydrogen secondary battery from reaching a high temperature state.

この発明に係る冷却装置は、ニッケル水素二次電池の冷却装置であって、ニッケル水素二次電池に冷却風を供給するための冷却ファンと、ニッケル水素二次電池を流れる電流を取得し、現在取得された電流2乗値と過去に取得された電流2乗値とを用いてニッケル水素二次電池の発熱量を評価するための発熱指数を算出し、発熱指数がしきい値を超えている場合は超えていない場合よりも冷却ファンの風量を大きくする制御装置とを備える。制御装置は、現在取得された電流2乗値が発熱指数に反映される度合いをフィルタ処理定数を用いて調整する。制御装置は、ニッケル水素二次電池の蓄電量が所定値を超えた場合、蓄電量が所定値を超えていない場合よりも、現在取得された電流2乗値が発熱指数に反映される度合いが大きくなるようにフィルタ処理定数を変更する。   A cooling device according to the present invention is a cooling device for a nickel metal hydride secondary battery, acquires a current flowing through the nickel hydride secondary battery, a cooling fan for supplying cooling air to the nickel metal hydride secondary battery, Using the acquired current square value and the current square value acquired in the past, a heat generation index for evaluating the heat generation amount of the nickel metal hydride secondary battery is calculated, and the heat generation index exceeds the threshold value. And a control device that increases the air flow rate of the cooling fan as compared with the case where it does not exceed. The control device adjusts the degree to which the currently acquired current square value is reflected in the heat generation index using the filter processing constant. In the control device, when the storage amount of the nickel-metal hydride secondary battery exceeds a predetermined value, the degree to which the currently acquired current square value is reflected in the heat generation index is greater than when the storage amount does not exceed the predetermined value. Change the filter processing constant to be larger.

上記構成によれば、ニッケル水素二次電池の蓄電量が所定値を超える場合(SOCが高く副反応に起因する発熱量が多い状況)においては、フィルタ処理定数(なまし定数)が変更されることによって、現在の電流2乗値が発熱指数に反映される度合いが大きくされる。これにより、SOCが高く副反応に起因する発熱が多い状況において、現在の電流2乗値が増加したことに応じて発熱指数を素早く増加させて、発熱指数がしきい値を超え易くする(すなわち冷却ファンの風量を増加させ易くする)ことができる。その結果、ニッケル水素二次電池が高温状態になることを抑制することができる。   According to the above configuration, when the amount of charge stored in the nickel metal hydride secondary battery exceeds a predetermined value (a situation where the SOC is high and the amount of heat generated due to the side reaction is large), the filter processing constant (annealing constant) is changed. This increases the degree to which the current square current value is reflected in the heat generation index. As a result, in a situation where the SOC is high and there is a lot of heat generation due to side reactions, the exothermic index is quickly increased in response to an increase in the current current square value, so that the exothermic index easily exceeds the threshold value (ie, It is possible to easily increase the air volume of the cooling fan). As a result, the nickel hydride secondary battery can be prevented from becoming a high temperature state.

車両の全体構成図である。1 is an overall configuration diagram of a vehicle. ECUの処理手順を示すフローチャート(その1)である。It is a flowchart (the 1) which shows the process sequence of ECU. ECUの処理手順を示すフローチャート(その2)である。It is a flowchart (the 2) which shows the process sequence of ECU. 電池発熱指数の変化態様の一例を示す図(その1)である。It is FIG. (1) which shows an example of the change aspect of a battery heat_generation | fever index. ECUの処理手順を示すフローチャート(その3)である。It is a flowchart (the 3) which shows the process sequence of ECU. 電池発熱指数の変化態様の一例を示す図(その2)である。It is a figure (example 2) which shows an example of the change aspect of a battery heat_generation | fever index.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

[車両の全体構成]
図1は、本実施の形態による冷却装置を備える車両1の全体構成図である。車両1は、バッテリ10と、監視ユニット11と、冷却ファン12と、SMR(System Main Rely)20と、PCU(Power Control Unit)30と、MG(Motor Generator)41,42と、エンジン50と、動力分割機構60と、駆動軸70と、車輪80と、ECU(Electronic Control Unit)100とを備える。
[Overall configuration of vehicle]
FIG. 1 is an overall configuration diagram of a vehicle 1 including a cooling device according to the present embodiment. The vehicle 1 includes a battery 10, a monitoring unit 11, a cooling fan 12, an SMR (System Main Rely) 20, a PCU (Power Control Unit) 30, MGs (Motor Generators) 41 and 42, an engine 50, A power split mechanism 60, a drive shaft 70, wheels 80, and an ECU (Electronic Control Unit) 100 are provided.

車両1は、エンジン50とMG42との少なくとも一方の動力を用いて走行するハイブリッド車両である。本実施の形態を適用可能な車両は、ハイブリッド車両に限定されず、車両駆動力を発生するための電力を蓄えるバッテリ10(ニッケル水素二次電池)を搭載した車両全般に適用可能である。   The vehicle 1 is a hybrid vehicle that travels using at least one power of the engine 50 and the MG 42. Vehicles to which the present embodiment can be applied are not limited to hybrid vehicles, and can be applied to all vehicles equipped with a battery 10 (nickel metal hydride secondary battery) that stores electric power for generating vehicle driving force.

バッテリ10は、MG41,42を駆動するための電力を蓄える、ニッケル水素二次電池である。バッテリ10は、複数のニッケル水素電池セルが直列に接続されて構成される。   The battery 10 is a nickel metal hydride secondary battery that stores electric power for driving the MGs 41 and 42. The battery 10 is configured by connecting a plurality of nickel metal hydride battery cells in series.

