JP6520249B2 - Method of manufacturing lead storage battery - Google Patents

Method of manufacturing lead storage battery Download PDF

Info

Publication number
JP6520249B2
JP6520249B2 JP2015050830A JP2015050830A JP6520249B2 JP 6520249 B2 JP6520249 B2 JP 6520249B2 JP 2015050830 A JP2015050830 A JP 2015050830A JP 2015050830 A JP2015050830 A JP 2015050830A JP 6520249 B2 JP6520249 B2 JP 6520249B2
Authority
JP
Japan
Prior art keywords
negative electrode
ppm
electrode plate
lead
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015050830A
Other languages
Japanese (ja)
Other versions
JP2016171018A (en
Inventor
和成 安藤
和成 安藤
健治 泉
健治 泉
毅 千葉
毅 千葉
小島 優
優 小島
悦子 小笠原
悦子 小笠原
杉江 一宏
一宏 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2015050830A priority Critical patent/JP6520249B2/en
Publication of JP2016171018A publication Critical patent/JP2016171018A/en
Application granted granted Critical
Publication of JP6520249B2 publication Critical patent/JP6520249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、自動車始動用の鉛蓄電池に関する。   The present invention relates to a lead-acid battery for starting an automobile.

鉛蓄電池の発電要素である正極板および負極板は、それぞれ正極格子と正極活物質、および負極格子と負極活物質とからなる。この正極格子や負極格子の実用的な製造手段としては、鉛合金の溶湯を鋳込む鋳造方式(連続鋳造方式を含む)のほか、鉛合金シートに切り目を入れた後でシートの幅方向に広げ、最後に極板の形状に切断するエキスパンド方式(レシプロ法とロータリー法の双方を含む)がある。   The positive electrode plate and the negative electrode plate, which are the power generation elements of the lead storage battery, are each composed of a positive electrode grid and a positive electrode active material, and a negative electrode grid and a negative electrode active material. As a practical means of manufacturing the positive electrode grid and the negative electrode grid, in addition to a casting method (including a continuous casting method) in which a molten alloy of lead alloy is cast, the lead alloy sheet is cut and then spread in the width direction of the sheet. Finally, there is an expanding method (including both the reciprocation method and the rotary method) of cutting into the shape of the electrode plate.

一方、正極格子や負極格子の生産性を高めるため、鉛合金シートに穴を穿ち、最後に極板の形状に切断するパンチング方式の実用化が試みられつつある。特許文献1には、鋳造方式、エキスパンド方式およびパンチング方式のいずれにも有効な方法として、強度を増加させる目的で他の元素と共に適量のビスマスを含ませた鉛合金を正極格子の出発材料として用いることが示されている。なお特許文献1には、腐食を抑制するために、正極格子の出発材料とする鉛合金に含ませるカルシウムは100ppm以下とすべきことが、併せて示されている。   On the other hand, in order to enhance the productivity of the positive electrode grid and the negative electrode grid, practical application of a punching method in which holes are formed in a lead alloy sheet and finally cut into the shape of an electrode plate is being attempted. In Patent Document 1, as an effective method for any of a casting method, an expanding method and a punching method, a lead alloy containing an appropriate amount of bismuth together with other elements is used as a starting material of a positive electrode grid for the purpose of increasing strength. It is shown. Patent Document 1 also shows that calcium contained in a lead alloy used as a starting material of the positive electrode grid should be 100 ppm or less in order to suppress corrosion.

特表2010−522275号公報Japanese Patent Publication No. 2010-522275

特許文献1のようにビスマス等の元素を添加したとしても、相対的に鉛合金は軟らかい。したがって鉛合金の組成を十分に検討せずにパンチング方式を導入すると、鉛合金シートに穴を穿つ際に、打ち抜き刃の上下によってヒケ(シートにおける刃に接した箇所が上下方向に立ち上がった形状)が生じてしまう。このヒケは円滑な打ち抜きを妨げることで生産性に影響を及ぼすだけでなく、過剰なヒケを持った正極格子あるいは負極格子を用いて鉛蓄電池を構成すると、両者を隔てるセパレータを破壊して内部短絡を引き起こす原因ともなり得る。   Even when an element such as bismuth is added as in Patent Document 1, the lead alloy is relatively soft. Therefore, when the punching method is introduced without sufficiently examining the composition of the lead alloy, when drilling a hole in the lead alloy sheet, the sink marks due to the upper and lower sides of the punching blade (the shape of the portion of the sheet contacting the blade rises in the vertical direction) Will occur. This sinkage not only affects productivity by preventing smooth punching, but when a lead-acid battery is configured using a positive grid or negative grid with excess sinks, the separator separating the two is broken and internal short circuit occurs. It can also cause

本発明は上記課題を鑑みたものであり、生産性が高いパンチング方式による正極格子あるいは負極格子を用いて、信頼性の高い鉛蓄電池を構成し提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to construct and provide a highly reliable lead-acid battery using a positive electrode grid or a negative electrode grid according to a punching method with high productivity.

