JP6516045B2 - 画像処理装置 - Google Patents

画像処理装置 Download PDF

Info

Publication number
JP6516045B2
JP6516045B2 JP2018099866A JP2018099866A JP6516045B2 JP 6516045 B2 JP6516045 B2 JP 6516045B2 JP 2018099866 A JP2018099866 A JP 2018099866A JP 2018099866 A JP2018099866 A JP 2018099866A JP 6516045 B2 JP6516045 B2 JP 6516045B2
Authority
JP
Japan
Prior art keywords
image
light
imaging
unit
microlens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018099866A
Other languages
English (en)
Other versions
JP2018186508A (ja
Inventor
岩根 透
透 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JP2018186508A publication Critical patent/JP2018186508A/ja
Application granted granted Critical
Publication of JP6516045B2 publication Critical patent/JP6516045B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/272Means for inserting a foreground image in a background image, i.e. inlay, outlay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)
  • Image Input (AREA)

Description

本発明は、画像処理装置に関する。
従来、1回の撮影で得られたデータから任意の像面にピントの合った画像を合成する撮像装置が知られている。例えば特許文献1に記載されている撮像装置は、撮影光学系を通過して複数のマイクロレンズの中心に入射する光線を受光する画素の出力値に基づいて画像データを合成する。
日本国特開2007−4471号公報
従来技術には、合成画像データの分解能を高めるために仮想画素の幅をマイクロレンズのピッチより狭くすると、合成画像データのコントラストが低下するという問題があった。
本発明の1の態様によると、画像処理装置は、複数のマイクロレンズ毎に複数設けられた受光部の出力データに対してハイパスフィルタ処理を行う処理部と、前記処理部で前記ハイパスフィルタ処理が行われた前記出力データを合成し、任意の焦点面の画像を生成する画像生成部と、を備える。
本発明によれば、コントラストの高さと分解能の高さを両立した画像データを合成することができる。
第1の実施の形態に係るデジタルカメラの構成を示す図である。 撮像ユニット100の斜視図である。 撮影レンズL1と撮像ユニット100とを模式的に示した断面図である。 合成対象の像面上の光点からの光束と撮像ユニット100とを模式的に示した断面図である。 それぞれ異なる像面上の光点P4と光点P5について、その光の広がりを示した模式図である。 撮像素子13の撮像面のうち、図5(b)に示す25個のマイクロレンズ120に被覆された部分を光軸方向から見た平面図である。 1つの光点からの光束が多数のマイクロレンズ120に入射する場合の、撮像面上の各入射領域の決定方法を説明する図である。 図5に示した像面S5について、光点P5の位置から左にpだけずれた位置の光点P7を示す図である。 各光点からの光束が重なり合う様子を示す模式図である。 合成画素の出力分布の一例を示す図である。 PSFの一例を示す図である。 第2の実施の形態に係るマイクロレンズアレイ12を光軸方向から見た平面図である。 ハイパスフィルターを加えることにより低下するコントラストを補完する内容を説明する概念図である。 変形例4を実施するための制御回路101Aの構成を示す図である。
(第1の実施の形態)
本実施の形態のデジタルカメラは、マイクロレンズアレイを介して撮影することにより取得された画像信号が奥行き情報等の波面情報を有することを利用して、数値処理によってユーザが所望する焦点位置を有する画像データを生成する。撮影レンズを介して入射した被写体光束は、マイクロレンズアレイの近傍に結像する。このとき、被写体の位置に応じて光束が結像する位置は撮影レンズの光軸方向に異なるものとなり、さらに被写体が三次元物体であれば被写体光束は同一平面上には結像しない。本実施の形態のデジタルカメラは、ユーザが所望する光軸方向の結像位置に結像する被写体の像を再現した画像データを生成(合成)する。以下、この生成された画像データを合成画像データと称する。合成画像データは、結像光学系の焦点があたかも当該結像位置(実際の結像位置ではなくユーザが所望する位置)にあるように見える。そこで、以下の説明において、この結像位置のことを焦点位置と呼ぶこととする。
