JP6515356B2 - Steel plate for hot stamping, method of manufacturing the same, and hot stamped steel - Google Patents

Steel plate for hot stamping, method of manufacturing the same, and hot stamped steel Download PDF

Info

Publication number
JP6515356B2
JP6515356B2 JP2017510030A JP2017510030A JP6515356B2 JP 6515356 B2 JP6515356 B2 JP 6515356B2 JP 2017510030 A JP2017510030 A JP 2017510030A JP 2017510030 A JP2017510030 A JP 2017510030A JP 6515356 B2 JP6515356 B2 JP 6515356B2
Authority
JP
Japan
Prior art keywords
steel plate
hot
mass
less
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017510030A
Other languages
Japanese (ja)
Other versions
JPWO2016158961A1 (en
Inventor
東 昌史
昌史 東
嘉宏 諏訪
嘉宏 諏訪
雄介 近藤
雄介 近藤
佐藤 浩一
浩一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2016158961A1 publication Critical patent/JPWO2016158961A1/en
Application granted granted Critical
Publication of JP6515356B2 publication Critical patent/JP6515356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/04Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0242Lubricants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B2001/028Slabs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、ホットスタンプ時のスケール密着性に優れたホットスタンプ用鋼板およびその製造方法、並びにその成形体であるホットスタンプ成形体に関するものである。   TECHNICAL FIELD The present invention relates to a steel plate for hot stamping excellent in scale adhesion at the time of hot stamping, a method for producing the same, and a hot stamped steel which is a molded article thereof.

自動車のドアガードバーやサイドメンバー等の部材は、近年の燃費効率化の動向に対応すべく軽量化が検討されており、材料面では、薄肉化しても強度および衝突安全性が確保されるという観点から鋼板の高強度化が進められている。以下、強度とは引張強度および降伏強度の両方を意味する。しかしながら、材料の成形性は強度が上昇するのに伴って劣化するので、上記部材の軽量化を実現するには、成形性と高強度との両方を満足する鋼板を製造する必要がある。高強度と同時に高成形性を得る手法としては特許文献1および特許文献2に記載されている残留オーステナイトのマルテンサイト変態を利用したTRIP(TRansformation Induced Plasticity)鋼があり、近年用途が拡大しつつある。しかし、この鋼により、成形時の深絞り性および伸びは改善されるものの、鋼板強度が高いため、プレス成形後の部材の形状凍結性が悪いという問題を有している。   The weight reduction of members such as door guard bars and side members of automobiles is being considered in response to the recent trend of fuel efficiency, and in terms of materials, from the viewpoint that strength and collision safety can be ensured even if thinning. From this point of view, steel sheets are being strengthened. Hereinafter, strength means both tensile strength and yield strength. However, since the formability of the material deteriorates as the strength increases, it is necessary to produce a steel plate that satisfies both formability and high strength in order to realize the weight reduction of the above-mentioned members. As a method to obtain high strength and high formability simultaneously, there is TRIP (TRansformation Induced Plasticity) steel using martensitic transformation of retained austenite described in Patent Document 1 and Patent Document 2, and the application is expanding in recent years . However, although this steel improves deep drawability and elongation at the time of molding, it has a problem that the shape freezeability of the member after press forming is poor because the steel plate strength is high.

一方、成形性に劣る高強度鋼板を形状凍結性良く成形する手法としては、特許文献3および特許文献4に記載されている温間プレスと呼ばれる手法が存在する。この手法は、鋼板強度が低下する200℃から500℃程度の温度にて成形を行う手法である。ところが、780MPa以上の高強度鋼板の成形を考えた場合、成形温度を上昇させたとしても、依然として鋼板強度が高く成形しがたい場合があったり、加熱により成形後の鋼板強度が低下してしまい所定の強度が得られない場合があったりするという問題を有する。   On the other hand, as a method for forming a high strength steel plate inferior in formability with good shape freezeability, there is a method called warm press described in Patent Document 3 and Patent Document 4. This method is a method of forming at a temperature of about 200 ° C. to 500 ° C. where the steel plate strength decreases. However, in the case of forming a high strength steel plate of 780 MPa or more, even if the forming temperature is raised, the steel plate strength may still be high and it may be difficult to form, or the steel plate strength after forming may be reduced by heating. There is a problem that a predetermined strength may not be obtained.

これら問題を解決する手法として、軟質な鋼板を所定のサイズに切断後、鋼板を800℃以上のオーステナイト単相域まで加熱した後、特許文献5に開示されているようなオーステナイト単相域でプレス成形を行い、その後焼き入れを行うホットスタンプと呼ばれる手法が存在する。この結果、980MPa以上の高強度かつ形状凍結性に優れた部材の製造が可能となった。   As a method of solving these problems, after cutting a soft steel plate into a predetermined size, the steel plate is heated to an austenite single phase region of 800 ° C. or more, and then pressed in an austenite single phase region as disclosed in Patent Document 5 There is a method called hot stamping which performs shaping and then hardening. As a result, it became possible to manufacture a member having high strength of 980 MPa or more and excellent shape freezeability.