本発明に係る鉛蓄電池の製造方法は、正極格子と正極活物質とからなる正極板と、負極格子と負極活物質とからなる負極板と、正極板と負極板とをセパレータを介して積層した極板群と、極板群と電解液とを収納するためのセル室を複数個有する電槽と、電槽の開口部を封口する蓋と、を備える鉛蓄電池の製造方法であって、正極格子あるいは負極格子の少なくとも一方は、1ppm以上300ppm以下のビスマスと700ppm以上1000ppm以下のカルシウムを含む鉛合金シートに穴を穿つパンチング方式によって作製されるThe method for producing a lead storage battery according to the present invention comprises laminating a positive electrode plate comprising a positive electrode grid and a positive electrode active material, a negative electrode plate comprising a negative electrode grid and a negative electrode active material, a positive electrode plate and a negative electrode plate via a separator. A manufacturing method of a lead storage battery comprising: an electrode plate group; a battery case having a plurality of cell chambers for storing the electrode plate group and an electrolytic solution; and a lid for sealing the opening of the battery case , At least one of the lattice or the negative electrode lattice is manufactured by a punching method in which a lead alloy sheet containing 1 ppm to 300 ppm bismuth and 700 ppm to 1000 ppm calcium is punched.

ある好適な実施形態において、負極格子は1ppm以上300ppm以下のビスマスと700ppm以上1000ppm以下のカルシウムを含む鉛合金シートに穴を穿つパンチング方式によって作製されるIn a preferred embodiment, the negative electrode grid is manufactured by a punching method in which a lead alloy sheet containing 1 ppm to 300 ppm bismuth and 700 ppm to 1000 ppm calcium is punched.

ある好適な実施形態において、電解液は0.02mol/L以上0.2mol/L以下のアルミニウムイオンを含む。   In a preferred embodiment, the electrolyte contains 0.02 mol / L or more and 0.2 mol / L or less of aluminum ions.

ある好適な実施形態において、袋状にしたセパレータは負極板を内包している。   In one preferred embodiment, the bag-like separator contains a negative electrode plate.

本発明によれば、生産性が高いパンチング方式による正極格子あるいは負極格子を用いて、信頼性の高い鉛蓄電池を構成し提供できるようになる。   According to the present invention, a highly reliable lead-acid battery can be configured and provided using a positive electrode grid or a negative electrode grid according to a punching method with high productivity.

本発明の鉛蓄電池を模式的に示した概観図An outline view schematically showing the lead storage battery of the present invention 本発明の鉛蓄電池の要部の一例を示した図The figure which showed an example of the principal part of the lead storage battery of this invention

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

図1は本発明の鉛蓄電池を模式的に示した概観図であり、図2は本発明の鉛蓄電池の要部である負極板の一例を示した図である。正極板1と負極板2とをセパレータ3を介して積層した複数の極板群4は、電解液(図示せず)とともにセル室5aを複数個有する電槽5に収納され、電槽5の開口部は、蓋6によって封口される。なお正極板1は正極格子1aと正極活物質1bとからなり、負極板2は負極格子2aと負極活物質2bとからなる。   FIG. 1 is an outline view schematically showing a lead storage battery of the present invention, and FIG. 2 is a view showing an example of a negative electrode plate which is a main part of the lead storage battery of the present invention. The plurality of electrode plate groups 4 in which the positive electrode plate 1 and the negative electrode plate 2 are stacked via the separator 3 are housed in a battery case 5 having a plurality of cell chambers 5 a together with an electrolytic solution (not shown). The opening is sealed by the lid 6. The positive electrode plate 1 is made of a positive electrode grid 1a and a positive electrode active material 1b, and the negative electrode plate 2 is made of a negative electrode grid 2a and a negative electrode active material 2b.

本発明の特徴は2つある。第1に、正極格子1aあるいは負極格子2aの少なくとも一方が鉛合金シートに穴を穿つパンチング方式によって作製されたものである(本実施形態では、図2に示すように、負極格子2aがパンチング方式によって作製されたものである)。第2に、この鉛合金シートが1ppm以上300ppm以下のビスマスと400ppm以上1000ppm以下のカルシウムを含む。   The features of the present invention are twofold. First, at least one of the positive electrode grid 1a and the negative electrode grid 2a is manufactured by a punching method in which a hole is formed in a lead alloy sheet (in this embodiment, as shown in FIG. 2, the negative electrode grid 2a is a punching method) Were produced by Second, the lead alloy sheet contains 1 ppm to 300 ppm bismuth and 400 ppm to 1000 ppm calcium.