エンジン50は、燃料の燃焼エネルギによって運動エネルギを出力する。エンジン50の出力は、動力分割機構60によってMG41と駆動軸70とに分割されて伝達される。MG42は、駆動軸70に接続される。駆動軸70は、エンジン50および/またはMG42の出力によって回転される。   The engine 50 outputs kinetic energy by the combustion energy of fuel. The output of the engine 50 is divided and transmitted to the MG 41 and the drive shaft 70 by the power split mechanism 60. The MG 42 is connected to the drive shaft 70. Drive shaft 70 is rotated by the output of engine 50 and / or MG42.

MG41,42は、発電機としても電動機としても機能し得る。MG41は主として発電機として動作し、MG42は主として電動機として動作する。   The MGs 41 and 42 can function both as a generator and an electric motor. The MG 41 mainly operates as a generator, and the MG 42 mainly operates as an electric motor.

MG41は、エンジン始動要求時において、電動機あるいは発電機として動作して、エンジン50をクランキングする。MG41は、エンジン50の始動後において、動力分割機構60を介して伝達されるエンジン出力を用いて発電可能である。   The MG 41 operates as an electric motor or a generator at the time of an engine start request, and cranks the engine 50. MG 41 can generate power using the engine output transmitted through power split mechanism 60 after engine 50 is started.

MG42は、バッテリ10に蓄えられた電力およびMG41の発電した電力の少なくとも一方によって駆動される。MG42は、車両1の回生制動時には、車輪80の回転力によって駆動されることによって発電する。MG42により発電された回生電力は、PCU30を介してバッテリ10に充電される。   MG42 is driven by at least one of the electric power stored in battery 10 and the electric power generated by MG41. The MG 42 generates power by being driven by the rotational force of the wheels 80 during regenerative braking of the vehicle 1. The regenerative power generated by the MG 42 is charged to the battery 10 via the PCU 30.

PCU30は、バッテリ10およびMG41,42の間で双方向の電力変換を行なう。PCU30は、バッテリ10からの直流電力を交流電力に変換してMG41,42に印加するインバータを含む。このインバータは、MG41,42の回生発電電力を直流電力に変換してバッテリ10に充電することもできる。   PCU 30 performs bidirectional power conversion between battery 10 and MGs 41 and 42. PCU 30 includes an inverter that converts DC power from battery 10 into AC power and applies it to MGs 41 and 42. This inverter can also convert the regenerative power generated by the MGs 41 and 42 into DC power and charge the battery 10.

SMR20は、バッテリ10とPCU30との間に設けられる。SMR20は、バッテリ10の正極とPCU30とを結ぶ正極線上に設けられる正極側リレーと、バッテリ10の負極とPCU30とを結ぶ負極線上に設けられる負極側リレーとを含む。SMR20は、ECU100からの制御信号に応じて開閉される。   The SMR 20 is provided between the battery 10 and the PCU 30. SMR 20 includes a positive side relay provided on a positive line connecting positive electrode of battery 10 and PCU 30, and a negative side relay provided on a negative electrode line connecting negative electrode of battery 10 and PCU 30. The SMR 20 is opened and closed according to a control signal from the ECU 100.

監視ユニット11は、バッテリ10を流れる電流(以下「バッテリ電流」という)I、バッテリ10の端子間電圧(以下「バッテリ電圧」という)V、バッテリ10の温度(以下「バッテリ温度」という)Tをそれぞれ検出し、検出結果をECU100に送信する。   The monitoring unit 11 measures a current (hereinafter referred to as “battery current”) I flowing through the battery 10, a voltage between terminals of the battery 10 (hereinafter referred to as “battery voltage”) V, and a temperature of the battery 10 (hereinafter referred to as “battery temperature”) T. Each is detected, and a detection result is transmitted to ECU100.

冷却ファン12は、モータ12Aによって回転されることによって、バッテリ10に冷却風を供給する。これにより、バッテリ10が冷却される。冷却ファン12の風量(モータ12Aの回転速度)は、ECU100からの制御信号によって制御される。   The cooling fan 12 supplies cooling air to the battery 10 by being rotated by the motor 12A. Thereby, the battery 10 is cooled. The air volume of the cooling fan 12 (rotational speed of the motor 12A) is controlled by a control signal from the ECU 100.

ECU100は、図示しないCPU(Central Processing Unit)およびメモリを内蔵し、各センサの検出結果やメモリに記憶された情報などに基づいて、所定の演算処理を実行する。   ECU 100 includes a CPU (Central Processing Unit) and a memory (not shown), and executes predetermined arithmetic processing based on the detection results of each sensor, information stored in the memory, and the like.

<バッテリ冷却制御>
バッテリ10を使用する際には、バッテリ10の内部抵抗に起因してジュール熱が発生する。ジュール熱は抵抗を流れる電流の2乗値に比例するため、バッテリ電流Iの2乗値(以下、単に「電流2乗値」ともいう)Iが大きいほど、バッテリ10の内部抵抗に起因する発熱量は大きくなり、バッテリ10が高温状態になり得る。したがって、バッテリ10を使用する際には、冷却ファン12を作動させてバッテリ10を冷却することが望ましい。
<Battery cooling control>
When the battery 10 is used, Joule heat is generated due to the internal resistance of the battery 10. Since Joule heat is proportional to the square value of the current flowing through the resistor, the larger the square value of the battery current I (hereinafter, also simply referred to as the “current square value”) I 2, the higher the value due to the internal resistance of the battery 10. The calorific value becomes large, and the battery 10 can be in a high temperature state. Therefore, when using the battery 10, it is desirable to operate the cooling fan 12 to cool the battery 10.

