JP6524073B2 - 抗精神病薬誘導体重増加に関連する遺伝子マーカーおよびその使用のための方法 - Google Patents

抗精神病薬誘導体重増加に関連する遺伝子マーカーおよびその使用のための方法 Download PDF

Info

Publication number
JP6524073B2
JP6524073B2 JP2016524143A JP2016524143A JP6524073B2 JP 6524073 B2 JP6524073 B2 JP 6524073B2 JP 2016524143 A JP2016524143 A JP 2016524143A JP 2016524143 A JP2016524143 A JP 2016524143A JP 6524073 B2 JP6524073 B2 JP 6524073B2
Authority
JP
Japan
Prior art keywords
subject
weight gain
polymorphisms
antipsychotic
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016524143A
Other languages
English (en)
Other versions
JP2016534715A5 (ja
JP2016534715A (ja
Inventor
ザイ,クレメント・シー
ケネディ,ジェームズ・エル
ミューラー,ダニエル・ジェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre for Addiction and Mental Health
Original Assignee
Centre for Addiction and Mental Health
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre for Addiction and Mental Health filed Critical Centre for Addiction and Mental Health
Publication of JP2016534715A publication Critical patent/JP2016534715A/ja
Publication of JP2016534715A5 publication Critical patent/JP2016534715A5/ja
Application granted granted Critical
Publication of JP6524073B2 publication Critical patent/JP6524073B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • A61K31/55131,4-Benzodiazepines, e.g. diazepam or clozapine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