パンチング方式によって格子を作製する場合、所定の組成を有する鉛合金シートに対し、打ち抜き刃を上下させて穴を穿つことで、図2に示すように、集電性を考慮した格子骨の形態を有しつつ頑丈な枠骨で四周を囲まれた鋳造方式のような格子を、エキスパンド方式のような生産速度で得ることが可能になる。ところが相対的に軟らかい鉛合金の組成を十分に検討せずにパンチング方式を導入すると、鉛合金シートに穴を穿つ際に、打ち抜き刃の上下によってヒケが生じてしまう。発明者らが鋭意検討した結果、鉛合金シートに400ppm以上1000ppm以下のカルシウムを含ませることで、この課題が解決することを知見した。   When a grid is manufactured by punching method, a punched blade is moved up and down to make a hole in a lead alloy sheet having a predetermined composition, as shown in FIG. It is possible to obtain a grid such as a casting system that is surrounded by a rigid frame and four rounds while having a production rate such as an expanding system. However, if the punching method is introduced without sufficiently examining the composition of the relatively soft lead alloy, when drilling a hole in the lead alloy sheet, the upper and lower portions of the punching blade may cause sink marks. As a result of intensive investigations by the inventors, it was found that this problem is solved by containing calcium in the range of 400 ppm to 1000 ppm in the lead alloy sheet.

カルシウムを400ppm以上含ませることで、鉛合金シートに適度の剛性を付与できるので、穴を穿つ際にヒケが生じにくくなる。しかしカルシウムの含有量が1000ppmを超えると、カルシウムの一部がビスマスと金属間化合物を形成する。そうすると、以下に詳述するビスマスによる特段の効果を発揮させないようにしてしまうので、好ましくない。   By containing calcium in an amount of 400 ppm or more, the lead alloy sheet can be given adequate rigidity, so that it becomes difficult to cause sink marks when drilling holes. However, when the content of calcium exceeds 1000 ppm, part of calcium forms an intermetallic compound with bismuth. This is not preferable because the special effects of bismuth described below will not be exhibited.

ビスマスの適正な含有量の決定に関しては、優先的に負極格子2aに本発明を活用する理由と併せて、以下に詳述する。   The determination of the proper content of bismuth will be described in detail below together with the reason for utilizing the present invention for the negative electrode grid 2a preferentially.

近年、アイドリングストップ制御(ISS)と、SOCが100%に満たない充電制御の双方を行う自動車が増加している。このような自動車に搭載された鉛蓄電池は、SOCが100%に満たない環境下で充放電を繰り返すうちに、上層部の電解液の硫酸イオン濃度が下層部の電解液の硫酸イオン濃度よりも低くなる、いわゆる成層化といわれる現象が発生する。そうすると、硫酸イオン濃度が相対的に枯渇している上層部は放電生成物である硫酸鉛を生成しにくくなる(放電が困難になる)一方、硫酸イオン濃度が相対的に過剰な下層部は硫酸鉛から硫酸イオンを乖離しにくくなる(充電が困難になる)というアンバランスが生じ、下層部の過剰な硫酸鉛が析出することで放電反応が全体的に鈍化して、結果的にサイクル寿命特性が低下する。この成層化は、充電末期に起こる電解液の加水分解(ガス発生)の際に発生したガスが電解液を撹拌することによって解消される。しかし意図的にSOCが100%未満となるように制御された環境下では、充電末期を迎えることができないため、上述した効果が見込めない。   In recent years, an increasing number of vehicles are performing both idling stop control (ISS) and charge control whose SOC is less than 100%. In a lead storage battery mounted in such a car, while charge and discharge are repeated under an environment where the SOC is less than 100%, the concentration of sulfate ions in the electrolyte of the upper layer is higher than the concentration of sulfate ions in the electrolyte of the lower layer. A phenomenon called "stratification" occurs, which is lowered. As a result, the upper layer relatively depleted in the concentration of sulfate ions is less likely to produce lead sulfate as a discharge product (discharge becomes difficult), while the lower region relatively enriched in concentration of sulfate ions is sulfuric acid Unbalance occurs, which makes it difficult to separate sulfate ions from lead (does not allow charging), and excess lead sulfate in the lower layer precipitates, resulting in overall slowing of the discharge reaction, resulting in cycle life characteristics. Decreases. This stratification is eliminated by agitating the electrolyte that is generated during hydrolysis (gas generation) of the electrolyte that occurs at the end of charge. However, in an environment where the SOC is intentionally controlled to be less than 100%, the end of charging can not be reached, so the above-described effects can not be expected.

