JP6520684B2 - 車両の電源装置 - Google Patents

車両の電源装置 Download PDF

Info

Publication number
JP6520684B2
JP6520684B2 JP2015241721A JP2015241721A JP6520684B2 JP 6520684 B2 JP6520684 B2 JP 6520684B2 JP 2015241721 A JP2015241721 A JP 2015241721A JP 2015241721 A JP2015241721 A JP 2015241721A JP 6520684 B2 JP6520684 B2 JP 6520684B2
Authority
JP
Japan
Prior art keywords
fuse
temperature
amount
current
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015241721A
Other languages
English (en)
Other versions
JP2017108566A (ja
Inventor
真之 上田
真之 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015241721A priority Critical patent/JP6520684B2/ja
Publication of JP2017108566A publication Critical patent/JP2017108566A/ja
Application granted granted Critical
Publication of JP6520684B2 publication Critical patent/JP6520684B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Description

本発明は、車両の電源装置に関し、特に、ヒューズを備えた電源装置に関する。
ハイブリット自動車や電気自動車等の車両を駆動するモータジェネレータに電力を供給するバッテリにはヒューズが接続されている。このヒューズは、許容電流を超えた過電流が流れる等の異常が発生すると、過電流により発生するジュール熱によってヒューズ内の金属エレメントを溶断することにより電流を遮断して電気回路や電気部品を保護する。
このように、ヒューズは過電流により溶断するが、過電流以外にも、劣化して寿命により金属エレメントが破断することがある。ヒューズは、当該ヒューズを流れる電流値の変動によって劣化する。すなわち、ヒューズに電流が流れると、ジュール熱によって温度上昇してヒューズの金属エレメントが膨張変形する。そして、ヒューズに流れる電流値が低下すると、温度も低下して金属エレメントの変形が解消される。この金属エレメントの変形が繰り返されることによって、金属エレメントが疲労(劣化)する。特に、ヒューズに流れる電流値の変化が大きい場合には、金属エレメントの変形も大きく、ヒューズの劣化が進む。
そこで、ヒューズに流れる電流及びヒューズの周囲温度からヒューズの温度を推定し、この推定温度に基づいてヒューズに流れる電流を制限する技術が知られている(例えば、特許文献1参照)。この技術によれば、ヒューズの推定温度が高温になったときにヒューズへの電流を制限することにより、ヒューズ温度を抑制してヒューズの寿命を伸ばすことができる。
特開2011−61886号公報
上述したように、ヒューズは、ヒューズの温度変化による金属エレメントの変形によって劣化する。この温度変化のことを温度リップルという。温度リップルの高低差が大きいと金属エレメントの変形も大きく、ヒューズの劣化が進みヒューズの寿命が短くなる。このため、ヒューズの寿命は温度リップルの回数及び高低差に大きく左右される。
特許文献1に記載の技術はヒューズの寿命を伸ばすことに着目しており、ヒューズの寿命を判定することに重点をおいていない。特に、特許文献1に記載の技術では、ヒューズ寿命に大きく関係する温度リップルの回数及び高低差を考慮していないので、高精度な寿命判定は困難である。
また、特許文献1に記載の技術では、ヒューズの寿命を伸ばすために、ヒューズへの電流を制限しているので、ヒューズ本来の性能を最大限発揮することが困難である。例えば、加速時や登坂時等の一時的に大電流が必要な場合でも、ヒューズへの電流が制限されるためにドライバビリティが低い。