[0001] 本発明は遺伝子マーカーの使用に関する。より具体的には、本発明は抗精神病薬誘導による体重増加に関連するGABRA2における遺伝子マーカーおよびその使用に関する。
[0002] 抗精神病薬を用いた精神病症状、たとえば統合失調症(schizophrenia)(SCZ)症状の処置は、有効性の乏しさと有害反応によって制限されている。これは、第2世代の抗精神病薬、たとえばクロザピン(clozapin)およびオランザピン(olanzapine)に特に当てはまり、それらにおいては処置した患者の約30%が著しい体重増加を生じる。抗精神病薬は統合失調症、双極性障害および精神病性うつ病に一般的にみられる精神病性症状を処置するために用いられる。それらは、双極性躁狂性および混合性エピソード(非特許文献1)、大うつ病性障害(非特許文献2、3)2,3、自閉症スペクトラム障害(非特許文献4,5)4,5、全般性不安障害、強迫性障害、認知症(非特許文献6〜8)6−8を含めた他の精神障害を管理するために使用が漸増している。
[0003] 抗精神病薬の応答および有害作用の基礎的機序は不明のままであるが、遺伝因子が顕著な役割を果たしていると思われる(非特許文献9〜14)9−14
[0004] 摂食の調節におけるガンマ−アミノ酪酸(GABA)の役割に関する証拠が増加しつつある。GABAは、視床下部のプロオピオメラノコルチン(pro-opiomelanocortin)POMCニューロンおよびアグーチ(Agouti)関連ペプチド(Agouti-related peptide)(AGRP)ニューロンを含めた脳の多くの領域で産生される(非特許文献15、16)15、16。ジフテリア毒素仲介によるGABA分泌AGRPニューロン除去は、マウスにおいて食欲低下表現型を誘導した(非特許文献17に概説)17。同様に、AGRPニューロンからのGABA放出を遺伝的に欠失するマウスは、グレリンにより誘導される肥満症に対して抵抗性であった(非特許文献18)18。この抵抗性の機序は、これらのAGRP−GABA欠失マウスにおける摂食低減およびエネルギー消費増大によるものである可能性があった18。逆に、ベンゾジアゼピンであるミダゾラム(midazolam)およびL−838417を含めたGABAアゴニストを脳幹の傍小脳脚核(parabrachial nucleus)に投与すると、摂食が増大した(非特許文献19)19。GABAおよびGABA受容体アゴニストは両方とも、げっ歯類および他の動物モデルにおいて摂食を高めた(非特許文献20〜22)20−22。GABRA2遺伝子は特に、肥満症の最近のゲノムワイドメタ解析におけるトップ所見の1つであり(非特許文献23)23、これによりそれは肥満症および関連表現型におけるさらなる研究のための魅力的な候補遺伝子となった。
[0005] 各種の抗精神病薬によるGABA神経伝達の変異に関する証拠も蓄積しつつある(非特許文献24〜26)24−26。クロザピンおよびオランザピンは特に、GABA受容体におけるアロプレグナノロン(allopregnanolone)を含めた神経活性ステロイドのアロステリック作用によりGABA作動性神経伝達(非特許文献27)27を増大させることによって、それらの抗不安活性を発揮している可能性がある(非特許文献28)28。オランザピン誘導による体重増加および脂肪蓄積は、GABA合成酵素GAD65のレベル増大に関連づけられている(非特許文献29)29
[0006] 染色体領域4p12にマッピングされるGABRA2遺伝子(HGNC:4076)は、GABA受容体、アルファ2サブユニットをコードする。このGABRA2遺伝子は肥満症に関与することが示唆された(非特許文献23)23が、それは抗精神病薬誘導による体重増加に関しては研究されていない。
Correll CU, Sheridan EM, DelBello MP. Antipsychotic and mood stabilizer efficacy and tolerability in pediatric and adult patients with bipolar I mania: a comparative analysis of acute, randomized, placebo-controlled trials. Bipolar Disord 2010; 12(2): 116-141. Komossa K, Depping AM, Gaudchau A, Kissling W, Leucht S. Second-generation antipsychotics for major depressive disorder and dysthymia. Cochrane Database Syst Rev 2010;(12): CD008121. Spielmans GI, Berman MI, Linardatos E, Rosenlicht NZ, Perry A, Tsai AC. Adjunctive atypical antipsychotic treatment for major depressive disorder: a meta-analysis of depression, quality of life, and safety outcomes. PLoS Med 2013; 10(3): e1001403. Nurmi EL, Spilman SL, Whelan F, Scahill LL, Aman MG, McDougle CJ, et al. Moderation of antipsychotic-induced weight gain by energy balance gene variants in the RUPP autism network risperidone studies. Transl Psychiatry 2013; 3: e274. Zuddas A, Zanni R, Usala T. Second generation antipsychotics (SGAs) for non-psychotic disorders in children and adolescents: a review of the randomized controlled studies. Eur Neuropsychopharmacol 2011; 21(8): 600-620. Ballard C, Waite J. The effectiveness of atypical antipsychotics for the treatment of aggression and psychosis in Alzheimer's disease. Cochrane Database Syst Rev 2006;(1): CD003476. Maher AR, Maglione M, Bagley S, Suttorp M, Hu JH, Ewing B, et al. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: a systematic review and meta-analysis. JAMA 2011; 306(12): 1359-1369. Maher AR, Theodore G. Summary of the comparative effectiveness review on off-label use of atypical antipsychotics. J Manag Care Pharm 2012; 18(5 Suppl B): S1-20. Arranz MJ, de Leon J. Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 2007; 12(8): 707-747. Muller DJ, Kennedy JL. Genetics of antipsychotic treatment emergent weight gain in schizophrenia. Pharmacogenomics 2006; 7(6): 863-887. Strange PG. Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacol Rev 2001; 53(1): 119-133. Vojvoda D, Grimmell K, Sernyak M, Mazure CM. Monozygotic twins concordant for response to clozapine. Lancet 1996; 347(8993): 61. Gebhardt S, Theisen FM, Haberhausen M, Heinzel-Gutenbrunner M, Wehmeier PM, Krieg JC, et al. Body weight gain induced by atypical antipsychotics: an extension of the monozygotic twin and sib pair study. J Clin Pharm Ther 2010; 35(2): 207-211. Lett TA, Wallace TJ, Chowdhury NI, Tiwari AK, Kennedy JL, Muller DJ. Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry 2011e. Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci 2005; 8(5): 571-578. Hentges ST, Nishiyama M, Overstreet LS, Stenzel-Poore M, Williams JT, Low MJ. GABA release from proopiomelanocortin neurons. J Neurosci 2004; 24(7): 1578-1583. Wu Q, Palmiter RD. GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur J Pharmacol 2011; 660(1): 21-27. Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci 2008; 11(9): 998-1000. Soderpalm AH, Berridge KC. Food intake after diazepam, morphine or muscimol: microinjections In the nucleus accumbens shell. Pharmacol Biochem Behav 2000; 66(2): 429-434. Cooper SJ. Palatability-dependent appetite and benzodiazepines: new directions from the pharmacology of GABA(A) receptor subtypes. Appetite 2005; 44(2): 133-150. Duke AN, Platt DM, Cook JM, Huang S, Yin W, Mattingly BA, et al. Enhanced sucrose pellet consumption induced by benzodiazepine-type drugs in squirrel monkeys: role of GABAA receptor subtypes. Psychopharmacology (Berl) 2006; 187(3): 321-330. Ebenezer IS, Prabhaker M. The effects of intraperitoneal administration of the GABA(B) receptor agonist baclofen on food intake in CFLP and C57BL/6 mice. Eur J Pharmacol 2007; 569(1-2): 90-93. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009; 41(1): 25-34. Danovich L, Weinreb O, Youdim MB, Silver H. The involvement of GABA(A) receptor in the molecular mechanisms of combined selective serotonin reuptake inhibitor-antipsychotic treatment. Int J Neuropsychopharmacol 2011; 14(2): 143-155. Drew KL, O'Connor WT, Kehr J, Ungerstedt U. Regional specific effects of clozapine and haloperidol on GABA and dopamine release in rat basal ganglia. Eur J Pharmacol 1990; 187(3): 385-397. Vincent SL, Adamec E, Sorensen I, Benes FM. The effects of chronic haloperidol administration on GABA-immunoreactive axon terminals in rat medial prefrontal cortex. Synapse 1994; 17(1): 26-35. Marx CE, VanDoren MJ, Duncan GE, Lieberman JA, Morrow AL. Olanzapine and clozapine increase the GABAergic neuroactive steroid allopregnanolone in rodents. Neuropsychopharmacology 2003; 28(1): 1-13. Ugale RR, Hirani K, Morelli M, Chopde CT. Role of neuroactive steroid allopregnanolone in antipsychotic-like action of olanzapine in rodents. Neuropsychopharmacology 2004; 29(9): 1597-1609. Weston-Green K, Huang XF, Deng C. Alterations to melanocortinergic, GABAergic and cannabinoid neurotransmission associated with olanzapine-induced weight gain. PLoS One 2012; 7(3): e33548.
[0007] 当技術分野では新規な遺伝子マーカーが求められている。さらに、当技術分野では、抗精神病薬誘導による体重増加に関連する新規な遺伝子マーカーが求められている。さらに、当技術分野では、精神病の処置のための薬物投与を処方するのに関して根拠ある判定を行なう機会を医師および他のヘルスケア専門家に提供する、抗精神病薬誘導による体重増加に関する遺伝子診断マーカーが求められている。さらに、当技術分野では、抗精神病薬誘導による体重増加ならびに糖尿病および心血管疾患などの関連疾患を発現するリスクを低減する個別化薬物療法が求められている。
[0008] 本発明は、遺伝子マーカーに関する。より具体的には、本発明は抗精神病薬誘導による体重増加に関連するGABRA2における遺伝子マーカーおよびその使用に関する。
[0009] 慣例として、本明細書中のすべてのヌクレオチド配列をプラス鎖に関して列記する。当業者に理解されるように、GABRA2遺伝子はマイナス鎖から離れて転写される。したがって、本発明の主題は列記した概説に従って実施できること、あるいは本明細書に列記したヌクレオチド配列の相補体の使用/決定/分析により実施できることを十分に考慮する。
[0010] この試験では下記のヌクレオチド配列を調べた。多型部位を下線付き太字で示す:
Figure 0006524073
[0011] 本発明によれば、抗精神病薬処置に応答した被験体の体重変化を予測する方法であって、
a)被験体からゲノムDNAを含む生体試料を入手し;
b)被験体のGABRA2遺伝子における1以上の多型またはその相補体の存在または非存在を判定し、その際、その1以上の多型の存在は抗精神病薬処置に応答した被験体の体重変化の予測となる
ことを含む方法が提供される。