ここで負極格子2aに適量のビスマスが存在することで水素過電圧が低下し、SOCが100%に満たなくても水素ガスが発生しやすくなって、電解液の拡散が起こりやすくなり、結果的に成層化が解消されるようになる。この効果を得るためには負極格子2aにビスマスを1ppm以上含ませる必要があるが、300ppmを超えて含ませると、水素過電圧が下がり過ぎて電解液の加水分解が過剰に発生し、電解液が急激に減少することで電解液から露出した正極板1および負極板2の集電部(耳)の腐食が加速される。さらに過充電電気量が増えることで、正極格子1aの腐食も加速される。その結果、かえってサイクル寿命特性が低下する。   Here, the presence of an appropriate amount of bismuth in the negative electrode grid 2a lowers the hydrogen overvoltage, and hydrogen gas is easily generated even if the SOC is less than 100%, and the diffusion of the electrolytic solution tends to occur, resulting in Stratification will be eliminated. In order to obtain this effect, it is necessary to add 1 ppm or more of bismuth to the negative electrode grid 2a, but if it is included more than 300 ppm, the hydrogen overvoltage drops too much and hydrolysis of the electrolytic solution occurs excessively, resulting in electrolytic solution The rapid decrease accelerates the corrosion of the current collectors (ears) of the positive electrode plate 1 and the negative electrode plate 2 exposed from the electrolytic solution. Further, as the amount of overcharged electricity increases, the corrosion of the positive electrode grid 1a is also accelerated. As a result, the cycle life characteristics are rather reduced.

なお、ISSとSOCが100%に満たない充電制御の双方を行う自動車に搭載する鉛蓄電池に本発明を用いる場合、次の2つの構成うち少なくとも1つを併用すると、より好ましい。   In addition, when using this invention for the lead storage battery mounted in the motor vehicle which performs both charge control with less than 100% of ISS and SOC, it is more preferable to use at least one of the following two structures together.

ISSを行う自動車に搭載される鉛蓄電池は、従来の鉛蓄電池よりも高い充電受入性(短時間でのSOCの回復)が求められる。このような場合、電解液にアルミニウムを0.02mol/L以上含ませることで、高い充電受入性を実現させることができるようになる。一方、アルミニウムの含有量が過剰でも充電受入性は不十分となるため、アルミニウムの含有量の上限は0.2mol/Lとすることが好ましい。   Lead storage batteries installed in vehicles that perform ISS are required to have higher chargeability (recovery of SOC in a short time) than conventional lead storage batteries. In such a case, by containing aluminum in an amount of 0.02 mol / L or more in the electrolytic solution, high charge acceptance can be realized. On the other hand, since the charge acceptance becomes insufficient even if the content of aluminum is excessive, the upper limit of the content of aluminum is preferably 0.2 mol / L.

負極板2を袋状のセパレータ3に内包することで、サイクル寿命特性をより高めることができる。負極格子2aに適量のビスマスを含ませることで水素ガスが発生しやすくなれば、電解液が拡散しやすくなる反面、負極活物質2bが負極板2から脱落するのを促進させることにもなる。負極板2から負極活物質2bが脱落するという課題は、負極板2の最下部から徐々に負極活物質2bの層が脱落し続けることで起こる。したがってこの課題のトリガーが「最初に負極板2の最下部から負極活物質2bが脱落する」という不具合モードであることを知見した発明者らは、鋭意検討の結果、負極板2を袋状のセパレータ3に内包して、袋状のセパレータ3の綴じられた下辺の上に負極板2の最下部を載せることで、上述した不具合のトリガーを排除して、サイクル寿命特性をより高めるようにした。   By including the negative electrode plate 2 in the bag-like separator 3, the cycle life characteristics can be further enhanced. If hydrogen gas is easily generated by containing an appropriate amount of bismuth in the negative electrode grid 2a, the electrolytic solution is easily diffused, but it also promotes the separation of the negative electrode active material 2b from the negative electrode plate 2. The problem that the negative electrode active material 2b is dropped from the negative electrode plate 2 occurs when the layer of the negative electrode active material 2b continues to drop gradually from the lowermost portion of the negative electrode plate 2. Therefore, the inventors who have found that the trigger of this problem is the failure mode that "the negative electrode active material 2b drops out from the lowermost part of the negative electrode plate 2 first", as a result of intensive studies, found that the negative electrode plate 2 has a bag shape. By placing the lower part of the negative electrode plate 2 on the bound lower side of the bag-like separator 3 by enclosing it in the separator 3, the trigger of the above-mentioned failure is eliminated and the cycle life characteristic is further enhanced. .