そこで、本発明では、ヒューズの使用状態に基づきヒューズの寿命を高精度で判定し、ヒューズの寿命に近づくまではヒューズの性能を最大限発揮するとともに、ヒューズの寿命が近づくとヒューズの性能を抑制してヒューズを延命することを目的とする。
本発明の車両の電源装置は、車両の電気部品に電力を供給する電源と、この電源に接続され、許容電流を越えた電流が流れたときに溶断するヒューズとを備える車両の電源装置であって、前記ヒューズの通電電流に基づいて前記ヒューズの温度を推定する温度推定手段と、前記温度推定手段により推定された温度が所定温度以上となったときに、前記所定温度以上となってから前記所定温度未満となるまでの期間内の最も高温の推定温度に基づいて前記ヒューズの劣化量を求めて、前記ヒューズの通電時における前記劣化量を積算する劣化量積算手段と、前記劣化量積算手段により積算された前記劣化量が所定量以上となったときに、前記ヒューズの通電電流を制限する電流制限手段とを備えたことを特徴とする。
本発明によれば、ヒューズの使用状態に基づきヒューズの寿命を高精度で判定することができ、ヒューズの寿命に近づくまではヒューズの性能を最大限発揮し、ヒューズの寿命が近づくとヒューズの性能を抑制してヒューズを延命することができる。
本発明の電源装置の概略構成図である。 ヒューズの概略構成図である。 ヒューズに通電される電流値の特性図である。 電源装置のヒューズの劣化判定処理を示すフローチャートである。 ヒューズに通電される電流値の特性図である。 図5に示すヒューズ通電時に関するヒューズ推定温度の特性図である。
ハイブリット自動車は、当該自動車を走行させるための動力源としてモータジェネレータMGと図示しないエンジンとを備えている。図1にハイブリッド自動車の電源装置1の概略構成図を示す。図1に示すように、モータジェネレータMGは、電源としてのバッテリ10からインバータ30を介して電力が供給されて駆動される。電源装置1は、バッテリ10、ヒューズ20、インバータ30及びこれらを電気的に接続する電源ラインPL,NLを備えている。なお、図1において、バッテリ10には、電源ラインPL,NLを介してインバータ30及びモータジェネレータMG以外の電気部品も接続されているが、それらの電気部品の図示を省略する。
バッテリ10としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。バッテリ10には、電源ラインPL,NLを介してインバータ30が接続されている。このインバータ30は、バッテリ10から出力された直流電力を交流電力に変換し、交流電力をモータジェネレータMGに出力する。
また、バッテリ10には、電源装置1の電源ラインPL,NLに過電流が流れた際に、溶断してインバータ30及びモータジェネレータMG等の電気部品を保護するヒューズ20が電源ラインPLを介して接続されている。電源ラインNLには、当該電源ラインNLを流れる電流を検出する電流センサ11が接続されている。電流センサ11は、検出した電流値を後述する制御装置50に出力する。
図2に示すように、ヒューズ20は、電流が流れるエレメント21と、エレメント21の中央に設けられた溶断部22と、エレメント21の両端に設けられた端子部23,23と、溶断部22を覆うケース24とを備えている。
エレメント21は、例えば、矩形状の銅等からなる金属板であり、その中央幅を狭めるなどの手段を用いて抵抗値が周囲より相対的に高い溶断部22を形成している。過電流が流れた際には、この溶断部22が溶断して、エレメント21を切断する。端子部23,23には、孔23a,23a または、その他の電気的な接続手段がそれぞれ設けられている。ヒューズ20は、孔23a,23aにおいてネジまたはコネクタ等で電源ラインPLに接続されている。ケース24は、端子部23,23以外を覆っており、溶断部22との間に空間を有している。当該空間には、溶断時に発生するアーク電流を遮断するための消弧砂が充填されている。
図1に戻り、電源ラインPL,NLには、メインリレー40,41がそれぞれ設けられている。メインリレー41には、補助リレー42と電流制限抵抗43との直列回路が並列に接続されている。これらメインリレー40,41及び補助リレー42は、電源装置1の制御装置50によって制御される。