[0012] さらなる態様において、さらに、下記のものからなる群から選択される少なくとも1つの工程を含む、前記方法が提供される:a)GABRA2遺伝子における1以上の多型の存在または非存在の判定から得られた結果に基づいて、被験体を1以上の療法薬で処置する;b)GABRA2遺伝子における1以上の多型の存在または非存在の判定結果に関して被験体にアドバイスおよび/またはカウンセリングする;c)結果を医師、医療サービス提供者または他の第三者に伝達、アドバイスおよび/または送達する;d)結果に基づいて1以上の特定の抗精神病薬処置で被験体を処置する;e)抗精神病薬処置の前、処置と同時または処置の後に、体重増加を制御するための1以上の療法または療法薬で被験体を処置する;f)被験体の体重をある期間にわたってモニタリングする;g)患者または被験体に運動または食事変更を処方、推奨または指示する;h)被験体をメタボリックシンドロームについてモニタリングする;i)被験体を心血管疾患またはその症状についてモニタリングする;あるいはa〜i)のいずれかの組合わせ。
[0013] 本発明によれば、被験体が、統合失調症または統合失調感情障害(schizoaffective disorder)を伴なうと診断されているか、統合失調症または統合失調感情障害を発症する可能性があるか、あるいは統合失調症または統合失調感情障害の1以上の症状を示している、前記方法も提供される。さらなる態様において、決して限定するためのものではなく、本明細書に記載する方法を実施する前に被験体は統合失調症または統合失調感情障害を伴なうとまだ診断されていないことも考慮される。
[0014] 本発明のさらなる態様によれば、GABRA2遺伝子における1以上の多型が
Figure 0006524073
に関係するものである方法が提供され、これらにおいて多型部位はかっこ内の下線を施した太字にある。
[0015] さらなる態様において、多型のうち少なくとも1つがSEQ ID NO:1または多型部位を含むそのバリアントもしくはフラグメントにより定められる前記方法が提供される。先に示したように、本方法はSEQ ID NO:1により定められるヌクレオチド配列の相補体(多型部位の相補体を含む)の存在または非存在を判定することによっても実施できる。
[0016] さらなる態様において、多型のうち少なくとも1つがSEQ ID NO:2または多型部位を含むそのバリアントもしくはフラグメントにより定められる前記方法が提供される。先に示したように、本方法はSEQ ID NO:2により定められるヌクレオチド配列の相補体(多型部位の相補体を含む)の存在または非存在を判定することによっても実施できる。
[0017] rs16859227多型(SEQ ID NO:1)のC対立遺伝子(C/C遺伝子型)の存在が、被験体における、より高い体重増加率と関連する、前記方法も提供される。rs279858多型(SEQ ID NO:2)の2コピーのT対立遺伝子(T/T遺伝子型)の存在が、被験体における、より高い体重増加率と関連する、前記方法も提供される。
[0018] 試料が血液試料である前記方法も提供される。
[0019] さらに、下記のうち1以上を含むキットが提供される:
a)SEQ ID NO:1〜9に定める多型またはその組合わせを含むヌクレオチド配列を増幅するための1以上のプライマー;
b)SEQ ID NO:1〜9のいずれか1つに、多型部位を含むヌクレオチド領域上においてハイブリダイズする1以上のプローブであって、多型部位に示す多型の特定のバリアントにハイブリダイズするプローブ。決して限定することを望むわけではなく、プローブを適宜なグループ、たとえば蛍光性タグ、蛍光体、放射性標識などで標識することができる。さらに、1以上のプローブを、支持体、たとえば、それらに限定されないが、バイオチップ、アレイ、スライド、マルチウェルプレート、ビーズなどと共有結合または物理的会合させることができる。ある態様において、決して限定するためのものではなく、プローブは核酸のアレイを含むことができる;
c)PCRもしくはプローブハイブリダイゼーションもしくは当業者に既知の方法におけるいずれかの工程を実施するための1以上の緩衝液、1以上のDNA増幅酵素、またはそのいずれかの組合わせを含む(ただし、これらに限定されない)、1以上の試薬および/または製品;
d)エキソヌクレアーゼアッセイ、ヌクレオチド配列決定、またはそのそのいずれかの組合わせに用いるものを含む(ただし、これらに限定されない)、本明細書に記載する多型を遺伝子型判定するための1以上の試薬、構成要素および製品;
e)SEQ ID NO:1〜9またはその組合わせのうちのいずれか1つを含むヌクレオチド配列の配列を決定するDNA配列決定反応を実施するための、1以上の試薬、構成要素または製品;
f)本明細書に記載する構成要素を使用するための、本明細書に記載する本発明方法を実施するための、本発明方法の実施から得られたデータを解釈するための、またはそのいずれかの組合わせのための、1セット以上の指示。
[0020] この発明の概要は必ずしも本発明のすべての特徴を記載したものではない。
[0021] 以下の記載は具体的な態様の記載である。
[0022] 本発明は、抗精神病薬療法に応答した体重変化に対する被験体の感受性を予測するために使用できる遺伝子マーカーを提供する。より詳細に後記に述べるように、GABRA2遺伝子における特定の多型は、抗精神病薬療法に応答した被験体の体重変化を予測するために使用できる。第2態様において、GABRA2遺伝子における特定の多型は、統合失調症を伴なうと診断された被験体または統合失調症を発症する可能性のある被験体のための処置計画の決定を補助するのに使用できる。第3態様において、GABRA2遺伝子における特定の多型は統合失調症被験体を処置する際に使用できる。第4態様において、抗精神病薬投与で被験体を処置する方法が提供され、その際、その方法は処置計画の一部として1以上のGABRA2遺伝子における特定の多型を同定することを含む。本明細書に記載する他の態様も提供される。
[0023] 本明細書に述べる実施例に記載する試験および本明細書全体において述べる試験は、GABRA2遺伝子全体における一塩基多型(SNP)が抗精神病薬投与に対する体重応答に及ぼす影響を多数の別個の統合失調症集団において調べた。被験体には、統合失調症または統合失調感情障害のDSM−IIIR/IV診断を伴なうヨーロッパ人系の160人の患者が含まれていた。結果は、rs279858マーカーのT/T遺伝子型がC−対立遺伝子を保有する遺伝子型(たとえば、T/CまたはC/Cのいずれかの遺伝子型)より高い体重変化率に関連していたことを指摘する。rs16859227マーカーも、クロザピンまたはオランザピンの投薬を受けた統合失調症または統合失調感情障害の被験体のサブサンプルにおける、より高い体重変化率と有意に関連していた。結果は、rs16859227マーカーのC/C遺伝子型がT−対立遺伝子を保有する遺伝子型(たとえば、T/TまたはT/Cのいずれかの遺伝子型)より高い体重変化率に関連していたことを指摘する。他の興味深い結果も、本明細書、特に表1および2に提示する。
[0024] 本発明の態様によれば、抗精神病薬処置に応答した被験体の体重変化を予測する方法であって、
a)被験体からゲノムDNAを含む生体試料を入手し;
b)被験体のGABRA2遺伝子における1以上の多型またはその相補体の存在または非存在を判定し、その際、その1以上の多型の存在は抗精神病薬処置に応答した体重変化に対する被験体の感受性の予測となる
ことを含む方法が提供される。
[0025] さらなる態様において、決して限定するためのものではなく、本方法は1以上の追加工程を含むことができる;たとえば、それらに限定されないが、GABRA2遺伝子における1以上の多型の存在または非存在の判定結果に関して被験体にアドバイスおよび/またはカウンセリングする;結果を医師、医療サービス提供者または他の第三者に伝達、アドバイスおよび/または送達する;結果に基づいて1以上の特定の抗精神病薬処置で被験体を処置する;抗精神病薬処置の前、処置と同時または処置の後に、体重増加を制御するための1以上の療法で被験体を処置する;被験体の体重をある期間にわたってモニタリングする;被験体をメタボリックシンドロームまたはメタボリックシンドローム発症についてモニタリングする;それは血中脂質プロファイル(トリグリセロールおよびトリグリセリドを含む)、血糖値、肥満指数(BMI)、および中心性肥満の測定を含むことができる。心血管疾患はメタボリックシンドロームから生じる可能性があるので、医師は心疾患の発症もモニタリングすることができる。下記の心疾患症状をモニタリングすることができる:血圧上昇、狭心症、心不全、息切れ、早いもしくは不規則な脈拍、咳および吐き気、または上記のいずれかの組合わせ。検査に基づいて、もしSCZ被験体がrs279858マーカーに関してT/T遺伝子型を示せば、より頻繁な体重モニタリング、および食欲抑制薬もしくは血糖低下薬、たとえば、それらに限定されないが、スルホニル尿素、チアゾリジンジオン、アルファグルコシダーゼ阻害薬もしくはメトホルミン(metformin)の投与、食事計画、運動計画、またはそれらの組合わせを、抗精神病薬投与に加えて推奨することができる。また、得られた結果から、rs279858マーカーに関してT/T遺伝子型を示す被験体は、好ましくは第2世代抗精神病薬(特に、体重増加傾向がより高いもの:たとえば、クロザピン、オランザピン)で処置せず、むしろ体重増加傾向がより低い抗精神病薬30(フルフェナジン(fluphenazine)、アリピプラゾール(aripiprazole)、ジプラシドン(ziprasidone)、ハロペリドール(haloperidol)、ロキサピン(loxapine)、ルラシドン(lurasidone)、イロペリドン(iloperidone)、アセナピン(asenapine)、およびモリンドン(molindone)を含む)で処置すべきである。
[0026] よって、患者の遺伝子型に基づいて、医師は高レベルまたは最高レベルの体重増加を引き起こす抗精神病薬の処方を避けるように要請できる;これらにはオランザピンおよびクロザピンが含まれる。中等度のリスクをもつ医薬、たとえば(パリペリドン(paliperidone)、ペルフェナジン(perphenazine)、チオリダジン(thioridazine)、クロルプロマジン(chlorpromazine)、リスペリドン(risperidone)、およびクエチアピン(quetiapine))を、より頻繁なメタボリックシンドロームおよび心疾患指数のモニタリングと共に処方することができる。最終的に、医師は体重増加誘導のリスクがより低い薬物を選択するように要請できる;これらの薬物にはロキサピン、イロペリドン、アセナピン、ルラシドン、ジプラシドン、アリピプラゾール、フルフェナジン、およびハロペリドールが含まれる。
[0027] 前記のように、限定とみなすことを望まないが、GABRA2遺伝子における特定の多型は、統合失調症(または統合失調感情障害)を伴なうと診断された被験体または統合失調症(または統合失調感情障害)を発症する可能性のある被験体のための処置計画の決定を補助するのに使用できる。たとえば、決して限定とみなすことを望まないが、本発明は、統合失調症を伴なうと診断された被験体または統合失調症を発症する可能性のある被験体のための処置計画を決定する方法であって、
a)被験体からゲノムDNAを含む生体試料を入手し;
b)被験体のGABRA2遺伝子における1以上の多型の存在または非存在を判定し、その際、その1以上の多型の存在は抗精神病薬処置に応答した被験体の体重変化の予測となり、
その際、本明細書に記載する1以上のGABRA2多型の存在および/または本明細書に記載する1以上のGABRA2多型の非存在により被験体のための処置計画を決定する
ことを含む方法を提供する。
[0028] そのような態様において、この方法はさらに、前記、後記または本明細書の他のいずれかの箇所に記載したように被験体を処置する工程を含むことができる。
[0029] さらに、前記のように、GABRA2遺伝子における特定の多型は、統合失調症被験体の処置に際して、または統合失調症の素因をもつ可能性のある被験体をどのように処置するかについて使用できる。そのような態様において、本発明は、統合失調症の被験体または統合失調症の素因をもつ可能性のある被験体を処置する方法であって、
a)被験体からゲノムDNAを含む生体試料を入手し;
b)被験体のGABRA2遺伝子における1以上の多型の存在または非存在を判定し、その際、その1以上の多型の存在は抗精神病薬処置に応答した被験体の体重変化の予測となり、
その際、本明細書に記載する1以上のGABRA2多型の存在および/または本明細書に記載する1以上のGABRA2多型の非存在により被験体のための処置計画を決定する
ことを含む方法を提供する。
[0030] そのような態様において、この方法はさらに、前記または本明細書の他のいずれかの箇所に記載したように被験体を処置する工程を含むことができる。
[0031] 用語“GABRA2遺伝子における1以上の多型”とは、下記により定めるヌクレオチド配列における1以上の多型を意味する:
Figure 0006524073
これらにおいて、各配列中の多型部位を、その上流および下流のヌクレオチド配列に関して太字の下線を施したかっこ内に示す。特に好ましい態様において、GABRA2遺伝子における1以上の多型はrs16859227、rs279858または両方を含む。前記に示したように、本発明は前記のSEQ ID NOにより定められるヌクレオチド配列の相補体(多型部位の相補体を含む)の存在または非存在を判定することによっても実施できる。
[0032] 本発明は、GABRA2遺伝子における1以上の多型であって、SEQ ID NO:1〜9、好ましくはSEQ ID NO:1、2またはSEQ ID NO:1とSEQ ID NO:2の両方との約90%〜100%の配列同一性、たとえば、それらに限定されないが、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.9%または100%の配列同一性を含みむものをも考慮し、その際、それらの配列は前記に太字の下線を施したかっこ内に示したそれぞれの多型をも含む。たとえば、決して限定とみなすべきではないが、SEQ ID NO:1に示す第1ヌクレオチドは“C”である。本発明は、SEQ ID NO:1と実質的に同一であるけれども、たとえば、それらに限定されないが、位置番号1に“A”、“G”または“T”を含む配列を含むものとする;そのバリアントヌクレオチド配列はSEQ ID NO:1との90%を超える配列同一性を示し、かつ太字の下線を施したかっこ内に示す多型を含むからである。本発明は、前記のSEQ ID NOにより定めるヌクレオチド配列の相補体(多型部位の相補体を含む)の存在または非存在を判定することにより実施することもできる。
[0033] ある核酸が本明細書に提示する配列との類似性またはある割合の同一性を示すかどうかを判定するために、たとえば、それらに限定されないが、下記のオリゴヌクレオチドアラインメントアルゴリズムを使用できる:BLAST(GenBank URL:www.ncbi.nlm.nih.gov/cgi-bin/BLAST/,デフォルトパラメーターを使用:Program:blastn;Database:nr;Expect 10;filter:default;Alignment:pairwise;Query genetic Codes:Standard(1))、BLAST2(EMBL URL:http://www.embl-heidelberg.de/Services/index.html,デフォルトパラメーターを使用:Matrix BLOSUM62;Filter:default,echofilter:on,Expect:10,cutoff:default;Strand:both;Descriptions:50,Alignments:50)、またはFASTA,search,デフォルトパラメーターを使用。ポリペプチドアラインメントアルゴリズム、たとえば、限定ではなく、BLAST 2 Sequences(www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html,デフォルトパラメーターを使用 Program:blastp;Matrix:BLOSUM62;Open gap(11)およびextension gap(1)ペナルティー;gap x_dropoff:50;Expect 10;Word size:3;filter:default)も使用できる。
