JP6518950B2 - Non-oriented electrical steel sheet and method of manufacturing the same - Google Patents

Non-oriented electrical steel sheet and method of manufacturing the same Download PDF

Info

Publication number
JP6518950B2
JP6518950B2 JP2016212415A JP2016212415A JP6518950B2 JP 6518950 B2 JP6518950 B2 JP 6518950B2 JP 2016212415 A JP2016212415 A JP 2016212415A JP 2016212415 A JP2016212415 A JP 2016212415A JP 6518950 B2 JP6518950 B2 JP 6518950B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
oriented electrical
electrical steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016212415A
Other languages
Japanese (ja)
Other versions
JP2018070955A (en
Inventor
正憲 上坂
正憲 上坂
早川 康之
康之 早川
重宏 ▲高▼城
重宏 ▲高▼城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016212415A priority Critical patent/JP6518950B2/en
Publication of JP2018070955A publication Critical patent/JP2018070955A/en
Application granted granted Critical
Publication of JP6518950B2 publication Critical patent/JP6518950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、無方向性電磁鋼板に関し、特にモータやトランスの鉄心など、電気材料として用いるのに好適な磁気特性に優れた無方向性電磁鋼板に関する。   The present invention relates to a non-oriented electrical steel sheet, and more particularly to a non-oriented electrical steel sheet excellent in magnetic characteristics suitable for use as an electrical material, such as a core of a motor or a transformer.

磁気特性に優れる無方向性電磁鋼板は、主に、電気自動車の駆動用モータや、家電機器のモータとして用いられる。かかる無方向性電磁鋼板には、モータのエネルギ使用効率向上のために低鉄損が、また、モータの小型化のために高磁束密度化が要求されている。このような要求に対し、磁気特性向上に不利な集合組織である{111}面方位を低減するために、冷間圧延前の鋼板における結晶粒の粒径を粗大化させたり、熱間圧延して得られる熱延板を可能な限り薄くして冷間圧延における圧下率を低減させたりする手法がとられてきた。また、鋼中の不純物を限りなく低減し、析出物形成によるヒステリシス損の増大を抑制する試みがなされてきた。   Non-oriented electrical steel sheets having excellent magnetic properties are mainly used as drive motors for electric vehicles and motors for home appliances. Such non-oriented electrical steel sheets are required to have a low core loss to improve the energy usage efficiency of the motor and a high magnetic flux density to miniaturize the motor. In order to reduce the {111} plane orientation which is disadvantageous to the improvement of the magnetic properties in response to such requirements, the grain size of the crystal grains in the steel plate before cold rolling is coarsened or hot rolled. Methods have been taken to make the resulting hot-rolled sheet as thin as possible to reduce the rolling reduction in cold rolling. In addition, attempts have been made to reduce the amount of impurities in the steel as much as possible and to suppress the increase in hysteresis loss due to the formation of precipitates.

また、真空中での高温焼鈍によって、極めて高い磁束密度を得る技術が知られている。これは、真空中では、表面エネルギの小さい{100}面方位や{110}面方位を有する結晶粒が、より表面エネルギの高い他の方位を有する結晶粒を蚕食することによって成長する機構を利用したものである。この技術によれば、SiやAlを添加しなくても高い磁束密度を有する無方向性電磁鋼板が得られるため、合金コストのトレンドに左右されることなく良好な磁性を有する無方向性電磁鋼板を生産できるといった利点がある。   There is also known a technique for obtaining extremely high magnetic flux density by high temperature annealing in vacuum. This uses a mechanism in which grains with low surface energy {100} plane orientation or {110} plane orientation grow by attacking grains with other surface energy higher orientation in vacuum. It is According to this technique, a non-oriented electrical steel sheet having a high magnetic flux density can be obtained without adding Si or Al, so a non-oriented electrical steel sheet having good magnetism regardless of the trend of alloy cost Has the advantage of being able to produce

真空中で高温仕上げ焼鈍を施すことで高い磁束密度を得る技術として、例えば、特許文献1には、仕上げ焼鈍での焼鈍温度、雰囲気の真空度に加えて、鋼中の窒化物と硫化物を極力低減することで、{100}集合組織を形成し、非常に良好な磁束密度B50と鉄損W15/100を得る技術が開示されている。特許文献2には、水素を含む還元性雰囲気、窒素、Ar等の不活性ガスを主体とした雰囲気において、酸素を所定濃度以下にすることで、表面エネルギを利用した異常粒成長が起こり、磁気特性に有利なGoss方位({110}<001>方位)の粗大粒を得る技術が開示されている。 As a technique for obtaining a high magnetic flux density by performing high temperature finish annealing in vacuum, for example, Patent Document 1 adds nitride and sulfide in steel in addition to the annealing temperature in finish annealing and the degree of vacuum of the atmosphere. A technique is disclosed to form a {100} texture and obtain very good magnetic flux density B 50 and iron loss W 15/100 by reducing as much as possible. According to Patent Document 2, abnormal grain growth using surface energy occurs by reducing oxygen to a predetermined concentration or less in an atmosphere mainly composed of a reducing atmosphere containing hydrogen and an inert gas such as nitrogen and Ar. A technique is disclosed for obtaining coarse grains of Goss orientation ({110} <001> orientation) advantageous to the characteristics.

しかしながら、上記の技術では励磁周波数が50Hzのときの低周波鉄損が高いという問題があった。そして、鉄損をヒステリシス損と渦電流損に分けて調べてみると、ヒステリシス損があまり減少していないことが分かった。   However, the above technique has a problem that the low frequency iron loss is high when the excitation frequency is 50 Hz. And when iron loss was divided into hysteresis loss and eddy current loss and examined, it was found that hysteresis loss was not reduced so much.

特開2001−131642号公報JP 2001-131642 A 特開平7−76734号公報JP-A-7-76734

本発明は、上記事情に鑑みてなされたものであり、低周波鉄損が低く、かつ、磁束密度が高い磁気特性に優れる無方向性電磁鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-oriented electrical steel sheet having a low low frequency core loss and a high magnetic flux density and a method of manufacturing the same.

本発明者らは、前記課題を解決するために、冷間圧延のワークロールの表面粗度を変更して得た冷延板を、極低酸素雰囲気で高温焼鈍した結果、冷延板の表面粗度を低減することでヒステリシス損を低減できることを見出した。   MEANS TO SOLVE THE PROBLEM The present inventors surfaced the cold rolled sheet as a result of carrying out high temperature annealing of the cold rolled sheet obtained by changing the surface roughness of the work roll of cold rolling in an extremely low oxygen atmosphere in order to solve the said subject. It has been found that the hysteresis loss can be reduced by reducing the roughness.