以下、本発明の効果について、実施例を用いて説明する。   Hereinafter, the effects of the present invention will be described using examples.

(1)鉛蓄電池の作製
本実施例で作製した鉛蓄電池は、JISD5301に規定するD26Lタイプの大きさの鉛蓄電池である。各セル室5aには、7枚の正極板1と8枚の負極板2とが収容され、負極板2は、袋状のポリエチレン製のセパレータ3に収容されている。
(1) Preparation of Lead Acid Battery The lead acid battery produced in this example is a lead acid battery of D26 L type size defined in JIS D5301. In each cell chamber 5a, seven positive electrode plates 1 and eight negative electrode plates 2 are accommodated, and the negative electrode plate 2 is accommodated in a bag-like separator 3 made of polyethylene.

正極板1は、酸化鉛粉を硫酸と精製水とで混練して作製した正極活物質1bの前駆体であるペーストを、カルシウムを含む鉛合金シートからなる正極格子1a(エキスパンド格子)に充填して作製した。   The positive electrode plate 1 is prepared by mixing lead oxide powder with sulfuric acid and purified water and filling the paste, which is a precursor of the positive electrode active material 1b, into a positive electrode grid 1a (expanded grid) formed of a lead alloy sheet containing calcium. Made.

負極板2は、酸化鉛粉に対し、カーボンと有機添加剤を添加して、硫酸と精製水とで混練して作製した負極活物質2bの前駆体であるペーストを、(表1)に示す組成を有する鉛合金シートに打ち抜き刃で穴を穿ったパンチング方式の負極格子2aに充填して作製した。   The negative electrode plate 2 shows a paste, which is a precursor of the negative electrode active material 2b prepared by adding carbon and an organic additive to lead oxide powder and kneading with sulfuric acid and purified water, as shown in Table 1 It manufactured filling the negative electrode grid 2a of the punching system which pierced the hole with the punching blade in the lead alloy sheet which has a composition.

作製した正極板1及び負極板2を熟成乾燥した後、負極板2をポリエチレンの袋状のセパレータ3に収容し(一部は板状のセパレータ3に挟み込み)、正極板1と交互に重ね、7枚の正極板1と8枚の負極板2とがセパレータ3を介して積層された極板群4を作製した。この極板群4を、6つに仕切られたセル室5aにそれぞれ収容し、6つのセルを直接接続した上で、蓋6によって電槽5の開口部を封口した。   After ripening and drying the produced positive electrode plate 1 and negative electrode plate 2, the negative electrode plate 2 is accommodated in a polyethylene bag-like separator 3 (a part is sandwiched by the plate-like separator 3), and alternately stacked with the positive electrode plate 1 An electrode plate group 4 was produced in which seven positive electrode plates 1 and eight negative electrode plates 2 were stacked via a separator 3. The electrode plate group 4 was respectively accommodated in the cell chamber 5a divided into six, and the six cells were directly connected, and then the opening of the battery case 5 was sealed by the lid 6.

さらに、密度が1.28g/cmの希硫酸からなる電解液を入れて化成を行い、鉛蓄電池を得た。この時、化成後の電解液に含まれるアルミニウムイオンの量は、(表1)の値となるように適宜調整した。 Further, an electrolytic solution consisting of dilute sulfuric acid having a density of 1.28 g / cm 3 was added to form a lead, and a lead storage battery was obtained. At this time, the amount of aluminum ions contained in the electrolytic solution after formation was appropriately adjusted to be the value of (Table 1).

(2)寿命特性
作製した鉛蓄電池に対し、SOCを90%にしてから、次の手順で評価した。
A.45Aで59秒間放電する
B.300Aで1秒間放電する
C.制限電流100A条件下で60秒間14.0V定電圧充電する
D.A、B、Cの順に行う充放電サイクルを3600回繰り返した後、リフレッシュ充電として30分間、制限電流50Aで14.0V定電圧充電する
E.48時間放置した後、再度SOCを90%に調整する
上述したA〜Eの手順を繰り返す中で、放電電圧が7.2Vを下回った時に寿命に到達したと判断し、この判断に沿って3600サイクル毎に試験を継続するか否かを決定した。試験の継続を断念したサイクル数を、構成条件と共に(表1)に記す。
(2) Lifetime characteristics The SOC of the produced lead-acid battery was 90%, and the evaluation was made according to the following procedure.
A. B. discharge for 45 seconds at 45A. Discharge for 1 second at 300 A C.I. 14.0 V constant voltage charge for 60 seconds under limiting current 100 A conditions D. After repeating the charge / discharge cycle of performing A, B, and C in order of 3600 times, as a refresh charge for 30 minutes, 14.0 V constant voltage charge with a limiting current of 50 A E. After leaving for 48 hours, adjust SOC to 90% again. While repeating the procedures of A to E described above, it is judged that the life has been reached when the discharge voltage falls below 7.2 V, and in accordance with this judgment, 3600 It was decided whether to continue the test every cycle. The number of cycles for which test continuation was abandoned is described in Table 1 together with the construction conditions.