[0034] 2つの核酸配列が互いに実質的に相補的であるという別の指示は、それら2配列が中等度の緊縮条件下または好ましくは緊縮条件下で互いにハイブリダイズするということである。中等度の緊縮条件下でのフィルター結合配列へのハイブリダイゼーションは、たとえば0.5M NaHPO、7%ドデシル硫酸ナトリウム(SDS)、1mM EDTA中において65℃で、0.2×SSC/0.1% SDS中における42℃での少なくとも1時間の洗浄により実施できる(参照:Ausubel, et al. (eds), 1989, Current Protocols in Molecular Biology, Vol. 1, Green Publishing Associates, Inc., and John Wiley & Sons, Inc., New York, at p. 2.10.3)。あるいは、緊縮条件下でのフィルター結合配列へのハイブリダイゼーションは、たとえば0.5M NaHPO、7% SDS、1mM EDTA中において65℃で、0.1×SSC/0.1% SDS中における68℃での少なくとも1時間の洗浄により実施できる。ハイブリダイゼーション条件は目的配列に応じて周知の方法に従って改変できる(参照:Tijssen, 1993, Laboratory Techniques in Biochemistry and Molecular Biology -- Hybridization with Nucleic Acid Probes, Part I, Chapter 2 “Overview of principles of hybridization and the strategy of nucleic acid probe assays”, Elsevier, New York)。一般に、限定することを望まないが、緊縮条件は規定したイオン濃度およびpHで特定配列についての融点より約5℃低く選択される。本発明は、SEQ ID NO:1〜9、好ましくはSEQ ID NO:1〜2を含むかまたはそれからなるヌクレオチド配列に緊縮ハイブリダイゼーション条件下でハイブリダイズするヌクレオチド配列をも考慮する。
[0035] 好ましい態様において、たとえば、それらに限定されないが、SEQ ID NO:1〜2により提示される多型部位における特定の対立遺伝子の存在は、多型部位から上流および下流、たとえば、それらに限定されないが、多型部位の約3、4、5、6、7、8、9、10、11、12、13、14または15ヌクレオチド上流および約3、4、5、6、7、8、9、10、11、12、13、14または15ヌクレオチド下流にある隣接ヌクレオチド配列との関係で決定される。ただし、本発明は、特定の対立遺伝子の存在を、それぞれSEQ ID NO:1〜9、より好ましくはSEQ ID NO:1〜2により提示される多型部位の約20、25、30、50ヌクレオチドまたはそれ以上(またはそれらの間のいずれかの数)上流ならびに約20、25、30、50ヌクレオチドおよび/またはそれ以上(またはそれらの間のいずれかの数)下流を含むヌクレオチド配列との関係で決定することも考慮する。用語“および/または”は、連続した上流および下流のヌクレオチドの数が同じである必要はないことを具体的に指示するために用いられる。特定の多型または特定グループの多型が被験体に存在するかを判定するためにヌクレオチド配列を比較する、当業者に既知の他の手段および方法を、本発明の実施に使用できる。
[0036] 用語“に応答した被験体の体重変化を予測する”とは、抗精神病薬処置全般で、または特定の抗精神病薬処置、たとえば、それらに限定されないが、クロザピンおよびオランザピンを含む抗精神病薬で、被験体の体重が増加する可能性があるかを予測することを意味する。
[0037] 本発明のある態様において、決して限定することを望まないが、本明細書に記載する方法は、抗精神病薬投与に応答した被験体の体重変化を判定するために使用でき、その際、スクリーニングの時点で被験体は健康に見える。この情報は、スクリーニングの時点では被験体が疾患の症状をほとんどまたは全くもたないとしても、統合失調症または統合失調症性もしくは精神病性の症状を伴なう他の障害の家族歴をもつ被験体をスクリーニングする場合に重要となる可能性がある。被験体が抗精神病薬投与にどのように応答する可能性があるかについての知識は、たとえば被験体が後に統合失調症または精神病性症状を発症して処置が必要になった場合に、処置計画を開発する際に有用となる可能性がある。
[0038] 本発明のある態様において、いずれかの人種、年齢、性別または医学的状態の被験体を検査またはスクリーニングして、抗精神病薬処置に応答した被験体の体重変化を予測することができる。これに関して、健康な被験体または何ら疾患の症状もしくは医学的状態をもたない被験体を検査して、抗精神病薬投与に応答した被験体の体重変化を予測することができる。この方法で、もし処置が必要になればいつでも、適正な薬物および/または処置計画を選択し、および/または被験体に施すことができる。好ましい態様において、1以上の精神病性症状をもつ障害、統合失調症または統合失調感情障害を伴なうと診断された被験体を検査して、抗精神病薬療法、たとえば、それらに限定されないが、クロザピン、オランザピン、リスペリドン、クエチアピン、ハロペリドール、ペルフェナジン、チオリダジン、ジプラシドン、アリピプラゾール、クロルプロマジン、アミスルプリド(amisulpride)、フルフェナジン、モリンドン、ロキサピン、パリペリドン、イロペリドン、アセナピン、ルラシドン、またはその組合わせによる処置に応答した被験体の体重変化を予測することができる。
[0039] 前記のように、決して限定することを望まないが、被験体は統合失調症または統合失調感情障害を伴なうと診断されている。しかし、検査される被験体は1以上の精神病性症状、統合失調症症状、統合失調感情障害症状、またはその組合わせ、たとえば、それらに限定されないが、DSM−IV(本明細書に援用する)に記載されたものを伴なう個体を含むことができる。精神病性症状は、陽性症状、たとえば、それらに限定されないが、下記のゆがみもしくは誇張を含むことができる:推測的思考(すなわち、妄想)、知覚(すなわち、幻覚)、言語およびコミュニケーション(解体した会話)、ならびに行動モニタリング(ひどく解体したまたは緊張病性の行動)、またはその組合わせ。さらに、陽性症状は、別個の次元、たとえば精神病性次元(妄想および幻覚を含むが、これらに限定されない)、および解体次元(解体した会話および行動を含むが、これらに限定されない)を含むことができる。先に記載されたように、症状は1以上の陰性症状、たとえば、それらに限定されないが、正常な機能の減退または喪失(動機付けの喪失、社会的関心の喪失、コミュニケーションの喪失、またはその組合わせを含むが、これらに限定されない)を反映する症状を含む可能性があることも考慮される。さらに、被験体は陽性と陰性の両方の症状の組合わせを示す可能性がある。本発明のある態様において、検査される被験体は統合失調症または統合失調感情障害を伴なうと診断されているか、あるいはそれらを伴なう疑いがある。
[0040] ゲノムDNAを供給するいずれかのヒト組織または試料をGABRA2多型の遺伝子型判定のために使用でき、これには血液、唾液、毛、髄液、脳生検材料、被験体から得た培養細胞、大便、尿、剖検試料、または組織検査の目的で採取した凍結切片が含まれるが、これらに限定されない。ある例において、GABRA2多型に関するアッセイのために被験体から血液を入手する。一例として、決して限定することを望まないが、静脈穿刺法を用いて被験体から静脈血を入手する。
[0041] 被験体のDNAを、当技術分野で既知のいずれか適切な手法により一塩基多型(SNP)の存在または非存在について検査することができる。使用できる代表的手法には、限定ではなく、PCR分析、配列決定、5’エキソヌクレアーゼ蛍光アッセイ、プローブハイブリダイゼーション、またはその組合わせが含まれる。
[0042] 多型は常法を用いて遺伝子型判定することができる。たとえば、蛍光プローブを組み込んだプライマーを用いるPCRは、適切な1手法である。さらに、限定とみなすことを望まないが、多型部位の上流および下流の適宜な配列をもつプライマーを用いて、多型を含むヌクレオチド領域を増幅することができる。
[0043] 一塩基多型(SNP)分析は、GABRA2遺伝子の対立遺伝子間の相異を検出するために有用である。前記のように、当技術分野にはヌクレオチド配列を遺伝子型判定するための多様な方法があり、それには5’エキソヌクレアーゼアッセイ、配列決定などが含まれるが、これらに限定されない。そのような方法はすべて本発明に包含されるものとする。さらに、たとえばTaqmanまたは分子ビーコン(molecular beacon)ベースのアッセイ法(U.S. Pat. No. 5,210,015; 5,487,972;およびPCT WO 95/13399)を含めて、SNPを検出するために使用できる多様なリアルタイムPCR法がSNPの存在または非存在をモニターするために有用である。さらに他のSNP検出法が当技術分野で知られており、それには、限定ではなく、DNA配列決定、ハイブリダイゼーションによる配列決定、ドットブロット法、オリゴヌクレオチドアレイ(DNAチップ)ハイブリダイゼーション分析が含まれる。
[0044] Applied Biosystems,Inc(カリフォルニア州フォスターシティー)は、数種類の観点のSNP遺伝子型判定技術を開発した。よく利用される1プロトコルにおいて、目的SNP領域のPCR増幅は、それぞれ異なる蛍光性レポーター色素および蛍光クエンチャーからなる2つの対立遺伝子特異的な発蛍光団プローブを含むターゲティングプライマーを用いて実施される。PCR前には、蛍光体へのクエンチャーの近接により蛍光共鳴エネルギー移動(FRET)が引き起こされて、レポーター色素からの蛍光が低減する。PCRに際して、Taqの5’ヌクレアーゼ活性がSNP領域に結合した対立遺伝子特異的プローブを消化して、蛍光色素をクエンチャーから開放し、蛍光信号を発生させる。
[0045] 試料を入手してそれのDNAを分析する方法は本発明にとって決定的ではなく、いかなる方法も使用できる(たとえば、Ausubel, et al. (eds), 1989, Current Protocols in Molecular Biology, Green Publishing Associates, Inc., and John Wiley & Sons, Inc., New York, at p. 2.10.3、またはManiatis et al., Molecular Cloning (A Laboratory Manual), Cold Spring Harbor Laboratory, 1982, p. 387 389)。たとえば、決して限定とみなすべきではなく、DNAは非酵素的な高塩法を用いて抽出することができる。あるいは、DNAを in situ で、あるいは体液および/または組織中に存在する状態で、分析することができる。当業者に既知である他のDNA分析法も使用できる。
[0046] 幾つかの科学共同研究により、下記を含めた幾つかの種のゲノムについてSNPを同定および/または分類することが試みられた:ヒト(Homo sapiens)、シロイヌナズナ(Arabidopsis thaliana)、線虫(Caenorhabditis elegans)、シロエリヒタキ(Ficedula albicollis)、マダラヒタキ(Ficedula hypoleuca)、セキショクヤケイ(Gallus gallus)、ハツカネズミ(Mus musculus)、チンパンジー(Pan troglodytes)、熱帯熱マラリア原虫(Plasmodium falciparum)、およびドブネズミ(Rattus norvegicus)。たとえば、HapMapプロジェクトはヒトDNA配列バリエーション(ハプロタイプ)の共通パターンの決定を試みている。SNP遺伝子型、組換え率、および他のタイプの情報を、HapMapウェブサイト(www.hapmap.org)でブラウジングし、またはそこからダウンロードすることができる。SNPは一般にヌクレオチド配列内の位置により、またはデータベースに割り当てられた照会SNP ID番号(reference SNP ID number)(“rs”番号)により同定される。HapMapのほかに、SNPは他の多様な情報源を用いて検索できる。たとえば、目的配列中にあることが分かっているSNPの個々のrs番号は、UCSC Genome Bioinformaticsウェブページ(www.genome.ucsc.edu)でBlast検索を実施することにより入手できる。逆に、あるrs番号と関連する配列および科学文献の情報は、NCBIウェブページ(www.ncbi.nlm.nih.gov)により提供されるEntrez SNP検索オプションのdbSNPを検索することにより入手できる。
[0047] 本発明のある態様(限定とみなすべきではないものとする)において、抗精神病薬処置に応答した被験体の体重変化を予測する方法であって、
a)被験体から生体試料を入手し;
b)SEQ ID NO:1、SEQ ID NO:2、またはその組合わせにおける1以上の多型の存在または非存在を判定し、その際、
クロザピンまたはオランザピンで処置したヨーロッパ人系の患者について、rs16859227多型(SEQ ID NO:1)のC/C遺伝子型の存在は、被験体における、より高い体重増加率と関連し;
rs279858多型(SEQ ID NO:2)のT/T遺伝子型の存在は、被験体における、より高い体重増加率と関連する。
[0048] 本発明は、本発明方法を実施するための製品およびキットをも考慮する。たとえば、キットは下記のものを含むことができる:
a)SEQ ID NO:1〜9のいずれか1つ、好ましくはSEQ ID NO 1もしくは2に定める多型、またはその組合わせを含むヌクレオチド配列を増幅するための1以上のプライマー;
b)SEQ ID NO:1〜9のいずれか1つ、好ましくはSEQ ID NO:1もしくは2またはSEQ ID NO:1とSEQ ID NO:2の両方に、多型部位を含むヌクレオチド領域上においてハイブリダイズする1以上のプローブであって、多型部位に示す多型の特定のバリアントにハイブリダイズするプローブ。決して限定することを望むわけではなく、プローブを適宜なグループ、たとえば蛍光性タグ、蛍光体、放射性標識などで標識することができる。さらに、1以上のプローブを、支持体、たとえば、それらに限定されないが、バイオチップ、アレイ、スライド、マルチウェルプレート、ビーズなどと共有結合または物理的会合させることができる。ある態様において、決して限定するためのものではなく、プローブは核酸のアレイを含むことができる;
c)PCRもしくはプローブハイブリダイゼーションもしくは当業者に既知の方法におけるいずれかの工程を実施するための1以上の緩衝液、1以上のDNA増幅酵素、またはそのいずれかの組合わせを含む(ただし、これらに限定されない)、1以上の試薬および/または製品;
d)エキソヌクレアーゼアッセイ、ヌクレオチド配列決定、またはそのそのいずれかの組合わせに用いるものを含む(ただし、これらに限定されない)、本明細書に記載する多型を遺伝子型判定するための1以上の試薬、構成要素および製品;
e)SEQ ID NO:1〜9、好ましくはSEQ ID NO:1もしくは2または1と2の両方、またはその組合わせのうちのいずれか1つを含むヌクレオチド配列の配列を決定するDNA配列決定反応を実施するための、1以上の試薬、構成要素または製品;
f)SEQ ID NO:1〜9、好ましくは1および2を含むかまたはそれからなる複数のヌクレオチド配列を含む、好ましくはGABRA2遺伝子内のヌクレオチド配列のみを含む、遺伝子チップまたはアレイ;ならびに
g)本明細書に記載する構成要素を使用するための、本明細書に記載する本発明方法を実施するための、本発明方法の実施から得られたデータを解釈するための、1セット以上の指示;あるいは
h)そのいずれかの組合わせ。
[0049] 本発明はまた、キットの個々の構成要素、たとえば、それらに限定されないが、キットに記載するかまたは本明細書のいずれかの箇所に記載する、いずれかの製品、組成物を提供する。代表的な態様において、本発明は1以上の核酸プライマーまたはプローブを提供する。
[0050] 核酸プライマーおよびプローブは、本発明方法に使用するのに適したいずれかの長さのものであってよい。決して限定することを望むわけではなく、プライマーおよびプローブは約9〜約100ヌクレオチド、たとえば、それらに限定されないが、約7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、23、25、27、29、30、35、40、45、50、60、70、80、90、約100ヌクレオチド、またはその間のいずれかの数量であることが一般に好ましい。プライマーおよびプローブの長さは、上記に示したいずれか2つの数値の範囲またはそれらの間のいずれか2つの数値の範囲により定めることもできる。プローブに関して、プローブは少なくとも1、より好ましくは3以上のヌクレオチドを多型部位のそれぞれの側に含むことが一般に好ましい。1以上のプライマーまたは核酸プローブを、当技術分野で知られているように、たとえば、それらに限定されないが、放射性元素またはタグ、蛍光体などで標識できることも考慮する。