本発明のきっかけとなった実験を次に示す。
質量%で、C:0.0013%、Si:3.0%、P:0.01%、Mn:0.10%、Al:0.50%、S:0.0010%、N:0.0015%、Cu:0.010%を含有し、残部Feおよび不可避的不純物からなる成分組成の溶鋼を、実験室的に溶製し、鋳込んだ後、熱間圧延により板厚2.0mmの熱延板とした。その後、前記熱延板に1050℃で60sの熱延板焼鈍を施し、酸洗した後、0.20mmまでの冷間圧延を施し冷延板を得た。このとき冷間圧延に用いた圧延機のワークロールの粗度を1.2μm〜0.2μmまで変化させることで鋼板表面粗度の異なる冷延板を得た。その後、前記冷延板を0.1Paの真空中で均熱温度が1150℃であり、均熱時間(前記均熱温度での保持時間)を1〜120minの間で変更した仕上げ焼鈍を施し仕上げ焼鈍板を得た。前記仕上げ焼鈍板の鋼板表面粗度Raをレーザ粗度計により測定した。その後、前記仕上げ焼鈍板を、ワイヤーカット加工により内径60mm、外径80mmのリング試料に加工した。そして、前記リング試料を35枚積層させた状態でセラミックス製のリングケースに入れ、100ターンの1次巻線と20ターンの2次巻線を施すことで磁気測定用のリング状磁気測定試料とした。前記リング状磁気測定試料を用いて、交流磁気測定装置により周波数50Hz、最大磁束密度1.5Tにおける鉄損W15/50を測定した。また、前記リング状磁気測定試料を用いて、直流磁化測定装置により最大磁束密度1.5Tにおけるヒステリシス損を測定した。
The experiments that triggered the present invention are shown below.
In mass%, C: 0.0013%, Si: 3.0%, P: 0.01%, Mn: 0.10%, Al: 0.50%, S: 0.0010%, N: 0. A molten steel with a component composition containing 0015%, Cu: 0.010%, and the balance of Fe and unavoidable impurities is laboratory melted and cast, and then hot rolled to a thickness of 2.0 mm. It was a hot-rolled sheet. Thereafter, the hot-rolled sheet is subjected to hot-rolled sheet annealing at 1050 ° C. for 60 seconds, pickled, and then cold-rolled to 0.20 mm to obtain a cold-rolled sheet. At this time, by changing the roughness of the work roll of the rolling mill used for cold rolling to 1.2 μm to 0.2 μm, cold rolled sheets having different steel sheet surface roughness were obtained. Thereafter, the cold rolled sheet is subjected to finish annealing in which the soaking temperature is 1150 ° C. in a vacuum of 0.1 Pa and the soaking time (the holding time at the soaking temperature) is changed between 1 to 120 minutes An annealed sheet was obtained. The surface roughness Ra of the steel sheet of the finished annealed sheet was measured by a laser roughness meter. Thereafter, the finished annealed sheet was processed into a ring sample having an inner diameter of 60 mm and an outer diameter of 80 mm by wire cutting. Then, the 35 ring samples are stacked in a ceramic ring case, and a primary winding of 100 turns and a secondary winding of 20 turns are applied to the ring-shaped magnetic measurement sample for magnetic measurement did. The core loss W 15/50 at a frequency of 50 Hz and a maximum magnetic flux density of 1.5 T was measured by an AC magnetic measurement apparatus using the ring-shaped magnetic measurement sample. Moreover, the hysteresis loss in maximum magnetic flux density 1.5T was measured by the direct current | flow magnetization measuring apparatus using the said ring-shaped magnetism measurement sample.

図1に、仕上げ焼鈍時間(均熱時間)と鉄損の関係を示す。仕上げ焼鈍時間とともに鉄損が減少するが、鋼板表面粗度Raが高い鋼板は、60min以上の焼鈍では鉄損の変化がほとんどなくなった。それに対して、鋼板表面粗度Raが低い材料では仕上げ焼鈍時間とともに鉄損は下がり続けており、鋼板表面粗度Raを低減することで鉄損を大きく低減できることが分かった。図2、3に、仕上げ焼鈍時間とヒステリシス損および平均結晶粒径の関係をそれぞれ示す。図2に示すように、仕上げ焼鈍時間とともにヒステリシス損が減少するが、鋼板表面粗度Raが低い材料ではヒステリシス損の低減効果が大きいことが分かった。また、図3に示すように、仕上げ焼鈍時間とともに鋼板の平均結晶粒径は増加した。   FIG. 1 shows the relationship between the finish annealing time (soaking time) and the iron loss. Although the core loss decreases with the finish annealing time, in the steel sheet having a high surface roughness Ra of the steel sheet, the change in the core loss is almost lost in the annealing of 60 minutes or more. On the other hand, it was found that the iron loss continued to decrease with the finish annealing time in the material having a low steel sheet surface roughness Ra, and it was possible to greatly reduce the iron loss by reducing the steel sheet surface roughness Ra. The relationship between finish annealing time, hysteresis loss, and average grain size is shown in FIGS. As shown in FIG. 2, it was found that the hysteresis loss decreases with the finish annealing time, but the reduction effect of the hysteresis loss is large in the material having a low steel surface roughness Ra. Moreover, as shown in FIG. 3, the average grain size of the steel plate increased with the finish annealing time.

結晶粒径が増加することでヒステリシス損が減少することが一般に知られている。しかし、本実験によれば、仕上げ焼鈍により結晶粒径を増加しても、ヒステリシス損の低減効果が十分に得られない場合があり、鋼板表面粗度を低減することで、かかるヒステリシス損の低減効果が抑制されることなく、鉄損を十分に低減できることが分かった。   It is generally known that hysteresis loss decreases as the grain size increases. However, according to this experiment, even if the grain size is increased by finish annealing, the reduction effect of the hysteresis loss may not be sufficiently obtained, and the reduction of the surface roughness of the steel sheet reduces the hysteresis loss. It was found that the iron loss can be sufficiently reduced without the effect being suppressed.

本発明は、上記の結果から、真空中で仕上げ焼鈍する前の冷延板の表面粗度を低減することによって、ヒステリシス損が低減されるとの技術思想に基づき、さらにその他の諸条件を適正化することにより完成させたものである。   From the above results, the present invention is further based on the technical idea that the hysteresis loss is reduced by reducing the surface roughness of the cold-rolled sheet before finish annealing in vacuum, and the other various conditions are appropriate. Was completed by