一方、冷却ファン12の風量(以下、単に「ファン風量V」ともいう)を大きくすると、冷却ファン12の作動音が大きくなることが懸念される。したがって、バッテリ10の使用負荷が大きい時(発熱量が大きい時)にはファン風量Vを大きくする一方、バッテリ10の使用負荷が小さい時(発熱量が小さい時)にはファン風量Vを小さくすることが、静粛性を確保するのに効果的である。   On the other hand, when the air volume of the cooling fan 12 (hereinafter, also simply referred to as “fan air volume V”) is increased, there is a concern that the operating noise of the cooling fan 12 increases. Accordingly, the fan air volume V is increased when the use load of the battery 10 is large (when the heat generation amount is large), while the fan air volume V is decreased when the use load of the battery 10 is small (when the heat generation amount is small). This is effective in ensuring quietness.

そこで、ECU100は、電流2乗値Iを基にしてバッテリ10の発熱量(使用負荷)を評価するための指標(以下「電池発熱指数」という)を算出し、電池発熱指数がしきい値を超えた場合にファン風量Vを大きくする。以下、これらの一連の制御を「バッテリ冷却制御」という。 Therefore, ECU 100 calculates an index (hereinafter referred to as “battery heat generation index”) for evaluating the heat generation amount (use load) of battery 10 based on current square value I 2 , and battery heat generation index is a threshold value. When the air pressure exceeds the value, the fan air volume V is increased. Hereinafter, a series of these controls is referred to as “battery cooling control”.

図2は、ECU100がバッテリ冷却制御を実行する場合の処理手順を示すフローチャートである。このフローチャートは所定の演算サイクル周期で繰り返し実行される。   FIG. 2 is a flowchart showing a processing procedure when the ECU 100 executes the battery cooling control. This flowchart is repeatedly executed at a predetermined calculation cycle period.

ステップ(以下、ステップを「S」と略す)10にて、ECU100は、監視ユニット11から、今回(現在)の演算サイクルにおけるバッテリ電流(以下「電流今回値」ともいう)I(n)を取得する。 In step (hereinafter abbreviated as “S”) 10, ECU 100 obtains battery current (hereinafter also referred to as “current current value”) I (n) in the current (current) calculation cycle from monitoring unit 11. To do.

S20にて、ECU100は、電流今回値I(n)の2乗値(以下「電流2乗今回値」ともいう)I (n)を算出する。 In S20, ECU 100 calculates a square value of current current value I (n) (hereinafter also referred to as “current square current value”) I 2 (n) .

S30にて、ECU100は、フィルタ処理定数(なまし係数)Kを設定する。フィルタ処理定数Kは、電流2乗今回値I (n)が電池発熱指数に反映される度合いを調整するための定数である。フィルタ処理定数Kの設定手法については後に詳述する。 In S30, ECU 100 sets a filter processing constant (smoothing coefficient) K. The filter processing constant K is a constant for adjusting the degree to which the current square current value I 2 (n) is reflected in the battery heat generation index. A method for setting the filter processing constant K will be described in detail later.

S40にて、ECU100は、電流2乗今回値I (n)にフィルタ処理を施すことによって今回の演算サイクルにおける電池発熱指数(以下「電池発熱指数の今回値」という)FI (n)を算出する。具体的には、ECU100は、電流2乗今回値I (n)と、過去の演算サイクルにおける電流2乗値とを用いて、電池発熱指数の今回値FI (n)を算出する。ECU100は、たとえば、電池発熱指数の今回値FI (n)を、下記の式(1)を用いて算出する。 At S40, ECU 100 performs a filtering process on current squared current value I 2 (n) to obtain battery heat generation index (hereinafter referred to as “current value of battery heat generation index”) FI 2 (n) in the current calculation cycle. calculate. Specifically, ECU 100 calculates current value FI 2 (n) of the battery heat generation index using current squared current value I 2 (n) and the current square value in the past calculation cycle. The ECU 100 calculates the current value FI 2 (n) of the battery heat generation index using the following equation (1), for example.

FI (n)=FI (n-1)×(K−1)/K+I (n)×(1/K) …(1)
上記の式(1)において、「FI (n-1)」は、前回の演算サイクルにおける電池発熱指数であり、前回以前の過去の演算サイクルで取得された複数の電流2乗値I (n-1),I (n-2)…によって決まる値である。
FI 2 (n) = FI 2 (n−1) × (K−1) / K + I 2 (n) × (1 / K) (1)
In the above formula (1), “FI 2 (n−1) ” is the battery heat generation index in the previous calculation cycle, and a plurality of current square values I 2 ( n-1) , I 2 (n-2) ...

上記の式(1)において、「K」は、上述のフィルタ処理定数であって、電流2乗今回値I (n)が電池発熱指数に反映される度合いを調整するための定数である。たとえば、フィルタ処理定数Kを「1000」とすると、上記の式(1)はFI (n)=FI (n-1)×0.999+I (n)×0.001となる。フィルタ処理定数Kを1000よりも小さい「100」とすると、上記の式(1)はFI (n)=FI (n-1)×0.99+I (n)×0.01となり、電流2乗今回値I (n)が電池発熱指数の今回値FI (n)に反映される度合いが相対的に大きくなる。すなわち、本実施の形態においては、フィルタ処理定数Kを小さくすると、電流2乗今回値I (n)が電池発熱指数の今回値FI (n)に反映される度合いが大きくなる。 In the above equation (1), “K” is the above-described filter processing constant, and is a constant for adjusting the degree to which the current squared current value I 2 (n) is reflected in the battery heat generation index. For example, when the filter processing constant K is “1000”, the above equation (1) becomes FI 2 (n) = FI 2 (n−1) × 0.999 + I 2 (n) × 0.001. Assuming that the filter processing constant K is “100” which is smaller than 1000, the above formula (1) becomes FI 2 (n) = FI 2 (n−1) × 0.99 + I 2 (n) × 0.01, The degree that the squared current value I 2 (n) is reflected in the current value FI 2 (n) of the battery heat generation index becomes relatively large. In other words, in the present embodiment, when the filter processing constant K is reduced, the degree to which the current squared current value I 2 (n) is reflected in the current value FI 2 (n) of the battery heat generation index increases.