(3)パンチング方式の負極格子2aの加工性
パンチング方式にて負極格子2aを100枚作製する際、ヒケの発生によって打ち抜き刃の上下動が1度でも停止した条件を「×」、短絡には至らないが明確なヒケ(負極格子2aの厚さの0.2倍以上0.4倍以下)が目視観察できた条件を「△」、目視観察上は問題ないが触れることでヒケ(負極格子2aの厚さの0.05倍以上0.2倍未満)が確認できた条件を「○」、これらのいずれにも該当しなかった条件を「◎」として、(表1)に併記する。
(3) Processability of punching type negative electrode grid 2a When producing 100 negative electrode grids 2a by punching method, the condition that the vertical movement of the punching blade stopped even by 1 degree due to the occurrence of sink marks is "x" for short circuit "△" is the condition under which visual observation was not made although clear sink marks (0.2 times to 0.4 times the thickness of the negative electrode grid 2a) could be observed visually, but there is no problem in visual observation, but The conditions under which the thickness of 2a was confirmed to be 0.05 times or more and less than 0.2 times) were identified as “○”, and the conditions not corresponding to any of these were described as “◎” in (Table 1).

(4)充電受入性
本発明例及び比較例の各電池について、JIS D5301記載の充電受入性試験を実施した。具体的には、25℃雰囲気下で2.5時間、5時間率電流での放電を行った後、0℃雰囲気下で12時間以上静置してから0℃雰囲気下で14.4V定電圧充電(最大電流100A)を10分間行った。この際の10分目の電流値を、充電受入性の指標として(表1)に併記する。
(4) Charge Acceptability The charge acceptability test described in JIS D5301 was carried out for each of the batteries of the invention example and the comparative example. Specifically, after performing discharge at a constant current for 5 hours in a 25 ° C. atmosphere for 2.5 hours, leaving at rest for 12 hours or more in a 0 ° C. atmosphere, 14.4 V constant voltage at a 0 ° C. atmosphere Charging (maximum current 100 A) was performed for 10 minutes. The 10-minute current value at this time is also described in Table 1 as an indicator of chargeability.

Figure 0006520249
Figure 0006520249

電池A−1からA−7を対比する。負極格子2aに含ませるカルシウムが400ppm未満である電池A−1は、パンチング方式による加工性が著しく低下している。一方で負極格子2aに含ませるカルシウムが1000ppmを超過した電池A−7は、サイクル寿命特性が低下している。この電池A−7を分解したところ、電解液の成層化が顕著化していることが確認できた。さらに電池A−7の負極格子2aを解析したところ、鉛とビスマスとは殆ど共存しておらず、代わりにカルシウムとビスマスとからなる金属間化合物が確認できた。このことから、ビスマスは実質的にカルシウムとの金属間化合物の形成に費やされたため、本来の効果が発揮できなかったと推定できる。よって負極格子2aに含ませるカルシウムの適正な範囲は400ppm以上1000ppm以下であることがわかる。   The batteries A-1 to A-7 are compared. In the battery A-1 in which calcium contained in the negative electrode grid 2a is less than 400 ppm, the processability by the punching method is significantly reduced. On the other hand, in the battery A-7 in which calcium contained in the negative electrode grid 2a exceeds 1000 ppm, the cycle life characteristics are deteriorated. When the battery A-7 was disassembled, it was confirmed that the stratification of the electrolytic solution was remarkable. Further, analysis of the negative electrode grid 2a of the battery A-7 showed that lead and bismuth hardly coexisted, and instead, an intermetallic compound consisting of calcium and bismuth was confirmed. From this, it can be estimated that bismuth was substantially spent on the formation of the intermetallic compound with calcium, so that the original effect could not be exhibited. Therefore, it is understood that the appropriate range of calcium contained in the negative electrode grid 2a is 400 ppm or more and 1000 ppm or less.