上記課題を解決する本発明の手段は次の通りである。
[1]質量%で、C:0.005%以下、Si:1.0%以上6.0%以下、Mn:0.01%以上2.5%以下、P:0.5%以下、Al:1.0%以下、N:0.005%以下、Cu:0.005%以上1.0%以下、およびS:0.0005%以上0.005%以下を含有し、かつCuとSの質量%の積であるCu×Sが5×10−6<Cu×S<5×10−4を満たし、残部Feおよび不可避的不純物からなる成分組成を有し、結晶粒の{100}結晶面と圧延面とのなす角(β角)の大きさが3°以内にある結晶粒を{100}面方位を有する結晶粒と定義したとき、前記{100}面方位を有する結晶粒の割合が面積率で70%以上であり、かつ、前記{100}面方位を有する結晶粒のうち<012>軸と圧延方向とのなす角(α角)の大きさが10°以内である結晶粒の割合が面積率で70%以上であり、鋼板の表面粗度Raが0.40μm以下、板厚が0.05mm以上0.25mm以下であることを特徴とする無方向性電磁鋼板。
[2]周波数50Hz、最大磁束密度1.5Tにおける鉄損W15/50が1.8W/kg以下であり、かつ、磁界の強さ5000A/mにおける磁束密度B50が1.77T以上であることを特徴とする[1]に記載の無方向性電磁鋼板。
[3][1]または[2]に記載の無方向性電磁鋼板の製造方法であって、前記成分組成を有するスラブを熱間圧延した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を行って、前記冷間圧延での最終板厚が0.05mm以上0.25mm以下、表面粗度Raが0.40μm以下の冷延板を得た後、10Pa以下の真空あるいは不活性ガス雰囲気中で1050℃以上の均熱温度で0.5hr以上保持する仕上げ焼鈍を行うことを特徴とする無方向性電磁鋼板の製造方法。
The means of the present invention for solving the above problems is as follows.
[1] mass%, C: 0.005% or less, Si: 1.0% to 6.0%, Mn: 0.01% to 2.5%, P: 0.5% or less, Al : 1.0% or less, N: 0.005% or less, Cu: 0.005% or more and 1.0% or less, and S: 0.0005% or more and 0.005% or less, and Cu and S The product of mass%, Cu x S, satisfies 5 x 10-6 <Cu x S <5 x 10-4 and has a component composition consisting of the balance Fe and unavoidable impurities, and {100} crystal face of crystal grains The ratio of the crystal grains having the {100} plane orientation is defined as the crystal grains having the size of the angle (β angle) between the steel and the rolling surface within 3 ° as the crystal grains having the {100} plane orientation. In the crystal grain having an area ratio of 70% or more and having the {100} plane orientation, an angle between the <012> axis and the rolling direction The percentage of crystal grains whose size is less than 10 ° is 70% or more in area ratio, the surface roughness Ra of the steel plate is 0.40 μm or less, and the plate thickness is 0.05 mm or more and 0.25 mm or less Non-oriented electrical steel sheet characterized by
[2] Iron loss W 15/50 at a frequency of 50 Hz and a maximum magnetic flux density of 1.5 T is 1.8 W / kg or less, and a magnetic flux density B 50 at a magnetic field strength of 5000 A / m is 1.77 T or more The non-oriented electrical steel sheet according to [1], characterized in that
[3] The method for producing a non-oriented electrical steel sheet according to [1] or [2], which comprises hot rolling a slab having the above-mentioned component composition and then sandwiching one cold rolling or intermediate annealing 2 After cold rolling is performed several times or more to obtain a cold rolled sheet having a final plate thickness of 0.05 mm or more and 0.25 mm or less and a surface roughness Ra of 0.40 μm or less in the cold rolling, 10 Pa or less A method of manufacturing a non-oriented electrical steel sheet characterized by performing finish annealing in a vacuum or inert gas atmosphere at a soaking temperature of 1050 ° C. or more for 0.5 hour or more.

本発明によれば、低周波鉄損が低く、かつ、磁束密度が高い磁気特性に優れる無方向性電磁鋼板およびその製造方法を提供することができる。   According to the present invention, it is possible to provide a non-oriented electrical steel sheet which is low in low frequency core loss and excellent in magnetic properties with a high magnetic flux density, and a method of manufacturing the same.

図1は仕上げ焼鈍時間と鉄損の関係を示すグラフである。FIG. 1 is a graph showing the relationship between finish annealing time and core loss. 図2は仕上げ焼鈍時間とヒステリシス損の関係を示すグラフである。FIG. 2 is a graph showing the relationship between finish annealing time and hysteresis loss. 図3は仕上げ焼鈍時間と平均結晶粒径の関係を示すグラフである。FIG. 3 is a graph showing the relationship between finish annealing time and average grain size.

以下、本発明の無方向性電磁鋼板およびその製造方法について詳細に説明する。まず、本発明の無方向性電磁鋼板の成分組成について説明する。以下、特に断らない限り、質量%は単に%で記す。   Hereinafter, the non-oriented electrical steel sheet of the present invention and the method for producing the same will be described in detail. First, the component composition of the non-oriented electrical steel sheet of the present invention will be described. Hereinafter, mass% is simply expressed as% unless otherwise specified.

成分組成:
C:0.005%以下
Cの含有量が多いと、磁気時効し、磁気特性を劣化させることから、Cの含有量は、0.005%以下とする。さらに好ましい範囲は、0.003%以下である。一方、Cの含有量を極度に下げるとコストが高くなることから、Cの含有量は、0.00005%以上とすることが好ましい。
Ingredient composition:
C: 0.005% or less When the content of C is large, magnetic aging occurs to deteriorate the magnetic characteristics, so the content of C is set to 0.005% or less. A further preferred range is 0.003% or less. On the other hand, it is preferable to set the content of C to 0.00005% or more because the cost is increased if the content of C is extremely reduced.

Si:1.0%以上6.0%以下
Siは、鋼の比抵抗を増大させる元素であり、渦電流損を改善させることが可能となる点から、1.0%以上の添加は必須である。一方で、過度に添加すると、磁束密度を減少させるため、6.0%以下とする。生産性を高める点から、より好ましい範囲は、1.5%以上4.0%以下である。
Si: 1.0% or more and 6.0% or less Si is an element that increases the specific resistance of steel, and addition of 1.0% or more is essential in that it is possible to improve eddy current loss. is there. On the other hand, if it is added excessively, the magnetic flux density is reduced to 6.0% or less. A more preferable range is 1.5% or more and 4.0% or less from the viewpoint of enhancing the productivity.

Mn:0.01%以上2.5%以下
Mnは、鋼の比抵抗を増大させる元素であり、渦電流損を改善させることが可能となる点から、0.01%以上の添加が必須である。一方で、過度に添加するとコストが増加するため、2.5%以下とする。好ましくは0.04%以上2.0%以下である。
Mn: 0.01% or more and 2.5% or less Mn is an element that increases the specific resistance of steel, and addition of 0.01% or more is essential in that it is possible to improve eddy current loss. is there. On the other hand, if it is added excessively, the cost increases, so the content is made 2.5% or less. Preferably it is 0.04% or more and 2.0% or less.

P:0.5%以下
Pは、鋼板を高強度化し、打ち抜き性を改善させる効果を有する元素である。一方で、過度に添加すると鋼板を脆化させるため、上限を0.5%とする。好ましくは、Pの含有量は0.1%以下である。
P: 0.5% or less P is an element having the effect of strengthening the steel sheet and improving the punching property. On the other hand, in order to embrittle the steel sheet if it is added excessively, the upper limit is made 0.5%. Preferably, the content of P is 0.1% or less.