制御装置50は、ハイブリッド自動車のイグニッションスイッチのオン信号に基づいて、メインリレー40をオフからオンに切り替えるとともに、補助リレー42をオフからオンに切り替える。これにより、電流制限抵抗43により電流を制限し、突入電流が流れることを抑制することができる。次に、メインリレー41をオフからオンに切り替えた後に、補助リレー42をオンからオフに切り替える。これにより、バッテリ10の電力をインバータ30へ供給可能となる。
一方、イグニッションスイッチがオンからオフに切り替わったとき、制御装置50は、メインリレー40,41をオンからオフに切り替える。これにより、バッテリ10とインバータ30との接続が遮断される。
図1に示すように、電源装置1は、メインリレー40,41及び補助リレー42のオンオフ制御、各電気部品への供給電力量の調整、ヒューズ20の劣化判断等を行う制御装置50を備えている。ここで、制御装置50によるヒューズ20の劣化判断について概略説明する。詳細については図4のフローチャートを参照して後述する。
まず、ヒューズ20の劣化について図3を参照して説明する。図3に示すように、ヒューズ20に流れる電流の増減によって、ヒューズ20の温度は上昇下降する。この状態を温度リップルという。温度リップルによりヒューズ20のエレメント21が変形を繰り返して、エレメント21の溶断部22がダメージを受けて劣化する。すなわち、エレメント21の変形の繰り返しによって溶断部22が疲労して劣化する。
ただし、ヒューズ20のエレメント21の大きさ、材料、形状等により、温度変化による変形状態が異なる。このため、予備実験等によってヒューズ20にダメージが加わる所定温度Taを予め把握する。換言すれば、図3におけるX部で示す部分のように、ヒューズ20の温度が所定温度Taを超える場合には、エレメント21の変形が大きく溶断部22にダメージが加わる。逆に、図3におけるY部で示す部分のように、ヒューズ20の温度が所定温度Taを超えない場合には、エレメント21の変形が小さく溶断部22に加わるダメージを略無視できる。
また、ヒューズ20の温度が所定温度Ta以上となってから温度低下して所定温度Ta未満となる期間をトリップGという。このトリップG内では、最も高温となった温度により溶断部22はダメージを受ける。すなわち、このトリップG内において、ヒューズ20の温度変化があっても、最高到達温度Tmaxに基づいて溶断部22はダメージを受ける。このようにヒューズ20は、所定温度Ta以上となったときにダメージを受けて劣化し、このダメージが蓄積されることによって劣化が進みヒューズ20は寿命を迎える。
このようなヒューズ20の特性に基づいて、制御装置50は、ヒューズ20の通電電流に基づいてヒューズ20の温度を推定し、この推定温度が所定温度Ta以上となったときに、この推定温度により受けるダメージ量(劣化量)を求める。
そして、制御装置50は、ヒューズ20の使用時からの劣化量を積算して、この積算した劣化量が所定量Fa以上となったときに、ヒューズ20に流れる電流を制限する。なお、所定量Faとは、ヒューズ20の寿命が近づいたことを判断するための値であり、ヒューズ20の仕様、例えば、エレメント21の大きさ、材料、形状等により設定される値である。この所定量Faは予備実験等によって予め設定される。
次に制御装置50の詳細について説明する。図1に示すように、制御装置50は、電流センサ11が検出した電流値に基づいてヒューズ20の溶断部22の温度を推定する温度推定手段51と、温度推定手段51により推定された温度が所定温度Ta以上となったときに、この推定温度に基づいてヒューズ20の劣化量を求めて、ヒューズ20の通電時における劣化量を積算する劣化量積算手段52と、劣化量積算手段52により積算された劣化量が所定量Fa以上となったとき、ヒューズ20に流れる電流を制限する電流制限手段53と、ヒューズ20の溶断部22が劣化する所定温度Ta、ヒューズ20の溶断部22の劣化状態を判断するための所定量Fa等を記憶する記憶手段54とを備えている。
温度推定手段51は、CPU等のハードウェアで構成されており、予め設定された推定温度算出式及びヒューズ20に関する各種係数を用いて、ヒューズ20の溶断部22の推定温度を演算する。
劣化量積算手段52も、CPU等のハードウェアで構成されている。劣化量積算手段52は、推定温度に基づいてヒューズ20の劣化量を求める場合に、下記表1に示す換算表を用いて、推定温度を当該推定温度に対応する劣化量に換算する。