なお、電池発熱指数の今回値FI (n)は、ECU100のメモリに記憶され、次回の演算サイクルにおいて「前回の演算サイクルにおける電池発熱指数FI (n-1)」として用いられる。 The current value FI 2 (n) of the battery heat generation index is stored in the memory of the ECU 100 and used as “battery heat generation index FI 2 (n−1) in the previous calculation cycle” in the next calculation cycle.

S50にて、ECU100は、電池発熱指数の今回値FI (n)がしきい値を超えているか否かを判定する。 In S50, ECU 100 determines whether or not current value FI 2 (n) of the battery heat generation index exceeds a threshold value.

電池発熱指数の今回値FI (n)がしきい値を超えていない場合(S50にてNO)、ECU100は、S60にて、ファン風量Vを所定値V1とする。 When current value FI 2 (n) of battery heat generation index does not exceed the threshold value (NO in S50), ECU 100 sets fan air flow rate V to predetermined value V1 in S60.

一方、電池発熱指数の今回値FI (n)がしきい値を超えている場合(S50にてYES)、ECU100は、S70にて、ファン風量Vを所定値V2とする。所定値V2は、所定値V1よりも大きい値に設定される。 On the other hand, when current value FI 2 (n) of the battery heat generation index exceeds the threshold value (YES in S50), ECU 100 sets fan air flow rate V to predetermined value V2 in S70. The predetermined value V2 is set to a value larger than the predetermined value V1.

なお、所定値V1,V2は、それぞれ、固定値であってもよいし、変動値であってもよい。所定値V1,V2をバッテリ温度Tに応じた変動値とする場合には、同一温度条件下において所定値V2が所定値V1よりも大きい値に設定されるようにすればよい。   The predetermined values V1 and V2 may be fixed values or variable values, respectively. In the case where the predetermined values V1 and V2 are changed according to the battery temperature T, the predetermined value V2 may be set to a value larger than the predetermined value V1 under the same temperature condition.

いずれの場合であっても、所定値V2が所定値V1よりも大きい値に設定されることによって、電池発熱指数の今回値FI (n)がしきい値を超えている場合(内部抵抗に起因する発熱量が大きい場合)には、そうでない場合よりもファン風量Vが大きくされる。これにより、バッテリ10が適切に冷却される。 In any case, when the predetermined value V2 is set to a value larger than the predetermined value V1, the current value FI 2 (n) of the battery heat generation index exceeds the threshold value (in the internal resistance). In the case where the amount of generated heat is large), the fan air volume V is made larger than in the case where it is not. Thereby, the battery 10 is cooled appropriately.

<バッテリ冷却制御に用いられるフィルタ処理定数Kの設定>
上述のように、バッテリ冷却制御においては、電流2乗値Iにフィルタ処理を施した値である電池発熱指数FIがしきい値を超えた場合に、ファン風量Vが大きくされる。
<Setting of filter processing constant K used for battery cooling control>
As described above, in the battery cooling control, battery heating index FI 2 is a value obtained by performing a filtering process to the current square value I 2 is when the threshold is exceeded, the fan air volume V is increased.

しかしながら、バッテリ10の蓄電量を示すSOC(State Of Charge)が高い状態においては、バッテリ10の総発熱量に対してファン風量Vが不足し、バッテリ10が高温状態になることが懸念される。   However, in a state where the SOC (State Of Charge) indicating the amount of electricity stored in the battery 10 is high, there is a concern that the fan air volume V is insufficient with respect to the total heat generation amount of the battery 10 and the battery 10 is in a high temperature state.

すなわち、バッテリ10はニッケル水素二次電池である。一般的に、ニッケル水素二次電池においては、SOCが高い状態であると、内部抵抗に起因する発熱以外に、副反応(溶媒(HO)の電気分解反応および再酸化反応)に起因する発熱が生じ易い状態となることが知られている。しかしながら、仮に上記の式(1)においてフィルタ処理定数Kを固定値とすると、電池発熱指数FIは、内部抵抗に起因する発熱量が考慮された値となるが、副反応に起因する発熱量は何ら考慮されていない値となる。その結果、SOCが高く副反応に起因する発熱量が生じ易い状況においても、副反応に起因する発熱量の増加分に見合うだけのファン風量Vの増加が行なわれず、バッテリ10が高温状態になることが懸念される。 That is, the battery 10 is a nickel hydride secondary battery. In general, in a nickel metal hydride secondary battery, when the SOC is high, in addition to heat generation due to internal resistance, it results from side reactions (electrolysis reaction and reoxidation reaction of solvent (H 2 O)). It is known that heat generation is likely to occur. However, if the filter processing constant K is a fixed value in the above formula (1), the battery heat generation index FI 2 is a value that takes into consideration the heat generation amount due to the internal resistance, but the heat generation amount due to the side reaction. Is a value that is not considered at all. As a result, even in a situation where the SOC is high and the amount of heat generated due to the side reaction is likely to be generated, the fan air volume V is not increased to match the increase in the amount of heat generated due to the side reaction, and the battery 10 is in a high temperature state. There is concern.