しかしながら、ホットスタンプでは、鋼板を加熱炉に挿入するか、あるいは、大気中で通電加熱または遠赤外加熱によって800℃を超えるような高温まで加熱することから、鋼板表面にスケールが発生するという問題を有している。この発生したスケールがホットスタンプ時に脱離することによって金型が損耗することから、ホットスタンプ時でのスケール密着性が優れていることが求められる。これら課題を解決する技術として、例えば、特許文献6には加熱炉内の雰囲気を非酸化雰囲気とすることでスケールの発生を抑制する技術が知られている。しかしながら、加熱炉内の雰囲気制御を厳格に実施する必要があり設備コストが高くなると共に、生産性に劣る。また、取りだした鋼板は大気に曝されるので、スケールの形成を避けられないという問題を有していた。加えて、近年では、ホットスタンプの生産性向上を目的に、大気にて鋼板を通電加熱する手法が発達しつつある。大気中加熱時には、鋼板の酸化を避けることが難しく、ホットスタンプ時のスケール脱離による金型損耗の問題が顕在化し易い。この結果、定期的な金型の補修が必須である。   However, in hot stamping, the steel sheet is inserted into a heating furnace or heated to a high temperature exceeding 800 ° C. in the atmosphere by electric heating or far infrared heating, so that the scale is generated on the steel sheet surface. have. Since the generated scale is worn out at the time of hot stamping and the mold is worn away, it is required that the scale adhesion at the time of hot stamping be excellent. As a technique for solving these problems, for example, Patent Document 6 discloses a technique for suppressing the generation of scale by setting the atmosphere in the heating furnace to a non-oxidizing atmosphere. However, strict control of the atmosphere in the heating furnace is required, which increases the cost of equipment and lowers productivity. In addition, since the steel sheet taken out is exposed to the atmosphere, there is a problem that the formation of scale can not be avoided. In addition, in recent years, a method of electrically heating a steel sheet in the atmosphere has been developed for the purpose of improving the productivity of hot stamping. At the time of heating in the atmosphere, it is difficult to avoid the oxidation of the steel sheet, and the problem of mold wear and tear due to scale detachment at the time of hot stamping tends to be apparent. As a result, regular mold repair is essential.

これら課題を解決する鋼板として、鋼板表面に亜鉛めっきまたはAlめっきを施した鋼板をホットスタンプに用いることによりスケールの剥離による金型の損耗を抑制する技術が知られている。しかしながら、加熱時に亜鉛めっきまたはAlのめっきは溶融して液相となることから、鋼板の搬送時またはプレス時に加熱炉内および金型に亜鉛またはAlが付着するという問題を有していた。付着した亜鉛またはAlの堆積物は、ホットスタンプ成形体の押し込み疵の原因となり、成形体に付着し外観を悪化させるという問題を有していた。このことから、定期的に金型を補修することが必要であった。   As a steel plate which solves these subjects, the art which controls wear of a metallic mold by exfoliation of scale is known by using a steel plate which gave galvanization or Al plating to a steel plate surface for a hot stamp. However, since galvanization or plating of Al is molten to form a liquid phase at the time of heating, zinc or Al adheres to the inside of the furnace and to the mold at the time of transportation or pressing of the steel plate. Deposits of deposited zinc or Al cause the pressing wrinkles of the hot stamped molded product, and have a problem of adhering to the molded product and deteriorating the appearance. From this, it was necessary to repair the mold regularly.

このことから、ホットスタンプ時にスケール剥離せず、かつ、金型への溶融金属の付着が生じないホットスタンプ用鋼板の開発が求められていた。   From this, development of the steel plate for hot stampings which does not carry out scale exfoliation at the time of hot stamping, and adhesion of fusion metal to a metallic mold does not arise is called for.

特開平1−230715号公報Unexamined-Japanese-Patent No. 1-230715 特開平2−217425号公報JP-A-2-217425 特開2002−143935号公報JP 2002-143935 A 特開2003−154413号公報JP, 2003-154413, A 特開2002−18531号公報Japanese Patent Laid-Open No. 2002-18531 特開2004−106034号公報JP 2004-106034 特開2002−18531号公報Japanese Patent Laid-Open No. 2002-18531 特開2008−240046号公報JP 2008-240046 A 特開2010−174302号公報JP, 2010-174302, A 特開2008−214650号公報JP 2008-214650 A

本発明は前述の問題点を鑑み、ホットスタンプ時のスケール密着性に優れ、かつ金型への溶融金属の付着が生じないホットスタンプ用鋼板、その製造方法並びにそのホットスタンプ成形体を提供することを目的とする。   In view of the above-mentioned problems, the present invention provides a steel plate for hot stamping which is excellent in scale adhesion at the time of hot stamping and in which adhesion of molten metal to a mold does not occur, a method for producing the same and its hot stamped steel. With the goal.