[0051] 本発明はまた、SEQ ID NO 1〜9または多型部位を含むそのフラグメントにより定められる1以上のヌクレオチド配列を含むマイクロアレイ、遺伝子チップなど提供する。好ましくは、マイクロアレイまたは遺伝子チップは、SEQ ID NO:1、2、または1と2の両方により定められる1以上のヌクレオチド配列を含む。マイクロアレイは、多型部位を含むヌクレオチド配列またはそのフラグメントの相補体を含むこともできる。好ましくは、ヌクレオチド配列は、緊縮条件下での強いハイブリダイゼーションを可能にするために、たとえば、それらに限定されないが、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25以上の連続ヌクレオチドの長さのものである。好ましい態様において、マイクロアレイは本明細書に記載するGABRA2遺伝子からの多型部位を含む1以上のヌクレオチド配列を含むかまたはそれからなる。ただし、マイクロアレイは他の遺伝子に関する追加ヌクレオチド配列、たとえば、それらに限定されないが、統合失調症、統合失調感情障害などの診断または発症に関与するかまたは関与を示唆するものを含むことができる。
[0052] 本発明を以下の実施例においてさらに説明する。
[0053] 臨床診断基準。精神病性症状を伴なう合計160人の参加者がこの試験に含まれた。統合失調症(SCZ)の診断は、DSM−IIIRおよび/またはDSM−IV診断のための構造化診断面接法(Structured Diagnostic Interviews)(SCID−I,31,32)により査定された;ただし、サンプルAの診断は、DSMおよびICD両方の診断を査定する面接に基づいた。成人発端者(proband)の組み入れ基準(inclusion criteria)は、精神病性症状を伴なうSCZまたは統合失調感情障害のDSM−IIIR/IV診断であった。完全な試験説明書を各患者に渡した後に書面によるインフォームドコンセントが得られ、試験は倫理審査委員会(Research Ethics Board)により承認されていた。すべての被験体はヨーロッパ系白人と自己報告し、彼らのうち92人はこの試験期間中、クロザピンまたはオランザピンを処方された。
[0054] 被験体:ヨーロッパ人SCZ患者の全サンプル(N=160)についての臨床および人口統計学的変数を表1に挙げる。サンプルA(N=93)はCharite University Medicine(ドイツ、ベルリン)で集められた。DSM−IVおよびICD−10基準に従ってSCZまたは統合失調感情障害を伴なうと診断された18〜60歳の患者が含まれていた。このグループの患者を下記のうち少なくとも1つの薬物投与で処置した:クロザピン、ハロペリドール、オランザピン、リスペリドン、フルフェナジン、アリピプラゾール、クエチアピン、ジプラシドンおよび/またはアミスルプリド(これ以上の詳細は他のいずれかに記載されている;33)。サンプルBからの患者(N=56)はCase Western Reserve University(オハイオ州クリーブランド)またはHillside Hospital(ニューヨーク州グレンオークス)から動員された。これらの患者には、一般的な抗精神病薬療法に対する治療不応性または不耐性のために、いずれかに記載された基準に従ってクロザピンを投与した34。治療コース中、クロザピンの血清レベルをモニタリングしてコンプライアンスを確認した。6週間後に簡易精神症状評価尺度(Brief Psychiatric Rating Scale)(BPRS)35を用いて臨床応答を査定した。サンプル特性分析は他のいずれかに記載されている36。サンプルC(N=11)は、主に過去2年間にわたる持続的な陽性症状および低レベルの機能性により判定してそれ以前の処置に対して最適下応答を示した入院患者からなる。これらの参加者は4か所の州立精神病院(ニューヨーク州の2か所およびノースカロライナ州の2か所)で動員され、14週間のクロザピンまたはオランザピン二重盲検試験のいずれかに配属された。組み入れ基準、投薬計画、査定方法、および抗精神病薬有効性を記述する主な結果の詳細な臨床記載は、他のいずれかに発表された37
[0055] 遺伝子型判定。発端者から血液を2本の10cc EDTAチューブに採取し、血中リンパ球から高塩法を用いてゲノムDNAを抽出した38。HapMap遺伝子型(Rel 28 Phase II+III, August10, on NCBI B36 assembly, dbSNP b126; URL: http://hapmap.ncbi.nlm.nih.gov)を用い、最小マイナー対立遺伝子頻度(minimum minor allele frequency)0.20に基づいて一塩基多型(SNP)を選択した。特定のSNPは、以前の研究に基づいて強制導入された。SNPであるrs279828 39−42、rs573400 39,42,43、rs11503014 43、rs279858(Lys132Lys)40,43−46、rs16859227 43、およびrs1372472 40は、アルコール中毒、ニコチン依存症および自閉症との関連の可能性について調べられている。rs279871マーカーはアルコール治療に応答した内側前頭脳活動と関連付けられている47。全体として遺伝子型判定された12のマーカーがGABRA2遺伝子の10kb上流および下流範囲内にカバレージ99%を超える共通バリエーションを提供する。rs279858遺伝子型は本発明者らのサンプルにおけるrs573400、rs279871およびrs279828マーカーの遺伝子型との相関性が高かった(r>0.80)ので、分析したSNPの数を9に狭めた。
[0056] 統計解析。性別、動員時の年齢、および処置期間を含む人口統計学的変数の統計解析を、サンプル全体にわたってフィッシャーの直接検定(Fisher’s Exact test)、分散分析、またはクラスカル−ウォリスの検定(Kruskal-Wallis test)を用いて実施した(表1)。遺伝子解析に関しては、量的変数‘体重変化率(percent weight change)’をANCOVAにより解析し、性別、処置期間、およびクロザピン/オランザピン(有/無)を共変量として含めた。また、3つの患者サンプルグループ間の不均一性を考慮に入れるために、STATAバージョン8(たとえば、48)を用いてメタ解析法で‘体重変化率’変数を解析した。臨床/体重データが得られた160人の患者全員について、また次にクロザピンまたはオランザピン、すなわち有意の体重増加傾向が最高である2種類の抗精神病薬を投与されている92人の患者について、解析を行なった。Haploview 4.1 49を用いて決定したマーカー対間の連鎖不平衡およびr。共変量によるハプロタイプ解析もUNPHASEDバージョン3.1.5 50を用いて実施した。さらに、各個体についての再構築ハプロタイプを用いる追加のハプロタイプ解析をPHASE 51で実施した。試験したSNP間の遺伝子型相関性に基づいて、独立マーカーの有効数を6と決定した;よって、この試験における多重検定についての有意性閾値を0.0085に調整した52
結果:
[0057] 表2は、抗精神病薬投与したヨーロッパ人系のSCZ患者における体重変化率の解析からの結果を示す。遺伝子型分布はハーディ−ワインベルク平衡(Hardy-Weinberg Equilibrium)から有意の偏差がなかった。
[0058] rs279858マーカーは、ANCOVAから体重増加率と正の関連性があった(p<0.05)。より具体的には、T/T遺伝子型はC−対立遺伝子を保有する遺伝子型より高い体重変化率と関連性があった(ANCOVA p=0.009)。このメタ解析法から、rs279858マーカー(T/Tホモ接合体−対−C対立遺伝子遺伝子型キャリヤー)は統計的に有意であった(z=3.80;p=1.4×10−4)。rs1442062マーカーもメタ解析から有意であり、A−対立遺伝子キャリヤーはG/Gホモ接合体より少ない体重増加と関連性があった(z=5.55;p=2.86×10−8)。
[0059] ハプロタイプ解析に関して、本発明者らはUNPHASEDを用いて多数の有意ハプロタイプを見出した。rs16859227およびrs279858にわたる2マーカーハプロタイプウインドウが有意であり(p=0.045)、C−Tハプロタイプはより高い体重変化率と関連性があった(p=0.015;推定相加値:0.057[95%信頼区間:0.011〜0.103])。rs279858およびrs1442060にわたる2マーカーハプロタイプウインドウも有意であり(p=0.014)、T−Aハプロタイプはより高い体重変化率と関連性があり(p=0.014;推定相加値:0.070[95%信頼区間:0.014〜0.126])、C−Gハプロタイプはより低い体重変化率と関連性があった(p=0.012;推定相加値:−0.115[95%信頼区間:−0.206〜−0.0232])。個体レベルでは、少なくとも1コピーの(rs279858−rs1442060)T−Aハプロタイプをもつ患者はより高い体重増加率を生じると思われ(p=0.008;b=2.47±0.92)、少なくとも1コピーの(rs279858−rs1442060)C−Gハプロタイプをもつ患者はより低い体重増加率を生じると思われた(p=0.017;b=−2.92±1.21)。
[0060] クロザピンまたはオランザピンで処置した患者について、rs279858についての結果は有意であった(ANCOVA p=0.011);これらの所見は全サンプルからのものと類似していた。3つの動員サイトにわたるrs279858メタ解析により、統計的に有意の所見が得られ(z=6.71;p=1.95×10−11)、それは全サンプルからのものより有意であった。GABRA2マーカーrs16859227もメタ解析から陽性であり(z=9.36;p=7.97×10−21)、T−対立遺伝子キャリヤーはC/C遺伝子型キャリヤーより少ない体重増加と関連性があった。同様に、rs1442062 A−対立遺伝子キャリヤーは平均してG/Gホモ接合体より体重増加が少なかった(z=5.79;p=7.04×10−9)。rs11503014における少なくとも1コピーのG対立遺伝子のキャリヤーはC/Cホモ接合体より体重増加が大きく(z=2.10;p=0.036)、rs6856130 A/Aホモ接合体はG−対立遺伝子キャリヤーより体重増加が少なく(z=2.20;p=0.028)、rs1372472 T−対立遺伝子キャリヤーはA/A遺伝子型キャリヤーより体重増加が少なかった(z=3.32;p=9.0×10−4)。
[0061] すべての単一マーカー試験のうち、rs279858マーカーが一貫して関連性が最も大きく、T/T遺伝子型はより高い体重増加率と関連性があった。rs16859227およびrs279858にわたる2マーカーハプロタイプウインドウは有意であり(p=0.019)、C−Tハプロタイプはより高い体重変化率と関連性があり(p=0.011;推定相加値:0.076[95%信頼区間:0.016〜0.135])、T−Cハプロタイプはより低い体重変化率と関連性があった(p=0.010;推定相加値:−0.089[95%信頼区間:−0.158〜−0.019])。rs279858およびrs1442060にわたる2マーカーハプロタイプウインドウは公証上有意であり(p=0.034)、T−Aハプロタイプはより高い体重変化率はより高い体重変化率と関連性があった(p=0.031;推定相加値:0.075[95%信頼区間:0.0057〜0.145])。個体レベルでは、少なくとも1コピーの(rs16859227−rs279858)C−Tハプロタイプをもつ患者はより高い体重増加率を生じると思われた(p=0.012;b=4.45±1.74)。少なくとも1コピーの(rs279858−rs1442060)T−Aハプロタイプをもつ患者はより高い体重増加率を生じると思われた(p=0.005;b=3.75±1.70)。
[0062] 表1.ヨーロッパ人系試験サンプルの人口統計学的情報
Figure 0006524073
ANOVAからのp−値
クラスカル−ウォリスの検定からのp−値
フィッシャーの直接検定からのp−値
[0063] 表2.ヨーロッパ人系の統合失調症患者における抗精神病薬誘導による体重増加において9種類のGABRA2 一塩基多型(SNP)の解析の最も有意な所見
Figure 0006524073
性別、処置期間、およびクロザピン/オランザピン(有/無)を共変量とするANOVAからの体重変化率のp−値
用いたランダム効果モデル
[0064] 得られた結果は、多様なGABRA2 SNPを抗精神病薬による体重増加の遺伝子マーカーとして使用できることを示唆する。
[0065] すべての引用文献を本明細書に援用する。
[0066] 本発明を1以上の態様に関して記載した。しかし、特許請求の範囲に定めた本発明の範囲から逸脱することなく多数の変更および改変をなしうることは当業者に明らかであろう。
[0067] 参考文献:
1. Correll CU, Sheridan EM, DelBello MP. Antipsychotic and mood stabilizer efficacy and tolerability in pediatric and adult patients with bipolar I mania: a comparative analysis of acute, randomized, placebo-controlled trials. Bipolar Disord 2010; 12(2): 116-141.
2. Komossa K, Depping AM, Gaudchau A, Kissling W, Leucht S. Second-generation antipsychotics for major depressive disorder and dysthymia. Cochrane Database Syst Rev 2010;(12): CD008121.
3. Spielmans GI, Berman MI, Linardatos E, Rosenlicht NZ, Perry A, Tsai AC. Adjunctive atypical antipsychotic treatment for major depressive disorder: a meta-analysis of depression, quality of life, and safety outcomes. PLoS Med 2013; 10(3): e1001403.
4. Nurmi EL, Spilman SL, Whelan F, Scahill LL, Aman MG, McDougle CJ, et al. Moderation of antipsychotic-induced weight gain by energy balance gene variants in the RUPP autism network risperidone studies. Transl Psychiatry 2013; 3: e274.
5. Zuddas A, Zanni R, Usala T. Second generation antipsychotics (SGAs) for non-psychotic disorders in children and adolescents: a review of the randomized controlled studies. Eur Neuropsychopharmacol 2011; 21(8): 600-620.
6. Ballard C, Waite J. The effectiveness of atypical antipsychotics for the treatment of aggression and psychosis in Alzheimer's disease. Cochrane Database Syst Rev 2006;(1): CD003476.
7. Maher AR, Maglione M, Bagley S, Suttorp M, Hu JH, Ewing B, et al. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: a systematic review and meta-analysis. JAMA 2011; 306(12): 1359-1369.
8. Maher AR, Theodore G. Summary of the comparative effectiveness review on off-label use of atypical antipsychotics. J Manag Care Pharm 2012; 18(5 Suppl B): S1-20.