Figure 0006520684
換算表は、温度を複数の領域に区分して、これら各領域に対応する劣化量を規定したものである。換算表は、具体的には、図3において所定温度Taを示す線A1より低温の領域を領域R0とし、線A1以上の温度領域を例えば10℃毎に区分する領域R1,R2,R3,R4,R5として、各領域R1,R2,R3,R4,R5に対応して、温度が上昇するにつれて大きくなる劣化量をそれぞれ規定したものである。
表1には、各領域R1,R2,R3,R4,R5にそれぞれ対応する劣化量が規定されている。領域R0では、ヒューズ20のエレメント21の変形は小さく、そのダメージは略無視できるため、劣化量は「0」に設定されている。領域R1では劣化量は「1」に設定されており、同様に、領域R2では劣化量「2」に、領域R3では劣化量「4」に、領域R4では劣化量「8」に、領域R5では劣化量「16」にそれぞれ設定されている。なお、各領域Rに対応する劣化量の値は、例えば、エレメント21の大きさ、材料、形状等により設定される値である。各領域Rに対応する劣化量の値は予備実験等によって予め設定される。
劣化量積算手段52は、推定温度を劣化量に換算した後、この劣化量を積算する。すなわち、劣化量積算手段52は、ハイブリッド自動車のイグニッションスイッチが初めてオンされたときからのヒューズ20の溶断部22の劣化量を積算する。
そして、ヒューズ20の使用開始からヒューズ20の溶断部22の劣化量の積算が開始されて、積算するごとに所定量Faと比較して、積算した劣化量が所定量Faに達したかを判断する。また、ヒューズ20が交換されたときには、それまで積算された劣化量をリセットして、交換されたヒューズ20の溶断部22の劣化量の積算を新たに開始する。
記憶手段54は、ROMやRAM等の各種メモリで構成されている。記憶手段54は、温度推定手段51が温度推定に用いる推定温度算出式や、この推定温度算出式に用いるヒューズ20に関する各種係数等を記憶している。記憶手段54は、溶断部22がダメージを受ける所定温度Ta、溶断部22の寿命が近づいたかを判断するための所定量Faの他に、推定温度を劣化量に換算する換算表を記憶している。さらに、記憶手段54は、温度推定手段51及び劣化量積算手段52によって演算された各種データを記憶する。
電流制限手段53は、劣化量積算手段52により積算された劣化量が所定量Fa以上となったときに、インバータ30への電力供給を制限して、ヒューズ20の通電電流を制限する。電流制限手段53は、通常時、すなわち、劣化量が所定量Fa未満であるときには、インバータ30を制御してモータジェネレータMGへ供給する電力量の調整を行っている。よって、電流制限手段53は、インバータ30への供給電力を調整する電流調整手段の機能も有している。
次に、制御装置50によるヒューズ20の劣化判断及びヒューズ20への電流制限制御について、図4のフローチャートを参照して説明する。図4に示すフローチャートにおいて、ハイブリッド自動車のイグニッションスイッチがオンされると、ヒューズ20の溶断部22の劣化量の積算が開始される。ステップS101において、電流センサ11によってヒューズ20の通電電流の電流値が検出され、この検出された電流値が制御装置50に出力されてステップS102に進む。ステップS102では、温度推定手段51によって、ステップS102で検出された電流値に基づいて、ヒューズ20の溶断部22の温度が推定される。温度推定手段51は、下記式(1)に基づいてヒューズ20の溶断部22の温度を推定し、この推定温度Thが劣化量積算手段52に出力されて、ステップS103に進む。
ここで、温度推定手段51によるヒューズ20の溶断部22の温度推定について説明する。温度推定手段51は、記憶手段54に記憶されている推定温度算出式及びヒューズ20に関する各種係数を用いて温度推定処理を行う。
推定温度Th(t)=初期温度+温度上昇−温度下降・・・・式(1)
式(1)において、初期温度は前回の推定温度Th(t−1)を示す。温度上昇は、所定時間の間に発熱する発熱量を溶断部22の熱容量で除した値であり、近似的に下記式(2)を用いて表される。
温度上昇=K1(T)/C=I(t−0.1) R/C・KF・・・・式(2)
式(2)において、R(Ω)はCu抵抗率、I(A)は電流値、KF(W/K)は熱コンダクタンス、C(J/K)は熱容量をそれぞれ示す。