さらに、本実施の形態のデジタルカメラは、マイクロレンズアレイに含まれるマイクロレンズの数よりも大きな解像度を有する合成画像データを生成可能に構成されている。デジタルカメラは多数のマイクロレンズを備えると共に、個々のマイクロレンズに対応して、複数個の撮像画素(受光素子)を備えている。そして、デジタルカメラは、ユーザが選択した焦点位置の合成画像データとなるように、1つのマイクロレンズに対応する撮像画素から出力された画像信号のみならず、その周辺に配置されているマイクロレンズに対応する撮像画素から出力された画像信号を用いて、合成画像データの1画素分の結像領域に相当する合成画像信号を生成し、焦点位置が可変な合成画像データを作成する。以下、詳細に説明する。
図1は、第1の実施の形態に係るデジタルカメラの構成を示す図である。デジタルカメラ1は、例えばバヨネット式のレンズマウント機構等により、撮影レンズL1を有する交換レンズ2の着脱が可能に構成されている。デジタルカメラ1は、撮像ユニット100、制御回路101、A/D変換回路102、メモリ103、操作部112、表示器109、LCD駆動回路110およびメモリカードインタフェース111を備える。撮像ユニット100は、多数のマイクロレンズ120が二次元状に配列されたマイクロレンズアレイ12および撮像素子13を備える。なお、以下の説明においては、Z軸が撮影レンズL1の光軸に平行となるように設定され、Z軸と直交する平面内でX軸とY軸とが互いに直交する方向に設定されているものとする。
撮影レンズL1は、複数の光学レンズ群から構成され、被写体からの光束をその焦点面近傍に結像する。撮影レンズL1には、入射光量を調節する絞り11が設けられている。なお、図1では撮影レンズL1を説明の都合上1枚のレンズで代表して表している。撮影レンズL1の予定結像面近傍に、マイクロレンズアレイ12と撮像素子13とが順に配置される。撮像素子13は、複数の光電変換素子を備えたCCDやCMOSイメージセンサによって構成される。撮像素子13は、撮像面上に結像されている被写体像を撮像し、制御回路101により制御されて被写体像に応じた光電変換信号(画像信号)をA/D変換回路102へ出力する。なお、撮像ユニット100の詳細については説明を後述する。
A/D変換回路102は、撮像素子13が出力する画像信号にアナログ的な処理をしてからデジタル画像信号に変換する回路である。制御回路101は、CPUやメモリその他の周辺回路によって構成される。制御回路101は、不図示のROM等に予め格納されている制御プログラムを読み出して実行する。この制御プログラムにより、制御回路101は、デジタルカメラ1を構成する各部から入力される信号を用いて所定の演算を行い、デジタルカメラ1の各部に対する制御信号を送出して、撮影動作を制御する。また、制御回路101は、後述するように焦点位置入力ボタン112aの操作に応じて操作部112から入力した操作信号に基づいて合成画像データの焦点位置を決定する。
制御回路101は、画像合成部105、フーリエ変換部106、除算部107、および逆フーリエ変換部108を機能的に備える。画像合成部105は、撮影レンズL1の予定焦点面とは異なる任意の焦点面の合成画像データを合成する。フーリエ変換部106は、画像合成部105により合成された合成画像データをフーリエ変換する。除算部107は、フーリエ変換の結果を、後述するポイントスプレッドファンクションのフーリエ像で実効的に除算する。逆フーリエ変換部108は、除算部107による除算の結果を逆フーリエ変換し、目的画像データを作成する。なお、画像合成部105、フーリエ変換部106、除算部107、および逆フーリエ変換部108については詳細を後述する。
メモリ103は、A/D変換回路102によりデジタル変換された画像信号や、画像処理、画像圧縮処理および表示用画像データ作成処理の途中や処理後のデータを一時的に格納するために使用される揮発性の記憶媒体である。メモリカードインタフェース111は、メモリカード111aの着脱が可能なインタフェースである。メモリカードインタフェース111は、制御回路101の制御に応じて、画像データをメモリカード111aに書き込んだり、メモリカード111aに記録されている画像データを読み出すインタフェース回路である。メモリカード111aは、例えばコンパクトフラッシュ(登録商標)やSDカードなどの半導体メモリカードである。
LCD駆動回路110は、制御回路101の命令に基づいて表示器109を駆動する回路である。表示器109は液晶パネル等により構成され、再生モードにおいてメモリカード111aに記録されている画像データに基づいて制御回路101で作成された表示データの表示を行う。また、表示器109には、デジタルカメラ1の各種動作を設定するためのメニュー画面が表示される。
操作部112は、ユーザの操作を受け付けて、操作内容に応じた各種の操作信号を制御回路101へ出力する。操作部112は、焦点位置入力ボタン112a,電源ボタン,レリーズボタン,その他の設定メニューの表示切換ボタン、設定メニュー決定ボタン等を含む。焦点位置入力ボタン112aは合成画像データの焦点位置yを入力する際にユーザにより操作される。ユーザにより焦点位置入力ボタン112aが操作され焦点位置yが選択されると、操作部112はその焦点位置yを含む操作信号を制御回路101へ出力する。