電池B−1からB−9を対比する。負極格子2a中のビスマス量が1ppm未満の電池B−1と300ppmを超過した電池B−9は、共にサイクル寿命特性が低下している。各々の電池を分解したところ、電池B−1は電解液の成層化が顕著化しており、電池B−9は電解液が極端に減少していることが、それぞれ確認できた。よって負極格子2aに含ませるビスマスの適正な範囲は1ppm以上300ppm以下であることがわかる。   The batteries B-1 to B-9 are compared. Both the battery B-1 in which the amount of bismuth in the negative electrode grid 2a is less than 1 ppm and the battery B-9 in which the amount of bismuth exceeds 300 ppm have degraded cycle life characteristics. When the respective batteries were disassembled, it was confirmed that the stratification of the electrolyte was remarkable in the battery B-1 and the electrolyte decreased extremely in the battery B-9. Therefore, it is understood that the appropriate range of bismuth contained in the negative electrode grid 2a is 1 ppm or more and 300 ppm or less.

電池A−1からA−8の評価結果と電池B−1からB−9の評価結果を併せて考察すると、負極格子2aに含ませるビスマス量とカルシウム量の双方を適正な範囲にすべきことがわかる。   Considering the evaluation results of the batteries A-1 to A-8 and the evaluation results of the batteries B-1 to B-9 together, both the amount of bismuth and the amount of calcium to be contained in the negative electrode grid 2a should be in appropriate ranges I understand.

電池C−1からC−7を対比する。電解液中のアルミニウムイオンが0.02mol/L未満の電池C−1も0.2mol/Lを超過した電池C−7も、ともに充電受入性がやや低下している。よって電解液に含ませるアルミニウムイオンは、0.02mol/L以上0.2mol/L以下が好ましいことがわかる。   The batteries C-1 to C-7 are compared. Both the battery C-1 in which the aluminum ion in the electrolytic solution is less than 0.02 mol / L and the battery C-7 in which the aluminum ion exceeds 0.2 mol / L have a slight decrease in chargeability. Therefore, it is understood that the aluminum ion contained in the electrolytic solution is preferably 0.02 mol / L or more and 0.2 mol / L or less.

電池Dと電池A−4とを対比する。電池Dは電池A−4に対し、ポリエチレン製のセパレータ3の下辺を綴じずに平板2枚の状態にしたこと以外は、全て電池A−4と同様に構成しているが、サイクル寿命特性は僅かながら低下している。電池Dを分解したところ、負極板2から剥がれて導電ネットワークから外れた負極活物質2bが各々のセル室5aの底に堆積していることが確認できた。よって負極板2を袋状のセパレータ3に内包する方が好ましいことがわかる。   Battery D and battery A-4 are compared. Battery D is configured in the same manner as battery A-4 except that the lower side of the polyethylene separator 3 is not bound to the battery A-4 but is formed into two flat plates, but the cycle life characteristic is It is slightly decreasing. When the battery D was disassembled, it could be confirmed that the negative electrode active material 2b peeled off from the negative electrode plate 2 and removed from the conductive network was deposited on the bottom of each cell chamber 5a. Therefore, it is understood that it is preferable to enclose the negative electrode plate 2 in the bag-like separator 3.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、正極格子1aにも負極格子2aと同様、1ppm以上300ppm以下のビスマスと400ppm以上1000ppm以下のカルシウムを含む鉛合金シートに穴を穿つパンチング方式によって作製されたものを用いても良いことは、言うまでもない。   Although the present invention has been described above by the preferred embodiments, such description is not a limitation and, of course, various modifications are possible. For example, similarly to the negative electrode grid 2a, the positive electrode grid 1a may be produced by a punching method in which holes are formed in a lead alloy sheet containing 1 ppm to 300 ppm bismuth and 400 ppm to 1000 ppm calcium, Needless to say.

本発明は、アイドリングストップ制御を行う自動車に用いられる鉛蓄電池において有用である。   The present invention is useful in a lead-acid battery used for an automobile that performs idling stop control.

1 正極板
1a 正極格子
1b 正極活物質
2 負極板
2a 負極格子
2b 負極活物質
3 セパレータ
4 極板群
5 電槽
5a セル室
6 蓋
DESCRIPTION OF SYMBOLS 1 positive electrode plate 1a positive electrode grid 1b positive electrode active material 2 negative electrode plate 2a negative electrode grid 2b negative electrode active material 3 separator 4 electrode plate group 5 battery case 5a cell chamber 6 lid

Claims (4)