S:0.0005%以上0.005%以下
Sは、CuSを形成し、仕上げ焼鈍の加熱中の結晶粒成長を抑制するために不可欠な元素である。仕上げ焼鈍の加熱過程で結晶粒が大きくなりすぎると、異常粒成長開始時に{100}結晶面と圧延面とのなす角(β角)が大きい(3°超となる)方位の結晶粒が増加し、その結果、異常粒成長後に磁気特性に有利な集合組織が得られなくなり磁気特性が劣化する。磁気特性に有利な集合組織を得るため、下限を0.0005%とする。また、過度に添加すると磁気特性が劣化するため、上限を0.005%とする。
さらに、本発明においては、異常粒成長後に磁気特性に有利な集合組織とし磁気特性を向上するために、CuとSの質量%の積(Cu×S)を、5×10−6<Cu×S<5×10−4の範囲とする。
S: 0.0005% or more and 0.005% or less S is an element essential for forming CuS and suppressing grain growth during heating of finish annealing. If the crystal grains become too large in the heating process of the final annealing, the crystal grains in the orientation where the angle (β angle) between the {100} crystal plane and the rolling plane forms at the start of abnormal grain growth increases (becomes more than 3 °) As a result, after abnormal grain growth, a texture advantageous to the magnetic properties can not be obtained, and the magnetic properties are degraded. The lower limit is made 0.0005% in order to obtain texture which is advantageous to the magnetic properties. In addition, the upper limit is made 0.005% because the magnetic properties deteriorate if it is added excessively.
Furthermore, in the present invention, the product (Cu × S) of mass% of Cu and S is set to 5 × 10 −6 <Cu × in order to make the texture advantageous to the magnetic properties after abnormal grain growth and improve the magnetic properties. It is set as the range of S <5 * 10 < -4 >.

Al:1.0%以下
Alは、Siと同様、鋼の比抵抗を増大させる元素であり、鉄損を低減するのに有効な元素である。また、結晶の粒成長を制御する観点から、AlNを形成させることで異常粒成長前の結晶粒の成長を抑制する。一方、過度に添加すると機械特性が劣化するため、Alの含有量は1.0%以下とする。
Al: 1.0% or less Al, like Si, is an element that increases the specific resistance of steel, and is an element that is effective to reduce iron loss. In addition, from the viewpoint of controlling crystal grain growth, formation of AlN suppresses the growth of crystal grains before abnormal grain growth. On the other hand, the mechanical properties are deteriorated if it is added excessively, so the content of Al is made 1.0% or less.

N:0.005%以下
Nは、Al、Siと窒化物を形成し、磁気特性を劣化させるため、0.005%以下とする。より好ましくは、0.003%以下である。
N: 0.005% or less N forms nitrides with Al and Si and degrades the magnetic properties, so the N content is made 0.005% or less. More preferably, it is 0.003% or less.

Cu:0.005%以上1.0%以下
Cuは、CuSを形成し、仕上げ焼鈍の加熱中の結晶粒成長を抑制するために不可欠な元素である。仕上げ焼鈍で面内の磁気特性に有利な集合組織を得るためには、仕上げ焼鈍の加熱過程で適度な粒成長の制御が必要となるため、下限を0.005%とする。一方、過度に添加すると磁気特性が劣化するため、上限を1.0%とする。より好ましくは、0.01%以上、0.5%以下とする。また、前述の通り、本発明においては、仕上げ焼鈍の加熱中の結晶の粒成長を制御し磁気特性に有利な集合組織として磁気特性を向上するために、CuとSの質量%の積(Cu×S)を、5×10−6<Cu×S<5×10−4の範囲とする。
Cu: 0.005% or more and 1.0% or less Cu is an essential element for forming CuS and suppressing grain growth during heating of finish annealing. In order to obtain a texture which is advantageous to the in-plane magnetic properties by finish annealing, it is necessary to control grain growth appropriately in the heating process of finish annealing, so the lower limit is made 0.005%. On the other hand, the excessive addition thereof degrades the magnetic properties, so the upper limit is made 1.0%. More preferably, it is 0.01% or more and 0.5% or less. Also, as described above, in the present invention, the product of mass% of Cu and S (Cu to control grain growth of the crystal during heating of finish annealing and improve the magnetic property as a texture advantageous to the magnetic property) Let xS) be in the range of 5 × 10 −6 <Cu × S <5 × 10 −4 .

以上に示した以外の元素であっても、工業的に除去できない不可避的不純物であれば含有されていても問題無い。例えば合計で0.05%未満程度であれば上記以外の元素を含有しても良い。ただし、Ti,Nb,V,Zrは、磁気特性劣化の原因となる炭窒化物、硫化物を形成するため、それぞれ0.001%未満の含有量であることが好ましい。   Even if it is an element except having shown above, if it is the unavoidable impurity which can not be removed industrially, even if it contains, there is no problem. For example, elements other than the above may be contained if the total amount is less than about 0.05%. However, Ti, Nb, V, and Zr each preferably have a content of less than 0.001% in order to form carbonitrides and sulfides that cause deterioration of the magnetic properties.

結晶方位:
本発明の無方向性電磁鋼板は、その結晶方位が、{100}面方位を有する結晶粒が優先的に存在していることを特徴とする。{100}面方位を有する結晶粒とは、X線単結晶方位測定で測定したときの結晶中の{100}結晶面と圧延面とのなす角(β角)が3°以内にあることと定義する。ただし、このβ角は、等価な3つの{100}結晶面が圧延面となす角のうち最小のものとする。また、{100}面方位を有する結晶粒の存在率は高い方が良く、{100}面方位を有する結晶粒の割合は面積率で70%以上とする。より好ましくは、80%以上である。
Crystal orientation:
The non-oriented electrical steel sheet of the present invention is characterized in that crystal grains having a {100} plane orientation are preferentially present in the crystal orientation. The crystal grain having the {100} plane orientation means that the angle (β angle) between the {100} crystal plane in the crystal and the rolling plane as measured by X-ray single crystal orientation measurement is within 3 ° Define. However, this β angle is the smallest of the angles that three equivalent {100} crystal planes make with the rolling surface. Further, the higher the abundance ratio of crystal grains having the {100} plane orientation, the better, and the ratio of crystal grains having the {100} plane orientation is 70% or more in area ratio. More preferably, it is 80% or more.

また、本発明の無方向性電磁鋼板は、{100}面方位を有する結晶粒の<012>軸が圧延方向とそろっていることもひとつの特徴である。具体的には、{100}面方位を有する結晶粒のうち<012>軸と圧延方向とのなす角(α角)の大きさが10°以内である結晶粒の割合が面積率で70%以上であって、前記α角の大きさが0〜5°である結晶粒の割合も60%以上である。本発明の無方向性電磁鋼板は、このような結晶方位の組織を有するため、圧延面内方向で極めて良好な磁気特性が得られる。   The non-oriented electrical steel sheet of the present invention is also characterized in that the <012> axis of the crystal grain having the {100} plane orientation is aligned with the rolling direction. Specifically, among crystal grains having {100} orientation, the ratio of crystal grains having an angle (α angle) between the <012> axis and the rolling direction within 10 ° is 70% in area ratio That is, the ratio of crystal grains whose size of the α angle is 0 to 5 ° is also 60% or more. The non-oriented electrical steel sheet of the present invention has such a crystallographically oriented structure, so that extremely good magnetic properties can be obtained in the in-plane rolling direction.