本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、鋼板のスケール密着性の改善を意図して、鋼板中にSiを0.50質量%〜3.00質量%含有させると共に、鋼板に塗布されている防錆油の量を50mg/m〜1500mg/mの範囲とし、鋼板の表面粗度をRz>2.5μmとする。また、好ましくは防錆油中に含まれるS含有量を5質量%以下とする。これにより、加熱時並びにホットスタンプ時のスケール密着性が改善することを見出した。一般的には塗油中の含有物が地鉄とスケールとの界面へ濃化することでスケール密着性を劣化させる。ところが、この含有物量を制限することと、鋼板表面の凹凸を利用したアンカー効果とを併用することにより、スケール密着性の確保が可能なことを見出した。The present inventors diligently studied methods for solving the above problems. As a result, 0.50 mass% to 3.00 mass% of Si is contained in the steel sheet for the purpose of improving the scale adhesion of the steel sheet, and the amount of rustproof oil applied to the steel sheet is 50 mg / m. The surface roughness of the steel plate is Rz> 2.5 μm, in the range of 2 to 1500 mg / m 2 . Further, preferably, the S content contained in the antirust oil is 5% by mass or less. It has been found that this improves the scale adhesion at the time of heating and at the time of hot stamping. In general, the content in the oil is degraded to the interface between the ground iron and the scale to deteriorate the scale adhesion. However, it has been found that it is possible to secure scale adhesion by combining the amount of inclusion and the anchor effect utilizing the unevenness of the steel sheet surface.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。
(1)質量%で、
C:0.100%〜0.600%、
Si:0.50%〜3.00%、
Mn:1.20%〜4.00%、
Ti:0.005%〜0.100%、
B:0.0005%〜0.0100%、
P:0.100%以下、
S:0.0001%〜0.0100%、
Al:0.005%〜1.000%、
N:0.0100%以下、
Ni:0%〜2.00%、
Cu:0%〜2.00%、
Cr:0%〜2.00%、
Mo:0%〜2.00%、
Nb:0%〜0.100%、
V:0%〜0.100%、
W:0%〜0.100%、および
REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上の合計:0%〜0.0300%
を含有し、残部がFeおよび不純物からなる組成であり、鋼板の表面粗度がRz>2.5μmであり、表面に塗油量50mg/m2〜1500mg/m2の塗油が塗布されており、
前記表面に塗布される塗油中に含まれるS量が質量%で5%以下であることを特徴とするホットスタンプ用鋼板。
The present invention has been made based on the above findings, and the summary thereof is as follows.
(1) mass%,
C: 0. 100% to 0.600%,
Si: 0.50% to 3.00%,
Mn: 1.20% to 4.00%,
Ti: 0.005% to 0.100%,
B: 0.0005% to 0.0100%,
P: 0. 100% or less,
S: 0.0001% to 0.0100%,
Al: 0.005% to 1.000%,
N: 0.0100% or less,
Ni: 0% to 2.00%,
Cu: 0% to 2.00%,
Cr: 0% to 2.00%,
Mo: 0% to 2.00%,
Nb: 0% to 0.100%,
V: 0% to 0.100%,
W: 0% to 0.100%, and one or more selected from the group consisting of REM, Ca, Ce and Mg in total: 0% to 0.0300%
Containing a composition the balance being Fe and impurities, the surface roughness of the steel sheet is the Rz> 2.5 [mu] m, the coating oil oiled amount 50mg / m 2 ~1500mg / m 2 on the surface is coated Yes,
The steel sheet for hot stamping, wherein the amount of S contained in the oil applied to the surface is 5% or less by mass .

)前記鋼板の組成が、質量%で、
Ni:0.01%〜2.00%、
Cu:0.01%〜2.00%、
Cr:0.01%〜2.00%、
Mo:0.01%〜2.00%、
Nb:0.005%〜0.100%、
V:0.005%〜0.100%、および
W:0.005%〜0.100%、
からなる群から選ばれる1種又は2種以上を含有することを特徴とする上記(1)に記載のホットスタンプ用鋼板。
( 2 ) The composition of the steel plate is, in mass%,
Ni: 0.01% to 2.00%,
Cu: 0.01% to 2.00%,
Cr: 0.01% to 2.00%,
Mo: 0.01% to 2.00%,
Nb: 0.005% to 0.100%,
V: 0.005% to 0.100%, and W: 0.005% to 0.100%,
The steel sheet for hot stamping according to the above (1) , which contains one or more selected from the group consisting of

)前記鋼板の組成が、質量%で、
REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上を合計で0.0003%〜0.0300%含有することを特徴とする上記(1)又は(2)に記載のホットスタンプ用鋼板。
( 3 ) The composition of the steel plate is in mass%,
The hot according to the above (1) or (2) characterized in that it contains 0.0003% to 0.0300% in total of one or more selected from the group consisting of REM, Ca, Ce and Mg. Stamp steel plate.

)質量%で、
C:0.100%〜0.600%、
Si:0.50%〜3.00%、
Mn:1.20%〜4.00%、
Ti:0.005%〜0.100%、
B:0.0005%〜0.0100%、
P:0.100%以下、
S:0.0001%〜0.0100%、
Al:0.005%〜1.000%、
N:0.0100%以下、
Ni:0%〜2.00%、
Cu:0%〜2.00%、
Cr:0%〜2.00%、
Mo:0%〜2.00%、
Nb:0%〜0.100%、
V:0%〜0.100%、
W:0%〜0.100%、および
REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上の合計:0%〜0.0300%
を含有し、残部がFeおよび不純物からなるスラブを鋳造して、直接または一旦冷却した後加熱して熱間圧延を行い、熱延鋼板を得る工程と、
前記熱延鋼板を、温度が80℃以上100℃未満、インヒビター入りで酸の濃度が3質量%〜20質量%の水溶液にて30秒以上の酸洗を実施する工程と、
前記酸洗を実施した後にS量が質量%で5%以下である防錆油を鋼板に塗布する工程と、
を有し、
鋼板表面の防錆油残存量を50mg/m2〜1500mg/m2に制限することを特徴とするホットスタンプ用鋼板の製造方法。
( 4 ) mass%,
C: 0. 100% to 0.600%,
Si: 0.50% to 3.00%,
Mn: 1.20% to 4.00%,
Ti: 0.005% to 0.100%,
B: 0.0005% to 0.0100%,
P: 0. 100% or less,
S: 0.0001% to 0.0100%,
Al: 0.005% to 1.000%,
N: 0.0100% or less,
Ni: 0% to 2.00%,
Cu: 0% to 2.00%,
Cr: 0% to 2.00%,
Mo: 0% to 2.00%,
Nb: 0% to 0.100%,
V: 0% to 0.100%,
W: 0% to 0.100%, and one or more selected from the group consisting of REM, Ca, Ce and Mg in total: 0% to 0.0300%
Casting a slab containing Fe and the remainder comprising Fe and impurities, directly or temporarily cooling, and then heating and hot rolling to obtain a hot rolled steel sheet;
Carrying out pickling for 30 seconds or more in an aqueous solution having a temperature of 80 ° C. or more and less than 100 ° C. and an inhibitor-containing acid concentration of 3% by mass to 20% by mass;
Applying an anticorrosion oil having an S content of 5% or less by mass on a steel plate after the pickling;
Have
Method for producing a hot stamping steel plate, characterized in that to limit the anti-rust oil residual amount of the steel sheet surface to 50mg / m 2 ~1500mg / m 2 .