そこで、本実施の形態によるECU100は、SOCが所定値S1を超えている場合(副反応に起因する発熱量が多い状況)においては、フィルタ処理定数Kを変更する(小さくする)ことによって、電流2乗今回値I (n)が電池発熱指数の今回値FI (n)に反映される度合いを大きくする。これにより、SOCが高く副反応に起因する発熱量が多い状況において、電流2乗今回値I (n)の増加に応じて電池発熱指数FIを素早く増加させて、電池発熱指数FIがしきい値を超え易くする(すなわちファン風量Vを所定値V1から所定値V2に増加させ易くする)ことができる。その結果、SOCが高く副反応に起因する発熱量が多い状況において、バッテリ10が高温状態になることを抑制することができる。 Therefore, the ECU 100 according to the present embodiment changes (decreases) the filter processing constant K when the SOC exceeds the predetermined value S1 (a situation where a large amount of heat is generated due to the side reaction), thereby reducing the current. The degree to which the squared current value I 2 (n) is reflected in the current value FI 2 (n) of the battery heat generation index is increased. Thus, in situations large amount of heat due to the SOC is high side reactions, and quickly increased the cell heating index FI 2 in accordance with an increase in the current-square current value I 2 (n), the battery heat generation index FI 2 The threshold value can be easily exceeded (that is, the fan air volume V can be easily increased from the predetermined value V1 to the predetermined value V2). As a result, in a situation where the SOC is high and the amount of heat generated due to the side reaction is large, it is possible to suppress the battery 10 from reaching a high temperature state.

図3は、フィルタ処理定数Kを設定する際(図2のS30の処理を行なう際)のECU100の処理手順を示すフローチャートである。   FIG. 3 is a flowchart showing a processing procedure of the ECU 100 when the filter processing constant K is set (when the processing of S30 in FIG. 2 is performed).

S31にて、ECU100は、バッテリ電流Iおよびバッテリ電圧Vの少なくとも一方に基づいて、バッテリ10のSOCを算出する。なお、SOCの算出方法としては、バッテリ電圧VとSOCとの関係を用いて算出する方法や、バッテリ電流Iの積算値を用いて算出する方法等、種々の公知の手法を用いることができる。   In S31, ECU 100 calculates the SOC of battery 10 based on at least one of battery current I and battery voltage V. As a method for calculating the SOC, various known methods such as a method for calculating using the relationship between the battery voltage V and the SOC and a method for calculating using the integrated value of the battery current I can be used.

S32にて、ECU100は、SOCがしきい値S1を超えているか否かを判定する。SOCがしきい値S1を超えていない場合(S32にてNO)、ECU100は、S33にて、フィルタ処理定数Kを所定値K1に設定する。   In S32, ECU 100 determines whether or not the SOC exceeds threshold value S1. When SOC does not exceed threshold value S1 (NO in S32), ECU 100 sets filter processing constant K to a predetermined value K1 in S33.

SOCがしきい値S1を超えている場合(S32にてYES)、ECU100は、S33にて、フィルタ処理定数Kを所定値K2に設定する。所定値K2は、所定値K1よりも小さい値に設定される。   When SOC exceeds threshold value S1 (YES in S32), ECU 100 sets filter processing constant K to predetermined value K2 in S33. The predetermined value K2 is set to a value smaller than the predetermined value K1.

なお、所定値K1,K2は、それぞれ、固定値であってもよいし、変動値であってもよい。たとえば、所定値K1を固定値とし、所定値K2を所定値K1未満であってかつSOCが高いほど小さくなる変動値としてもよい。   Each of the predetermined values K1 and K2 may be a fixed value or a variable value. For example, the predetermined value K1 may be a fixed value, and the predetermined value K2 may be a fluctuation value that is smaller than the predetermined value K1 and decreases as the SOC increases.

いずれの場合であっても、所定値K2が所定値K1よりも小さい値に設定されることによって、電流2乗今回値I (n)が電池発熱指数の今回値FI (n)に反映される度合いが大きくなる。そのため、SOCがしきい値S1を超えており副反応に起因する発熱量が多い状況において、電流2乗今回値I (n)の増加に応じて電池発熱指数FIを素早く増加させて、電池発熱指数FIがしきい値を超え易くする(すなわちファン風量Vを所定値V1から所定値V2に増加させ易くする)ことができる。その結果、バッテリ10が高温状態になることを抑制することができる。 In any case, the current squared current value I 2 (n) is reflected in the current value FI 2 (n) of the battery heat generation index by setting the predetermined value K2 to a value smaller than the predetermined value K1. The degree of being increased. Therefore, in situations calorific value is large SOC is caused by the side reactions exceeds the threshold S1, and quickly increased the cell heating index FI 2 in accordance with an increase in the current-square current value I 2 (n), battery heating index FI 2 to easily exceed the threshold (i.e., easily increasing the fan air volume V from a predetermined value V1 to a predetermined value V2) can. As a result, the battery 10 can be prevented from entering a high temperature state.

図4は、バッテリ電流I、SOCおよび電池発熱指数FIの変化態様の一例を示す図である。図4の上段にバッテリ電流Iの変化態様が示され、中段にSOCの変化態様が示され、下段に電池発熱指数FIの変化態様が示される。図4の下段においては、本実施の形態のようにフィルタ処理定数KをSOCに応じて切り替える時の電池発熱指数FIが実線で示され、フィルタ処理定数Kを所定値K1(たとえば1000)に固定した時の電池発熱指数FIが二点点線で示され、フィルタ処理定数Kを所定値K1よりも小さい所定値K2(たとえば100)に固定した時の電池発熱指数FIが一点鎖線で示される。 Figure 4 is a diagram showing an example of a battery current I, SOC and variants of the battery heating index FI 2. The change mode of the battery current I is shown in the upper stage of FIG. 4, the change mode of the SOC is shown in the middle stage, and the change mode of the battery heat generation index FI 2 is shown in the lower stage. Figure in the lower part of 4, the battery heating index FI 2 when switched according to filter constant K in SOC as in the present embodiment is indicated by solid lines, the filtering constant K to a predetermined value K1 (e.g. 1000) battery heating index FI 2 when fixed is indicated by the two-dot dashed line, shown filtering constant K with battery heating index FI 2 is a dashed line when fixed to a predetermined value K2 (e.g. 100) is smaller than the predetermined value K1 It is.