なお、本発明において、{100}面方位を有する結晶粒の面積率、前記結晶粒のうちα角の大きさが10°以内である結晶粒の面積率は、製品板(無方向性電磁鋼板)から試験片を採取し、X線単結晶方位測定により300mm×200mmの範囲を7mmピッチで測定し、{100}面方位を有する結晶粒の面積、前記結晶粒のうちα角の大きさが10°以内である結晶粒の面積をそれぞれ測定して求めたものである。   In the present invention, the area ratio of crystal grains having a {100} orientation and the area ratio of crystal grains having an α-angle size within 10 ° of the crystal grains are the product plate (non-oriented electrical steel sheet The specimen is collected from X), and the range of 300 mm × 200 mm is measured at a pitch of 7 mm by X-ray single crystal orientation measurement, the area of crystal grains having {100} plane orientation, and the size of α angle among the crystal grains The area of crystal grains within 10 ° is measured and determined.

平均結晶粒径:
本発明の無方向性電磁鋼板を、表面研磨し、次いで化学エッチングを施した試料を作製した後、前記試料表面を光学顕微鏡で観察することで平均結晶粒径を測定した。ここで、平均結晶粒径は、1結晶粒iの圧延方向の粒径(RD粒径)をdi、面積率をSiとしたとき、Σdi×Siにて定義したものである。特にRD粒径が1mm以上の結晶粒においては、光学顕微鏡では、粒界の観察が困難であったので、X線単結晶方位測定によって、隣接する結晶粒の方位差(α角の差及びβ角の差)が0.5°以内であれば、隣接する結晶粒間に結晶粒界は無く、前記隣接する結晶粒は同一の結晶粒に含まれると判断した。
Average grain size:
The non-oriented electrical steel sheet of the present invention was surface-polished and then chemically etched to prepare a sample, and then the average crystal grain size was measured by observing the sample surface with an optical microscope. Here, the average grain size is defined as Σdi × Si, where di is the grain size in the rolling direction of one crystal grain i (RD grain size) and Si is the area ratio. In particular, in crystal grains having an RD grain size of 1 mm or more, observation of grain boundaries is difficult with an optical microscope. Therefore, the misorientation between adjacent crystal grains (difference in α angle and β If the difference between the angles) was within 0.5 °, there were no grain boundaries between adjacent crystal grains, and it was judged that the adjacent crystal grains were contained in the same crystal grain.

続いて、本発明に係る無方向性電磁鋼板の製造方法を以下に示す。
まず、製鋼工程で上記成分組成に調製したスラブに対し1200℃以下で再加熱を行う。1200℃より高くなると、粒成長抑制の原因となるMnSやAlNの微細分散が生じ、仕上げ焼鈍の加熱過程での適度な粒成長の制御ができなくなり磁気特性に有利な集合組織が得られなくなるおそれがある。より好ましくは、1150℃以下である。
Then, the manufacturing method of the non-oriented electrical steel sheet concerning the present invention is shown below.
First, the slab prepared to have the above-mentioned component composition in the steel making process is reheated at 1200 ° C. or less. If the temperature is higher than 1200 ° C., fine dispersion of MnS and AlN causing grain growth suppression may occur, and appropriate grain growth can not be controlled in the heating process of finish annealing, and a texture favorable to magnetic characteristics may not be obtained. There is. More preferably, it is 1150 ° C. or less.

再加熱後は、熱間圧延を行う。巻き取り温度は、700℃以下が好ましい。巻き取り温度が過度に高い場合には、AlNの微細分散などが生じてしまうためである。熱間圧延での仕上げ板厚は薄い方が好ましく、3.0mm以下とすることが好ましい。熱間圧延での仕上げ板厚が厚い場合、続く冷間圧延での冷延圧下率が高くなって、磁気特性に好ましくない{111}の結晶面方位の結晶粒が増大するためである。   After reheating, hot rolling is performed. The winding temperature is preferably 700 ° C. or less. When the coiling temperature is excessively high, fine dispersion of AlN or the like occurs. The finished plate thickness in hot rolling is preferably thin, and is preferably 3.0 mm or less. This is because when the finished plate thickness in hot rolling is large, the cold rolling reduction ratio in the subsequent cold rolling becomes high, and the crystal grains of {111} crystal plane orientation, which is undesirable for the magnetic characteristics, increase.

熱間圧延後は、熱間圧延して得られた熱延板に対し、熱延板焼鈍を行っても良いし、行わなくても良い。熱延板焼鈍を行った場合の方が磁気特性上は若干良好な値を示すが、コストが増大するデメリットもある。   After hot rolling, hot rolled sheet annealing may or may not be performed on the hot rolled sheet obtained by hot rolling. In the case of hot-rolled sheet annealing, although the magnetic characteristics show slightly better values, there is also a disadvantage that the cost increases.

なお、続く冷間圧延での冷延圧下率が95%以上と過度に高くなる場合には、冷延負荷減少のため、熱延板焼鈍を行って熱延板を軟質化させておくことが好ましい。熱延板焼鈍を行う場合、水素雰囲気あるいはAr雰囲気で行う。窒素雰囲気にて焼鈍を行うと、地鉄中に窒素が侵入し、磁気特性劣化の原因となる窒化珪素を析出させるためである。   In addition, when the cold rolling reduction ratio in the subsequent cold rolling becomes excessively high such as 95% or more, hot rolled sheet annealing may be performed to soften the hot rolled sheet to reduce cold rolling load. preferable. When hot-rolled sheet annealing is performed, it is performed in a hydrogen atmosphere or an Ar atmosphere. When annealing is performed in a nitrogen atmosphere, nitrogen intrudes into the base iron to precipitate silicon nitride which causes the deterioration of the magnetic characteristics.

続いて、前記熱間圧延して得られた熱延板、あるいは、これにさらに熱延板焼鈍を行った熱延焼鈍板の表面から、ショットブラストや塩酸酸洗など通常の方法でスケールを除去した後、1回あるいは2回以上の冷間圧延を行い最終板厚とする。2回以上の冷間圧延とは、冷間圧延の途中に中間焼鈍工程を挟むことをいう。最終の冷間圧延(例えば冷間圧延を2回行う場合、2回目の冷間圧延)の圧下率は、40%以上とすることが好ましい。最終の冷間圧延での圧下率が40%未満であると、結晶粒が過度に粗大化し、続く仕上げ焼鈍中に、磁気特性に有利な{100}面方位を有する結晶粒の成長駆動力が小さくなってしまうためである。より好ましくは50%以上である。   Subsequently, the scale is removed from the surface of the hot-rolled sheet obtained by the hot rolling or the surface of the hot-rolled and annealed sheet subjected to the hot-rolled sheet annealing by a usual method such as shot blasting or hydrochloric acid pickling Then, cold rolling is performed once or twice, and the final thickness is obtained. The term "cold rolling twice or more" refers to sandwiching an intermediate annealing process in the middle of cold rolling. The rolling reduction of the final cold rolling (for example, the second cold rolling when cold rolling is performed twice) is preferably 40% or more. If the final cold rolling reduction is less than 40%, the grains are excessively coarsened, and during the subsequent finish annealing, the growth driving force of the grains having {100} orientation that is advantageous for the magnetic properties is It is because it becomes smaller. More preferably, it is 50% or more.