)前記酸洗した熱延鋼板に前記防錆油を塗布することを特徴とする上記()に記載のホットスタンプ用鋼板の製造方法。 ( 5 ) The method for producing a steel plate for hot stamping as described in ( 4 ) above, characterized in that the anticorrosion oil is applied to the pickled hot rolled steel sheet.

)前記酸洗した熱延鋼板に冷間圧延を実施して冷延鋼板を得る工程を更に有し、
前記冷延鋼板に前記防錆油を塗布することを特徴とする上記()に記載のホットスタンプ用鋼板の製造方法。
( 6 ) The method further includes the step of cold rolling the pickled hot rolled steel sheet to obtain a cold rolled steel sheet,
The method for producing a steel plate for hot stamping according to ( 4 ), characterized in that the anticorrosion oil is applied to the cold rolled steel plate.

)前記酸洗した熱延鋼板に冷間圧延を実施し、さらに連続焼鈍設備又は箱型焼鈍炉にて熱処理を行って冷延鋼板を得る工程を更に有し、
前記冷延鋼板に前記防錆油を塗布することを特徴とする上記()に記載のホットスタンプ用鋼板の製造方法。
( 7 ) The method further includes the step of cold-rolling the pickled hot-rolled steel plate, and further performing heat treatment in a continuous annealing facility or a box-type annealing furnace to obtain a cold-rolled steel plate,
The method for producing a steel plate for hot stamping according to ( 4 ), characterized in that the anticorrosion oil is applied to the cold rolled steel plate.

)前記スラブの組成が、質量%で、
Ni:0.01%〜2.00%、
Cu:0.01%〜2.00%、
Cr:0.01%〜2.00%、
Mo:0.01%〜2.00%、
Nb:0.005%〜0.100%、
V:0.005%〜0.100%、および
W:0.005%〜0.100%、
からなる群から選ばれる1種又は2種以上を含有することを特徴とする上記(4)〜(7)のいずれかに記載のホットスタンプ用鋼板の製造方法。
( 8 ) The composition of the slab is, by mass%,
Ni: 0.01% to 2.00%,
Cu: 0.01% to 2.00%,
Cr: 0.01% to 2.00%,
Mo: 0.01% to 2.00%,
Nb: 0.005% to 0.100%,
V: 0.005% to 0.100%, and W: 0.005% to 0.100%,
The manufacturing method of the steel plate for hot stampings in any one of said (4)-(7) characterized by including 1 type (s) or 2 or more types selected from the group which consists of.

)前記スラブの組成が、質量%で、
REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上を合計で0.0003%〜0.0300%含有することを特徴とする上記(4)〜(8)のいずれかに記載のホットスタンプ用鋼板の製造方法。
( 9 ) The composition of the slab is, by mass%,
One or more selected from the group consisting of REM, Ca, Ce and Mg in total of 0.0003% to 0.0300% are contained in any one of the above (4) to (8) The manufacturing method of the steel plate for hot stamping as described.

(10)量%で、
C:0.100%〜0.600%、
Si:0.50%〜3.00%、
Mn:1.20%〜4.00%、
Ti:0.005%〜0.100%、
B:0.0005%〜0.0100%、
P:0.100%以下、
S:0.0001%〜0.0100%、
Al:0.005%〜1.000%、
N:0.0100%以下、
Ni:0%〜2.00%、
Cu:0%〜2.00%、
Cr:0%〜2.00%、
Mo:0%〜2.00%、
Nb:0%〜0.100%、
V:0%〜0.100%、
W:0%〜0.100%、および
REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上の合計:0%〜0.0300%
を含有し、残部がFeおよび不純物からなる組成を有し、スケールと地鉄との界面に、深さ0.2μm〜8.0μmの範囲となる凹凸が100μm当たり、3個以上存在し、前記スケールの厚みが10μm以下であり、引張強度が1180MPa以上であることを特徴とするホットスタンプ成形体。
(10) in mass%,
C: 0. 100% to 0.600%,
Si: 0.50% to 3.00%,
Mn: 1.20% to 4.00%,
Ti: 0.005% to 0.100%,
B: 0.0005% to 0.0100%,
P: 0. 100% or less,
S: 0.0001% to 0.0100%,
Al: 0.005% to 1.000%,
N: 0.0100% or less,
Ni: 0% to 2.00%,
Cu: 0% to 2.00%,
Cr: 0% to 2.00%,
Mo: 0% to 2.00%,
Nb: 0% to 0.100%,
V: 0% to 0.100%,
W: 0% to 0.100%, and one or more selected from the group consisting of REM, Ca, Ce and Mg in total: 0% to 0.0300%
Contain, comprises the balance consisting of Fe and impurities, the interface between the scale and the base steel, Ri per unevenness 100μm to be a range of depth 0.2Myuemu~8.0Myuemu, there three or more And a thickness of the scale is 10 μm or less, and a tensile strength is 1180 MPa or more.