温度下降は、所定時間の間に伝熱する伝熱量を溶断部22の熱容量で除した値であり、近似的に下記式(3)を用いて表される。
温度下降=K2(T)/C=熱伝導+熱対流+熱放射・・・・式(3)
式(3)において、
熱伝導=形状による係数×(T(t−0.1)−端子温度)
熱対流=合成熱抵抗×(T(t−0.1)−環境温度)
熱放射=σ×放射係数×形態係数×(T(t−0.1) −環境温度
である。このように、温度推定手段51は、上記式(1)〜(3)を用いて、ヒューズ20の溶断部22の推定温度Thを演算する。
なお、上記式(1)〜(3)を用いて、ヒューズ20の溶断部22の推定温度Thを演算する場合に、実測値との誤差が生じる可能性がある。このため、演算された推定温度Thと実測値とを評価して、両温度が適合するように各種係数等の詳細設定を行う必要がある。また、上記式(1)〜(3)を用いて、ヒューズ20の溶断部22の推定温度Thを演算する場合には4次式となるが、推定温度Thの温度範囲を区切った上で2次式や3次式で近似することも可能である。このように2次式や3次式で近似することによって、温度推定手段51における演算量を大幅に減らすことができ、また、その温度推定Thの誤差も抑制することができ、実用性を向上することができる。
ステップS103では、溶断部22の推定温度Thが、溶断部22にダメージを与える所定温度Ta以上であるかを判断する。溶断部22の推定温度Thが所定温度Ta未満であるとき(No)にはステップS105に進む。この状態でステップS105に進んでもトリップGは形成されいない(No)ので、そのままリターンする。
溶断部22の推定温度Thが所定温度Ta以上であるとき(Yes)にはステップS104に進む。所定温度Taは、上述したように、溶断部22がダメージを受ける温度であり、溶断部22の推定温度Thが所定温度Ta以上であるときには、溶断部22はダメージを受けて劣化する。ステップS104では、所定温度Ta以上である推定温度Thが記憶手段54に記憶されてリターンする。
溶断部22の推定温度Thが所定温度Ta未満まで低下しない場合には、ステップS101からステップS104を繰り返すことになる。このステップS101からステップS104を繰り返すことにより、図3に示すトリップGが形成される。
一方、ステップS101からステップS104を繰り返している間に、溶断部22の推定温度Thが所定温度Ta未満になったとき(No)にはステップS105に進む。この状態でステップS105に進んだとき(Yes)には、トリップGは形成されているので、ステップS106に進む。
ステップS106では、トリップG内において、最も高温の推定温度Th(最高到達温度Tmax)を検出する。すなわち、トリップGを構成する推定温度Thは記憶手段54に全て記憶されているので、この記憶されている推定温度Thのうち最も高温の推定温度Thを検出する。そして、トリップG内の最高温度の推定温度Thが、表1に示す換算表のいずれの領域に該当するかを判断し、この推定温度Thを換算表に基づいて劣化量に換算して、ステップS107に進む。例えば、その推定温度Thが領域R5に達していれば、その推定温度Thに対応する劣化量は「16」となる。すなわち、領域R5に達する推定温度Thを劣化量「16」に換算する。
ステップS107では、ステップS106で換算した劣化量を、これまでに積算された劣化量に加算し、この加算後の劣化量を記憶手段54に記憶してステップS108に進む。なお、これまでに積算された劣化量がなければ、今回の劣化量を記憶手段54に記憶する。
ステップS108では、これまでに積算された積算劣化量Fhが、所定量Fa以上であるかを判断する。積算劣化量Fhが、所定量Fa未満であるとき(No)にはリターンし、積算劣化量Fhが所定量Fa以上であれば(Yes)、ステップS109に進む。
所定量Faは、上述したように、溶断部22が寿命に近づいていることを判断する値である。すなわち、積算劣化量Fhが所定量Faに達した場合、ヒューズ20には、これまでの使用によるダメージが蓄積されており、ヒューズ20は、劣化による寿命が近づいている状態であると判断できる。所定量Faは、ヒューズ20の仕様に基づいて設定されるが、例えば100万に設定する。