図4に示す例では、バッテリ電流Iの絶対値が大きい状態でバッテリ10の充電が継続される時間帯αにおいて、内部抵抗に起因する発熱量が大きくなる。また、バッテリ10の充電によってSOCが高くなる時間帯βにおいて、副反応に起因する発熱量が大きくなる。したがって、これらの発熱が重なる時間帯γ(時刻t1〜t2)にファン風量Vを増加することが望ましい。   In the example shown in FIG. 4, the amount of heat generated due to the internal resistance increases in the time zone α in which the battery 10 is continuously charged with the battery current I having a large absolute value. Further, in the time zone β in which the SOC increases due to charging of the battery 10, the amount of heat generated due to the side reaction increases. Therefore, it is desirable to increase the fan air volume V in the time zone γ (time t1 to t2) where these heat generations overlap.

仮にフィルタ処理定数Kを所定値K1に固定した場合、バッテリ電流Iの絶対値が大きい高負荷状態が継続しても、電流2乗今回値I (n)が電池発熱指数FIに反映されるまでにある程度の時間を要する。そのため、上述の時間帯γにおいて、電池発熱指数FIがしきい値を超えず、ファン風量Vの増量が行なわれない(二点鎖線参照)。 If the filter processing constant K is fixed to the predetermined value K1, the current squared current value I 2 (n) is reflected in the battery heat generation index FI 2 even if the high load state where the absolute value of the battery current I is large continues. It takes a certain amount of time to complete. Therefore, in the time zone γ described above, the battery heat generation index FI 2 does not exceed the threshold value, and the fan air volume V is not increased (see the two-dot chain line).

また、仮にフィルタ処理定数Kを所定値K2(K2<K1)に固定した場合、バッテリ電流Iの絶対値が大きい高負荷状態が継続すると、電流2乗今回値I (n)が電池発熱指数FIに素早く反映される。そのため、上述の時間帯γにおいて電池発熱指数FIがしきい値を超えてファン風量Vが増量されるが、ファン風量Vを増量する必要がない時刻t4(時間帯γ以外の時間帯)においても電池発熱指数FIがしきい値を超えてファン風量Vが増量されてしまう(一点鎖線参照)。 Further, if the filter processing constant K is fixed to a predetermined value K2 (K2 <K1), if the high load state in which the absolute value of the battery current I is large continues, the current squared current value I 2 (n) becomes the battery heat generation index. It is reflected in FI 2 quickly. Therefore, although battery heating index FI 2 in a time zone gamma above the fan air volume V above the threshold is increased, in no need to increase the fan air volume V time t4 (time zone other than the time zone gamma) It will also be increased fan air volume V battery heating index FI 2 exceeds the threshold value (see dashed line).

これに対し、本実施の形態においては、SOCが所定値S1未満である場合(時刻t1以前、時刻t3以降)には副反応に起因する発熱量が少ないことに鑑みフィルタ処理定数Kが所定値K1に設定され、SOCが所定値S1を超える場合(時刻t1〜t3)には副反応に起因する発熱量が多いことに鑑みフィルタ処理定数Kが所定値K2に設定される。そのため、上述の時間帯γにおいては、フィルタ処理定数Kが所定値K2に設定されており電流2乗今回値I (n)が電池発熱指数FIに素早く反映されるため、電池発熱指数FIがしきい値を超えてファン風量Vの増量が行なわれる。一方、ファン風量Vを増量する必要がない時刻t4においては、フィルタ処理定数Kが所定値K1に設定されており電流2乗今回値I (n)が電池発熱指数FIに反映され難いため、電池発熱指数FIがしきい値を超えず、ファン風量Vの増量を抑制することができる。 In contrast, in the present embodiment, when the SOC is less than the predetermined value S1 (before time t1 and after time t3), the filter processing constant K is set to a predetermined value in view of the small amount of heat generated due to side reactions. When the SOC is set to K1 and the SOC exceeds the predetermined value S1 (time t1 to t3), the filter processing constant K is set to the predetermined value K2 in view of the large amount of heat generated due to the side reaction. Therefore, in the time period γ described above, since the filtering constant K squared current value current is set to a predetermined value K2 I 2 (n) is quickly reflected in the cell heating index FI 2, the battery heating index FI 2 exceeds the threshold value, and the fan air volume V is increased. On the other hand, at time t4 when it is not necessary to increase the fan air volume V, the filter processing constant K is set to the predetermined value K1, and the current squared current value I 2 (n) is difficult to be reflected in the battery heat generation index FI 2. The battery heat generation index FI 2 does not exceed the threshold value, and the increase in the fan air volume V can be suppressed.