(11)前記ホットスタンプ成形体の表面に、Si酸化物、FeO、Fe34、およびFe23を有することを特徴とする上記(10)に記載のホットスタンプ成形体。 (11) the the surface of the hot stamping material, Si oxide, FeO, Fe 3 O 4, and hot stamping molded article according to (10), characterized in that to have a Fe 2 O 3.

12)前記ホットスタンプ成形体の組成が、質量%で、
Ni:0.01%〜2.00%、
Cu:0.01%〜2.00%、
Cr:0.01%〜2.00%、
Mo:0.01%〜2.00%、
Nb:0.005%〜0.100%、
V:0.005%〜0.100%、および
W:0.005%〜0.100%、
からなる群から選ばれる1種又は2種以上を含有することを特徴とする上記(10)又は(11)に記載のホットスタンプ成形体。
( 12 ) The composition of the hot stamped molded body is, by mass%,
Ni: 0.01% to 2.00%,
Cu: 0.01% to 2.00%,
Cr: 0.01% to 2.00%,
Mo: 0.01% to 2.00%,
Nb: 0.005% to 0.100%,
V: 0.005% to 0.100%, and W: 0.005% to 0.100%,
The hot stamped molded article according to the above (10) or (11) , which contains one or more selected from the group consisting of

13)前記ホットスタンプ成形体の組成が、質量%で、
REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上を合計で0.0003%〜0.0300%含有することを特徴とする上記(10)〜(12)のいずれか1項に記載のホットスタンプ成形体。
( 13 ) The composition of the hot stamped molded body is, by mass%,
One or more selected from the group consisting of REM, Ca, Ce, and Mg in total of 0.0003% to 0.0300% are contained in any one of the above (10) to (12). The hot stamped molded object as described in a term.

本発明によれば、ホットスタンプ時のスケール密着性に優れ、かつ金型への溶融金属の付着が生じないホットスタンプ用鋼板、その製造方法並びにそのホットスタンプ成形体を提供することができる。   According to the present invention, it is possible to provide a steel plate for hot stamping which is excellent in scale adhesion at the time of hot stamping and in which adhesion of molten metal to a mold does not occur, a method for producing the same and a hot stamped steel body.

図1は、鋼板の塗油量と鋼板の表面粗さRzとの関係を示す図である。FIG. 1 is a view showing the relationship between the amount of oil applied to a steel plate and the surface roughness Rz of the steel plate. 図2は、塗油中のS濃度が高くなるとスケールが剥離し易くなることを説明するための図である。FIG. 2 is a view for explaining that the scale is easily peeled off when the concentration of S in the oil increases. 図3は、酸洗時間と鋼板の表面粗度Rzとの関係を示す図である。FIG. 3 is a view showing the relationship between the pickling time and the surface roughness Rz of the steel plate. 図4Aは、酸洗前の熱延鋼板の表層のミクロ組織を示す写真である。FIG. 4A is a photograph showing the microstructure of the surface layer of the hot-rolled steel plate before pickling. 図4Bは、酸洗後の表層ミクロ組織を示す写真である。FIG. 4B is a photograph showing the surface layer microstructure after pickling. 図5は、塗油量とスケールの厚みとの関係を示す図である。FIG. 5 is a view showing the relationship between the amount of oil applied and the thickness of the scale. 図6Aは、本発明例のホットスタンプ成形体表面の断面を示す写真である。FIG. 6A is a photograph showing a cross section of the surface of the hot stamped molded article of the example of the present invention. 図6Bは、比較例のホットスタンプ成形体表面の断面を示す写真である。FIG. 6B is a photograph showing a cross section of the surface of the hot stamped molded article of the comparative example. 図7は、ホットスタンプ熱処理前の表面粗度Rzが、2.5未満であると、ホットスタンプ熱処理後の凹凸の個数密度が3未満となることを説明するための図である。FIG. 7 is a view for explaining that when the surface roughness Rz before the hot stamp heat treatment is less than 2.5, the number density of the asperities after the hot stamp heat treatment is less than 3.

本発明のホットスタンプ用鋼板は、鋼板中にSiを0.5質量%〜3.0%質量%含有させると共に、鋼板に塗布されている防錆油の量を50mg/m〜1500mg/mの範囲とし、鋼板の表面粗度をRz>2.5μmとすることを特徴とする。そして、好ましくは防錆油中に含まれるS含有量を5質量%以下とする。
まず、本発明者らが塗油に着目した理由に関して説明する。
The steel plate for hot stamping according to the present invention contains 0.5% by mass to 3.0% by mass of Si in the steel plate, and the amount of rustproof oil applied to the steel plate is 50 mg / m 2 to 1500 mg / m 2 the second range, the surface roughness of the steel sheet, characterized in that the Rz> 2.5 [mu] m. And Preferably, S content contained in rustproof oil shall be 5 mass% or less.
First, the reason why the present inventors focused on oiling will be described.