最終板厚である冷間圧延後の板厚は0.05mm以上0.25mm以下とする。前記板厚が過度に厚いと、続く仕上げ焼鈍において、{100}面方位を有する結晶粒が十分に形成されない。これは、表面エネルギの駆動力がその他の面方位の粒成長駆動力に対して低くなるためと推定している。また、前記板厚が過度に薄すぎると、冷延の負荷が増大するだけでなく、鋼板のハンドリング性が損なわれ、折れ曲がり変形などを生じしやすくなって、磁気特性を劣化するため好ましくない。   The thickness after cold rolling, which is the final thickness, is 0.05 mm or more and 0.25 mm or less. If the plate thickness is excessively large, in the subsequent finish annealing, grains having a {100} plane orientation are not sufficiently formed. It is presumed that this is because the driving force of surface energy is lower than the grain growth driving force of other plane orientations. If the thickness is too thin, not only cold rolling load will increase but also the handling of the steel sheet will be impaired, bending deformation and the like will tend to occur, which is undesirable because it degrades the magnetic properties.

冷間圧延後の鋼板の表面粗度Raは0.40μm以下とする。Raが0.40μmより大きいと、焼鈍によって結晶粒を粗大化させても、前述の実験の通り、結晶粒粗大化によるヒステリシス損の低減効果が飽和してしまうが、鋼板の表面粗度Raを0.40μm以下とすることにより、さらなるヒステリシス損の低減効果を得ることができる。鋼板の表面粗度は冷間圧延に用いる圧延機のワークロールの表面粗度を変化させることで調整することができる。圧延機がタンデムミルの場合、最終スタンドのワークロールの表面粗度を調整することが好ましい。   The surface roughness Ra of the steel plate after cold rolling is 0.40 μm or less. If Ra is larger than 0.40 μm, even if the crystal grains are coarsened by annealing, the reduction effect of the hysteresis loss due to the crystal coarsening is saturated as in the above-mentioned experiment, but the surface roughness Ra of the steel sheet is By setting the thickness to 0.40 μm or less, a further reduction effect of hysteresis loss can be obtained. The surface roughness of the steel plate can be adjusted by changing the surface roughness of the work roll of a rolling mill used for cold rolling. When the rolling mill is a tandem mill, it is preferable to adjust the surface roughness of the work roll of the final stand.

冷間圧延の途中に中間焼鈍を行う場合には、熱延板焼鈍と同様に、水素雰囲気あるいはAr雰囲気で行うこととする。前記中間焼鈍は、組織が軟質化する温度で行えば良いが、800℃以上で行うのがより好ましい。これは、組織を粗大化することで、仕上げ焼鈍の前半で磁気特性向上に好ましい結晶方位の面積率を高めるためである。より好ましくは900℃以上である。   When performing intermediate annealing in the middle of cold rolling, it carries out by carrying out by hydrogen atmosphere or Ar atmosphere like hot-rolled sheet annealing. The intermediate annealing may be performed at a temperature at which the structure softens, but is more preferably performed at 800 ° C. or higher. This is to coarsen the structure to increase the area ratio of the crystal orientation preferred for improving the magnetic properties in the first half of the finish annealing. More preferably, it is 900 ° C. or higher.

また、熱間圧延工程終了後から仕上げ焼鈍工程の前までに、必要に応じて、上記のスケール除去とは別に、酸洗工程を行い、表面に不可避的に形成された酸化物を、表層酸素(O−Kα)カウント値が250/70msec以下となるまで調整することが好ましい。
ここで、前記表層酸素(O−Kα)カウント値は、電子線マイクロアナライザー(日本電子製ERA−8600MX)により、加速電圧3kV、ビーム電流120nA、ビーム径100μmで、測定対象とする試料中央付近の20mm角のエリアを100μmピッチで200点×200点、1点あたりの測定時間70msecでステージスキャンしながら酸素のKα線を測定した値である。このような酸化物は、熱間圧延中、熱延板焼鈍中、冷間圧延の途中の中間焼鈍中のいずれの工程においても、不可避的に混在する水や酸素の存在によって、発生し得る。前記酸化物の形態としては、SiOやFeSiOなどが認められているが、フッ化水素水あるいは塩酸などの酸との混合液によって酸洗し除去することが可能である。
In addition, after the completion of the hot rolling process and before the finish annealing process, if necessary, the pickling process is performed separately from the above scale removal, and oxides inevitably formed on the surface are surface oxygen It is preferable to adjust until the (O-Kα) count value becomes 250/70 msec or less.
Here, the surface oxygen (O-K.alpha.) Count value is an electron beam microanalyzer (ERAX 6600 MX manufactured by JEOL) with an acceleration voltage of 3 kV, a beam current of 120 nA, and a beam diameter of 100 .mu.m. This is a value obtained by measuring the Kα line of oxygen while performing stage scanning of a 20 mm square area with 200 points × 200 points at a pitch of 100 μm and a measurement time of 70 msec per point. Such an oxide may be generated during the hot rolling, during the hot-rolled sheet annealing, or during the intermediate annealing during the cold rolling due to the presence of water and oxygen which are inevitably mixed. Although SiO 2 and Fe 2 SiO 4 are recognized as the form of the oxide, they can be removed by pickling with hydrogen fluoride water or a mixed solution with an acid such as hydrochloric acid.

最終板厚まで冷間圧延した冷延板に対し、10Pa以下の真空あるいは不活性ガス雰囲気中で仕上げ焼鈍を行う。ここで不活性ガスとは窒素やアルゴンなどの鋼板表面との反応性の低い気体であり、不活性ガスを炉内に供給し、酸素分圧を低下させることで炉内を真空にした時と同様の効果が得られる。また、この不活性ガス中に水素などの還元性の高いガスを混合することで、炉内の酸素分圧をさらに低減させることもできる。真空度を過度に低くすると、ポンプ設備などが大型化し製造コスト増を招くので、0.005Pa程度を下限とする。   The cold rolled sheet cold rolled to the final thickness is subjected to finish annealing in a vacuum of 10 Pa or less or in an inert gas atmosphere. Here, the inert gas is a gas with low reactivity with the surface of the steel plate such as nitrogen or argon, and the inert gas is supplied into the furnace to reduce the oxygen partial pressure, thereby making the furnace vacuum. The same effect is obtained. Moreover, the oxygen partial pressure in a furnace can also be further reduced by mixing highly reducing gas, such as hydrogen, in this inert gas. If the degree of vacuum is excessively low, the size of the pump equipment and the like becomes large and the manufacturing cost increases, so the lower limit is about 0.005 Pa.