9. Arranz MJ, de Leon J. Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 2007; 12(8): 707-747.
10. Muller DJ, Kennedy JL. Genetics of antipsychotic treatment emergent weight gain in schizophrenia. Pharmacogenomics 2006; 7(6): 863-887.
11. Strange PG. Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacol Rev 2001; 53(1): 119-133.
12. Vojvoda D, Grimmell K, Sernyak M, Mazure CM. Monozygotic twins concordant for response to clozapine. Lancet 1996; 347(8993): 61.
13. Gebhardt S, Theisen FM, Haberhausen M, Heinzel-Gutenbrunner M, Wehmeier PM, Krieg JC, et al. Body weight gain induced by atypical antipsychotics: an extension of the monozygotic twin and sib pair study. J Clin Pharm Ther 2010; 35(2): 207-211.
14. Lett TA, Wallace TJ, Chowdhury NI, Tiwari AK, Kennedy JL, Muller DJ. Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry 2011e.
15. Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci 2005; 8(5): 571-578.
16. Hentges ST, Nishiyama M, Overstreet LS, Stenzel-Poore M, Williams JT, Low MJ. GABA release from proopiomelanocortin neurons. J Neurosci 2004; 24(7): 1578-1583.
17. Wu Q, Palmiter RD. GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur J Pharmacol 2011; 660(1): 21-27.
18. Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci 2008; 11(9): 998-1000.
19. Soderpalm AH, Berridge KC. Food intake after diazepam, morphine or muscimol: microinjections In the nucleus accumbens shell. Pharmacol Biochem Behav 2000; 66(2): 429-434.
20. Cooper SJ. Palatability-dependent appetite and benzodiazepines: new directions from the pharmacology of GABA(A) receptor subtypes. Appetite 2005; 44(2): 133-150.
21. Duke AN, Platt DM, Cook JM, Huang S, Yin W, Mattingly BA, et al. Enhanced sucrose pellet consumption induced by benzodiazepine-type drugs in squirrel monkeys: role of GABAA receptor subtypes. Psychopharmacology (Berl) 2006; 187(3): 321-330.
22. Ebenezer IS, Prabhaker M. The effects of intraperitoneal administration of the GABA(B) receptor agonist baclofen on food intake in CFLP and C57BL/6 mice. Eur J Pharmacol 2007; 569(1-2): 90-93.
23. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009; 41(1): 25-34.
24. Danovich L, Weinreb O, Youdim MB, Silver H. The involvement of GABA(A) receptor in the molecular mechanisms of combined selective serotonin reuptake inhibitor-antipsychotic treatment. Int J Neuropsychopharmacol 2011; 14(2): 143-155.
25. Drew KL, O'Connor WT, Kehr J, Ungerstedt U. Regional specific effects of clozapine and haloperidol on GABA and dopamine release in rat basal ganglia. Eur J Pharmacol 1990; 187(3): 385-397.
26. Vincent SL, Adamec E, Sorensen I, Benes FM. The effects of chronic haloperidol administration on GABA-immunoreactive axon terminals in rat medial prefrontal cortex. Synapse 1994; 17(1): 26-35.
27. Marx CE, VanDoren MJ, Duncan GE, Lieberman JA, Morrow AL. Olanzapine and clozapine increase the GABAergic neuroactive steroid allopregnanolone in rodents. Neuropsychopharmacology 2003; 28(1): 1-13.
28. Ugale RR, Hirani K, Morelli M, Chopde CT. Role of neuroactive steroid allopregnanolone in antipsychotic-like action of olanzapine in rodents. Neuropsychopharmacology 2004; 29(9): 1597-1609.
29. Weston-Green K, Huang XF, Deng C. Alterations to melanocortinergic, GABAergic and cannabinoid neurotransmission associated with olanzapine-induced weight gain. PLoS One 2012; 7(3): e33548.
30. De Hert M, Yu W, Detraux J, Sweers K, van Winkel R, Correll CU. Body weight and metabolic adverse effects of asenapine, iloperidone, lurasidone and paliperidone in the treatment of schizophrenia and bipolar disorder: a systematic review and exploratory meta-analysis. CNS Drugs 2012; 26(9): 733-759.
31. Association AP. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. (DSM-IV). American Psychiatric Association: Washington, DC, 1994.
32. First MB, Gibbon M, Spitzer RL, Williams JBW. Structured Clinical Interview for DSM-IV axis I disorders-Research Version (SCID-I/P, version 2.0, February, Final Version). American Psychiatric Press: Washington, DC., 1996.
33. Muller DJ, Zai CC, Sicard M, Remington E, Souza RP, Tiwari AK, et al. Systematic analysis of dopamine receptor genes (DRD1-DRD5) in antipsychotic-induced weight gain. Pharmacogenomics J 2010e.
34. Kane JM, Honigfeld G, Singer J, Meltzer H. Clozapine in treatment-resistant schizophrenics. Psychopharmacol Bull 1988; 24(1): 62-67.
35. Overall JE, Gorham DR. The brief psychiatric rating scale. Psychological Reports 1962; 10: 799-812.
36. Masellis M, Basile V, Meltzer HY, Lieberman JA, Sevy S, Macciardi FM, et al. Serotonin subtype 2 receptor genes and clinical response to clozapine in schizophrenia patients. Neuropsychopharmacology 1998; 19(2): 123-132.
37. Volavka J, Czobor P, Sheitman B, Lindenmayer JP, Citrome L, McEvoy JP, et al. Clozapine, olanzapine, risperidone, and haloperidol in the treatment of patients with chronic schizophrenia and schizoaffective disorder. Am J Psychiatry 2002; 159(2): 255-262.
38. Lahiri DK, Nurnberger JI, Jr. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 1991; 19(19): 5444.
39. Edenberg HJ, Dick DM, Xuei X, Tian H, Almasy L, Bauer LO, et al. Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 2004; 74(4): 705-714.
40. Fehr C, Sander T, Tadic A, Lenzen KP, Anghelescu I, Klawe C, et al. Confirmation of association of the GABRA2 gene with alcohol dependence by subtype-specific analysis. Psychiatr Genet 2006; 16(1): 9-17.
41. Enoch MA. The role of GABA(A) receptors in the development of alcoholism. Pharmacol Biochem Behav 2008; 90(1): 95-104.
42. Haughey HM, Ray LA, Finan P, Villanueva R, Niculescu M, Hutchison KE. Human gamma-aminobutyric acid A receptor alpha2 gene moderates the acute effects of alcohol and brain mRNA expression. Genes Brain Behav 2008; 7(4): 447-454.
43. Agrawal A, Pergadia ML, Saccone SF, Hinrichs AL, Lessov-Schlaggar CN, Saccone NL, et al. Gamma-aminobutyric acid receptor genes and nicotine dependence: evidence for association from a case-control study. Addiction 2008; 103(6): 1027-1038.
44. Pierucci-Lagha A, Covault J, Feinn R, Nellissery M, Hernandez-Avila C, Oncken C, et al. GABRA2 alleles moderate the subjective effects of alcohol, which are attenuated by finasteride. Neuropsychopharmacology 2005; 30(6): 1193-1203.
45. Bauer LO, Covault J, Harel O, Das S, Gelernter J, Anton R, et al. Variation in GABRA2 predicts drinking behavior in project MATCH subjects. Alcohol Clin Exp Res 2007; 31(11): 1780-1787.
46. Ma DQ, Whitehead PL, Menold MM, Martin ER, Ashley-Koch AE, Mei H, et al. Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet 2005; 77(3): 377-388.
47. Kareken DA, Liang T, Wetherill L, Dzemidzic M, Bragulat V, Cox C, et al. A polymorphism in GABRA2 is associated with the medial frontal response to alcohol cues in an fMRI study. Alcohol Clin Exp Res 2010; 34(12): 2169-2178.
48. Zai GC, Zai CC, Chowdhury NI, Tiwari AK, Souza RP, Lieberman JA, et al. The role of brain-derived neurotrophic factor (BDNF) gene variants in antipsychotic response and antipsychotic-induced weight gain. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39(1): 96-101.
49. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21(2): 263-265.
50. Dudbridge F. Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 2008; 66(2): 87-98.
51. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68(4): 978-989.
52. Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb) 2005; 95(3): 221-227.