本発明者らは、めっきを施さない鋼板(冷延鋼板、あるいは、熱延鋼板)のスケール密着性の改善を目的に、鋼板の表面性状および各種処理の影響を調査してきた。その結果、脱脂後の鋼板であれば優れたスケール密着性を示すものの、防錆油を塗布するとスケール密着性が大幅に劣化することを見出した。より詳細に、スケール密着性と防錆油との関係を調査したところ、防錆油に不純物として含まれるS量が増えるとスケールが剥離し易い傾向があることが明らかとなった。詳細な理由は不明なものの防錆油中のSがスケール密着性に影響を及ぼしているものと考えられる。   The inventors of the present invention have investigated the effects of the surface properties of the steel sheet and various treatments in order to improve the scale adhesion of the steel sheet (cold-rolled steel sheet or hot-rolled steel sheet) which is not plated. As a result, it has been found that although the steel sheet after degreasing exhibits excellent scale adhesion, application of a rust preventive oil significantly deteriorates the scale adhesion. More specifically, when the relationship between the scale adhesion and the antirust oil was investigated, it became clear that when the amount of S contained as an impurity in the antirust oil increases, the scale tends to be peeled off. It is considered that S in rust preventive oil has an influence on scale adhesion although the detailed reason is unknown.

一方では、酸洗したホットスタンプ用熱延鋼板、冷間圧延あるいは焼鈍後のホットスタンプ用冷延鋼板は、製造から使用までの間に錆が発生するのを抑制するために、鉱物油などの防錆油を塗布することが必要である。特に、酸洗後の鋼板は顧客への納入から使用までの期間が長期間になることを想定し、1500mg/mを超える塗油をすることが一般的であった。本発明者らは、スケール密着性と防錆性との両立を目的に塗油量の影響を調査したところ、図1に示すように、塗油量と鋼板の表面粗度との範囲を厳格に制御することによりスケール密着性が向上することを見出した。塗油量は50mg/m〜1500mg/mとすることで効果が発揮される。下限を50mg/mとしたのは、この塗油量未満では優れた防錆性の確保が困難であることから50mg/mを下限の塗油量とした。好ましくは、100mg/m以上であり、より好ましくは、200mg/m以上である。塗油量の上限を1500mg/mとしたのは、優れたスケール密着性の効果を得るためである。塗油量が1500mg/mを超えるとスケール密着性が劣化することからその上限を1500mg/mである。好ましくは、上限が1000mg/mであり、より好ましくは上限が900mg/mであり、さらに好ましくは上限が800mg/mである。また、鋼板表面の塗油は加熱時に燃えることから、煤を発生させる原因となる。このことからも、塗油量は少ない方が好ましい。On the other hand, pickled hot-stamped hot-rolled steel sheets, cold-rolled or annealed cold-rolled steel sheets for hot stamping use mineral oil etc. in order to suppress the occurrence of rusting from production to use. It is necessary to apply an antirust oil. In particular, after pickling, assuming that the period from delivery to use to a customer becomes long, it was common to apply oil exceeding 1500 mg / m 2 . The present inventors investigated the influence of the amount of applied oil for the purpose of achieving both the scale adhesion and the antirust property. As shown in FIG. 1, the range of the amount of applied oil and the surface roughness of the steel sheet is strict. It was found that the adhesion to the scale was improved by controlling the Unction amount effect is exhibited by a 50mg / m 2 ~1500mg / m 2 . The lower limit of 50 mg / m 2 is defined as 50 mg / m 2 as the lower limit of coating oil amount, since it is difficult to ensure excellent rust prevention if the amount is less than the coating oil amount. Preferably, it is 100 mg / m 2 or more, more preferably 200 mg / m 2 or more. The upper limit of the amount of oil applied is set to 1500 mg / m 2 in order to obtain the effect of excellent scale adhesion. Is 1500 mg / m 2 and the upper limit since the oiling weight scale adhesion is deteriorated more than 1500 mg / m 2. Preferably, the upper limit is 1000 mg / m 2 , more preferably, the upper limit is 900 mg / m 2 , and still more preferably, the upper limit is 800 mg / m 2 . In addition, since the oil on the surface of the steel sheet burns during heating, it causes soot. Also from this point, it is preferable that the amount of oil applied is small.

図1に示すスケール密着性は、φ70mm深さ20mmの円筒金型での熱間浅絞り試験によって評価した。鋼板を通電加熱装置にて、50℃/sにて、800℃〜1100℃の温度範囲に加熱し、0秒〜120秒の保持を行った後、通電を停止し、放冷にて650℃まで冷却し、上記金型にて熱間浅絞り加工を行った。成形後の試験体を目視観察し、スケールが剥離した面積が5%以下のものをスケール密着性が良好(○)、スケールが剥離した面積が5〜15%のものを不良(△)、スケールが剥離した面積が15%超のものを劣悪(×)とした。スケールが剥離した面積が5%以下のものを本発明の範囲内とした。   The scale adhesion shown in FIG. 1 was evaluated by a hot shallow drawing test using a cylindrical mold of 70 mm in diameter and 20 mm in depth. The steel plate is heated to a temperature range of 800 ° C. to 1100 ° C. at 50 ° C./s with an electric heating device and held for 0 seconds to 120 seconds, and then the current flow is stopped to allow 650 ° C. It was cooled down and hot shallow drawing was performed with the above mold. The test specimen after molding was visually observed, and the scale peeling was good when the area of scale peeling was 5% or less (○), the one with a scale peeling area of 5 to 15% was bad (Δ), scale When the area of peeling was more than 15%, it was regarded as poor (x). An area having a scale exfoliation of 5% or less was considered to be within the scope of the present invention.