また、仕上げ焼鈍において、最高到達温度までの平均昇温速度は、30℃/hr以上とするのが生産性の観点から好ましい。さらに好ましくは、500℃/hr以上である。仕上げ焼鈍における最高温度(均熱温度)は1050℃以上とし、1050℃以上での保持時間(均熱時間)は、0.5hr以上、より好ましくは1.0hr以上である。均熱温度が1050℃未満であると、仕上げ焼鈍での異常粒成長が不十分となり磁気特性に有利な集合組織が得られなくなる。また、均熱時間が0.5hr未満であると、仕上げ焼鈍での異常粒成長が不十分となり磁気特性に有利な集合組織が得られなくなる。   Moreover, in finish annealing, it is preferable from the viewpoint of productivity that the average temperature rising rate up to the highest reaching temperature be 30 ° C./hr or more. More preferably, it is 500 ° C./hr or more. The maximum temperature (soaking temperature) in the final annealing is 1050 ° C. or more, and the holding time (soaking time) at 1050 ° C. or more is 0.5 hr or more, more preferably 1.0 hr or more. If the soaking temperature is less than 1050 ° C., abnormal grain growth in finish annealing is insufficient, and a texture favorable to magnetic properties can not be obtained. In addition, when the soaking time is less than 0.5 hr, abnormal grain growth in finish annealing is insufficient, and a texture favorable to magnetic properties can not be obtained.

質量%で、C:0.001%、Si:1.1%〜5.5%、Mn:0.01%〜2.4%、P:0.01%、Al:0.001%、N:0.001%、Cu:0.001%〜1.0%、S:0.0001%〜0.02%の範囲で成分組成を変更し、残部Feおよび不可避的不純物からなる成分組成の溶鋼を、実験室的に溶製し、鋳込んだ後、熱間圧延により板厚2.0mmの熱延板とした。その後、前記熱延板に1000℃で60sの熱延板焼鈍を施し、酸洗した後、ワークロールの粗度が0.2μmとなる圧延機により冷間圧延を施し表面粗度Raが0.2μmの圧延板を得た。前記冷間圧延での冷延板の仕上げ厚(最終板厚)は0.05mm〜0.30mmの範囲で変更した。その後、前記冷延板を0.01Pa(真空)、20Pa(低真空度)の圧力、純度99.999%の窒素又はアルゴン雰囲気中で仕上げ焼鈍を施した。ここで、前記仕上げ焼鈍の均熱温度は900〜1100℃、均熱時間は6〜60minである。前記仕上げ焼鈍後の仕上げ焼鈍板(無方向性電磁鋼板)の結晶方位をX線単結晶方位測定により測定した。その後、前記仕上げ焼鈍板をワイヤーカット加工により内径60mm、外径80mmのリング試料に加工した。そして、前記リング試料を35枚積層させた状態でセラミックス製のリングケースに入れ、100ターンの1次巻線と20ターンの2次巻線を施すことで磁気測定用のリング状磁気測定試料とした。前記リング状磁気測定試料を用いて、交流磁気測定装置により周波数50Hz、最大磁束密度1.5Tにおける鉄損W15/50と、磁化力5000A/mにおける磁束密度B50を測定した。 % By mass, C: 0.001%, Si: 1.1% to 5.5%, Mn: 0.01% to 2.4%, P: 0.01%, Al: 0.001%, N Molten steel of the component composition which changes the component composition in the range of 0.001%, Cu: 0.001% to 1.0%, S: 0.0001% to 0.02%, and the balance of Fe and unavoidable impurities Were laboratory-melted and cast, and then hot-rolled to form a 2.0 mm-thick hot-rolled sheet. Thereafter, the hot-rolled sheet is subjected to hot-rolled sheet annealing at 1000 ° C. for 60 seconds, pickled, and then cold-rolled by a rolling mill with a work roll roughness of 0.2 μm. A rolled plate of 2 μm was obtained. The finished thickness (final thickness) of the cold rolled sheet in the cold rolling was changed in the range of 0.05 mm to 0.30 mm. Thereafter, the cold-rolled sheet was subjected to finish annealing in a pressure of 0.01 Pa (vacuum), 20 Pa (low vacuum degree), a nitrogen or argon atmosphere of purity 99.999%. Here, the soaking temperature of the finish annealing is 900 to 1100 ° C., and the soaking time is 6 to 60 minutes. The crystal orientation of the finish annealed sheet (non-oriented electrical steel sheet) after the finish annealing was measured by X-ray single crystal orientation measurement. Thereafter, the finished annealed sheet was processed into a ring sample having an inner diameter of 60 mm and an outer diameter of 80 mm by wire cutting. Then, the 35 ring samples are stacked in a ceramic ring case, and a primary winding of 100 turns and a secondary winding of 20 turns are applied to the ring-shaped magnetic measurement sample for magnetic measurement did. An iron loss W 15/50 at a frequency of 50 Hz and a maximum magnetic flux density of 1.5 T and a magnetic flux density B 50 at a magnetizing force of 5000 A / m were measured by an AC magnetic measuring apparatus using the ring-shaped magnetic measurement sample.

これらの測定結果と、鋼の成分組成、冷間圧延での冷延板の最終板厚、仕上げ焼鈍条件を表1に併記した。表1から、本発明に適合する条件で製造した無方向性電磁鋼板は、異常粒成長後の結晶方位が改善し、優れた磁気特性を有することが分かる。   The measurement results, the composition of the steel, the final thickness of the cold rolled sheet in cold rolling, and the final annealing conditions are shown in Table 1. From Table 1, it can be seen that the non-oriented electrical steel sheet manufactured under the conditions compatible with the present invention has improved crystal orientation after abnormal grain growth and has excellent magnetic properties.