ステップS109では、ヒューズ20の推定温度Thが所定温度Ta以上とならないように、電流制限手段53によってヒューズ20への電流を制限する。ヒューズ20に流れる電流値とヒューズ20の推定温度Thとの関係は、温度推定手段51によって把握できるので、この関係に基づいてヒューズ20への電流を制限する。ヒューズ20への電流が制限されることによって、溶断部22の推定温度Thが所定温度Ta以上となることが抑制されて、ヒューズ20へのダメージも抑制される。このため、ヒューズ20の劣化を低減でき、ヒューズ20の寿命を伸ばすことができる。また、運転者から視認できる図示しない表示部に、ヒューズ20の交換時期に達したことを表示してヒューズ20の交換を促す。ヒューズ20の交換を促すことによって、寿命によるヒューズ20の切断を抑制することができる。
図5、6に基づいて、通常走行時の所定の通電期間におけるヒューズ20の劣化量の具体的な積算について説明する。図5はハイブリッド自動車の通常走行時における電流センサ11による検出電流量の特性を示し、図6は図5の電流特性に対応して推定されるヒューズ20の溶断部22の温度特性を示す。
図5に示す電流値の特性Sは、通常走行時における電流値の変化を示しており、ヒューズ20への電流制限が行われていない。このため、ヒューズ20の性能を最大限発揮しており、加速時や登坂時等の一時的に大電流が必要な場合に、ヒューズ20に大電流が流れたときには、図6に示すように、ヒューズ20の推定温度Thが一時的に所定温度Ta以上となる場合がある。
図6において、線A1は所定温度Taの境界線を示す。また、図6において、図3と同様に、領域R0,R1,R2,R3,R4,R5に対応する領域が設定されており、これら領域R0,R1,R2,R3,R4,R5は表1に示す換算表と対応している。
そして、図6に示す通電期間において、3つのトリップG1,G2,G3が形成されて、各トリップG1,G2,G3における最高到達温度は、推定温度Th1,Th2,Th3である。推定温度Th1は領域R5の温度であり、推定温度Th2,Th3は共に領域R2の温度である。このため、表1に基づいて、当該通電期間におけるヒューズ20の劣化量を積算すると、推定温度Th1は劣化量「16」、推定温度Th2は劣化量「2」、推定温度Th3は劣化量「2」になる。
したがって、この通電期間における積算劣化量Fhは、積算劣化量Fh=劣化量「16」+劣化量「2」+劣化量「2」=20となる。この積算劣化量Fhは記憶手段54に記憶される。記憶された積算劣化量Fhは所定量Faと比較されて、積算劣化量Fhが所定量Fa以上になった場合に、ヒューズ20の寿命が近づいたと判断して、ヒューズ20への電流を制限する。
以上説明したように、ヒューズ20の推定温度Thが、ヒューズ20にダメージを与える所定温度Ta以上となった場合に、その推定温度Thをヒューズ20の劣化量に換算することで、ヒューズ20へのダメージ、すなわち劣化量を精度よく判定することができる。そして、この劣化量を積算することによって、ヒューズ20の寿命を高精度に判定することができる。換言すると、ヒューズ20にダメージを与えるトリップGを検出し、このトリップGにおけるヒューズ20のダメージ量(劣化量)を求めて、この劣化量を積算することで、ヒューズ20に蓄積される劣化量を高精度に把握して、ヒューズ20の寿命に近づいたことを判断することができる。
また、ヒューズ20の寿命に近づくまでは、ヒューズ20の通電電流を制限しないので、ヒューズ20の性能を最大限発揮することができる。このため、加速時や登坂時等の一時的に大電流が必要な場合に、ヒューズ20に大電流を流すことが可能となり、運転者の要求に応じたドライバビリティを発揮することができる。
さらに、ヒューズ20の寿命に近づくと、ヒューズ20の通電電流を制限するので、ヒューズ20が受けるダメージ(劣化量)を抑制することができ、ヒューズ20の寿命を伸ばすことができる。以上をまとめると、ヒューズ20の寿命判定を高精度で行うことができ、ヒューズ20の寿命が近づくまではヒューズ20の性能を最大限発揮し、ヒューズ20の寿命が近づくとヒューズ20の性能を抑制して、ヒューズ20の寿命を伸ばすができる。
1 電源装置、10 バッテリ、11 電流センサ、20 ヒューズ、21 エレメント、22 溶断部、23 端子部、24 ケース、30 インバータ、50 制御装置、51 温度推定手段、52 劣化量積算手段、53 電流制限手段、54 記憶手段、Fa 所定量、Fh 積算劣化量、G,G1,G2,G3 トリップ、MG モータジェネレータ、NL,PL 電源ライン、Ta 所定温度、Th,Th1,Th2,Th3 推定温度。