加熱方法は特に限定することなく、スケール密着性の評価は可能である。例えば、加熱炉、遠赤外線、近赤外線、並びに、通電加熱のいずれの条件でも構わない。また、加熱炉にて鋼板を加熱する場合、加熱炉内の雰囲気を制御し鋼板の酸化を抑制してスケールを薄くすることで、更なる優れたスケール密着性を得ることができる。   The evaluation of scale adhesion is possible without particular limitation on the heating method. For example, any conditions of a heating furnace, far infrared rays, near infrared rays, and electric current heating may be used. Moreover, when heating a steel plate with a heating furnace, the further outstanding scale adhesiveness can be obtained by controlling the atmosphere in a heating furnace, suppressing the oxidation of a steel plate, and thinning a scale.

なお、浅絞り試験温度は、鋼板を加工できればどのような温度域でもよいが、一般的に、ホットスタンプ用鋼板はオーステナイト域での加工とその後の金型焼き入れとにより、高い強度と優れた形状凍結性とを有している。このことから、Ar3超となる650℃での熱間浅絞り加工により特性評価を実施した。   The shallow drawing test temperature may be any temperature range as long as the steel plate can be processed, but generally, the steel plate for hot stamping has high strength and excellent due to processing in the austenite region and subsequent die hardening. It has shape freezing property. From this, the characteristic evaluation was carried out by hot shallow drawing at 650 ° C., which is higher than Ar 3.

塗油方法としては静電塗油、スプレー、ロールコーター等が一般的に使用されるが、塗油量が確保できれば塗油方法は限定しない。   Although an electrostatic oil, a spray, a roll coater etc. are generally used as an oil method, if an amount of oil can be secured, the oil method is not limited.

油種は特定しないが、例えば鉱物油系であれば、NOX-RUST530F(パーカー興産(株)製)等が一般的に使用されるが塗油量が本発明の範囲を満たすのであれば、油種は、限定しない。   Although the oil type is not specified, for example, if it is a mineral oil type, NOX-RUST 530F (manufactured by Parker Kosan Co., Ltd.) etc. is generally used, but if the oil amount satisfies the scope of the present invention, oil The species is not limited.

塗油量は測定できればどのような方法で測定しても構わないが、本発明者らは以下の方法で測定した。まず、防錆油が塗布された鋼板を150mm角に切断し、その後、100mm×100mmの領域が露出するようにテープを張り付けた。そして、この塗油とシールを実施した鋼板(テープの重量を含む)との重量を予め測定しておく。次に、アセトンを含ませた布で鋼板表面の防錆油を拭き取ることで脱脂し、この脱脂した鋼板の重量を測定し、脱脂前後での重量を比較することで単位面積当たりの塗油量を算出した。各鋼板3箇所実施し、その付着量の平均値をそれぞれの鋼板の塗油付着量とした。   The amount of oil applied may be measured by any method as long as it can be measured, but the present inventors measured it by the following method. First, a steel plate coated with an antirust oil was cut into 150 mm squares, and then a tape was attached so that an area of 100 mm × 100 mm was exposed. Then, the weight of the oil and the steel plate (including the weight of the tape) subjected to the sealing is measured in advance. Next, degreasing is performed by wiping off the rustproof oil on the surface of the steel plate with a cloth containing acetone, the weight of this degreased steel plate is measured, and the amount of oil applied per unit area by comparing the weight before and after degreasing Was calculated. It implemented by three places of each steel plate, and made the average value of the adhesion amount the amount of oil adhesion of each steel plate.

防錆油中に含まれるS含有量を5質量%以下に制限することが好ましい。本発明者らは、図2に示すように、塗油中のS含有量とスケール剥離面積率との関係を調査したところ、塗油中のS含有量が少なくなるほど、スケール密着性が向上し、特に塗油中のS含有量が5質量%以下であれば、スケール剥離面積がほぼ0%となることを見出した。詳細なメカニズムは不明なものの、加熱時に、防錆油中に含まれる油分は燃焼しなくなるものの、不純物として含まれるSが鋼板表面に残存してスケール中に濃化することでスケール密着性を劣化させるものと考えられる。このことから、防錆油中に含まれるS含有量は低減することが好ましい。好ましくは、4質量%以下であり、更に好ましくは3質量%以下である。防錆油中のSの分析は、分析できればどのような方法でも差し支えないが、本発明者らは、鋼板に塗布する防錆油を5mL採取し、蛍光X線(蛍光線硫黄分析計 SLFA-2800/HORIBA)にて分析を実施した。測定にあたっては、n=3で実施し、その平均値をもってS含有量と定義した。 It is preferable to limit the S content contained in the antirust oil to 5% by mass or less. The inventors investigated the relationship between the S content in the coating oil and the scale peeling area ratio as shown in FIG. 2. As the S content in the coating oil decreases, the scale adhesion improves. In particular, when the S content in the oil was 5% by mass or less, the scale exfoliation area was found to be approximately 0%. Although the detailed mechanism is unknown, the oil contained in the rustproof oil does not burn during heating, but S contained as an impurity remains on the surface of the steel sheet and concentrates in scale, thereby deteriorating the scale adhesion. It is considered to be something that From this, it is preferable to reduce the S content contained in the antirust oil. Preferably, it is 4% by mass or less, more preferably 3% by mass or less. Although any method can be used for analysis of S in the antirust oil, the present inventors collected 5 mL of antirust oil to be applied to a steel plate, and fluorescent X-ray (fluorescent X- ray sulfur analyzer SLFA The analysis was performed at -2800 / HORIBA). The measurement was performed at n = 3, and the average value was defined as the S content.