Claims (7)

  1. 抗精神病薬処置に応答した被験体の体重変化を予測する方法であって、
    被験体から入手したゲノムDNAを含む生体試料において、被験体のGABRA2遺伝子における1以上の多型またはその相補体の存在または非存在を判定することを含み、
    ここで1以上の多型の存在が、抗精神病薬処置に対する被験体の体重増加の予測となるものであり、
    GABRA2遺伝子における1以上の多型が
    a)rs16859227
    Figure 0006524073
    ここで、2コピーのC対立遺伝子の存在が、被験体におけるより高い体重増加率と関連する;
    b)rs279858
    Figure 0006524073
    ここで、2コピーのT対立遺伝子の存在が、被験体におけるより高い体重増加率と関連する;
    c)rs1442062
    Figure 0006524073
    ここで、2コピーのG対立遺伝子の存在が、被験体におけるより高い体重増加率と関連する;
    d)rs11503014
    Figure 0006524073
    ここで、少なくとも1コピーのG対立遺伝子の存在が、被験体におけるより高い体重増加率と関連する;
    e)rs6856130
    Figure 0006524073
    ここで、少なくとも1コピーのG対立遺伝子の存在が、被験体におけるより高い体重増加率と関連する;または、
    f)rs1372472
    Figure 0006524073
    ここで、2コピーのA対立遺伝子の存在が、被験体におけるより高い体重増加率と関連する;
    またはそれらの相補体に関するものであり、
    多型部位がかっこ内の下線を施した太字にある、前記方法。
  2. 被験体が、統合失調症もしくは統合失調感情障害を伴なうと診断されている、統合失調症もしくは統合失調感情障害を発症する可能性がある、または統合失調症もしくは統合失調感情障害の1以上の症状を示している、請求項1に記載の方法。
  3. 被験体が、1以上の精神病性症状を示している、または1以上の精神病性症状を示すリスクをもつ、請求項1または2に記載の方法。
  4. GABRA2における1以上の多型が、SEQ ID NO:1、SEQ ID NO:2、もしくはSEQ ID NO:1と2の両方、またはそれらの相補体を含む、請求項1〜3のいずれか1項に記載の方法。
  5. 1以上の多型が、SEQ ID NO:5、もしくは7〜9の1以上の多型、またはそれらの相補体をさらに含む、請求項4に記載の方法。
  6. 多型のうち少なくとも1つが、SEQ ID NO:1もしくは2、または多型部位を含むそれらのバリアントもしくはフラグメントにより定められる、請求項1〜5のいずれか1項に記載の方法。
  7. 試料が血液試料である、請求項1〜6のいずれか1項に記載の方法。
JP2016524143A 2013-10-17 2014-10-17 抗精神病薬誘導体重増加に関連する遺伝子マーカーおよびその使用のための方法 Expired - Fee Related JP6524073B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361892094P 2013-10-17 2013-10-17
US61/892,094 2013-10-17
PCT/CA2014/051000 WO2015054792A1 (en) 2013-10-17 2014-10-17 Genetic markers for antipsychotic induced weight gain and methods for use thereof