Figure 0006518950
Figure 0006518950

Claims (3)

質量%で、C:0.005%以下、Si:1.0%以上6.0%以下、Mn:0.01%以上2.5%以下、P:0.5%以下、Al:1.0%以下、N:0.005%以下、Cu:0.005%以上1.0%以下、およびS:0.0005%以上0.005%以下を含有し、かつCuとSの質量%の積であるCu×Sが5×10−6<Cu×S<5×10−4を満たし、残部Feおよび不可避的不純物からなる成分組成を有し、
結晶粒の{100}結晶面と圧延面とのなす角(β角)の大きさが3°以内にある結晶粒を{100}面方位を有する結晶粒と定義したとき、前記{100}面方位を有する結晶粒の割合が面積率で70%以上であり、かつ、前記{100}面方位を有する結晶粒のうち<012>軸と圧延方向とのなす角(α角)の大きさが10°以内である結晶粒の割合が面積率で70%以上であり、
鋼板の表面粗度Raが0.40μm以下、板厚が0.05mm以上0.25mm以下であることを特徴とする無方向性電磁鋼板。
C: 0.005% or less, Si: 1.0% to 6.0%, Mn: 0.01% to 2.5%, P: 0.5% or less, Al: 1.% by mass. 0% or less, N: 0.005% or less, Cu: 0.005% or more and 1.0% or less, and S: 0.0005% or more and 0.005% or less are contained, and the mass% of Cu and S The product Cu × S satisfies 5 × 10 −6 <Cu × S <5 × 10 −4 and has a component composition including the balance Fe and unavoidable impurities,
When a crystal grain whose size (β angle) between the {100} crystal plane of the crystal grain and the rolling plane is within 3 ° is defined as a crystal grain having a {100} plane orientation, the {100} plane The ratio of crystal grains having an orientation is 70% or more in area ratio, and among the crystal grains having the {100} plane orientation, the size of the angle (α angle) between the <012> axis and the rolling direction is The ratio of crystal grains within 10 ° is 70% or more in area ratio,
A non-oriented electrical steel sheet characterized in that the surface roughness Ra of the steel sheet is 0.40 μm or less and the thickness is 0.05 mm or more and 0.25 mm or less.
周波数50Hz、最大磁束密度1.5Tにおける鉄損W15/50が1.8W/kg以下であり、かつ、磁界の強さ5000A/mにおける磁束密度B50が1.77T以上であることを特徴とする請求項1に記載の無方向性電磁鋼板。 Core loss W 15/50 at a frequency of 50 Hz and a maximum magnetic flux density of 1.5 T is 1.8 W / kg or less, and a magnetic flux density B 50 at a magnetic field strength of 5000 A / m is 1.77 T or more The non-oriented electrical steel sheet according to claim 1, wherein 請求項1または2に記載の無方向性電磁鋼板の製造方法であって、
前記成分組成を有するスラブを熱間圧延した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を行って、前記冷間圧延での最終板厚が0.05mm以上0.25mm以下、表面粗度Raが0.40μm以下の冷延板を得た後、10Pa以下の真空あるいは不活性ガス雰囲気中で1050℃以上の均熱温度で0.5hr以上保持する仕上げ焼鈍を行うことを特徴とする無方向性電磁鋼板の製造方法。
A method of manufacturing a non-oriented electrical steel sheet according to claim 1 or 2,
After hot rolling a slab having the above-mentioned composition, cold rolling is performed once or twice or more with intermediate annealing interposed, and the final plate thickness in the cold rolling is 0.05 mm or more 0 After obtaining a cold-rolled sheet of 25 mm or less and surface roughness Ra of 0.40 μm or less, finish annealing is performed by holding it for 0.5 hour or more at a soaking temperature of 1050 ° C. or more in a vacuum of 10 Pa or less or inert gas atmosphere. A method of manufacturing a non-oriented electrical steel sheet characterized by performing.
JP2016212415A 2016-10-31 2016-10-31 Non-oriented electrical steel sheet and method of manufacturing the same Active JP6518950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016212415A JP6518950B2 (en) 2016-10-31 2016-10-31 Non-oriented electrical steel sheet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212415A JP6518950B2 (en) 2016-10-31 2016-10-31 Non-oriented electrical steel sheet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2018070955A JP2018070955A (en) 2018-05-10
JP6518950B2 true JP6518950B2 (en) 2019-05-29

Family

ID=62114644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212415A Active JP6518950B2 (en) 2016-10-31 2016-10-31 Non-oriented electrical steel sheet and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6518950B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328491B2 (en) * 2018-11-09 2023-08-17 日本製鉄株式会社 Non-oriented electrical steel sheet
KR102241985B1 (en) * 2018-12-19 2021-04-19 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
JP7284383B2 (en) * 2019-02-28 2023-05-31 日本製鉄株式会社 Non-oriented electrical steel sheet
KR102361872B1 (en) * 2019-12-19 2022-02-10 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
CN113005264B (en) * 2021-02-20 2021-12-14 包头市威丰稀土电磁材料股份有限公司 Oriented silicon steel magnetic field annealing process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224624A (en) * 1990-12-26 1992-08-13 Sumitomo Metal Ind Ltd Manufacture of silicon steel sheet excellent in magnetic property
JP2001073094A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet for electric car, and its manufacture
JP4414727B2 (en) * 2003-10-31 2010-02-10 新日本製鐵株式会社 Magnetic steel sheet with excellent magnetic properties and deformation resistance and manufacturing method thereof
JP4533036B2 (en) * 2004-08-04 2010-08-25 新日本製鐵株式会社 Non-oriented electrical steel sheet with excellent magnetic properties in the 45 ° direction from the rolling direction and method for producing the same
JP5375559B2 (en) * 2009-11-27 2013-12-25 新日鐵住金株式会社 Non-oriented electrical steel sheet shearing method and electromagnetic component manufactured using the method
WO2012087045A2 (en) * 2010-12-23 2012-06-28 주식회사 포스코 Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same
KR101353459B1 (en) * 2011-12-28 2014-01-21 주식회사 포스코 Non-oriented electrical steel sheets and method for manufacturing the same
KR101203791B1 (en) * 2012-03-27 2012-11-21 허남회 Manufacturing method of 100 ovw non-oriented electrical steel sheet with excellent magnetic properties
JP6269970B2 (en) * 2015-01-08 2018-01-31 Jfeスチール株式会社 Non-oriented electrical steel sheet excellent in recyclability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018070955A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6518950B2 (en) Non-oriented electrical steel sheet and method of manufacturing the same
JP6738047B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2019019355A (en) Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
EP2778244A1 (en) Anisotropic electromagnetic steel sheet and method for producing same
US11732319B2 (en) Non-oriented electrical steel sheet
KR20190077025A (en) Non-oriented electrical steel sheet and manufacturing method thereof
US20210343458A1 (en) Non-oriented electrical steel sheet
JP2018135556A (en) Electromagnetic steel sheet, and method for producing the same
US20210301363A1 (en) Non-oriented electrical steel sheet
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP5206017B2 (en) Method for producing high silicon steel sheet
JP6414172B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2006328461A (en) Soft magnetic steel
JPWO2005100627A1 (en) Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
JP6123234B2 (en) Electrical steel sheet
JPH1060532A (en) Production of nonoriented silicon steel sheet excellent in magnetic property and surface property
JP7056745B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7222444B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method
RU2789644C1 (en) SHEET OF NON-TEXTURED ELECTRICAL STEEL GRADE 600 MPa AND THE METHOD FOR ITS MANUFACTURE
JP4123744B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
JP7231116B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2023282072A1 (en) Non-oriented electrical steel plate and manufacturing method thereof
JP4852804B2 (en) Non-oriented electrical steel sheet
JPH03140442A (en) Silicon steel sheet having excellent magnetic characteristics and its manufacture

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6518950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250