次に、撮像ユニット100の構成について、図2に示した撮像ユニット100の斜視図を用いて詳細に説明する。撮像ユニット100はマイクロレンズアレイ12と撮像素子13とを有する。マイクロレンズアレイ12は、XY平面上に二次元状に正方配列された複数のマイクロレンズ120を有する。撮像素子13には、各マイクロレンズ120を通過した光を受光する光電変換素子130(以下、撮像画素130と呼ぶ)が、マイクロレンズ120に対応した配置パターンで二次元状に配列されている。撮像素子13は、マイクロレンズアレイ12から、マイクロレンズ120の焦点距離fだけ離れた位置に配置されている。つまり、各マイクロレンズ120について、当該マイクロレンズ120に対応する(被覆される)複数の撮像画素130が、当該マイクロレンズ120の焦点距離fだけ離れた位置に設けられている。
なお図2には、マイクロレンズアレイ12に設けられた複数のマイクロレンズ120と、撮像素子13に設けられた複数の撮像画素130のうち、その一部のみを図示している。実際には、より多数のマイクロレンズ120および撮像画素130が存在している。例えば、1つのマイクロレンズ120によっておよそ100程度の撮像画素130が被覆されており、従ってマイクロレンズアレイ12は撮像素子13が有する撮像画素130の数のおよそ100分の1程度の数のマイクロレンズ120を有している。
例えば撮影レンズL1の焦点距離が50ミリメートルとすると、マイクロレンズ120の焦点距離fは数百マイクロメートル程度(撮影レンズL1の焦点距離の100分の1程度)であるため、撮像素子13から見ると、撮影レンズL1のいわゆる射出瞳の位置は、マイクロレンズ120にとってほぼ無限遠と見なすことができる。つまり、撮影レンズL1の射出瞳の位置と撮像素子13の撮像面は、光学的に共役とすることができる。
図3は、撮影レンズL1と撮像ユニット100とを模式的に示した断面図である。図3の左側に示した撮影レンズL1の予定結像面S1の近傍にマイクロレンズアレイ12が設けられ、マイクロレンズ120の焦点位置S2の近傍に撮像素子13が設けられている。
撮影レンズL1によりマイクロレンズアレイ12の近傍に結像された被写体像は、マイクロレンズアレイ12が備える各マイクロレンズ120により圧縮され撮像素子13に畳み込まれる。例えば、撮影レンズL1の像倍率が50分の1、すなわち撮影レンズL1が被写体像を実際の50分の1の大きさで予定結像面S1に結像させる場合、奥行き方向で見ると被写体像はその二乗である2500分の1の倍率で結像される。つまり、撮影レンズL1は、三次元空間にある被写体を奥行き方向に圧縮した立体像を予定結像面S1に結像させる。
図4は、合成対象の像面上の光点からの光束と撮像ユニット100とを模式的に示した断面図である。図4において、合成対象の像面S3上に設けた光点P1を考える。この光点P1から撮像ユニット100に向かう光の広がり角θ1は、撮影レンズL1の瞳の大きさ(すなわち撮影レンズL1のF値)により制限を受ける。マイクロレンズ120のF値が撮影レンズL1のF値と同じかそれより小さければ、この光点P1から出射し、あるマイクロレンズ120に入射した光束は、そのマイクロレンズ120により被覆されている領域の外には広がらない。
ここで、図4に示すように、光点P1からの光束が5つのマイクロレンズ120a〜120eに入射するとすれば、これらのマイクロレンズ120a〜120eに入射した光束30a〜30eの撮像面上における入射光量(撮像画素群130a〜130eの受光出力)を積算することにより、光点P1からの瞳に制限された全輻射量が得られることになる。
以上をまとめると、合成画像データを構成する特定の合成画素を作成するためには、その合成画素の座標に対応する撮像面上の光断面の全光量を演算すればよい。画像合成部105はこの演算を行うために、まず(1)合成対象の像面上のある光点について、その光点からの光束が入射するマイクロレンズ120を特定し、その後、(2)特定した各マイクロレンズ120について、光点からの光束がどの撮像画素に入射するかを特定する。
(1)合成対象の像面上のある光点について、その光点からの光束が入射するマイクロレンズ120を特定するには、その光点からの光束の広がり方がわかればよい。前述の通り、光点から広がる光の角度は撮影レンズL1の瞳により特定することができる。以下の説明では、撮影レンズL1のF値がマイクロレンズ120のF値と同じであると仮定する。
図5(a)は、それぞれ異なる像面上の光点P4と光点P5について、その光の広がりを模式的に示した断面図であり、図5(b)はこれを撮影レンズL1側から見た平面図である。マイクロレンズ120の焦点距離fだけマイクロレンズ120から離れた位置の像面S4の上に存在する光点P4からの光束は、ちょうど1つ分のマイクロレンズ120の大きさ31に広がってマイクロレンズアレイ12に入射する。
他方、マイクロレンズ120の焦点距離fの2倍、すなわち2fだけマイクロレンズ120から離れた位置の像面S5の上に存在する光点P5からの光束は、図5(a)、(b)の各々に示す通り、1つ分のマイクロレンズ120を超える大きさ32に広がる。
以上のように、ある光点からの光束が入射するマイクロレンズ120は、その光点からマイクロレンズ120までの距離(すなわち合成対象の像面からマイクロレンズ120までの距離)に基づいて特定することができる。なお、実際には撮影レンズL1のF値も考慮してこれらのマイクロレンズ120を特定する必要がある。例えば、撮影レンズL1のF値がマイクロレンズ120のF値より大きい(撮影レンズL1がマイクロレンズ120より暗い)場合には、光点からの光束の広がりは小さくなる。
画像合成部105は次に、(2)特定した各マイクロレンズ120について、光点からの光束がどの撮像画素に入射するかを特定する。例えば図5の光点P4のように、光点がマイクロレンズ120からマイクロレンズ120の焦点距離fだけ離れた位置にある場合には、その直下のマイクロレンズ120に被覆された領域全体に円形開口の光が広がる。従って、この場合には、1つのマイクロレンズ120に被覆された全ての撮像画素130を選択すればよい。また、光点がマイクロレンズ120から焦点距離fより近い位置にある場合には、マイクロレンズ120で光が収束せずに広がるが、入射光束の広がり角の制限を受けているため、その広がりは1つのマイクロレンズ120に被覆された領域に留まる。
他方、光点が焦点距離fよりも離れた位置にある場合、光点からの光束は複数のマイクロレンズ120に渡って入射するため、複数のマイクロレンズ120に被覆された多数の撮像画素130から合成画素を作成するために必要な撮像画素130を選択する必要がある。以下、光点が焦点距離fよりも離れた位置にある場合について、図5の光点P5、すなわち光点がマイクロレンズ120から2fだけ離れた位置にある場合を例に挙げて説明する。
光点が2fだけ離れた位置にある場合、図5(b)に示すように、その光点からの光束は、その光点の直下にあるマイクロレンズ120と、それに隣接する8つのマイクロレンズ120とを合わせた、計9個のマイクロレンズ120に入射する。
図6は、撮像素子13の撮像面のうち、図5(b)に示す25個のマイクロレンズ120に被覆された部分を光軸方向から見た平面図である。なお図6では、図5(b)の各マイクロレンズ120の位置を、撮像素子13の撮像面上に重畳して破線で図示している。
図5(a)に示した光点P5からの光束は、図6に示した9つの領域33a〜33iに入射する。図6から明らかな通り、これらの領域33a〜33iは、1つのマイクロレンズ120に被覆される領域を9つに分割した形状を有している。このように、どのような位置の光点であっても、その光点からの光束が入射する撮像面上の領域の大きさ(光断面の大きさ)は、1つのマイクロレンズ120に被覆される領域の大きさと常に一致する。
以下、図7を用いて、図6のように1つの光点からの光束が多数のマイクロレンズ120に入射する場合の、撮像面上の各入射領域の決定方法を説明する。図7(a)はマイクロレンズアレイ12の一部を光軸方向から見た平面図である。制御回路101は、まず、図7(a)の中央に図示した光点P6からの光束が広がる範囲を特定する。ここでは9つのマイクロレンズ120a〜120iに跨がる領域34が、光点P6からの光束が広がる範囲である。
次に、図7(b)に示すように、その領域34を各マイクロレンズ120の大きさの格子で分割する。図7(b)では、図7(a)に示した9つのマイクロレンズ120a〜120iの各々に対応するように配置された、各マイクロレンズ120の直径の大きさを持った正方形35a〜35iの格子で、光点P6からの光束が広がる領域34を分割している。
最後に、図7(c)に示すように、分割された各領域34a〜34iを、それぞれ対応するマイクロレンズ120a〜120iに被覆される領域に配置する。各被覆領域内における分割領域34a〜34iの相対位置は、図7(b)に示した9つの正方形35a〜35iの相対位置と同一である。例えば、3行3列に配置された正方形35a〜35iのうち、左上隅の正方形35aに対応する分割領域34aは、対応する被覆領域36aの左上隅に配置される。
以上のように、光点の高さをh、マイクロレンズ120の焦点距離をf、マイクロレンズ120の径をdとおいたとき、その光点からの光束が広がる領域をd/(h/f)の幅の格子で分割することにより、光点からの光束が入射する撮像画素を特定することができる。なお、(h/f)は負の値となることもあり、この場合はマイクロレンズ120より撮像素子13側に光点があるものとする。
以上、特定のマイクロレンズ120のレンズ中心軸上に光点がある例を挙げて、合成画素の作成方法を説明したが、この合成画素の作成方法はそれ以外の位置に光点がある場合にも適用することが可能である。マイクロレンズ120のレンズ中心軸上の光点のみを合成してしまうと、作成される合成画像データの画素数はマイクロレンズ120の数に制限されてしまうことになり、低画素数の合成画像データしか作成することができない。そこで、本実施形態の画像合成部105は、合成対象の像面上により多数の光点を設定し、それらの光点について前述した合成方法で合成画素を作成することで、より高画素数の合成画像データを作成する。
図8は、図5に示した像面S5について、光点P5の位置から左にpだけずれた位置の光点P7を示す図である。このとき、光束の広がる範囲37も左にpだけずれるので、このずれた範囲37について図7と同様に分割領域を設定することで、光点P7に相当する合成画素を作成することができる。例えば、1つのマイクロレンズ120について、縦横それぞれについてd/4ずつずらした位置に光点を設定し、それぞれの光点について合成画素の作成を行えば、1つのマイクロレンズ120から16個の合成画素を作成することができる。この場合、合成画像データはマイクロレンズ120の数の16倍の画素数を有することになる。
ところで、上述のように、1つのマイクロレンズ120上に複数の光点を設けて画像合成を行う場合、1つの撮像画素130の出力が複数の合成画素の作成に用いられることになる。実際には、合成対象の像面上には三次元的に多数の光点が連続的に存在し、それらの光点からの光が撮像素子13の撮像面上に重畳されている。従って、マイクロレンズ120上にある光点を設けた場合の、その光点からの光束が入射する撮像画素130の受光出力には、当該光点以外の光点からの光束に対応する出力が含まれていることになる。
図9は、各光点からの光束が重なり合う様子を示す模式図であり、図9(a)が合成対象の像面S4、マイクロレンズアレイ12、および撮像素子13のYZ平面による断面図、図9(b)が撮像素子13の撮像面を光軸方向から見た平面図である。ここでは、マイクロレンズ120からマイクロレンズ120の焦点距離fだけ離れた像面S4の上に、一列に並んだ5つの光点P8〜P12を考える。
これら5つの光点P8〜P12は、それぞれマイクロレンズ120の幅dの半分、すなわちd/2ずつ離れた位置に設けられている。具体的には光点P8、P10、P12はそれぞれ異なるマイクロレンズ120の中心軸上の位置に設定されており、光点P9、P11は隣り合う2つのマイクロレンズ120の間に設定されている。このとき、光点P8〜P12からの光束40〜44は、それぞれ重なり合って撮像素子13の撮像面の領域45〜49に入射する。
例えば光点P9からの光束41は、図9(b)に示した領域46に入射するが、この領域46は、光点P8からの光束40が入射する領域45および光点P10からの光束42が入射する領域47と重なり合っている。つまり、領域45と領域46の重なり合った領域に相当する撮像画素130からの受光出力には、光点P8からの光束40に相当する出力と、光点P9からの光束41に相当する出力とが重畳されている。
このとき、i番目の光点の真の強度をaiと置くと、i番目の光点に対応する合成画素の出力Piは次式(1)により演算することができる。
Figure 0006516045
制御回路101は、1つのマイクロレンズ120を縦横4分割し、16個の光点を設ける。この場合には、横方向に並んだ4つの光点について同様に、次式(2)を用いて合成画素の出力Piを演算することができる。
Figure 0006516045
このときの合成画素の出力分布を図10に示す。図10の縦軸は画素出力であり、横軸は画素位置である。図10から明らかな通り、合成画素は三角形のコンボリューション積分がなされた画素出力である。このような出力分布から、マイクロレンズ120による光点からの光束の広がり方を表すポイントスプレッドファンクション(PSF)を求めることができる。
PSFは、複数のマイクロレンズ120の配列と、画像合成部105が合成する画素の配列とから決定される。本実施形態では、PSFの大きさを、1つのマイクロレンズ120が被覆する領域の大きさと等しいものとする。また、PSFの要素数は、1つのマイクロレンズ120が被覆する複数の撮像画素130の数に等しいものとする。
なお、図10では合成画素の出力分布を一次元的に図示しているが、PSFを求める場合はこれを二次元的に演算する必要がある。すなわち、左右の光点からの光束の重畳のみならず、周囲の全光点からの光束の重畳を考慮して演算を行うことにより、PSFを求めることができる。
図11(a)は導出されたPSFの値を示す図であり、図11(b)はPSFを3次元座標にプロットした図である。図11では、1つのマイクロレンズ120内の81点についてPSFの値を示している。
除算部107は、以上のようにして導出したPSFを用いて、図10に示した画素出力の重畳を解く。画素出力の重畳は次式(3)のように表現できる。なお、ここでは簡単のため、一次元での表現としている。
Figure 0006516045
上式(3)において、psf(t)はPSFを、f(x)は真の光強度を、i(x)は重畳された画素出力を表している。psf(t)は上述の方法により既知であり、重畳された画素出力i(x)も既知であるので、真の光強度f(x)を求めることが可能である。ここでi(x)をフーリエ変換すれば、上式(3)はPSFのフーリエ変換像PSF(u)と真の光強度f(x)のフーリエ変換像F(u)の積で表されることになる。すなわち、i(x)のフーリエ変換像I(u)は次式(4)のように表される。
Figure 0006516045
上式(4)より、真の光強度f(x)のフーリエ変換像F(u)は次式(5)のように表すことができる。
Figure 0006516045
関数i(x)、psf(x)ならびにそれらのフーリエ変換像I(u)、PSF(u)は既知であるので、上式(5)より真の光強度f(x)のフーリエ変換像F(u)を得ることができる。その後、このフーリエ変換像F(u)をフーリエ逆変換すれば、真の光強度f(x)を求めることができる。
ただし、実際にこの演算を行い真の光強度f(x)を求めると、演算誤差により発生する高周波ノイズが合成画像データ全体に現れ、明瞭な画像が得られない。そこで、本実施形態の除算部107は、周知のウィナーフィルタを用いてこの高周波ノイズを抑制する。上式(5)にウィナーフィルタを適用すると、次式(6)のようになる。除算部107は上式(5)ではなく次式(6)により真の光強度f(x)のフーリエ変換像F(u)を求めることで、高周波ノイズが抑制された明瞭な合成画像データを作成する。なお、次式(6)において、PSF*(u)はPSF(u)の複素共役を意味する。
Figure 0006516045
以上の流れを図1に示したブロック図で簡単に説明する。撮像素子13から出力された撮像信号はA/D変換回路102によりデジタル画像信号に変換され、メモリ103に記憶される。制御回路101には、操作部112から合成対象の焦点位置と被写界深度を決める絞り値とが入力される。画像合成部105は、入力された焦点位置および絞り値の二次元画像を合成する。
一方、フーリエ変換部106は、マイクロレンズアレイ12におけるマイクロレンズ120の配列と、画像合成部105の合成画素の位置とから、1つの光点に対するポイントスプレッドファンクション(PSF)を決定し、このPSFと画像合成部105による合成画像とをフーリエ変換する。除算部107は、上式(6)のように、ウィナーフィルタを用いて画像合成部105による合成画像のフーリエ像をPSFのフーリエ像で実効的に除算し、真の光強度f(x)のフーリエ像F(u)を得る。最後に逆フーリエ変換部108が、このフーリエ像F(u)を逆フーリエ変換し、元の合成画像データから改善された目的画像データを得る。この画像は、マイクロレンズ120による入射光束の重畳が解かれた、コントラストの高い画像である。
上述した第1の実施の形態によるデジタルカメラによれば、次の作用効果が得られる。
(1)デジタルカメラ1は、撮影レンズL1を透過した光束が入射するよう二次元状に配置された複数のマイクロレンズ120から成るマイクロレンズアレイ12と、複数のマイクロレンズ120の各々に対応して当該マイクロレンズ120の後側に配置された複数の撮像画素130を有する撮像素子13とを備える。制御回路101は、複数のマイクロレンズ120の各々に対応する複数の撮像画素130の出力に基づいて、撮影レンズL1の任意の像面における像の画像データを合成する画像合成部105と、画像合成部105により合成された画像データをフーリエ変換するフーリエ変換部106と、複数のマイクロレンズ120に入射した光束の光学的な広がりを表すポイントスプレッドファンクションのフーリエ像でフーリエ変換の結果を実効的に除算する除算部107と、除算部107による除算の結果を逆フーリエ変換し、目的画像データを作成する逆フーリエ変換部108と、を備える。このようにしたので、コントラストの高さと分解能の高さを両立した画像データを合成することができる。
(2)除算部107は、ポイントスプレッドファンクションのフーリエ像に基づくウィナーフィルタをフーリエ変換部106によるフーリエ変換の結果に適用することにより、フーリエ変換部106によるフーリエ変換の結果を実効的に除算する。このようにしたので、高周波ノイズが抑制されたクリアな画像を得ることができる。
(第2の実施の形態)
以下、図面を用いて、本発明の第2の実施の形態であるデジタルカメラについて説明する。なお、第1の実施の形態と同一の箇所には第1の実施の形態と同一の符号を付し、説明を省略する。
図12は、第2の実施の形態に係るマイクロレンズアレイ12を光軸方向から見た平面図である。図12に示すように、本実施形態ではハニカム構造を構成する六角形のマイクロレンズ120を用いている。このような形状のマイクロレンズ120についても、第1の実施の形態と同様に本発明を適用することができる。
なお、第1の実施の形態とマイクロレンズ120の配列が異なっているため、本実施形態で利用されるPSFは、第1の実施の形態とは異なるものとなる。その導出方法自体は第1の実施の形態と同様である。つまり、図10のような周辺の光点からの光束の重畳を、二次元的に演算すればよい。
次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(変形例1)
レンズ交換可能なデジタルカメラに本発明を適用した実施形態について上述したが、本発明はこのような実施の形態に限定されない。例えばレンズ一体型のカメラ等についても本発明を適用することが可能である。
(変形例2)
マイクロレンズ120の配列および形状は、第1および第2の実施の形態で述べたものに限定されない。また、撮像素子13の撮像面における各撮像画素の配列および形状についても同様である。例えば、各マイクロレンズ120により被覆される撮像画素130が、マイクロレンズ120毎に分離していてもよい。
(変形例3)
ウィナーフィルタを用いずに真の光強度f(x)を求めてもよい。すなわち、上式(5)ではなく(4)を用いてF(u)を求めるように除算部107を構成してもよい。
(変形例4)
上記実施の形態では、画像合成部105により合成された合成画像に対して、フーリエ変換部106、除算部107、逆フーリエ変換部108の処理により、マイクロレンズ120による入射光束の重畳を解き、コントラストの高い画像を求めるようにした。しかし、合成前の画像の空間周波数成分が高い部分にハイパスフィルターを加え、低下するコントラストをあらかじめ補完しておくようにしてもよい。
以下、合成画像ではなく、合成前の元画像に対してハイパスフィルターが有効かどうかについて説明をする。
説明を簡単にするため、画像をマイクロレンズの焦点位置付近にある像とし、その1次元的な位置に対する強度変化をf(x)とする。マイクロレンズの径をSとすると、この位置から光出力はSだけ広がるので、撮像素子での強度はf(x)/Sである。ある撮像素子面の位置x0はこうした光を重畳したものだから
Figure 0006516045

とあらわすことができる。
隣接したピクセルとの差分は、これを微分したものに相当し
Figure 0006516045

と考えることができる。
この式の右辺はf(x)に他ならないから、差分値を増大させるハイパスフィルターは元画像f(x)のゲインを増大させることに他ならない。したがって、撮像素子の元画像にハイパスフィルターを導入すると、表示画像のコントラスト低下が補完されることになる。
図13は、ハイパスフィルターを加えることにより低下するコントラストを補完する内容を説明する概念図である。マイクロレンズ密度より低い空間周波数であれば合成画像のコントラストには特に問題は生じない。しかし、マイクロレンズ密度より高い空間周波数であれば重畳の影響により合成画像のコントラストが低下する。そこで、合成前の元画像に対してハイパスフィルター処理を行うことにより、予め空間周波数が高い部分を強調しておく。これにより、本願のような任意の像面の画像合成を行っても、空間周波数が高い部分のコントラストの低下が補完される。
図14は、本変形例を実施するための制御回路101Aの構成を示す図である。制御回路101Aは、ハイパスフィルター部201と画像合成部105からなる。図1の制御回路101のフーリエ変換部106、除算部107、逆フーリエ変換部108は削除され、その代わりにハイパスフィルター部201が設けられている。画像合成部105は、上記実施の形態の画像合成部105と同様であるので同じ符号を付している。
メモリ103から画像合成前の元画像データが制御回路101Aに入力されると、最初にハイパスフィルター部201に入力され、ハイパスフィルター処理が施される。その後、画像合成部105に入力され、上記実施の形態と同様に、操作部112により指示された焦点位置および絞り値の二次元画像を合成する。その後、合成後の合成画像を出力する。
以上のように、合成前の元画像にハイパスフィルター処理を行うような簡単な構成でも、コントラストの低下が補完された合成画像を生成することができる。
本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国特許出願2012年第156940号(2012年7月12日出願)
1…デジタルカメラ、2…交換レンズ、12…マイクロレンズアレイ、13…撮像素子、101…制御回路、105…画像合成部、106…フーリエ変換部、107…除算部、108…逆フーリエ変換部、120…マイクロレンズ、130…撮像画素、L1…撮影レンズ

Claims (2)

  1. 複数のマイクロレンズ毎に複数設けられた受光部の出力データに対してハイパスフィルタ処理を行う処理部と、
    前記処理部で前記ハイパスフィルタ処理が行われた前記出力データを合成し、任意の焦点面の画像を生成する画像生成部と、
    を備える画像処理装置。
  2. 前記ハイパスフィルタ処理は、マイクロレンズ密度より空間周波数が高い部分を強調する処理である請求項1に記載の画像処理装置。
JP2018099866A 2012-07-12 2018-05-24 画像処理装置 Active JP6516045B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012156940 2012-07-12
JP2012156940 2012-07-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014524899A Division JP6344236B2 (ja) 2012-07-12 2013-07-12 画像処理装置および撮像装置

Publications (2)

Publication Number Publication Date
JP2018186508A JP2018186508A (ja) 2018-11-22
JP6516045B2 true JP6516045B2 (ja) 2019-05-22

Family

ID=49916173

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014524899A Active JP6344236B2 (ja) 2012-07-12 2013-07-12 画像処理装置および撮像装置
JP2018099866A Active JP6516045B2 (ja) 2012-07-12 2018-05-24 画像処理装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014524899A Active JP6344236B2 (ja) 2012-07-12 2013-07-12 画像処理装置および撮像装置

Country Status (4)

Country Link
US (2) US9838618B2 (ja)
JP (2) JP6344236B2 (ja)
CN (2) CN108337419A (ja)
WO (1) WO2014010734A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671842B2 (ja) * 2010-06-03 2015-02-18 株式会社ニコン 画像処理装置および撮像装置
CN105812623B (zh) * 2014-12-30 2018-10-16 深圳超多维科技有限公司 微透镜阵列成像装置与成像方法
KR102554417B1 (ko) * 2018-06-18 2023-07-11 삼성전자주식회사 이미지 센서