正極格子と正極活物質とからなる正極板と、
負極格子と負極活物質とからなる負極板と、
正極板と負極板とをセパレータを介して積層した極板群と、
極板群と電解液とを収納するためのセル室を複数個有する電槽と、
電槽の開口部を封口する蓋と、を備える鉛蓄電池の製造方法であって、
前記正極格子あるいは前記負極格子の少なくとも一方は、1ppm以上300ppm以下のビスマスと700ppm以上1000ppm以下のカルシウムを含む鉛合金シートに穴を穿つパンチング方式によって作製される、鉛蓄電池の製造方法。
A positive electrode plate comprising a positive electrode grid and a positive electrode active material;
A negative electrode plate comprising a negative electrode grid and a negative electrode active material;
An electrode plate group in which a positive electrode plate and a negative electrode plate are laminated via a separator;
A battery case having a plurality of cell chambers for storing the electrode plate group and the electrolytic solution;
And a lid for sealing the opening of the battery case.
The positive electrode grid or at least one of said negative electrode grid, Ru is produced by punching system drilling a hole in the lead alloy sheet containing 300ppm or less of bismuth and 700 ppm or 1000ppm or less of calcium than 1 ppm, the manufacturing method of the lead-acid battery.
前記負極格子を、1ppm以上300ppm以下のビスマスと700ppm以上1000ppm以下のカルシウムを含む鉛合金シートに穴を穿つパンチング方式によって作製する、請求項1に記載の鉛蓄電池の製造方法。 The method for producing a lead-acid battery according to claim 1, wherein the negative electrode grid is manufactured by a punching method in which a hole is formed in a lead alloy sheet containing 1 ppm to 300 ppm bismuth and 700 ppm to 1000 ppm calcium . 前記電解液は、0.02mol/L以上0.2mol/L以下のアルミニウムイオンを含む、請求項1または2に記載の鉛蓄電池の製造方法The electrolyte comprises the following aluminum ion 0.02 mol / L or more 0.2 mol / L, the manufacturing method of the lead-acid battery according to claim 1 or 2. 袋状にした前記セパレータは、前記負極板を内包している、請求項1〜3のいずれか1項に記載の鉛蓄電池の製造方法The method of manufacturing a lead storage battery according to any one of claims 1 to 3 , wherein the bag-like separator encloses the negative electrode plate.
JP2015050830A 2015-03-13 2015-03-13 Method of manufacturing lead storage battery Active JP6520249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050830A JP6520249B2 (en) 2015-03-13 2015-03-13 Method of manufacturing lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050830A JP6520249B2 (en) 2015-03-13 2015-03-13 Method of manufacturing lead storage battery

Publications (2)

Publication Number Publication Date
JP2016171018A JP2016171018A (en) 2016-09-23
JP6520249B2 true JP6520249B2 (en) 2019-05-29

Family

ID=56984076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050830A Active JP6520249B2 (en) 2015-03-13 2015-03-13 Method of manufacturing lead storage battery

Country Status (1)

Country Link
JP (1) JP6520249B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553871A4 (en) * 2016-12-07 2020-01-15 Hitachi Chemical Company, Ltd. Liquid type lead storage battery and production method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2528688A1 (en) * 1975-06-27 1977-01-13 Metallgesellschaft Ag Lead calcium alloy for accumulator grids - is made from commercially pure lead contg. bismuth
US20040033157A1 (en) * 2002-08-13 2004-02-19 Johnson Controls Technology Company Alloy for battery grids
DE602005009814D1 (en) * 2004-04-08 2008-10-30 Matsushita Electric Ind Co Ltd lead-acid battery
AU2008223058B2 (en) * 2007-03-02 2014-05-29 Cps Technology Holdings Llc Negative grid for battery
JP2008243606A (en) * 2007-03-27 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery

Also Published As

Publication number Publication date
JP2016171018A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
JP2017063001A (en) Lead storage battery
JP2015038860A (en) Liquid lead storage battery, and idling-stop vehicle arranged by use of liquid lead storage battery
JP6045329B2 (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP6977770B2 (en) Liquid lead-acid battery
JP5748182B2 (en) Lead acid battery and idling stop vehicle using the same
WO2012153464A1 (en) Lead-acid battery anode and lead-acid battery
JP5935069B2 (en) Lead-acid battery grid and lead-acid battery
JP6575536B2 (en) Lead acid battery
JP6520249B2 (en) Method of manufacturing lead storage battery
JP5994545B2 (en) Lead acid battery
JP5861077B2 (en) Lead acid battery
JP6921037B2 (en) Lead-acid battery
JP2012138331A (en) Lead storage battery and idling stop vehicle
JP2009146727A (en) Control valve type lead-acid battery
WO2016147240A1 (en) Lead storage cell
JP5073403B2 (en) Lead-acid battery grid and lead-acid battery using the grid
JP6175930B2 (en) Lead acid battery
JP2015028901A (en) Lead battery
JP5630716B2 (en) Lead acid battery
JP4802903B2 (en) Lead acid battery
JP6766811B2 (en) Lead-acid battery
JP2014207161A (en) Lead storage battery
JP2014032845A (en) Lead acid battery
CN117957676A (en) Lead storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160713

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160824

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150