Claims (1)

  1. 車両の電気部品に電力を供給する電源と、この電源に接続され、許容電流を越えた電流が流れたときに溶断するヒューズとを備える車両の電源装置であって、
    前記ヒューズの通電電流に基づいて前記ヒューズの温度を推定する温度推定手段と、
    前記温度推定手段により推定された温度が所定温度以上となったときに、前記所定温度以上となってから前記所定温度未満となるまでの期間内の最も高温の推定温度に基づいて前記ヒューズの劣化量を求めて、前記ヒューズの通電時における前記劣化量を積算する劣化量積算手段と、
    前記劣化量積算手段により積算された前記劣化量が所定量以上となったときに、前記ヒューズの通電電流を制限する電流制限手段と、
    を備えたことを特徴とする車両の電源装置。
JP2015241721A 2015-12-11 2015-12-11 車両の電源装置 Active JP6520684B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015241721A JP6520684B2 (ja) 2015-12-11 2015-12-11 車両の電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015241721A JP6520684B2 (ja) 2015-12-11 2015-12-11 車両の電源装置

Publications (2)

Publication Number Publication Date
JP2017108566A JP2017108566A (ja) 2017-06-15
JP6520684B2 true JP6520684B2 (ja) 2019-05-29

Family

ID=59061033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015241721A Active JP6520684B2 (ja) 2015-12-11 2015-12-11 車両の電源装置

Country Status (1)

Country Link
JP (1) JP6520684B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7526223B2 (ja) 2022-04-04 2024-07-31 プライムプラネットエナジー&ソリューションズ株式会社 電池システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043860A (ja) * 2005-08-05 2007-02-15 Meidensha Corp 保護用ヒューズの寿命推定装置
JP4740167B2 (ja) * 2007-02-01 2011-08-03 三洋電機株式会社 車両用の電源装置
JP5151664B2 (ja) * 2007-05-18 2013-02-27 トヨタ自動車株式会社 電源システムの制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
JP2011078184A (ja) * 2009-09-29 2011-04-14 Sanyo Electric Co Ltd 車両用の電源装置及びこの電源装置を搭載する車両
JP2014187807A (ja) * 2013-03-22 2014-10-02 Toyota Motor Corp 蓄電システム

Also Published As

Publication number Publication date
JP2017108566A (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6331697B2 (ja) 蓄電システム
JP6394535B2 (ja) 電線保護装置
US8063506B2 (en) Car power source apparatus
JP5682708B2 (ja) 蓄電システム
JP6708148B2 (ja) 車載用電池の保護回路
CN110785887B (zh) 用于电动车辆的电池
WO2018168981A1 (ja) 電流検出器
CN110957703B (zh) 主继电器保护装置
WO2006025930A2 (en) Overcurrent protection curcuit including auto-reset breaker and ptc resistor
JP2014187807A (ja) 蓄電システム
JP6708011B2 (ja) 電池パック
JP6468142B2 (ja) 車載リレーの温度検出システム
JP6520684B2 (ja) 車両の電源装置
JP6320929B2 (ja) 車載用蓄電システム
JP6733581B2 (ja) 電池パック
JP2018170904A (ja) 電池制御装置
WO2014068864A1 (ja) 車載用蓄電システム
JP6895088B2 (ja) 車載用の補助電源制御装置及び車載用の補助電源装置
US7145759B2 (en) Overcurrent protection circuit including auto-reset breaker and PTC resistor
KR102496388B1 (ko) 퓨즈 회로, 퓨즈 조정 회로, 퓨즈 조정 방법, 프로그램 및 기록 매체
JP6017790B2 (ja) 蓄電システム
JPWO2018074502A1 (ja) 電池システム
JP5158948B2 (ja) 電気接続箱、電力供給遮断方法、及びプログラム
JP2010177181A (ja) ヒューズの温度推定方法及びヒューズ装置
JP7337482B2 (ja) 電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R151 Written notification of patent or utility model registration

Ref document number: 6520684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151