Publications (3)

Publication Number Publication Date
JP2016534715A JP2016534715A (ja) 2016-11-10
JP2016534715A5 JP2016534715A5 (ja) 2017-11-24
JP6524073B2 true JP6524073B2 (ja) 2019-06-05

Family

ID=52827506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016524143A Expired - Fee Related JP6524073B2 (ja) 2013-10-17 2014-10-17 抗精神病薬誘導体重増加に関連する遺伝子マーカーおよびその使用のための方法

Country Status (12)

Country Link
US (1) US10301678B2 (ja)
EP (2) EP3561076A1 (ja)
JP (1) JP6524073B2 (ja)
KR (1) KR102252926B1 (ja)
CN (1) CN106029901A (ja)
AU (1) AU2014336928B2 (ja)
CA (1) CA2943951C (ja)
ES (1) ES2728072T3 (ja)
IL (1) IL245159B (ja)
PT (1) PT3058106T (ja)
SG (1) SG11201602998QA (ja)
WO (1) WO2015054792A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155075A1 (en) * 2018-02-09 2019-08-15 Metabolomic Diagnostics Limited Methods of predicting pre term birth from preeclampsia using metabolic and protein biomarkers
CN110317868B (zh) * 2019-08-09 2020-05-19 新疆医科大学第二附属医院 一种基于多基因组合交互作用预测二代抗精神病药物治疗精神分裂症致体重增加分析方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210015A (en) 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
ATE545711T1 (de) 1993-11-12 2012-03-15 Phri Properties Inc Hybridisierungssonden zur nukleinsäuredetektion sowie universelle stämme, verfahren und kits
US20030104453A1 (en) * 2001-11-06 2003-06-05 David Pickar System for pharmacogenetics of adverse drug events
US8012718B2 (en) 2006-03-31 2011-09-06 Genomas, Inc. Physiogenomic method for predicting diabetes and metabolic syndromes induced by psychotropic drugs
US20070292962A1 (en) * 2006-04-10 2007-12-20 Duke University Methods and compositions for genetic markers for autism
US7795033B2 (en) 2007-03-19 2010-09-14 The United States Of America As Represented By The Department Of Health And Human Services Methods to predict the outcome of treatment with antidepressant medication
US8476012B2 (en) 2008-04-18 2013-07-02 Genomas, Inc. Physiogenomic method for predicting metabolic and cardiovascular side effects of thiazolidinediones
US8355927B2 (en) 2010-11-05 2013-01-15 Genomind, Llc Neuropsychiatric test reports
CN104114714A (zh) 2011-12-14 2014-10-22 阿斯利康(瑞典)有限公司 Gabr-a2诊断

Also Published As

Publication number Publication date
JP2016534715A (ja) 2016-11-10
KR102252926B1 (ko) 2021-05-20
ES2728072T3 (es) 2019-10-22
IL245159A0 (en) 2016-06-30
US20160237499A1 (en) 2016-08-18
EP3058106A4 (en) 2017-06-07
EP3058106A1 (en) 2016-08-24
US10301678B2 (en) 2019-05-28
WO2015054792A1 (en) 2015-04-23
EP3058106B1 (en) 2019-02-27
AU2014336928B2 (en) 2020-07-16
SG11201602998QA (en) 2016-05-30
KR20160098188A (ko) 2016-08-18
PT3058106T (pt) 2019-05-30
IL245159B (en) 2020-10-29
CA2943951C (en) 2022-05-31
CN106029901A (zh) 2016-10-12
CA2943951A1 (en) 2015-04-23
EP3561076A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
Martucci et al. N-methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: Polymorphisms and mRNA levels
Hu et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder
Petryshen et al. Support for involvement of neuregulin 1 in schizophrenia pathophysiology
Anitha et al. Genetic analyses of roundabout (ROBO) axon guidance receptors in autism
Wang et al. The—1019 C/G polymorphism of the 5-HT1A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients
Mostowska et al. Genotype and haplotype analysis of WNT genes in non‐syndromic cleft lip with or without cleft palate
Domschke Clinical and molecular genetics of psychotic depression
Weber et al. The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia: further evidence and meta-analysis
JP2020089370A (ja) 抗精神病薬に基づく処置により誘導される錐体外路症状(eps)の発症を予測する方法
Kumari et al. Potential role of GABAA receptor subunit; GABRA6, GABRB2 and GABRR2 gene polymorphisms in epilepsy susceptibility and pharmacotherapy in North Indian population
Fukuda et al. Monoallelic and unequal allelic expression of the HTR2A gene in human brain and peripheral lymphocytes
US10435748B2 (en) Genetic markers associated with suicide risk and methods of use thereof
JP6524073B2 (ja) 抗精神病薬誘導体重増加に関連する遺伝子マーカーおよびその使用のための方法
Paisán‐Ruiz et al. Homozygosity mapping through whole genome analysis identifies a COL18A1 mutation in an Indian family presenting with an autosomal recessive neurological disorder
Liu et al. The YWHAE gene confers risk to major depressive disorder in the male group of Chinese Han population
AU2014336928A1 (en) Genetic markers for antipsychotic induced weight gain and methods for use thereof
CN1973051A (zh) 用于预测对氯氮平治疗的应答性的生物标记
CA2664366C (en) Slc1a1 antipsychotic drug response markers
Tzang et al. Association study of p11 gene with major depressive disorder, suicidal behaviors and treatment response
Rahimi-Aliabadi et al. Association of β-secretase functional polymorphism with risk of schizophrenia
US20070048767A1 (en) Marker for a Psychosis or a Mood Disorder
Zai et al. Weak association of the platelet-derived growth factor beta (PDGFB) and PDGF receptor beta (PDGFRB) genes with schizophrenia and schizoaffective disorder
KR20070022710A (ko) 클로자핀 치료에 대한 반응성을 예측하기 위한 바이오마커
Barr et al. XIII World Congress on Psychiatric Genetics 2005 Sponsored by
CA2517218A1 (en) Marker for psychosis or mood disorder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190426

R150 Certificate of patent or registration of utility model

Ref document number: 6524073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees