JP6515812B2 - Phenolic resin composition for friction material, friction material and brake - Google Patents

Phenolic resin composition for friction material, friction material and brake Download PDF

Info

Publication number
JP6515812B2
JP6515812B2 JP2015560938A JP2015560938A JP6515812B2 JP 6515812 B2 JP6515812 B2 JP 6515812B2 JP 2015560938 A JP2015560938 A JP 2015560938A JP 2015560938 A JP2015560938 A JP 2015560938A JP 6515812 B2 JP6515812 B2 JP 6515812B2
Authority
JP
Japan
Prior art keywords
friction material
phenolic resin
resin composition
hexamethylenetetramine
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015560938A
Other languages
Japanese (ja)
Other versions
JPWO2015118996A1 (en
Inventor
直幸 原田
直幸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Publication of JPWO2015118996A1 publication Critical patent/JPWO2015118996A1/en
Application granted granted Critical
Publication of JP6515812B2 publication Critical patent/JP6515812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D2069/001Material of friction lining and support element of same or similar composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Braking Arrangements (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

本発明は、摩擦材用フェノール樹脂組成物、摩擦材及びブレーキに関するものである。   The present invention relates to a phenolic resin composition for friction material, a friction material and a brake.

フェノール樹脂組成物は、優れた耐熱性及び無機充填剤との接着性を有した材料であり、ブレーキ等の摩擦材用バインダーとして広く使用されている。上述した摩擦材用バインダーとして一般的に使用されるフェノール樹脂組成物の具体例としては、ランダムノボラック型フェノール樹脂と、ヘキサメチレンテトラミンとを粉砕混合して得られた粉末状の熱硬化性フェノール樹脂組成物などが挙げられる。   Phenolic resin compositions are materials having excellent heat resistance and adhesiveness with inorganic fillers, and are widely used as binders for friction materials such as brakes. As a specific example of the phenol resin composition generally used as a binder for friction materials mentioned above, powdery thermosetting phenol resin obtained by pulverizing and mixing random novolak type phenol resin and hexamethylenetetramine A composition etc. are mentioned.

フェノール樹脂組成物を用いたブレーキなどの摩擦材の従来の代表的な製造プロセスにおいては、バインダーとして用いる熱硬化性フェノール樹脂組成物に対して、ガラス繊維、アラミド繊維、金属繊維等の繊維状無機充填剤基材や、炭酸カルシウム、硫酸バリウム等の粉末状無機充填剤等を混合して得られた樹脂混合物を、熱圧プレス装置により加熱加圧成型することにより成型体を作製していた。   In a typical production process of a friction material such as a brake using a phenolic resin composition, a fibrous inorganic material such as glass fiber, aramid fiber, metal fiber, etc., as opposed to a thermosetting phenolic resin composition used as a binder The resin mixture obtained by mixing the filler base material and the powdered inorganic filler such as calcium carbonate and barium sulfate is heat-pressed in a hot-pressing device to produce a molded body.

そして、上述した摩擦材用バインダーには、従来から高強度、耐熱性、耐摩耗性、高摩擦係数、低鳴き、低吸湿性、高振動吸収性等の特性を備えることが要求されている。特に、近年においては、摩擦材の生産性を高めるべく、摩擦材用フェノール樹脂組成物の硬化性の向上が要求されている。こうした要求水準を満たすべく、摩擦材用フェノール樹脂組成物について、これまでに種々の検討がなされている。   And the binder for friction materials mentioned above is conventionally required to have characteristics such as high strength, heat resistance, abrasion resistance, high friction coefficient, low noise, low hygroscopicity, high vibration absorbability and the like. In particular, in recent years, in order to improve the productivity of the friction material, it is required to improve the curability of the phenolic resin composition for friction material. In order to satisfy such a required level, various studies have been made on phenolic resin compositions for friction materials.

たとえば、特許文献1には、摩擦材用フェノール樹脂組成物の硬化性を向上させるため、ノボラック型フェノール樹脂としてハイオルソノボラック型フェノール樹脂を使用する、ヘキサメチレンテトラミンの分解速度を速めるために酸性物質を添加する、ハイオルソノボラック型フェノール樹脂とヘキサメチレンテトラミンとを溶融混練によりアダクト化する等の技術が開示されている。   For example, in Patent Document 1, an acid substance is used to accelerate the decomposition rate of hexamethylenetetramine, which uses a high ortho novolac type phenol resin as a novolac type phenol resin in order to improve the curability of a phenol resin composition for friction material. In addition, there is disclosed a technique such as adding a high ortho novolac type phenolic resin and hexamethylenetetramine by melt-kneading.

特開2005−272548号公報JP 2005-272548 A

上記特許文献1等に記載されている従来技術は、ゲル化時間を短縮することが可能であるが故、プレス工程の所要時間を短くできる点においては、ある程度の効果が期待できる。しかし、本発明者は、上述した従来技術には、成型体の強度や硬度が低下するため、十分な機械物性を得られないという点に改善の余地があることを知見した。   The prior art described in Patent Document 1 and the like can shorten the gelation time, and therefore, some effect can be expected in that the time required for the pressing process can be shortened. However, the inventors of the present invention have found that there is room for improvement in the prior art described above in that sufficient mechanical properties can not be obtained because the strength and hardness of the molded body decrease.

そこで、本発明は、硬化時間を短縮しても高い硬化度に到達することで、機械物性等の諸特性を低下させることなく、耐熱性に優れた摩擦材を得ることができる摩擦材用フェノール樹脂組成物を提供する。   Therefore, the present invention is a phenol for friction material that can obtain a friction material having excellent heat resistance without reducing various properties such as mechanical properties by reaching a high degree of curing even if the curing time is shortened. Provided is a resin composition.

本発明によれば、ハイオルソノボラック型フェノール樹脂と、
レゾルシンとホルムアルデヒドとの反応により得られるノボラック型レゾルシン樹脂と、
ヘキサメチレンテトラミンと、
を含み、
前記ハイオルソノボラック型フェノール樹脂のオルソ/パラ結合比が、2以上7以下である、摩擦材用フェノール樹脂組成物が提供される。
According to the invention, a high ortho novolac phenolic resin,
Novolak-type resorcinol resin obtained by the reaction of resorcinol with formaldehyde ;
With hexamethylenetetramine,
Only including,
The phenolic resin composition for friction materials , wherein the ortho / para bond ratio of the high ortho novolac type phenolic resin is 2 or more and 7 or less is provided.

さらに、本発明によれば、繊維基材と、
充填剤と、
結合材と、
を含む摩擦材であって、
前記結合材が、上記摩擦材用フェノール樹脂組成物を含む、摩擦材が提供される。
Furthermore, according to the invention, a fiber substrate,
With fillers
A binder,
A friction material containing
A friction material is provided, wherein the binder comprises the above-mentioned phenolic resin composition for friction material.

さらに、本発明によれば、上記摩擦材を用いて形成されるブレーキが提供される。   Furthermore, according to the present invention, a brake formed using the above-mentioned friction material is provided.

本発明によれば、硬化時間を短縮しても高い硬化度に到達することで、機械物性等の諸特性を低下させることなく、耐熱性に優れた摩擦材を得ることができる摩擦材用フェノール樹脂組成物を提供できる。   According to the present invention, it is possible to obtain a friction material having excellent heat resistance without reducing various properties such as mechanical properties by reaching a high degree of curing even if the curing time is shortened. A resin composition can be provided.

<摩擦材用フェノール樹脂組成物>
本実施形態に係る摩擦材用フェノール樹脂組成物は、ハイオルソノボラック型フェノール樹脂と、ノボラック型レゾルシン樹脂と、ヘキサメチレンテトラミンとを含むものである。これにより、硬化時間を短縮したとしても高い硬化度を実現することが可能な摩擦材用フェノール樹脂組成物とすることができる。
<Phenolic resin composition for friction material>
The phenol resin composition for a friction material according to the present embodiment contains a high ortho novolac type phenol resin, a novolac type resorcinol resin, and hexamethylenetetramine. Thereby, even if hardening time is shortened, it can be considered as a phenol resin composition for friction materials which can realize a high degree of hardening.

本実施形態に係る摩擦材用フェノール樹脂組成物は、ハイオルソノボラック型フェノール樹脂と、ノボラック型レゾルシン樹脂と、ヘキサメチレンテトラミンの3成分を併用し、かつ摩擦材の製造原料として使用することを想定したものである。本実施形態に係る摩擦材用フェノール樹脂組成物によれば、上述した3成分を併用することにより、摩擦材を製造する際に高温での成型を実施したとしても、樹脂組成物の硬化性とガス抜き性のバランスを良好な状態に保持することができる。このため、本実施形態に係る摩擦材用フェノール樹脂組成物を用いることにより、摩擦材を短時間で成型が可能となる。これにより、摩擦材の製造コストを大幅に削減することができる。   The phenolic resin composition for a friction material according to the present embodiment is assumed to be used as a raw material for producing a friction material by using three components of a high ortho novolac type phenolic resin, a novolac type resorcinol resin and hexamethylenetetramine in combination. It is According to the phenolic resin composition for a friction material according to the present embodiment, the curability of the resin composition can be obtained even when molding at a high temperature is performed at the time of producing a friction material by using the three components described above in combination. The balance of the degassing properties can be maintained in a good state. For this reason, by using the phenolic resin composition for a friction material according to the present embodiment, it becomes possible to mold the friction material in a short time. This can significantly reduce the manufacturing cost of the friction material.

本実施形態に係る摩擦材用フェノール樹脂組成物には、樹脂成分として、ハイオルソノボラック型フェノール樹脂とノボラック型レゾルシン樹脂との樹脂混合物を含有させることが好ましい。こうすることで、硬化時間を短縮した場合において、硬化度を顕著に向上させることができる。   The phenolic resin composition for a friction material according to the present embodiment preferably contains, as a resin component, a resin mixture of a high ortho novolac type phenolic resin and a novolac type resorcinol resin. By so doing, when the curing time is shortened, the degree of curing can be significantly improved.

ノボラック型レゾルシン樹脂の含有量は、ハイオルソノボラック型フェノール樹脂100質量部に対して、好ましくは、1質量部以上100質量部以下であり、より好ましくは、3質量部以上85質量部以下であり、最も好ましくは、4質量部以上50質量部以下である。ノボラック型レゾルシン樹脂の含有量を上記下限値以上とすることにより、硬化時間を短縮した場合において、硬化度をより確実に高めることが可能となる。また、ノボラック型レゾルシン樹脂の含有量を上記上限値以下とすることにより、成型性の悪化を防ぐことが可能である。   The content of the novolac-type resorcinol resin is preferably 1 part by mass or more and 100 parts by mass or less, and more preferably 3 parts by mass or more and 85 parts by mass or less with respect to 100 parts by mass of the high ortho novolac phenol resin. , Most preferably, it is 4 parts by mass or more and 50 parts by mass or less. By setting the content of the novolac type resorcinol resin to the above lower limit value or more, the degree of curing can be more reliably increased when the curing time is shortened. Further, by setting the content of the novolac type resorcin resin to the upper limit value or less, it is possible to prevent the deterioration of the moldability.

本実施形態に係るハイオルソノボラック型フェノール樹脂は、フェノール類とアルデヒド類とを、酸性触媒の存在下で反応させて得られるものである。上記ハイオルソノボラック型フェノール樹脂において、フェノール類のフェノール性水酸基に対する、アルデヒド類に由来するメチレン基又は置換メチレン基の結合位置の比率(オルソ/パラ結合比)は、好ましくは、1以上9以下であり、製造容易性の観点から、より好ましくは、2以上7以下であり、最も好ましくは2.5以上7以下である。こうすることで、従来のランダムノボラック型フェノール樹脂と比べて硬化速度の速い樹脂組成物とすることが可能である。それ故、本実施形態に係る摩擦材用フェノール樹脂組成物を用いた摩擦材製造時の成型時間を短縮させることができる。また、オルソ/パラ結合比が上記数値範囲内にあるハイオルソノボラック型フェノール樹脂を合成するためには、反応温度、反応時間等の因子を制御することが重要である。ただし、ハイオルソノボラック型フェノール樹脂として、上述したオルソ/パラ結合比となるよう調製された市販品を用いてもよい。   The high ortho novolac type phenolic resin according to the present embodiment is obtained by reacting phenols and aldehydes in the presence of an acidic catalyst. In the above-mentioned high ortho novolac type phenol resin, the ratio (ortho / para bond ratio) of the bonding position of the methylene group or substituted methylene group derived from aldehydes to the phenolic hydroxyl group of phenols is preferably 1 or more and 9 or less From the viewpoint of ease of production, it is more preferably 2 or more and 7 or less, and most preferably 2.5 or more and 7 or less. By doing this, it is possible to obtain a resin composition having a faster curing rate as compared to the conventional random novolac phenolic resin. So, the molding time at the time of friction material manufacture using the phenol resin composition for friction materials concerning this embodiment can be shortened. In addition, in order to synthesize a high ortho novolac type phenol resin having an ortho / para bond ratio within the above numerical range, it is important to control factors such as the reaction temperature, the reaction time and the like. However, as the high ortho novolac type phenol resin, a commercial product prepared to have the above-mentioned ortho / para bonding ratio may be used.

ここで、ハイオルソノボラック型フェノール樹脂のオルソ/パラ結合比は、赤外吸収スペクトル法で測定したときの、波数760cm−1、及び、波数820cm−1の吸光度より算出することができる。具体的には、上記オルソ/パラ結合比は、下記式より算出することができる。なお、下記式におけるD760は、760cm−1の吸光度を示し、D820は、820cm−1の吸光度を示す。
式:オルソ/パラ結合比=D760/(1.44×D820)
Here, ortho / para bond ratio of high-ortho novolak type phenolic resin, when measured by infrared absorption spectroscopy, wavenumber 760 cm -1, and it can be calculated from the absorbance at the wave number 820 cm -1. Specifically, the ortho / para bond ratio can be calculated by the following equation. Incidentally, D760 in the following formula indicates the absorbance at 760 cm -1, D820 shows the absorbance of the 820 cm -1.
Formula: ortho / para coupling ratio = D760 / (1.44 × D820)

ハイオルソノボラック型フェノール樹脂の合成に用いられるフェノール類の具体例としては、フェノール、オルソクレゾール、メタクレゾール、パラクレゾール、キシレノール、パラターシャリーブチルフェノール、パラオクチルフェノール、パラフェニルフェノール、ビスフェノールA、ビスフェノールF、レゾルシンなどのフェノール類が挙げられる。これらは、1種を単独で用いても、2種以上を組み合わせて用いてもよい。中でも、製造コストと成型性の観点から、フェノールやクレゾールを用いることが好ましい。   Specific examples of phenols used for the synthesis of high ortho novolac type phenol resin include phenol, orthocresol, metacresol, paracresol, xylenol, parabutylphenol, paraoctylphenol, paraphenylphenol, bisphenol A, bisphenol F, There may be mentioned phenols such as resorcin. One of these may be used alone, or two or more of these may be used in combination. Above all, it is preferable to use phenol or cresol from the viewpoint of production cost and moldability.

ハイオルソノボラック型フェノール樹脂の合成に用いられるアルデヒド類の具体例としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、アクロレイン等のアルデヒド類、またはこれらの混合物、上述したアルデヒド類の発生源となる物質や、上述したアルデヒド類の溶液等が挙げられる。中でも、製造コストと成型性の観点から、ホルムアルデヒドを用いることが好ましい。   Specific examples of the aldehydes used for the synthesis of the high ortho novolac type phenol resin include aldehydes such as formaldehyde, paraformaldehyde, acetaldehyde, butyraldehyde, acrolein, etc., or a mixture thereof, a substance serving as a generation source of the aldehydes described above And solutions of the above-mentioned aldehydes. Among them, it is preferable to use formaldehyde from the viewpoint of production cost and moldability.

ハイオルソノボラック型フェノール樹脂及びノボラック型レゾルシン樹脂の形態としては、液状、固形状、粉末状等の種々の形態が挙げられるが、中でも、ハンドリング性の観点から、固形状であることが好ましい。   Examples of the high ortho novolac type phenol resin and novolac type resorcinol resin include various forms such as liquid, solid, powder and the like, and among them, solid form is preferable from the viewpoint of handling property.

ハイオルソノボラック型フェノール樹脂としては、フェノール類(P)に対するアルデヒド類(F)の反応モル比(F/P)が0.5以上0.9以下の範囲となるように制御されたものであることが好ましい。これにより、反応中に樹脂がゲル化することなく、好適な分子量を有するハイオルソ樹脂を合成することができる。反応モル比が上記下限値以上であると、得られるハイオルソ樹脂中に含有される未反応のフェノール類の量を低減させることができる。また、反応モル比が上記上限値以下であると、反応条件によって樹脂がゲル化してしまうことを抑制することができる。   The high ortho novolac type phenol resin is controlled so that the reaction molar ratio (F / P) of aldehydes (F) to phenols (P) is in the range of 0.5 to 0.9. Is preferred. This makes it possible to synthesize a high ortho resin having a suitable molecular weight without gelation of the resin during the reaction. The quantity of unreacted phenols contained in the high ortho resin obtained as a reaction molar ratio is more than the said lower limit can be reduced. In addition, when the reaction molar ratio is equal to or less than the above upper limit value, it is possible to suppress the gelation of the resin depending on the reaction conditions.

ハイオルソノボラック型フェノール樹脂の重量平均分子量は、好ましくは、1000以上であり、さらに好ましくは、2000以上である。こうすることで、硬化時間を短縮した際のガラス転移温度を向上させることができる。また、ハイオルソノボラック型フェノール樹脂の重量平均分子量の上限値は、成型性の観点から8000以下であることが好ましい。   The weight average molecular weight of the high ortho novolac type phenol resin is preferably 1000 or more, more preferably 2000 or more. By this, it is possible to improve the glass transition temperature when the curing time is shortened. The upper limit value of the weight average molecular weight of the high ortho novolac phenol resin is preferably 8,000 or less from the viewpoint of moldability.

ハイオルソノボラック型フェノール樹脂の反応に用いる酸性触媒は、フェノールに溶解させたときに2価の金属イオンを含有する化合物等が挙げられる。その具体例としては、酢酸亜鉛、ナフテン酸鉛などが挙げられる。   Examples of the acidic catalyst used for the reaction of the high ortho novolac phenol resin include compounds containing divalent metal ions when dissolved in phenol. Specific examples thereof include zinc acetate and lead naphthenate.

次に、本実施形態に係るノボラック型レゾルシン樹脂は、たとえば、レゾルシン類とアルデヒド類とを、酸性触媒の存在下で反応させた後、脱水工程により水を除去して得られたものである。   Next, the novolak-type resorcinol resin according to the present embodiment is obtained, for example, by reacting resorcins with aldehydes in the presence of an acidic catalyst and then removing water by a dehydration step.

ノボラック型レゾルシン樹脂の合成に使用する上記レゾルシン類の具体例としては、レゾルシン、2−メチルレゾルシン、5−メチルレゾルシン、2,5−ジメチルレゾルシン等のメチルレゾルシン類、4−エチルレゾルシン、4−クロロレゾルシン、2−ニトロレゾルシン、4−ブロモレゾルシン、4−n−ヘキシルレゾルシンなどが挙げられる。これらは、単独で使用してもよいし、2種以上を混合して使用してもよい。中でも、製造コストと成型性の観点から、レゾルシン、メチルレゾルシン類からなる群より選択される1種以上であることが好ましい。   Specific examples of the above-mentioned resorcins used for the synthesis of novolac-type resorcin resins include resorcins, methylresorcins such as 2-methylresorcin, 5-methylresorcin, 2,5-dimethylresorcin, 4-ethylresorcin, 4-chloro Resorcin, 2-nitroresorcin, 4-bromoresorcin, 4-n-hexylresorcin and the like. These may be used alone or in combination of two or more. Among them, at least one selected from the group consisting of resorcin and methyl resorcins is preferable from the viewpoint of production cost and moldability.

ノボラック型レゾルシン樹脂の合成に使用する上記アルデヒド類の具体例としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、アクロレイン等のアルデヒド類、またはこれらの混合物、上述したアルデヒド類の発生源となる物質や、上述したアルデヒド類の溶液等が挙げられる。中でも、製造コストと成型性の観点から、ホルムアルデヒドを用いることが好ましい。   Specific examples of the above-mentioned aldehydes used for the synthesis of novolac type resorcin resin include aldehydes such as formaldehyde, paraformaldehyde, acetaldehyde, butyraldehyde and acrolein, or a mixture thereof, substances which are the sources of the above-mentioned aldehydes and And solutions of the above-mentioned aldehydes. Among them, it is preferable to use formaldehyde from the viewpoint of production cost and moldability.

ノボラック型レゾルシン樹脂の合成に使用する酸性触媒の具体例としては、蓚酸、塩酸、硫酸、ジエチル硫酸、パラトルエンスルホン酸等の酸類が挙げられる。これらは、単独で使用してもよいし、2種類以上を併用して使用してもよい。また、レゾルシンそのものが酸性を示すため、ノボラック型レゾルシン樹脂の合成反応は無触媒で行ってもよい。   Specific examples of the acidic catalyst used for the synthesis of the novolak-type resorcin resin include acids such as oxalic acid, hydrochloric acid, sulfuric acid, diethyl sulfuric acid and p-toluenesulfonic acid. These may be used alone or in combination of two or more. In addition, since resorcin itself exhibits acidity, the synthesis reaction of the novolak-type resorcin resin may be carried out without using a catalyst.

ノボラック型レゾルシン樹脂の合成において、レゾルシン類とアルデヒド類との反応モル比は、好ましくは、レゾルシン1モルに対して、アルデヒド類0.40モル以上0.80モル以下であり、さらに好ましくは、レゾルシン1モルに対して、アルデヒド類0.45モル以上0.75モル以下である。レゾルシン類とアルデヒド類との反応モル比が上記下限値以上であると、樹脂の取り扱い性が向上する。レゾルシン類とアルデヒド類との反応モル比が上記上限値以下であると、ノボラック型レゾルシン樹脂の合成反応を制御しやすくなる。   In the synthesis of the novolak-type resorcin resin, the reaction molar ratio of resorcins to aldehydes is preferably 0.40 to 0.80 moles of aldehyde per 1 mole of resorcin, more preferably resorcin The amount of aldehyde is at least 0.45 mol and at most 0.75 mol per 1 mol. The handling property of resin improves that the reaction molar ratio of resorcins and aldehydes is more than the said lower limit. It becomes easy to control the synthesis reaction of novolak-type resorcinol resin that the reaction molar ratio of resorcins and aldehydes is below the above-mentioned upper limit.

本実施形態に係る摩擦材用フェノール樹脂組成物には、硬化剤としてヘキサメチレンテトラミンが含まれている。このヘキサメチレンテトラミンは、ハイオルソノボラック型フェノール樹脂とノボラック型レゾルシン樹脂との反応性を向上させる観点から、当該ヘキサメチレンテトラミンと上記ハイオルソノボラック型フェノール樹脂との分子間付加物を形成したアダクト体、すなわち、アダクト化合物の形態で本実施形態に係る摩擦材用フェノール樹脂組成物に含まれることが好ましい。   The phenol resin composition for a friction material according to the present embodiment contains hexamethylenetetramine as a curing agent. This hexamethylenetetramine is an adduct in which an intermolecular adduct of the hexamethylenetetramine and the above-mentioned high ortho novolac phenol resin is formed from the viewpoint of improving the reactivity between the high ortho novolac phenol resin and the novolak resorcinol resin. That is, it is preferable to be contained in the form of an adduct compound in the phenol resin composition for a friction material according to the present embodiment.

ヘキサメチレンテトラミン全量においてアダクト体を形成しているものの割合、すなわち、アダクト化率は、30%以上であることが好ましく、32%以上であるとさらに好ましい。ヘキサメチレンテトラミンのアダクト化率を上記数値範囲以上とすることで、ハイオルソノボラック型フェノール樹脂と、ノボラック型レゾルシン樹脂と、ヘキサメチレンテトラミンとの間の分子間距離を小さくすることが可能であり、結果として、ヘキサメチレンテトラミンと、ハイオルソノボラック型フェノール樹脂およびノボラック型レゾルシン樹脂との反応性を向上させることが可能である。   The proportion of those forming the adduct in the total amount of hexamethylenetetramine, that is, the adducting ratio is preferably 30% or more, and more preferably 32% or more. By making the adduct ratio of hexamethylenetetramine equal to or higher than the above numerical range, it is possible to reduce the intermolecular distance between the high ortho novolac phenol resin, the novolac resorcinol resin, and the hexamethylenetetramine. As a result, it is possible to improve the reactivity of hexamethylenetetramine with the high ortho novolac phenolic resin and the novolac resorcinol resin.

ここで、アダクト化したヘキサメチレンテトラミンとは、25±1℃のイオン交換水によって抽出されないヘキサメチレンテトラミンのことを指す。通常、単にフェノール樹脂に粉砕混合させただけのヘキサメチレンテトラミンは、水によって容易に抽出される。一方、アダクト化したヘキサメチレンテトラミン、即ち、フェノール樹脂中に微分散したヘキサメチレンテトラミンは、微細化した粒子一つ一つがフェノール樹脂に内包されるため、水で抽出されない。そして、ヘキサメチレンテトラミンのアダクト化率(アダクト化したヘキサメチレンテトラミンの割合)は、次の式から求められる。なお、下記式において、Aは、ケルダール法、液体クロマト法又は元素分析法などによって求められる全ヘキサメチレンテトラミンの質量を指し、Bは、滴定法によって求められるイオン交換水で抽出されたヘキサメチレンテトラミンの質量を指す。また、測定に際して、試料の粒径は150μm以下とし、もし粒径が粗い場合は、試料の粒径を150μm以下に粉砕してから測定するものとする。
アダクト化率=〔(A−B)/A〕×100(%)
Here, adducted hexamethylenetetramine refers to hexamethylenetetramine which is not extracted by ion-exchanged water at 25 ± 1 ° C. In general, hexamethylenetetramine, which is merely ground and mixed in a phenolic resin, is easily extracted by water. On the other hand, adducted hexamethylenetetramine, that is, hexamethylenetetramine finely dispersed in a phenol resin is not extracted with water because each finely divided particle is contained in the phenol resin. Then, the adductation ratio of hexamethylenetetramine (proportion of adducted hexamethylenetetramine) can be obtained from the following equation. In the following formula, A refers to the mass of total hexamethylenetetramine determined by Kjeldahl method, liquid chromatography method or elemental analysis method, and B is hexamethylenetetramine extracted with ion-exchanged water determined by titration method Refers to the mass of In the measurement, the particle size of the sample is 150 μm or less, and if the particle size is coarse, the particle size of the sample is pulverized to 150 μm or less and then measured.
Adduct ratio = [(A-B) / A] x 100 (%)

本実施形態に係る摩擦材用フェノール樹脂組成物において、ヘキサメチレンテトラミンの含有量は、同樹脂組成物中のハイオルソノボラック型フェノール樹脂の含有量とノボラック型レゾルシン樹脂の含有量との合計値を100質量部としたとき、上記合計値100質量部に対して、好ましくは、5質量部以上20質量部以下であり、より好ましくは、7質量部以上18質量部以下である。ヘキサメチレンテトラミンの含有量を上記下限値以上とすることにより、最低限の架橋密度を得ることが可能となる。また、ヘキサメチレンテトラミンの含有量を上記上限値以下とすることにより、成型時のガス発生量を低減させることができる。   In the phenolic resin composition for a friction material according to the present embodiment, the content of hexamethylenetetramine is the total value of the content of the high ortho novolac type phenolic resin and the content of the novolac type resorcinol resin in the resin composition. When 100 parts by mass is used, the amount is preferably 5 parts by mass or more and 20 parts by mass or less, and more preferably 7 parts by mass or more and 18 parts by mass or less with respect to 100 parts by mass of the total value. By setting the content of hexamethylenetetramine to the above lower limit value or more, it is possible to obtain a minimum crosslink density. Further, by setting the content of hexamethylenetetramine to the above upper limit value or less, it is possible to reduce the amount of gas generation at the time of molding.

本実施形態に係る摩擦材用フェノール樹脂組成物において、遊離フェノールの含有量は、好ましくは、1質量%未満であり、さらに好ましくは、0.9質量%未満である。遊離フェノールの含有量が上記上限値以下とすることにより、フェノール成分が揮発してしまうことを抑制することが可能となり、良好な作業環境を形成することができる。なお、摩擦材用フェノール樹脂組成物における遊離フェノールの含有量は、製造原料の1つであるフェノール樹脂の生産段階において、高真空条件下で上記遊離フェノールを除去する等の処理を施すことで低減させることができる。   In the phenolic resin composition for a friction material according to the present embodiment, the content of free phenol is preferably less than 1% by mass, and more preferably less than 0.9% by mass. By setting the content of free phenol to the upper limit value or less, volatilization of the phenol component can be suppressed, and a good working environment can be formed. The content of free phenol in the phenolic resin composition for friction material is reduced by performing processing such as removing the above free phenol under high vacuum conditions in the production stage of phenol resin which is one of the manufacturing raw materials. It can be done.

本実施形態に係る摩擦材用フェノール樹脂組成物は、150℃で硬化させたときの最大トルクが、好ましくは、1N・m以上20N・m以下である。こうすることで、成形性に優れた摩擦材用フェノール樹脂組成物を実現することが可能である。さらに、最大トルクが上記数値範囲内にある摩擦材用フェノール樹脂組成物によれば、当該樹脂組成物を用いて摩擦材を成形する際に内部から発生するガス量を低減させることができるため、作製した摩擦材に亀裂や膨れが発生することを抑制することが可能である。なお、摩擦材用フェノール樹脂組成物の最大トルクは、トルク測定装置を用いて、たとえば、以下の方法で測定することができる。摩擦材用フェノール樹脂組成物を150℃に設定したダイス中で溶融・硬化させる反応に伴う上記樹脂組成物の粘度上昇をモーターに作用する電流値で検出する。このようにして検出した電流値の最大値を、150℃で硬化させたときの最大トルク値とする。   The phenol resin composition for a friction material according to the present embodiment preferably has a maximum torque of 1 N · m or more and 20 N · m or less when cured at 150 ° C. By so doing, it is possible to realize a phenolic resin composition for friction material excellent in moldability. Furthermore, according to the phenolic resin composition for a friction material having a maximum torque within the above numerical range, the amount of gas generated from the inside can be reduced when molding the friction material using the resin composition, It is possible to suppress the occurrence of cracking and swelling in the produced friction material. In addition, the maximum torque of the phenol resin composition for friction materials can be measured, for example, by the following method using a torque measuring device. The viscosity increase of the resin composition accompanying the reaction of melting and curing the phenolic resin composition for friction material in a die set at 150 ° C. is detected by the current value acting on the motor. The maximum value of the current value detected in this manner is taken as the maximum torque value when cured at 150 ° C.

なお、本実施形態に係る摩擦材用フェノール樹脂組成物には、以上に説明した成分の他にも、本発明の目的を損なわない範囲で、酒石酸、琥珀酸、マロン酸、フマル酸、安息香酸およびフタル酸などの有機酸、ランダムノボラック型フェノール樹脂、レゾール型フェノール樹脂、レゾルシンモノマーなどを含有させてもよい。中でも、有機酸を含有させた場合には、摩擦材用フェノール樹脂組成物の速硬化性を向上させることが可能である。   In the phenolic resin composition for friction material according to the present embodiment, tartaric acid, oxalic acid, malonic acid, fumaric acid, benzoic acid, as long as the object of the present invention is not impaired, in addition to the components described above. And organic acids such as phthalic acid, random novolac type phenol resins, resol type phenol resins, resorcinol monomers, and the like. Among them, when an organic acid is contained, it is possible to improve the rapid curing property of the phenolic resin composition for friction material.

<摩擦材用フェノール樹脂組成物の製造方法>
本実施形態に係る摩擦材用フェノール樹脂組成物は、たとえば、ハイオルソノボラック型フェノール樹脂と、ノボラック型レゾルシン樹脂と、ヘキサメチレンテトラミンとを溶融混合する方法により得ることができる。この方法を採用する場合には、ハイオルソノボラック型フェノール樹脂と、ノボラック型レゾルシン樹脂との樹脂混合物を使用してもよい。なお、上述した溶融混合するとは、ハイオルソノボラック型フェノール樹脂と、ノボラック型レゾルシン樹脂と、ヘキサメチレンテトラミンとがそれぞれ融解した流動状態において、ハイオルソノボラック型フェノール樹脂のヘキサメチレンテトラミンによる硬化反応が実質的に起きない状態で、混合することを指す。具体的な溶融混合方法としては、所定量のハイオルソノボラック型フェノール樹脂と、ノボラック型レゾルシン樹脂と、ヘキサメチレンテトラミンとを混合装置に仕込み、溶融混合する方法が好適である。また、溶融混合温度は、ハイオルソノボラック型フェノール樹脂が、溶融するものの、硬化反応が開始しない温度とすることが好ましい。混合装置としては、加圧ニーダー、二軸押出機、単軸押出機などの加圧式混練機が挙げられる。
<Method of Producing Phenolic Resin Composition for Friction Material>
The phenolic resin composition for a friction material according to the present embodiment can be obtained, for example, by a method of melt-mixing a high ortho novolac type phenolic resin, a novolac type resorcinol resin, and hexamethylenetetramine. When this method is adopted, a resin mixture of high ortho novolac type phenol resin and novolac type resorcinol resin may be used. In addition, in the fluid state where the high ortho novolac type phenol resin, the novolak type resorcinol resin, and the hexamethylenetetramine melt respectively, the curing reaction by the hexamethylene tetramine of the high ortho novolac type phenol resin is substantially the same as the melt mixing described above. It refers to mixing without happening. As a specific melt mixing method, a method in which a predetermined amount of a high ortho novolac phenol resin, a novolak resorcinol resin, and hexamethylenetetramine are charged in a mixing apparatus and melt mixed is preferable. The melt mixing temperature is preferably a temperature at which the high ortho novolac phenol resin melts but the curing reaction does not start. Examples of the mixing device include pressure kneaders such as a pressure kneader, a twin screw extruder, and a single screw extruder.

ここで、ハイオルソノボラック型フェノール樹脂と、ノボラック型レゾルシン樹脂と、ヘキサメチレンテトラミンとを、通常の反応容器で混合した場合には、樹脂粘度の増加や、ゲル化反応の進行等の不都合が生じることにより、安定して混合することが難しい。しかし、上述した加圧式の混練装置を用いる場合には、ハイオルソノボラック型フェノール樹脂と、ノボラック型レゾルシン樹脂中におけるヘキサメチレンテトラミンの分散状態を良好なものとすることが可能であるとともに、ヘキサメチレンテトラミンをアダクト化することが可能となる。具体的には、ハイオルソノボラック型フェノール樹脂と、ノボラック型レゾルシン樹脂と、ヘキサメチレンテトラミンとを、加圧式の混練装置を用いることにより、ヘキサメチレンテトラミン全量におけるアダクト体の割合、すなわち、アダクト化率が30%以上となるように調製することが可能である。   Here, when the high ortho novolak type phenol resin, the novolak type resorcinol resin, and hexamethylenetetramine are mixed in a general reaction container, disadvantages such as increase in resin viscosity and progress of gelation reaction occur. It is difficult to mix stably. However, in the case of using the above-mentioned pressurized type kneading apparatus, it is possible to make the dispersed state of hexamethylenetetramine in the high ortho novolac type phenol resin and the novolac type resorcinol resin favorable as well as hexamethylene. It is possible to adduct tetramine. Specifically, the proportion of the adduct in the total amount of hexamethylenetetramine, that is, the adduct ratio, by using a high-pressure novolak type phenolic resin, a novolac type resorcinol resin, and hexamethylenetetramine using a pressure-type kneader It is possible to prepare so as to be 30% or more.

<摩擦材>
本実施形態に係る摩擦材は、繊維基材と、充填剤と、上述した摩擦材用フェノール樹脂組成物を含む結合材とを混合し、得られた混合物を原料組成物として熱成形することによって製造されたものである。こうすることで、諸特性を低下させることなく、耐熱性に優れた摩擦材を得ることができる。
<Friction material>
The friction material according to the present embodiment is obtained by mixing a fibrous base material, a filler, and a binder containing the above-described phenolic resin composition for friction material, and thermoforming the obtained mixture as a raw material composition. It is manufactured. By doing this, it is possible to obtain a friction material excellent in heat resistance without reducing various properties.

本実施形態に係る摩擦材に含有させる繊維基材の具体例としては、スチール繊維、銅繊維、ガラス繊維、セラミック繊維、チタン酸カリウム繊維等の無機繊維、アラミド繊維等の有機繊維が挙げられる。これらは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。中でも、アラミド繊維等の有機繊維を含むことが好ましい。   Specific examples of the fiber base material to be contained in the friction material according to this embodiment include steel fibers, copper fibers, glass fibers, ceramic fibers, inorganic fibers such as potassium titanate fibers, and organic fibers such as aramid fibers. These may be used alone or in combination of two or more. Among them, it is preferable to include organic fibers such as aramid fibers.

本実施形態に係る摩擦材に含有させる充填剤の具体例としては、炭酸カルシウム、水酸化カルシウム、硫酸バリウム、雲母、アブレーシブ、カリオンおよびタルク等の無機充填剤、カシューダストおよびラバーダスト等の有機充填剤、グラファイト、三硫化アンチモン、二硫化モリブデンおよび二硫化亜鉛等の潤滑材が挙げられる。これらは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。中でも、無機充填剤を使用することが好ましい。   Specific examples of the filler to be contained in the friction material according to the present embodiment include calcium carbonate, calcium hydroxide, barium sulfate, mica, inorganic fillers such as abrasive, kallion and talc, organic fillers such as cashew dust and rubber dust And lubricants such as graphite, antimony trisulfide, molybdenum disulfide and zinc disulfide. These may be used alone or in combination of two or more. Among them, it is preferable to use an inorganic filler.

本実施形態に係る摩擦材は、たとえば、以下の方法で制作することができる。ただし、本実施形態に係る摩擦材の製造方法については、以下の例に限定されない。   The friction material according to the present embodiment can be produced, for example, by the following method. However, the method of manufacturing the friction material according to the present embodiment is not limited to the following example.

まず、繊維基材および充填剤を含む粉末原料と、結合材とを所定の組成割合となるよう計量し、混合機を用いてこれらを混合する。なお、混合機の具体例としては、アイリッヒミキサー等の一般的なものが挙げられる。次に、混合して得られた原料組成物を所定量取り分け、ブロック体とするために予備成型を行う。その後、得られた予備成型体を、たとえば、150℃に加熱された金型に投入し、3〜7分程度加圧することにより成型体を作製する。次いで、作製した成型体を、たとえば、200℃ 以上の温度で1時間程度熱処理して硬化させることにより、本実施形態に係る摩擦材を得ることができる。   First, a powdery raw material including a fiber base and a filler, and a binder are weighed so as to have a predetermined composition ratio, and these are mixed using a mixer. In addition, general things, such as an Eirich mixer etc., are mentioned as a specific example of a mixer. Next, a predetermined amount of the raw material composition obtained by mixing is divided and preformed to form a block body. Thereafter, the obtained preformed body is put into a mold heated to, for example, 150 ° C., and pressed for about 3 to 7 minutes to produce a molded body. Then, the produced molded body is heat treated at, for example, a temperature of 200 ° C. or more for about 1 hour to be cured, whereby the friction material according to the present embodiment can be obtained.

ここで、本実施形態に係る摩擦材は、ブレーキ等の摩擦部品を形成するために用いられる。   Here, the friction material according to the present embodiment is used to form a friction component such as a brake.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
以下、実施形態の例を付記する。
1. ハイオルソノボラック型フェノール樹脂と、
ノボラック型レゾルシン樹脂と、
ヘキサメチレンテトラミンと、
を含む摩擦材用フェノール樹脂組成物。
2. 当該摩擦材用フェノール樹脂組成物が、前記ヘキサメチレンテトラミンと前記ハイオルソノボラック型フェノール樹脂とのアダクト体を含む、1.に記載の摩擦材用フェノール樹脂組成物。
3. 前記アダクト体を形成している前記ヘキサメチレンテトラミン量が、当該摩擦材用フェノール樹脂組成物に含まれる前記ヘキサメチレンテトラミン全量に対して、30%以上である、2.に記載の摩擦材用フェノール樹脂組成物。
4. 前記ノボラック型レゾルシン樹脂の含有量が、前記ハイオルソノボラック型フェノール樹脂100質量部に対して、1質量部以上100質量部以下である、1.乃至3.のいずれかに記載の摩擦材用フェノール樹脂組成物。
5. 前記ハイオルソノボラック型フェノール樹脂のオルソ/パラ結合比が、1以上9以下である1.乃至4.のいずれかに記載の摩擦材用フェノール樹脂組成物。
6. 前記ハイオルソノボラック型フェノール樹脂の重量平均分子量が、1000以上8000以下である1.乃至5.のいずれかに記載の摩擦材用フェノール樹脂組成物。
7. 遊離フェノールの含有量が、前記ハイオルソノボラック型フェノール樹脂全量に対して、1質量%未満である1.乃至6.のいずれかに記載の摩擦材用フェノール樹脂組成物。
8. 前記ハイオルソノボラック型フェノール樹脂の含有量と前記ノボラック型レゾルシン樹脂の含有量との合計値を100質量部としたとき、
前記ヘキサメチレンテトラミンの含有量が、前記ハイオルソノボラック型フェノール樹脂の含有量と前記ノボラック型レゾルシン樹脂の含有量との合計値100質量部に対して、5質量部以上20質量部以下である、1.乃至7.のいずれかに記載の摩擦材用フェノール樹脂組成物。
9. 前記ハイオルソノボラック型フェノール樹脂と、前記ノボラック型レゾルシン樹脂と、前記ヘキサメチレンテトラミンとを溶融混合して得られる、1.乃至8.のいずれかに記載の摩擦材用フェノール樹脂組成物。
10. 前記ハイオルソノボラック型フェノール樹脂と前記ノボラック型レゾルシン樹脂との樹脂混合物と、前記ヘキサメチレンテトラミンとを溶融混合して得られる、9.に記載の摩擦材用フェノール樹脂組成物。
11. 繊維基材と、
充填剤と、
結合材と、
を含む摩擦材であって、
前記結合材が、1.乃至10.のいずれかに記載の摩擦材用フェノール樹脂組成物を含む、摩擦材。
12. 前記繊維基材が有機繊維を含む、11.に記載の摩擦材。
13. 前記充填剤が、無機充填剤を含む、11.または12.に記載の摩擦材。
14. 11.乃至13.のいずれかに記載の摩擦材を用いて形成されるブレーキ。
Note that the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like as long as the object of the present invention can be achieved are included in the present invention.
Hereinafter, examples of the embodiment will be additionally described.
1. High ortho novolac type phenolic resin,
Novolak-type resorcinol resin,
With hexamethylenetetramine,
And a phenolic resin composition for friction material containing the same.
2. The phenolic resin composition for a friction material comprises an adduct of the hexamethylenetetramine and the high ortho novolac phenolic resin. The phenolic resin composition for friction materials as described in 4.
3. The amount of hexamethylenetetramine forming the adduct is 30% or more with respect to the total amount of hexamethylenetetramine contained in the phenolic resin composition for a friction material. The phenolic resin composition for friction materials as described in 4.
4. The content of the novolac-type resorcinol resin is 1 part by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the high ortho novolac-type phenol resin. To 3. The phenolic resin composition for friction materials as described in any of the above.
5. The ortho / para bond ratio of the high ortho novolac type phenolic resin is 1 or more and 9 or less. To 4. The phenolic resin composition for friction materials as described in any of the above.
6. The weight average molecular weight of the high ortho novolac phenolic resin is 1,000 or more and 8,000 or less. To 5. The phenolic resin composition for friction materials as described in any of the above.
7. The content of free phenol is less than 1% by mass with respect to the total amount of the high ortho novolac phenol resin. To 6. The phenolic resin composition for friction materials as described in any of the above.
8. When the total value of the content of the high ortho novolac phenol resin and the content of the novolac resorcinol resin is 100 parts by mass,
The content of the hexamethylenetetramine is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass in total of the content of the high ortho novolac phenol resin and the content of the novolac resorcinol resin. 1. To 7. The phenolic resin composition for friction materials as described in any of the above.
9. Obtained by melt-mixing the high ortho novolac phenolic resin, the novolac resorcinol resin, and the hexamethylenetetramine; To 8. The phenolic resin composition for friction materials as described in any of the above.
10. 8. obtained by melt-mixing a resin mixture of the high ortho novolac phenol resin and the novolac resorcinol resin with the hexamethylenetetramine; The phenolic resin composition for friction materials as described in 4.
11. A fiber substrate,
With fillers
A binder,
A friction material containing
The binder is To 10. A friction material comprising the phenolic resin composition for a friction material according to any one of the above.
12. The fiber substrate comprises an organic fiber, 11. The friction material described in.
13. The filler comprises an inorganic filler; Or 12. The friction material described in.
14. 11. To 13. A brake formed using the friction material according to any one of the above.

以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。また、実施例、比較例で示される「部」は全て「質量部」、「%」は全て「質量%」を表す。なお、ハイオルソノボラック型フェノール樹脂の合成で得られたハイオルソノボラック型フェノール樹脂の重量平均分子量(Mw)は、テトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)で測定し、ポリスチレン換算で算出した。   Hereinafter, the present invention will be described by way of Examples and Comparative Examples, but the present invention is not limited thereto. Moreover, all "parts" shown by an Example and a comparative example represent "mass part", and all "%" represents "mass%." The weight average molecular weight (Mw) of the high ortho novolac phenol resin obtained by the synthesis of the high ortho novolac phenol resin is measured by gel permeation chromatography (GPC) of the tetrahydrofuran (THF) soluble fraction, and polystyrene Calculated by conversion.

GPCの測定条件を以下に示す。
装置 :HLC−8320(東ソー株式会社製)
検出器:RI
The measurement conditions of GPC are shown below.
Device: HLC-8320 (made by Tosoh Corporation)
Detector: RI

カラム:TSK−GEL G1000H(東ソー株式会社製)の1連およびTSK−GEL G2000H(東ソー株式会社製)の2連を、この順番で直列に連結して使用した。
温度 :40℃
溶媒 :THF
流速 :1.0ml/分
試料 :濃度1重量%の試料を50μl注入
Column: 1 station of TSK-GEL G1000H (made by Tosoh Corp.) and 2 stations of TSK-GEL G2000H (made by Tosoh Corp.) were used in series connected in this order.
Temperature: 40 ° C
Solvent: THF
Flow rate: 1.0 ml / min Sample: 50 μl injection of 1 wt% concentration sample

また、ハイオルソノボラック型フェノール樹脂の合成で得られたハイオルソノボラック型フェノール樹脂の遊離フェノール含有量は、得られたフェノール樹脂を島津製作所社製ガスクロマトグラフ「GC−2014」、アジレント・テクノロジー株式会社製カラム「DB−WAX」を用いて測定を行い、算出した。   Further, the free phenol content of the high ortho novolac type phenolic resin obtained by the synthesis of the high ortho novolac type phenolic resin can be reduced by using the obtained phenolic resin as a gas chromatograph "GC-2014" manufactured by Shimadzu Corporation, Agilent Technologies, Inc. The measurement was performed using a column "DB-WAX" manufactured and calculated.

さらに、ハイオルソノボラック型フェノール樹脂の合成で得られたハイオルソノボラック型フェノール樹脂のオルソ/パラ結合比は、赤外吸収スペクトル法で測定した。FT−IR装置(ニコレー社製・Avatar320)を用い、KBr法で実施したときの、波数760cm−1、及び、波数820cm−1の吸光度から、下記式によりオルソ/パラ結合比を算出した。下記式におけるD760は、760cm−1の吸光度を示し、D820は、820cm−1の吸光度を示す。
式:オルソ/パラ結合比=D760/(1.44×D820)
Furthermore, the ortho / para bond ratio of the high ortho novolac phenol resin obtained by the synthesis of the high ortho novolac phenol resin was measured by infrared absorption spectroscopy. FT-IR device used (Nicolet Co. · Avatar320), when carried out by a KBr method, the wave number 760 cm -1, and, from the absorbance of wave numbers 820 cm -1, was calculated ortho / para bond ratio by the following equation. D760 in the following formula indicates the absorbance at 760 cm -1, D820 shows the absorbance of the 820 cm -1.
Formula: ortho / para coupling ratio = D760 / (1.44 × D820)

(ハイオルソノボラック型フェノール樹脂の合成)
(樹脂合成例1)
フェノール1000部、37%ホルマリン600部、酢酸亜鉛2部の混合物を、100℃で3時間反応した後、反応混合物の温度が140℃になるまで常圧蒸留で脱水し、更に、0.9kPaまで、徐々に減圧しながら、反応混合物の温度が180℃になるまで減圧蒸留で脱水、脱モノマーし、ハイオルソノボラック型フェノール樹脂A1000部を得た。ハイオルソノボラック型フェノール樹脂Aの重量平均分子量は6000、遊離フェノールは0.6%であった。また、ハイオルソノボラック型フェノール樹脂Aのオルソ/パラ結合比は5.7であり、F/Pは0.70であった。
(Synthesis of high ortho novolac phenolic resin)
(Resin synthesis example 1)
A mixture of 1000 parts of phenol, 600 parts of 37% formalin and 2 parts of zinc acetate is reacted at 100 ° C. for 3 hours, then dehydrated by atmospheric distillation until the temperature of the reaction mixture reaches 140 ° C., and further to 0.9 kPa While gradually reducing the pressure, the reaction mixture was dehydrated by distillation under reduced pressure until the temperature of the reaction mixture reached 180 ° C. to remove monomers, thereby obtaining 1000 parts of a high ortho novolac type phenolic resin A. The weight average molecular weight of the high ortho novolac phenol resin A was 6000, and the free phenol was 0.6%. Further, the ortho / para bond ratio of the high ortho novolac type phenol resin A was 5.7, and the F / P was 0.70.

(樹脂合成例2)
フェノール1000部、37%ホルマリン550部、酢酸亜鉛2部の混合物を、100℃で2時間30分反応後、反応混合物の温度が140℃になるまで常圧蒸留で脱水し、更に、0.9kPaまで、徐々に減圧しながら、反応混合物の温度が180℃になるまで減圧蒸留で脱水、脱モノマーし、ハイオルソノボラック型フェノール樹脂B950部を得た。ハイオルソノボラック型フェノール樹脂Bの重量平均分子量は4000、遊離フェノールは0.7%であった。また、ハイオルソノボラック型フェノール樹脂Bのオルソ/パラ結合比は4.1であり、F/Pは0.64であった。
(Resin synthesis example 2)
A mixture of 1000 parts of phenol, 550 parts of 37% formalin and 2 parts of zinc acetate is reacted at 100 ° C. for 2 hours and 30 minutes, dehydrated by atmospheric distillation until the temperature of the reaction mixture reaches 140 ° C., and further 0.9 kPa The reaction mixture was dewatered by distillation under reduced pressure until the temperature of the reaction mixture reached 180 ° C. while gradually reducing the pressure until demonomerization to obtain 950 parts of a high ortho novolac type phenolic resin B. The weight average molecular weight of the high ortho novolac type phenol resin B was 4000, and the free phenol was 0.7%. In addition, the ortho / para bonding ratio of the high ortho novolac phenol resin B was 4.1, and the F / P was 0.64.

(樹脂合成例3)
フェノール1000部、37%ホルマリン500部、酢酸亜鉛2部の混合物を、95℃で3時間反応後、反応混合物の温度が140℃になるまで常圧蒸留で脱水し、更に、0.9kPaまで、徐々に減圧しながら、反応混合物の温度が180℃になるまで減圧蒸留で脱水、脱モノマーし、ハイオルソノボラック型フェノール樹脂C900部を得た。ハイオルソノボラック型フェノール樹脂Cの重量平均分子量は2000、遊離フェノールは0.7%であった。また、ハイオルソノボラック型フェノール樹脂Cのオルソ/パラ結合比は2.5であり、F/Pは0.58であった。
(Resin synthesis example 3)
A mixture of 1000 parts of phenol, 500 parts of 37% formalin and 2 parts of zinc acetate is reacted at 95 ° C. for 3 hours, dehydrated by atmospheric distillation until the temperature of the reaction mixture reaches 140 ° C., and further to 0.9 kPa While gradually reducing the pressure, the reaction mixture was dewatered by distillation under reduced pressure until the temperature of the reaction mixture reached 180 ° C. to demonomer, to obtain 900 parts of a high ortho novolac type phenolic resin C. The weight average molecular weight of the high ortho novolac phenol resin C was 2000, and the free phenol was 0.7%. In addition, the ortho / para bonding ratio of the high ortho novolac phenol resin C was 2.5, and the F / P was 0.58.

(ノボラック型フェノール樹脂の合成)
フェノール1000部、37%ホルマリン570部、蓚酸10部の混合物を、100℃で3時間反応後、反応混合物の温度が140℃になるまで、常圧蒸留で脱水し、更に、0.9kPaまで、徐々に減圧しながら、反応混合物の温度が200℃になるまで減圧蒸留で脱水、脱モノマーし、ノボラック型フェノール樹脂D910部を得た。ノボラック型フェノール樹脂Dの重量平均分子量は9000、遊離フェノールは0.3%であった。また、ノボラック型フェノール樹脂Dのオルソ/パラ結合比は0.8であり、F/Pは0.66であった。
(Synthesis of novolac type phenolic resin)
A mixture of 1000 parts of phenol, 570 parts of 37% formalin and 10 parts of oxalic acid is reacted at 100 ° C. for 3 hours, dehydrated by atmospheric distillation until the temperature of the reaction mixture reaches 140 ° C., and further to 0.9 kPa While gradually reducing the pressure, the reaction mixture was dehydrated by distillation under reduced pressure until the temperature of the reaction mixture reached 200 ° C. to demonomerize, to obtain 910 parts of novolac-type phenolic resin D. The weight average molecular weight of the novolac phenol resin D was 9000, and the free phenol was 0.3%. Further, the ortho / para bonding ratio of novolac type phenol resin D was 0.8, and F / P was 0.66.

(ノボラック型レゾルシン樹脂の合成)
レゾルシン1000部、蓚酸3部の混合物を100℃になるまで加熱して、37%ホルマリン400部を30分かけて逐添した。その後、1時間反応させ、反応混合物の温度が140℃になるまで、常圧蒸留で脱水し、更に、0.9kPaまで、徐々に減圧しながら、反応混合物の温度が180℃になるまで減圧蒸留で脱水、脱モノマーし、ノボラック型レゾルシン樹脂E910部を得た。
(Synthesis of novolak-type resorcinol resin)
A mixture of 1000 parts of resorcin and 3 parts of oxalic acid was heated to 100 ° C., and 400 parts of 37% formalin was added sequentially over 30 minutes. Then, it is reacted for 1 hour, dehydrated by atmospheric distillation until the temperature of the reaction mixture reaches 140 ° C., and further reduced pressure distillation until the temperature of the reaction mixture reaches 180 ° C. while gradually reducing the pressure to 0.9 kPa. The reaction mixture was dehydrated and demonomerized to obtain 910 parts of novolak resorcin resin E.

(実施例1−1〜1−6、比較例1−1〜1−5)
フェノール樹脂組成物を以下の方法で作製するとともに、後述する評価方法により評価を行った。結果を表1にまとめて示す。
(Examples 1-1 to 1-6, comparative examples 1-1 to 1-5)
While producing a phenol resin composition by the following method, evaluation was performed by the evaluation method mentioned later. The results are summarized in Table 1 below.

(フェノール樹脂組成物の作製)
<実施例1−1>
入口温度80℃、出口温度90℃に制御された二軸押出機へ、ハイオルソノボラック型フェノール樹脂A800部、ノボラック型レゾルシン樹脂E200部、ヘキサメチレンテトラミン120部を、単位時間当たりの供給比率が等しくなるよう供給し、出口から出てきた混練物を冷却して、常温で固形のフェノール樹脂組成物A(ヘキサメチレンテトラミンのアダクト化率40%、遊離フェノール含有量0.5%)を得た。
(Preparation of Phenolic Resin Composition)
Example 1-1
800 parts of high ortho novolac type phenol resin A, 200 parts of novolak type resorcinol resin E, 120 parts of hexamethylenetetramine, equal ratio of supply per unit time, to a twin-screw extruder controlled at an inlet temperature of 80 ° C and an outlet temperature of 90 ° C It supplied so that it might become, and the kneaded material which came out from the exit was cooled, and solid phenol resin composition A (adductation rate 40% of hexamethylenetetramine, free phenol content 0.5%) was obtained at normal temperature.

<実施例1−2>
加圧ニーダーへ、ハイオルソノボラック型フェノール樹脂B900部、ノボラック型レゾルシン樹脂E100部、ヘキサメチレンテトラミン130部を投入し、90℃に昇温して、10分間溶融させた。常温で固形のフェノール樹脂組成物B(ヘキサメチレンテトラミンのアダクト化率69%、遊離フェノール含有量0.6%)を得た。
Example 1-2
In a pressure kneader, 900 parts of high ortho novolac type phenol resin B, 100 parts of novolac type resorcinol resin E and 130 parts of hexamethylenetetramine were charged, and the temperature was raised to 90 ° C. to melt for 10 minutes. A phenolic resin composition B (adductation ratio of hexamethylenetetramine 69%, free phenol content 0.6%) which is solid at normal temperature was obtained.

<実施例1−3>
入口温度85℃、出口温度95℃に制御された二軸押出機へ、ハイオルソノボラック型フェノール樹脂C950部、ノボラック型レゾルシン樹脂E50部、ヘキサメチレンテトラミン150部を、単位時間当たりの供給比率が等しくなるよう供給し、出口から出てきた混練物を冷却して、常温で固形のフェノール樹脂組成物C(ヘキサメチレンテトラミンのアダクト化率56%、遊離フェノール含有量0.6%)を得た。
Example 1-3
Into a twin-screw extruder controlled at an inlet temperature of 85 ° C and an outlet temperature of 95 ° C, 950 parts of high ortho novolac type phenol resin C, 50 parts of novolac type resorcinol resin E, 150 parts of hexamethylenetetramine, the supply ratio per unit time is equal The kneaded product coming out of the outlet was cooled to obtain a phenolic resin composition C (adductation ratio of hexamethylenetetramine 56%, free phenol content 0.6%) which is solid at normal temperature.

<実施例1−4>
加圧ニーダーへ、ハイオルソノボラック型フェノール樹脂A400部、ノボラック型レゾルシン樹脂E600部、ヘキサメチレンテトラミン100部を投入し、90℃に昇温して、10分間溶融させた。常温で固形のフェノール樹脂組成物D(ヘキサメチレンテトラミンのアダクト化率32%、遊離フェノール含有量0.2%)を得た。
Example 1-4
In a pressure kneader, 400 parts of high ortho novolac type phenol resin A, 600 parts of novolak type resorcinol resin E and 100 parts of hexamethylenetetramine were charged, heated to 90 ° C., and melted for 10 minutes. A phenolic resin composition D (adductation ratio of hexamethylenetetramine 32%, free phenol content 0.2%) which is solid at normal temperature was obtained.

<実施例1−5>
ハイオルソノボラック型フェノール樹脂B950部、ノボラック型レゾルシン樹脂E50部、ヘキサメチレンテトラミン120部を粉砕機に仕込み、粉砕混合して粉末フェノール樹脂組成物E(ヘキサメチレンテトラミンのアダクト化率0%、遊離フェノール含有量0.6%)を得た。
Example 1-5
950 parts of high ortho novolac type phenol resin B, 50 parts of novolac type resorcinol resin E, 120 parts of hexamethylene tetramine are charged in a grinder, and mixed by pulverization to obtain a powder phenol resin composition E (adductation ratio of hexamethylene tetramine 0%, free phenol The content was 0.6%).

<実施例1−6>
入口温度85℃、出口温度95℃に制御された二軸押出機へ、ハイオルソノボラック型フェノール樹脂A500部、ノボラック型レゾルシン樹脂E500部、ヘキサメチレンテトラミン140部を、単位時間当たりの供給比率が等しくなるよう供給し、出口から出てきた混練物を冷却して、常温で形のフェノール樹脂組成物F(ヘキサメチレンテトラミンのアダクト化率43%、遊離フェノール含有量0.3%)を得た。
Example 1-6
500 parts of high ortho novolac type phenol resin A, 500 parts of novolak type resorcinol resin E, 140 parts of hexamethylenetetramine, the supply ratio per unit time is equal to a twin-screw extruder controlled at an inlet temperature of 85 ° C and an outlet temperature of 95 ° C. The kneaded product coming out of the outlet was cooled to obtain a phenolic resin composition F (the adduct ratio of hexamethylenetetramine 43%, free phenol content 0.3%) in a form at normal temperature.

<比較例1−1>
入口温度80℃、出口温度90℃に制御された二軸押出機へ、ハイオルソノボラック型フェノール樹脂A1000部、ヘキサメチレンテトラミン130部を、単位時間当たりの供給比率が等しくなるよう供給し、出口から出てきた混練物を冷却して、常温で形のフェノール樹脂組成物G(ヘキサメチレンテトラミンのアダクト化率45%、遊離フェノール含有量0.5%)を得た。
Comparative Example 1-1
To a twin screw extruder controlled at an inlet temperature of 80 ° C. and an outlet temperature of 90 ° C., 1000 parts of high ortho novolac phenol resin A and 130 parts of hexamethylenetetramine are supplied so that the feed ratio per unit time becomes equal, The kneaded material which came out was cooled, and the phenol resin composition G (adductation ratio of hexamethylenetetramine 45%, free phenol content 0.5%) of the form at normal temperature was obtained.

<比較例1−2>
ハイオルソノボラック型フェノール樹脂C1000部、ヘキサメチレンテトラミン150部を粉砕機に仕込み、粉砕混合して粉末フェノール樹脂組成物H(ヘキサメチレンテトラミンアダクト化率0%、遊離フェノール含有量0.6%)を得た。
Comparative Example 1-2
1000 parts of high ortho novolac type phenol resin C and 150 parts of hexamethylenetetramine are charged in a grinder and pulverized and mixed to obtain powder phenol resin composition H (hexamethylene tetramine adduct ratio 0%, free phenol content 0.6%) Obtained.

<比較例1−3>
ノボラック型フェノール樹脂D1000部、ヘキサメチレンテトラミン150部を粉砕機に仕込み、粉砕混合して粉末フェノール樹脂組成物I(ヘキサメチレンテトラミンのアダクト化率0%、遊離フェノール含有量0.3%)を得た。
Comparative Example 1-3
1000 parts of novolac type phenol resin D and 150 parts of hexamethylenetetramine are charged in a grinder and pulverized and mixed to obtain powdery phenol resin composition I (0% adduct of hexamethylenetetramine, content of free phenol 0.3%) The

<比較例1−4>
加圧ニーダーへ、ノボラック型フェノール樹脂D800部、ノボラック型レゾルシン樹脂E200部、ヘキサメチレンテトラミン120部を投入し、90℃に昇温して、10分間溶融させた。常温で固形のフェノール樹脂組成物J(ヘキサメチレンテトラミンのアダクト化率38%、遊離フェノール含有量0.2%)を得た。
Comparative Example 1-4
In a pressure kneader, 800 parts of novolak-type phenol resin D, 200 parts of novolak-type resorcin resin E, and 120 parts of hexamethylenetetramine were charged, heated to 90 ° C., and melted for 10 minutes. A phenolic resin composition J (adductation ratio of hexamethylenetetramine 38%, free phenol content 0.2%) which is solid at normal temperature was obtained.

<比較例1−5>
加圧ニーダーへ、ノボラック型レゾルシン樹脂E1000部、ヘキサメチレンテトラミン150部を投入し、90℃に昇温して、10分間溶融させた。常温で固形のフェノール樹脂組成物K(ヘキサメチレンテトラミンのアダクト化率40%、遊離フェノール含有量0%)を得た。
<Comparative Example 1-5>
In a pressure kneader, 1000 parts of novolak-type resorcin resin E and 150 parts of hexamethylenetetramine were charged, the temperature was raised to 90 ° C., and melting was performed for 10 minutes. A phenolic resin composition K (adductation ratio of hexamethylenetetramine 40%, free phenol content 0%) which is solid at normal temperature was obtained.

(フェノール樹脂組成物の評価方法)
(1)ヘキサメチレンテトラミン全量におけるアダクト体の割合(ヘキサメチレンテトラミンのアダクト化率)
ヘキサメチレンテトラミンのアダクト化率は、次の式から求めた。なお、下記式において、Aは、ケルダール法によって求められる全ヘキサメチレンテトラミンの質量を指し、Bは、滴定法によって求められるイオン交換水で抽出されたヘキサメチレンテトラミンの質量を指す。また、測定に際して、試料の粒径は150μm以下に調製したものを用いた。
アダクト化率=〔(A−B)/A〕×100(%)
(Evaluation method of phenol resin composition)
(1) Proportion of adduct in total amount of hexamethylenetetramine (adductation rate of hexamethylenetetramine)
The adductation rate of hexamethylenetetramine was determined from the following equation. In the following formula, A refers to the mass of all hexamethylenetetramines determined by the Kjeldahl method, and B refers to the mass of hexamethylenetetramines extracted by ion exchange water determined by the titration method. Moreover, in the case of a measurement, the particle size of the sample used what was adjusted to 150 micrometers or less.
Adduct ratio = [(A-B) / A] x 100 (%)

(2)遊離フェノール含有量
得られたフェノール樹脂組成物を島津製作所社製ガスクロマトグラフ「GC−2014」、アジレント・テクノロジー株式会社製カラム「DB−WAX」を用いて測定を行い、遊離フェノールの含有量を算出した。
(2) Free phenol content The obtained phenol resin composition is measured using a gas chromatograph "GC-2014" manufactured by Shimadzu Corporation, a column "DB-WAX" manufactured by Agilent Technologies, Inc., and contains free phenol. The amount was calculated.

Figure 0006515812
Figure 0006515812

(実施例2−1〜2−6、比較例2−1〜2−5)
摩擦材用混合物を以下の方法で作製するとともに、後述する評価方法により評価を行った。結果を表2にまとめて示す。
(Examples 2-1 to 2-6, comparative examples 2-1 to 2-5)
While preparing the mixture for friction material by the following method, evaluation was performed by the evaluation method mentioned later. The results are summarized in Table 2.

(摩擦材用混合物の作製)
結合材として実施例1−1〜1−6及び比較例1−1〜1−5で得られた摩擦材フェノール樹脂組成物A〜Kを、繊維基材としてアラミド繊維(DU PONT社製、ケブラー)を、無機充填剤として炭酸カルシウム(三共精粉株式会社製、炭酸カルシウム)と硫酸バリウム(堺化学工業株式会社製、簸性硫酸バリウム)とを、それぞれ用い、表2に示す配合割合で仕込み混合して、摩擦材用混合物とした。
(Preparation of a mixture for friction material)
Friction material phenolic resin compositions A to K obtained in Examples 1-1 to 1-6 and Comparative Examples 1-1 to 1-5 as binders and aramid fibers (Kevlar manufactured by DU PONT Co., Ltd.) as fiber base materials Using calcium carbonate (manufactured by Sankyo Seimitsu Co., Ltd., calcium carbonate) and barium sulfate (manufactured by Sakai Chemical Industry Co., Ltd., fertile barium sulfate) as inorganic fillers, respectively, at a blending ratio shown in Table 2 It mixed and was set as the mixture for friction materials.

(摩擦材用混合物の評価方法)
(1)成型可能最短時間(成型段階での硬化性)
熱成形プレス機を用いて、上記配合割合で仕込み混合して得られた摩擦材用混合物を180℃、圧力30MPaで60秒から180秒までの10秒間隔の成型時間でそれぞれ成型を行い、脱型時又は脱型後にフクレ・割れが発生せずに縦90mm×横60mm×厚さ13mmの成型品が得られる最低時間を成型可能最短時間とした。成型可能最短時間が短いほど成型時の硬化性が良好と判断される。
(Evaluation method of mixture for friction material)
(1) Minimum moldable time (curability at molding stage)
Using a thermoforming press, the mixture for the friction material obtained by charging and mixing at the above mixing ratio is molded at 180 ° C. under a pressure of 30 MPa for a molding time of 10 seconds from 60 seconds to 180 seconds, and removed The minimum time for obtaining a molded product of 90 mm long × 60 mm wide × 13 mm thickness without forming blisters or cracks at the time of molding or demolding was taken as the shortest possible molding time. It is judged that the curability at the time of molding is better as the shortest moldable time is shorter.

(2)ガラス転移温度Tg(ベーキング段階での硬化性)
熱成形プレス機を用いて、上記配合割合で仕込み混合して得られた摩擦材用混合物を180℃、圧力30MPaで3分間成型してガラス転移温度測定用試験片を得た。得られた試験片をそのまま(ベーキング処理前)、ならびに、250℃に温調された乾燥機に、10分間入れてベーキング処理した後、動的粘弾性測定(DMA)の曲げモードでガラス転移温度Tgを測定した。ガラス転移温度Tgは、貯蔵弾性率が低下する温度を外挿して求めた。短いベーキング時間でも架橋密度(硬化度)が高くなり、ガラス転移温度Tgが高くなるほど良好と判断される。
(2) Glass transition temperature Tg (curability at the baking stage)
Using a thermoforming press, the mixture for a friction material obtained by charging and mixing at the above mixing ratio was molded at 180 ° C. under a pressure of 30 MPa for 3 minutes to obtain a test piece for glass transition temperature measurement. The obtained test piece is as it is (before the baking treatment), and after being placed in a dryer adjusted to 250 ° C. for 10 minutes for baking treatment, the glass transition temperature in the bending mode of dynamic viscoelasticity measurement (DMA) The Tg was measured. The glass transition temperature Tg was determined by extrapolating the temperature at which the storage modulus decreased. Even with a short baking time, the crosslink density (degree of curing) increases, and the higher the glass transition temperature Tg, the better it is judged.

(3)曲げ強度
熱成形プレス機を用いて、上記配合割合で仕込み混合して得られた摩擦材用混合物を170℃、圧力20MPaで7分間成型後、200℃60分でベーキングを行い曲げ試験片を得た。得られた曲げ試験片をJIS K 7171「プラスチック−曲げ特性の求め方」に準拠して測定した。ベーキング後に常温(25℃)で測定したものを常態強度、ベーキング後、更に350℃で4時間加熱処理を行った後に常温(25℃)で測定したものを熱処理後強度とした。熱処理後の曲げ強度が高いほど熱劣化し難く、優れた耐熱性を有すると判断される。
(3) Bending strength A mixture for friction material obtained by preparing and mixing at the above mixing ratio using a thermoforming press machine for 7 minutes at 170 ° C. and a pressure of 20 MPa, then baking at 200 ° C. for 60 minutes and bending test I got a piece. The obtained bending test piece was measured in accordance with JIS K 7171 "Plastic-Determination of bending characteristics". After the baking, those measured at normal temperature (25 ° C.) are normal strength, and after baking, they are heat treated at 350 ° C. for 4 hours and then measured at normal temperature (25 ° C.) as heat treated strength. It is judged that the higher the bending strength after the heat treatment, the less the thermal degradation and the better the heat resistance.

(4)ロックウェル硬度
上記手法で得られた曲げ試験片をJIS K 7202「プラスチックのロックウェル硬さ試験方法」に準拠して、ベーキング後に常温(25℃)で測定した。ロックウェル硬度が高いほど、優れた架橋度を有し、機械特性が優れると判断される。
(4) Rockwell Hardness The bending test piece obtained by the above-mentioned method was measured at normal temperature (25 ° C.) after baking according to JIS K 7202 “Testing method for Rockwell hardness of plastic”. The higher the Rockwell hardness, the better the degree of crosslinking and the better the mechanical properties.

(5)高温短時間成型評価
熱成形プレス機を用いて、上記配合割合で仕込み混合して得られた摩擦材用混合物を180℃、圧力30MPaで2分間成型し、縦90mm×横60mm×厚さ13mmの成型品を得て、フクレ、割れが発生しないかを確認した。フクレも割れも発生しなかったものは◎、フクレまたは割れが発生したものは△、フクレと割れの両方が発生したものは×と記載した。
(5) High temperature short time molding evaluation The mixture for a friction material obtained by preparing and mixing at the above mixing ratio using a thermoforming press machine is molded at 180 ° C. under a pressure of 30 MPa for 2 minutes, 90 mm × 60 mm × thickness A molded product of 13 mm in diameter was obtained, and it was confirmed whether blistering or cracking occurred. Those with neither blistering nor cracking were described as ◎, those with blistering or cracking noted as Δ, and those with both blistering and cracking as ×.

次いで、成型品の温度が100℃を下回らないうちに、250℃で20分間ベーキング処理を行った後、フクレ、割れが発生しないかを確認した。フクレも割れも発生しなかったものは◎、フクレまたは割れがわずかに発生したものは○と記載した。成型後に不良が発生したものについては、ベーキング処理は行わなかった。   Next, baking was performed at 250 ° C. for 20 minutes while the temperature of the molded product did not fall below 100 ° C., and then it was confirmed whether blistering or cracking occurred. Those that did not generate blisters or cracks were marked as ◎, and those that had slight blisters or cracks were marked as ○. The baking process was not performed about what the defect generate | occur | produced after shaping | molding.

Figure 0006515812
Figure 0006515812

表2に示すように、成型段階での硬化性については、実施例1−1〜1−6の摩擦材用フェノール樹脂組成物を用いた摩擦材用混合物である、実施例2−1〜2−6の摩擦材用混合物の成型品は、ノボラック型レゾルシン樹脂を使用しなかった比較例1−1、ノボラック型レゾルシン樹脂を使用せず、かつアダクト化を行わなかった比較例1−2、ハイオルソノボラック型フェノール樹脂およびノボラック型レゾルシン樹脂を使用しなかった比較例1−3、ハイオルソノボラック型フェノール樹脂の代わりにノボラック型フェノール樹脂を用いた比較例1−4の摩擦材用フェノール樹脂組成物を用いた摩擦材用混合物の成型品である比較例2−1〜2−4と比較すると、成型可能最短時間が短く、成型段階での硬化性が優れていることが分かった。また、ハイオルソノボラック型フェノール樹脂を使用せず、ノボラック型レゾルシン樹脂のみ使用した比較例1−5の摩擦材用フェノール樹脂組成物を用いた摩擦材用混合物の成型品である比較例2−5については、成型不可能であった。   As shown in Table 2, with regard to the curability at the molding stage, Examples 2-1 to 2 are a mixture for a friction material using the phenol resin composition for a friction material of Examples 1-1 to 1-6. The molded product of the mixture for friction material of No.-6 is Comparative Example 1-1 in which novolak-type resorcinol resin was not used, and Comparative Example 1-2 in which novolac-type resorcinol resin was not used and adducting was not performed, High Phenolic resin composition for a friction material of Comparative Example 1-3 in which the ortho novolac type phenolic resin and the novolac type resorcinol resin were not used, and Comparative Example 1-4 in which the novolac type phenolic resin was used instead of the high ortho novolac type phenolic resin Compared with Comparative Examples 2-1 to 2-4, which are molded articles of a mixture for friction material using the above, it can be seen that the shortest moldable time is short and the curability at the molding stage is excellent. It was. Further, Comparative Example 2-5, which is a molded article of a mixture for a friction material using the phenolic resin composition for a friction material of Comparative Example 1-5 using only the novolak type resorcinol resin without using the high ortho novolac type phenolic resin Could not be molded.

また、表2に示すように、ベーキング段階での硬化性について、実施例2−1〜2−6の摩擦材用混合物の成型品は、比較例2−1〜2−4の摩擦材用混合物の成型品と比較すると、成型後(ベーキング処理前)のガラス転移温度が成型温度に近く、ベーキング処理後のガラス転移温度もベーキング温度に近くなっていることが分かった。   Further, as shown in Table 2, with respect to the curability in the baking step, the molded product of the mixture for friction material of Examples 2-1 to 2-6 is the mixture for friction material of Comparative Examples 2-1 to 2-4. It was found that the glass transition temperature after molding (before the baking treatment) was close to the molding temperature, and the glass transition temperature after the baking treatment was also close to the baking temperature, as compared with the molded articles of the above.

また、表2に示すように、350℃で4時間熱処理した後に、常温(25℃)で測定した曲げ強度(熱処理後強度)について、実施例2−1〜2−6の摩擦材用混合物の成型品は、比較例2−1、比較例2−2の摩擦材用混合物の成型品と比較すると、熱処理後強度が高く、優れた耐熱性を示すことが分かった。   In addition, as shown in Table 2, after heat treatment at 350 ° C. for 4 hours, the bending strength (strength after heat treatment) measured at normal temperature (25 ° C.) When compared with the molded product of the mixture for friction material of Comparative Example 2-1 and Comparative Example 2-2, it was found that the molded product has high strength after heat treatment and exhibits excellent heat resistance.

また、表2に示すように、ロックウェル硬度について、実施例2−1〜2−6の摩擦材用混合物の成型品は、比較例2−1、比較例2−2の摩擦材用混合物の成型品と比較すると、硬度が高く、優れた架橋度を示すことが分かった。   Further, as shown in Table 2, with respect to Rockwell hardness, the molded product of the mixture for friction material of Examples 2-1 to 2-6 is the mixture of friction material for Comparative Example 2-1 and Comparative Example 2-2. It was found that the hardness was high and the crosslinking degree was excellent as compared to the molded product.

さらに、表2に示すように、高温短時間成型した後の外観について、実施例2−1〜2−6の摩擦材用混合物の成型品は、比較例2−1〜2−4の摩擦材用混合物の成型品と比較すると、高温短時間成形後の外観が優れていることがわかった。さらに、実施例2−1〜2−3、2−6の摩擦材混合物の成型品では、続けて250℃で20分間のベーキング処理を行った後においてもフクレも割れも発生しておらず、良好な結果が得られた。   Furthermore, as shown in Table 2, with respect to the appearance after molding for a short time at high temperature, the molded article of the mixture for friction material of Examples 2-1 to 2-6 is the friction material of Comparative Examples 2-1 to 2-4. It was found that the appearance after molding at high temperature for a short time was excellent as compared with the molded product of the mixture. Furthermore, in the moldings of the friction material mixture of Examples 2-1 to 2-3 and 2-6, no blisters or cracks occurred even after the baking treatment at 250 ° C. for 20 minutes, Good results were obtained.

以上の結果より、本発明の摩擦材用フェノール樹脂組成物を用いた摩擦材用混合物は、硬化時間を短縮することが可能である。また、本発明の摩擦材用フェノール樹脂組成物を用いた摩擦材用混合物を含む成型品は、高い硬度を有し、かつ優れた耐熱性を示すものであった。また、本発明の摩擦材用フェノール樹脂組成物を用いた摩擦材用混合物は、高温短時間成型した後、割れもフクレも発生せず、高温短時間成型にも適用可能であることが分かった。したがって、本発明によれば、機械物性などの諸特性を低下させることなく、低コストで耐熱性に優れた摩擦材を得ることが可能な摩擦材用フェノール樹脂組成物を得ることができる。また、本発明によれば、高温短時間成型にも適用可能な摩擦材用フェノール樹脂組成物を得ることができる。   From the above results, the mixture for a friction material using the phenolic resin composition for a friction material of the present invention can shorten the curing time. Moreover, the molded article containing the mixture for friction materials using the phenol resin composition for friction materials of this invention had high hardness, and showed the outstanding heat resistance. Further, it was found that the mixture for a friction material using the phenolic resin composition for a friction material of the present invention is applicable to high temperature short time molding after forming for a short time at high temperature without causing cracking or swelling. . Therefore, according to the present invention, it is possible to obtain a phenol resin composition for friction material which can obtain a friction material excellent in heat resistance at low cost without deteriorating various properties such as mechanical properties. Further, according to the present invention, it is possible to obtain a phenol resin composition for friction material that is applicable to high temperature short time molding.

本発明の摩擦材用フェノール樹脂組成物は、硬化時間を短縮しても高い硬化度に到達することで、機械物性等の諸特性を低下させることなく、低コストで耐熱性に優れた摩擦材を得ることができるため、たとえば、ブレーキなどの工業的な摩擦材の製造に好適に用いることができる。   The phenolic resin composition for a friction material according to the present invention achieves a high degree of cure even if the curing time is shortened, thereby achieving a low cost and high heat resistance friction material without deteriorating various properties such as mechanical properties. For example, it can be used suitably for manufacture of industrial friction materials, such as a brake.

この出願は、2014年2月7日に出願された日本出願特願2014−022070号を基礎とする優先権を主張し、その開示の全てをここに取り込む。   This application claims priority based on Japanese Patent Application No. 2014-022070 filed Feb. 7, 2014, the entire disclosure of which is incorporated herein.

Claims (13)

ハイオルソノボラック型フェノール樹脂と、
レゾルシンとホルムアルデヒドとの反応により得られるノボラック型レゾルシン樹脂と、
ヘキサメチレンテトラミンと、
を含み、
前記ハイオルソノボラック型フェノール樹脂のオルソ/パラ結合比が、2以上7以下である、
摩擦材用フェノール樹脂組成物。
High ortho novolac type phenolic resin,
Novolak-type resorcinol resin obtained by the reaction of resorcinol with formaldehyde ;
With hexamethylenetetramine,
Only including,
The ortho / para bond ratio of the high ortho novolac type phenolic resin is 2 or more and 7 or less,
Phenolic resin composition for friction material.
当該摩擦材用フェノール樹脂組成物が、前記ヘキサメチレンテトラミンと前記ハイオルソノボラック型フェノール樹脂とのアダクト体を含む、請求項1に記載の摩擦材用フェノール樹脂組成物。   The phenolic resin composition for friction materials according to claim 1, wherein the phenolic resin composition for friction materials comprises an adduct of the hexamethylenetetramine and the high ortho novolac type phenolic resin. 前記アダクト体を形成している前記ヘキサメチレンテトラミン量が、当該摩擦材用フェノール樹脂組成物に含まれる前記ヘキサメチレンテトラミン全量に対して、30%以上である、請求項2に記載の摩擦材用フェノール樹脂組成物。   The friction material according to claim 2, wherein the amount of the hexamethylenetetramine forming the adduct body is 30% or more with respect to the total amount of the hexamethylenetetramine contained in the phenolic resin composition for a friction material. Phenolic resin composition. 前記ノボラック型レゾルシン樹脂の含有量が、前記ハイオルソノボラック型フェノール樹脂100質量部に対して、1質量部以上100質量部以下である、請求項1乃至3のいずれか一項に記載の摩擦材用フェノール樹脂組成物。   The friction material according to any one of claims 1 to 3, wherein a content of the novolac resorcin resin is 1 part by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the high ortho novolac phenol resin. Phenolic resin composition. 前記ハイオルソノボラックフェノール樹脂の重量平均分子量が、1000以上8000以下である請求項1乃至のいずれか一項に記載の摩擦材用フェノール樹脂組成物。 The high weight average molecular weight of ortho novolak type phenolic resin, friction material phenolic resin composition according to any one of claims 1 to 4 1,000 or more than 8,000. 遊離フェノールの含有量が、前記ハイオルソノボラック型フェノール樹脂全量に対して、1質量%未満である請求項1乃至のいずれか一項に記載の摩擦材用フェノール樹脂組成物。 The phenolic resin composition for a friction material according to any one of claims 1 to 5 , wherein the content of free phenol is less than 1% by mass with respect to the total amount of the high ortho novolac type phenolic resin. 前記ハイオルソノボラック型フェノール樹脂の含有量と前記ノボラック型レゾルシン樹脂の含有量との合計値を100質量部としたとき、
前記ヘキサメチレンテトラミンの含有量が、前記ハイオルソノボラック型フェノール樹脂の含有量と前記ノボラック型レゾルシン樹脂の含有量との合計値100質量部に対して、5質量部以上20質量部以下である、請求項1乃至のいずれか一項に記載の摩擦材用フェノール樹脂組成物。
When the total value of the content of the high ortho novolac phenol resin and the content of the novolac resorcinol resin is 100 parts by mass,
The content of the hexamethylenetetramine is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass in total of the content of the high ortho novolac phenol resin and the content of the novolac resorcinol resin. The phenol resin composition for friction materials as described in any one of Claims 1 thru | or 6 .
前記ハイオルソノボラック型フェノール樹脂と、前記ノボラック型レゾルシン樹脂と、前記ヘキサメチレンテトラミンとを溶融混合して得られる、請求項1乃至のいずれか一項に記載の摩擦材用フェノール樹脂組成物。 The phenol resin composition for a friction material according to any one of claims 1 to 7 , which is obtained by melt-mixing the high ortho novolac phenol resin, the novolak resorcinol resin, and the hexamethylenetetramine. 前記ハイオルソノボラック型フェノール樹脂と前記ノボラック型レゾルシン樹脂との樹脂混合物と、前記ヘキサメチレンテトラミンとを溶融混合して得られる、請求項に記載の摩擦材用フェノール樹脂組成物。 The phenolic resin composition for a friction material according to claim 8 , obtained by melt-mixing a resin mixture of the high ortho novolac type phenolic resin and the novolac type resorcinol resin with the hexamethylenetetramine. 繊維基材と、
充填剤と、
結合材と、
を含む摩擦材であって、
前記結合材が、請求項1乃至のいずれか一項に記載の摩擦材用フェノール樹脂組成物を含む、摩擦材。
A fiber substrate,
With fillers
A binder,
A friction material containing
A friction material, wherein the binder comprises the phenolic resin composition for a friction material according to any one of claims 1 to 9 .
前記繊維基材が有機繊維を含む、請求項10に記載の摩擦材。 11. The friction material of claim 10 , wherein the fibrous substrate comprises organic fibers. 前記充填剤が、無機充填剤を含む、請求項10または11に記載の摩擦材。 It said filler comprises an inorganic filler, a friction material according to claim 10 or 11. 請求項10乃至12のいずれか一項に記載の摩擦材を用いて形成されるブレーキ。 A brake formed using the friction material according to any one of claims 10 to 12 .
JP2015560938A 2014-02-07 2015-01-27 Phenolic resin composition for friction material, friction material and brake Active JP6515812B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014022070 2014-02-07
JP2014022070 2014-02-07
PCT/JP2015/052198 WO2015118996A1 (en) 2014-02-07 2015-01-27 Phenolic resin composition for friction material, friction material, and brake

Publications (2)

Publication Number Publication Date
JPWO2015118996A1 JPWO2015118996A1 (en) 2017-03-23
JP6515812B2 true JP6515812B2 (en) 2019-05-22

Family

ID=53777803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015560938A Active JP6515812B2 (en) 2014-02-07 2015-01-27 Phenolic resin composition for friction material, friction material and brake

Country Status (6)

Country Link
US (1) US9926446B2 (en)
EP (1) EP3103839B1 (en)
JP (1) JP6515812B2 (en)
CN (1) CN105980475B (en)
ES (1) ES2821816T3 (en)
WO (1) WO2015118996A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182640A1 (en) * 2014-05-30 2015-12-03 住友ベークライト株式会社 Phenolic resin composition, and phenolic resin cured product
US10233988B2 (en) 2015-09-23 2019-03-19 Akebono Brake Industry Co., Ltd Friction material
JP6831175B2 (en) * 2015-10-29 2021-02-17 住友ベークライト株式会社 Phenolic resin molding material
TW201806996A (en) * 2016-04-06 2018-03-01 迪愛生股份有限公司 Novolac resin and resist material
CN107350980B (en) * 2016-05-10 2021-02-26 圣戈班磨料磨具有限公司 Abrasive article and method of forming the same
JP2018199749A (en) * 2017-05-25 2018-12-20 住友ベークライト株式会社 Phenol resin composition for rubber compounding, rubber composition, and tire
JP6508442B1 (en) * 2017-05-25 2019-05-08 Nok株式会社 Vulcanizing adhesive composition
CN112020533A (en) * 2018-04-17 2020-12-01 住友电木株式会社 Method for producing titanate-modified phenol resin composition, phenol resin composition for friction material, and friction material
JP6893529B2 (en) * 2019-04-27 2021-06-23 日清紡ブレーキ株式会社 Underlayer composition for disc brake pads and disc brake pads using the composition
CN112759929B (en) * 2021-01-20 2022-08-23 金旸(厦门)新材料科技有限公司 High-rigidity glass fiber reinforced flame-retardant wear-resistant nylon material
EP4321548A1 (en) * 2021-04-06 2024-02-14 Sumitomo Bakelite Co., Ltd. Heat-curable resin composition for friction material, and friction material
IT202100012974A1 (en) 2021-05-19 2021-08-19 Sannio Brake S R L COMPOUND FREE OF HARMFUL COMPONENTS AND FRICTION ELEMENT EQUIPPED WITH THIS COMPOUND

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3705540A1 (en) * 1986-06-13 1987-12-17 Ruetgerswerke Ag HIGH TEMPERATURE RESISTANT MOLDS
JPH0788501B2 (en) * 1987-09-11 1995-09-27 日立化成工業株式会社 Resin composition for friction material
JPH0692084B2 (en) * 1989-05-18 1994-11-16 住友デュレズ株式会社 Method for producing phenolic resin
US5075414A (en) * 1989-12-18 1991-12-24 Indspec Chemical Corporation Resorcinol-modified phenolic resin binder for reinforced plastics
JP3237841B2 (en) * 1990-11-21 2001-12-10 名古屋油化株式会社 Curing method
JPH1171497A (en) * 1997-06-25 1999-03-16 Sumitomo Durez Co Ltd Phenol resin composition
JPH11148071A (en) * 1997-11-14 1999-06-02 Akebono Brake Ind Co Ltd Composition for friction material
JPH11209451A (en) * 1998-01-29 1999-08-03 Sumitomo Durez Kk Resin composition for friction material
JPH11323314A (en) * 1998-05-08 1999-11-26 Sumitomo Durez Kk Resin composition for abrasive
KR100612733B1 (en) * 1998-08-26 2006-08-18 닛신보세키 가부시키 가이샤 Non-asbestos friction materials
JP2001139767A (en) * 1999-11-18 2001-05-22 Dainippon Ink & Chem Inc Novolak-type phenol resin composition and frictional material
CN1200971C (en) * 2000-06-12 2005-05-11 三井化学株式会社 Phenolic resin composition
JP2005272548A (en) * 2004-03-24 2005-10-06 Sumitomo Bakelite Co Ltd Phenol resin composition for friction material
JP2006249206A (en) * 2005-03-10 2006-09-21 Sumitomo Bakelite Co Ltd Phenol resin composition for friction material
JP2006257136A (en) * 2005-03-15 2006-09-28 Dainippon Ink & Chem Inc Method for producing novolak type phenol resin

Also Published As

Publication number Publication date
US9926446B2 (en) 2018-03-27
WO2015118996A1 (en) 2015-08-13
EP3103839A1 (en) 2016-12-14
EP3103839A4 (en) 2017-07-12
EP3103839B1 (en) 2020-08-19
ES2821816T3 (en) 2021-04-27
JPWO2015118996A1 (en) 2017-03-23
US20160347949A1 (en) 2016-12-01
CN105980475A (en) 2016-09-28
CN105980475B (en) 2018-07-17

Similar Documents

Publication Publication Date Title
JP6515812B2 (en) Phenolic resin composition for friction material, friction material and brake
KR20160140638A (en) Phenolic resin, epoxy resin composition containing said phenolic resin, cured product of said epoxy resin composition, and semiconductor device equipped with said cured product
JP2015057454A (en) Phenol resin composition for friction material and friction material
JP2009286888A (en) Thermosetting resin composition, thermosetting resin molding material, and cured product of the same
JP2009096894A (en) Low molecular weight novolac resin, method for manufacturing the same, and thermosetting resin composition using the same
JP4661087B2 (en) Method for producing solid resol type phenolic resin
JPH09302058A (en) Heat-resistant phenol resin excellent in thermosetting properties and its production
JP6652050B2 (en) Phenol resin composition and cured phenol resin
JP2009242472A (en) Thermosetting resin composition and thermosetting resin molding material
JP2015187229A (en) Phenolic resin molding material and molded product
JP5381573B2 (en) Thermosetting resin molding material
EP4159810A1 (en) Phenol resin composition for friction material
JP2000044642A (en) Phenol resin and phenol resin composition
JP2011202056A (en) Phenolic resin molding material
JP6405746B2 (en) Phenolic resin molding material
JPH08157692A (en) Phenol resin composition and molding material
JP5487533B2 (en) Phenol resin composition for friction material, method for producing the same, and friction material
JP2010031130A (en) Thermosetting resin composition, thermosetting resin molding material and cured product
JP2009242471A (en) Phenolic compound, phenolic resin, phenolic resin composition, and phenolic resin molding material
JP2009035661A (en) Phenol resin composition for friction material, its manufacturing method, and friction material
JP2009084358A (en) Phenolic resin composition, phenolic resin molding material, and its cured material
JPH0827358A (en) Phenolic resin composition and molding material
JP2005179453A (en) Epoxy resin and method for producing the same
JPS59207959A (en) Powdery resin composition
JPH11323314A (en) Resin composition for abrasive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6515812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150