以上のように、本実施の形態によるECU100は、バッテリ10(ニッケル水素二次電池)のSOCが所定値S1を超えている場合においては、フィルタ処理定数Kを小さくすることによって、電流2乗今回値I (n)が電池発熱指数の今回値FI (n)に反映される度合いを大きくする。そのため、SOCが高く副反応に起因する発熱量が多い状況において、電流2乗今回値I (n)の増加に応じて電池発熱指数FIを素早く増加させて、電池発熱指数FIがしきい値を超え易くする(すなわちファン風量Vを所定値V1から所定値V2に増加させ易くする)ことができる。その結果、バッテリ10のSOCが高く副反応に起因する発熱量が多い状況において、バッテリ10が高温状態になることを抑制することができる。 As described above, the ECU 100 according to the present embodiment reduces the current squared current by reducing the filter processing constant K when the SOC of the battery 10 (nickel metal hydride secondary battery) exceeds the predetermined value S1. The degree to which the value I 2 (n) is reflected in the current value FI 2 (n) of the battery heat generation index is increased. Therefore, in situations large amount of heat due to the SOC is high side reactions, and quickly increased the cell heating index FI 2 in accordance with an increase in the current-square current value I 2 (n), the battery heating index FI 2 starve The threshold value can be easily exceeded (that is, the fan air volume V can be easily increased from the predetermined value V1 to the predetermined value V2). As a result, in a situation where the SOC of the battery 10 is high and a large amount of heat is generated due to the side reaction, the battery 10 can be prevented from becoming a high temperature state.

<変形例>
上述の実施の形態においては、電池発熱指数FIにおいて下限値を特に設けていなかったが、電池発熱指数FIに下限値を設けるようにしてもよい。
<Modification>
In the above-described embodiment, the battery heat generation index FI 2 is not particularly provided with a lower limit. However, the battery heat generation index FI 2 may be provided with a lower limit.

図5は、本変形例によるECU100がバッテリ冷却制御を実行する場合の処理手順を示すフローチャートである。図5に示すフローチャートは、上述の図2に示すフローチャートに対して、S41の処理(下限ガード処理)を追加したものである。図5に示すステップのうち、前述の図2に示したステップと同じ番号を付しているステップについては、既に説明したため詳細な説明はここでは繰り返さない。   FIG. 5 is a flowchart showing a processing procedure when the ECU 100 according to the present modification executes battery cooling control. The flowchart shown in FIG. 5 is obtained by adding the process of S41 (lower limit guard process) to the flowchart shown in FIG. Of the steps shown in FIG. 5, the steps given the same numbers as the steps shown in FIG. 2 described above have already been described, and detailed description thereof will not be repeated here.

S40にて電池発熱指数の今回値FI (n)を算出した後、ECU100は、S41にて、電池発熱指数FIの下限ガード処理を行なう。具体的には、ECU100は、電池発熱指数の今回値FI (n)が予め定められた下限ガード値よりも大きいか否かを判定する。そして、電池発熱指数の今回値FI (n)が下限ガード値よりも小さい場合、ECU100は、電池発熱指数の今回値FI (n)を、S40にて算出された値ではなく、下限ガード値に変更する。 After calculating the current value FI 2 (n) of the battery heat generation index in S40, the ECU 100 performs a lower limit guard process for the battery heat generation index FI 2 in S41. Specifically, ECU 100 determines whether or not current value FI 2 (n) of the battery heat generation index is larger than a predetermined lower limit guard value. When the current value FI 2 (n) of the battery heat generation index is smaller than the lower limit guard value, the ECU 100 sets the current value FI 2 (n) of the battery heat generation index, not the value calculated in S40, but the lower limit guard. Change to a value.

なお、下限ガード処理後の電池発熱指数の今回値FI (n)は、ECU100のメモリに記憶され、次回の演算サイクルにおいて「前回の演算サイクルにおける電池発熱指数FI (n-1)」として用いられる。 The current value FI 2 (n) of the battery heat generation index after the lower limit guard processing is stored in the memory of the ECU 100, and is referred to as “battery heat generation index FI 2 (n−1) in the previous calculation cycle” in the next calculation cycle. Used.

図6は、電池発熱指数FIの変化態様の一例を示す図である。図6においては、本変形例による電池発熱指数FIの変化態様(下限ガード処理が行なわれる場合の変化態様)が実線で示され、上述の実施の形態による電池発熱指数FIの変化態様(下限ガード処理が行なわれない場合の変化態様)が一点鎖線で示される。 Figure 6 is a diagram showing an example of a variant of the battery heating index FI 2. In FIG. 6, the change mode (change mode when the lower limit guard process is performed) of the battery heat generation index FI 2 according to this modification is indicated by a solid line, and the change mode of the battery heat generation index FI 2 according to the above-described embodiment ( A change mode when the lower limit guard process is not performed) is indicated by an alternate long and short dash line.

下限ガード処理が行なわれない場合(一点鎖線参照)、電池発熱指数FIの初期値が下限ガード値よりも低いことに起因して、電池発熱指数FIがしきい値を超えるレベルに増加するのにある程度の時間を要する。そのため、たとえば車両1が市街地や高速道路を走行する場合などバッテリ10の負荷が高い状態が継続していたとしても、電池発熱指数FIがしきい値を超えるまでに時間を要し、ファン風量Vの増加が遅れてしまうことが懸念される。 If the lower limit guard process is not performed (see dashed line), the initial value of the battery heating index FI 2 is due to lower than the lower limit guard value, the battery heating index FI 2 is increased to a level above the threshold It takes a certain amount of time. Therefore, for example, even if the load of the battery 10 is high was continuously such as when the vehicle 1 is traveling in an urban area or highway, the battery heating index FI 2 it takes time until the threshold is exceeded, the fan air volume There is concern that the increase in V will be delayed.

これに対し、本変形例による下限ガード処理が行なわれる場合(実線参照)、電池発熱指数FIの初期値が下限ガード値に引き上げられる。そのため、バッテリ10の負荷が高い状態が継続した場合に、電池発熱指数FIが素早くしきい値を超えるレベルに増加させて、ファン風量Vを増加するタイミングを早めることができる。 In contrast, if the lower limit guard processing of the present modification is performed (see the solid line), the initial value of the battery heating index FI 2 is pulled lower limit guard value. Therefore, if the load conditions of the battery 10 is high continues, increasing the level of the battery heating index FI 2 exceeds quickly threshold can advance the timing of increasing the fan air volume V.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 車両、10 バッテリ、11 監視ユニット、12 冷却ファン、12A モータ、20 SMR、30 PCU、41,42 MG、50 エンジン、60 動力分割機構、70 駆動軸、80 車輪、100 ECU。   1 vehicle, 10 battery, 11 monitoring unit, 12 cooling fan, 12A motor, 20 SMR, 30 PCU, 41, 42 MG, 50 engine, 60 power split mechanism, 70 drive shaft, 80 wheels, 100 ECU.