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7471321B2 (en) * 2002-01-30 2008-12-30 Ricoh Company, Ltd. Photographing apparatus and photographing method
US7173663B2 (en) * 2002-10-31 2007-02-06 Freescale Semiconductor, Inc. Automatic exposure control system for a digital camera
US20050133879A1 (en) * 2003-04-07 2005-06-23 Takumi Yamaguti Solid-state imaging device, signal processing device, camera, and spectral device
US20070279618A1 (en) * 2004-10-15 2007-12-06 Matsushita Electric Industrial Co., Ltd. Imaging Apparatus And Image Improving Method
WO2006128315A1 (en) * 2005-06-03 2006-12-07 Universität Zürich Photoarray for detecting time-dependent image data
JP4826152B2 (ja) 2005-06-23 2011-11-30 株式会社ニコン 画像合成方法及び撮像装置
JP4444936B2 (ja) * 2006-09-19 2010-03-31 富士フイルム株式会社 撮影装置および方法並びにプログラム
US7792423B2 (en) * 2007-02-06 2010-09-07 Mitsubishi Electric Research Laboratories, Inc. 4D light field cameras
US8229294B2 (en) * 2007-12-10 2012-07-24 Mitsubishi Electric Research Laboratories, Inc. Cameras with varying spatio-angular-temporal resolutions
JP5187145B2 (ja) * 2008-11-07 2013-04-24 株式会社ニコン 画像合成装置および方法
JP5463718B2 (ja) * 2009-04-16 2014-04-09 ソニー株式会社 撮像装置
JP2010258689A (ja) * 2009-04-23 2010-11-11 Canon Inc 画像復元装置
JP5499778B2 (ja) * 2010-03-03 2014-05-21 株式会社ニコン 撮像装置
JP5671842B2 (ja) * 2010-06-03 2015-02-18 株式会社ニコン 画像処理装置および撮像装置
JPWO2012039180A1 (ja) * 2010-09-24 2014-02-03 富士フイルム株式会社 撮像デバイス及び撮像装置
EP2624540B1 (en) * 2010-10-01 2016-11-09 FUJIFILM Corporation Imaging device
US20140176592A1 (en) * 2011-02-15 2014-06-26 Lytro, Inc. Configuring two-dimensional image processing based on light-field parameters
JP2012222742A (ja) * 2011-04-13 2012-11-12 Sony Corp 撮像素子および撮像装置
JP5548310B2 (ja) * 2011-04-27 2014-07-16 パナソニック株式会社 撮像装置、撮像装置を備える撮像システム、及び撮像方法
US9769370B2 (en) * 2011-05-31 2017-09-19 Nikon Corporation Exchangeable lens having a settable aperture and camera body that captures an image by an optical system which has a settable aperture
KR102226707B1 (ko) * 2013-05-02 2021-03-11 주식회사 레이언스 이미지센서와 이의 구동방법

Also Published As

Publication number Publication date
CN104471924A (zh) 2015-03-25
JP6344236B2 (ja) 2018-06-20
US20180070027A1 (en) 2018-03-08
CN108337419A (zh) 2018-07-27
CN104471924B (zh) 2018-05-01
US20150319351A1 (en) 2015-11-05
US10341580B2 (en) 2019-07-02
WO2014010734A1 (ja) 2014-01-16
JPWO2014010734A1 (ja) 2016-06-23
JP2018186508A (ja) 2018-11-22
US9838618B2 (en) 2017-12-05

Similar Documents

Publication Publication Date Title
JP6149339B2 (ja) 表示装置
JP4941332B2 (ja) 撮像装置
JP5671842B2 (ja) 画像処理装置および撮像装置
JP4483951B2 (ja) 撮像装置
JP5499778B2 (ja) 撮像装置
JP6516045B2 (ja) 画像処理装置
JP6397281B2 (ja) 撮像装置、その制御方法およびプログラム
JP2016001853A (ja) 画像処理装置、撮像装置、制御方法及びプログラム
JP6190119B2 (ja) 画像処理装置、撮像装置、制御方法、及びプログラム
JP6376206B2 (ja) 画像処理装置および撮像装置
JP2024012318A (ja) 画像表示装置
WO2017126242A1 (ja) 撮像装置、及び、画像データ生成方法
JP6036799B2 (ja) 画像処理装置
CN107888837B (zh) 图像处理装置
JP5743769B2 (ja) 画像処理装置および画像処理方法
WO2021171980A1 (ja) 画像処理装置及びその制御方法並びにプログラム
JP2016082325A (ja) 撮像装置、画像処理装置および画像処理プログラム
JP6491539B2 (ja) 撮像装置及びその制御方法、システムならびにプログラム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6516045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250