Claims (1)

ニッケル水素二次電池の冷却装置であって、
前記ニッケル水素二次電池に冷却風を供給するための冷却ファンと、
前記ニッケル水素二次電池を流れる電流を取得し、現在取得された電流2乗値と過去に取得された電流2乗値とを用いて前記ニッケル水素二次電池の発熱量を評価するための発熱指数を算出し、前記発熱指数がしきい値を超えている場合は超えていない場合よりも前記冷却ファンの風量を大きくする制御装置とを備え、
前記制御装置は、前記現在取得された電流2乗値が前記発熱指数に反映される度合いをフィルタ処理定数を用いて調整し、
前記制御装置は、前記ニッケル水素二次電池の蓄電量が所定値を超えた場合、前記蓄電量が所定値を超えていない場合よりも、前記現在取得された電流2乗値が前記発熱指数に反映される度合いが大きくなるように前記フィルタ処理定数を変更する、ニッケル水素二次電池の冷却装置。
A cooling device for a nickel metal hydride secondary battery,
A cooling fan for supplying cooling air to the nickel metal hydride secondary battery;
Heat generation for acquiring a current flowing through the nickel-metal hydride secondary battery and evaluating a heat generation amount of the nickel-metal hydride secondary battery using a currently acquired current square value and a previously acquired current square value. A controller for calculating an index, and increasing the air flow rate of the cooling fan when the exothermic index exceeds a threshold than when not exceeding,
The controller adjusts the degree to which the currently acquired current square value is reflected in the heat generation index using a filter processing constant,
In the control device, when the storage amount of the nickel-metal hydride secondary battery exceeds a predetermined value, the currently acquired current square value is included in the heat generation index as compared to the case where the storage amount does not exceed the predetermined value. A cooling device for a nickel-metal hydride secondary battery, wherein the filtering constant is changed so that the degree of reflection is increased.
JP2015257644A 2015-12-29 2015-12-29 Ni-MH secondary battery cooling system Active JP6455423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015257644A JP6455423B2 (en) 2015-12-29 2015-12-29 Ni-MH secondary battery cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015257644A JP6455423B2 (en) 2015-12-29 2015-12-29 Ni-MH secondary battery cooling system

Publications (2)

Publication Number Publication Date
JP2017120747A JP2017120747A (en) 2017-07-06
JP6455423B2 true JP6455423B2 (en) 2019-01-23

Family

ID=59272340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015257644A Active JP6455423B2 (en) 2015-12-29 2015-12-29 Ni-MH secondary battery cooling system

Country Status (1)

Country Link
JP (1) JP6455423B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098712A (en) * 2018-12-18 2020-06-25 株式会社デンソー Temperature adjustment device of secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053289B2 (en) * 2001-12-12 2008-02-27 本田技研工業株式会社 Storage battery temperature control device and vehicle device using the same
JP3849546B2 (en) * 2002-02-28 2006-11-22 トヨタ自動車株式会社 Temperature sensor state detection device and state detection method
JP2006213210A (en) * 2005-02-04 2006-08-17 Valeo Thermal Systems Japan Corp On-vehicle battery cooling device
WO2011161816A1 (en) * 2010-06-25 2011-12-29 トヨタ自動車株式会社 Hybrid vehicle and method of controlling the same
JP6102714B2 (en) * 2013-12-11 2017-03-29 トヨタ自動車株式会社 Power storage system
JP2016115609A (en) * 2014-12-17 2016-06-23 ダイムラー・アクチェンゲゼルシャフトDaimler AG Battery cooling device

Also Published As

Publication number Publication date
JP2017120747A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP6011541B2 (en) Charge control device and charge control method
JP5019010B2 (en) Secondary battery charge control method and control device
JP4811503B2 (en) Secondary battery temperature increase control device, vehicle equipped with the same, and secondary battery temperature increase control method
JP5288170B2 (en) Battery temperature rise control device
JP3638263B2 (en) Vehicle drive device
JP4811301B2 (en) Secondary battery input / output control device and vehicle
JP5895893B2 (en) vehicle
JP5488407B2 (en) Vehicle control device
JP6694156B2 (en) Control device for hybrid vehicle
JP4835383B2 (en) Control device and control method for power supply unit, program for causing computer to realize the method, and recording medium recording the program
US9796294B2 (en) Vehicle driven by electric motor and control method for vehicle
JP6508005B2 (en) Power supply
US20120049806A1 (en) Generation control device
JP6725880B2 (en) Control device for hybrid vehicle
JP2015071334A (en) Hybrid vehicle control device
KR20140079156A (en) Method and system for determining torque of motor of hybrid electric vehicle
JP6620520B2 (en) Charger
JP2015033154A (en) Battery charge/discharge control device
JP6122958B2 (en) Power generation control device and power generation control method
JP2020035595A (en) Control arrangement of vehicle
JP2016016763A (en) Power generation control device of hybrid car and power generation control method of hybrid car
JP2009160978A (en) Internal-combustion engine control device
JP6455423B2 (en) Ni-MH secondary battery cooling system
JP6424596B2 (en) Vehicle charge control device
JP6525431B2 (en) Battery controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R151 Written notification of patent or utility model registration

Ref document number: 6455423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151