次に、鋼板の表面粗度に関して説明する。スケール密着性を確保するためには、鋼板の表面粗度はRz>2.5μmとする必要がある。鋼板の表面粗度Rzとスケール密着性との関係を調査することで得られた結果は、前述の図1に示したとおりである。ホットスタンプ熱処理時に生成するスケールと地鉄との界面に凹凸を設けることで、地鉄とスケールとの界面に凹凸を形成し、密着性の更なる向上をもたらす。この効果は一般的には、アンカー効果と呼ばれる。特に、本鋼板で加熱時に生成されるスケールは薄い。この結果、スケールの厚みが薄い本鋼板は地鉄表面状態の影響を受けて凹凸をもったスケールが形成される。このことからホットスタンプ前の鋼板の表面粗度をRz>2.5μmとする必要がある。Rz≦2.5μmでは、鋼板の表面粗度が小さく、アンカー効果が不十分であることから、ホットスタンプ時の優れたスケール密着性を確保できない。上限は特に設けることなく本発明の優れたスケール密着性の効果を得ることが出来るが、過度にスケール密着性を向上させすぎると、例えば、ショットブラスト等の後工程でスケールを除去することが困難となる。そこで、Rz<8.0μmとすることが好ましい。より好ましくは、Rz<7.0μmである。ただし、Rz≧8.0μmとしたとしても本発明の効果である優れたスケール密着性を確保可能である。なお、Si含有量が0.50質量%未満の鋼板では、Rz>2.5μmの表面粗度としても、加熱時に厚いFe系スケールが形成されることから、鋼板表面に凹凸があったとしても過度な酸化により、地鉄とスケールとの界面がフラットになってしまう。この結果、スケールと地鉄との界面の凹凸がなくなり、本発明の効果である優れたスケール密着性の効果は発揮されない。   Next, the surface roughness of the steel plate will be described. In order to ensure scale adhesion, the surface roughness of the steel sheet needs to be Rz> 2.5 μm. The result obtained by investigating the relationship between the surface roughness Rz of the steel plate and the scale adhesion is as shown in FIG. 1 described above. By providing asperities at the interface between the scale formed at the time of the hot stamp heat treatment and the base steel, asperities are formed at the interface between the base iron and the scale, leading to a further improvement in adhesion. This effect is generally called an anchor effect. In particular, the scale produced on heating with this steel sheet is thin. As a result, in the case of the present steel sheet having a small scale thickness, a scale having irregularities is formed under the influence of the surface condition of the base iron. From this, it is necessary to set the surface roughness of the steel plate before hot stamping to Rz> 2.5 μm. When Rz ≦ 2.5 μm, the surface roughness of the steel sheet is small and the anchor effect is insufficient, so that excellent scale adhesion at the time of hot stamping can not be ensured. Although the upper limit is not particularly set, the excellent scale adhesion effect of the present invention can be obtained, but if the scale adhesion is excessively improved excessively, for example, it is difficult to remove the scale in the subsequent steps such as shot blasting. It becomes. Therefore, it is preferable to set Rz <8.0 μm. More preferably, Rz <7.0 μm. However, even when Rz ≧ 8.0 μm, the excellent scale adhesion which is the effect of the present invention can be secured. In the case of steel plates with a Si content of less than 0.50 mass%, even if the surface roughness is Rz> 2.5 μm, thick Fe-based scales are formed during heating, even if the steel plate surface has irregularities. Excessive oxidation causes the interface between the ground iron and the scale to be flat. As a result, the unevenness at the interface between the scale and the base iron is eliminated, and the excellent effect of scale adhesion, which is the effect of the present invention, is not exhibited.

表面粗度Rzの測定は、どのような方法でも構わないが、本発明者らは、触針の先端角が60°、先端Rが2μm接触式表面粗度計(SURFCOM2000DX/SD3東京精密社製)にて、長さ10mmの領域をn=3で測定し、平均値を個々の鋼板の表面粗度Rzとした。   The surface roughness Rz may be measured by any method, but the present inventors measured the surface angle of a stylus with a tip angle of 60 ° and a tip R of 2 μm (SURFCOM 2000 DX / SD3 Tokyo Seimitsu Co., Ltd.) In the above, the area of 10 mm in length was measured at n = 3, and the average value was taken as the surface roughness Rz of each steel plate.

次に、ホットスタンプ成形体のスケール構造に関して説明する。本発明のホットスタンプ用鋼板は、スケールと地鉄との界面の凹凸制御によりスケール密着性を確保している。このことから、スケールは、Si酸化物、Fe34、Fe23、およびFeOを主体とするスケールであれば良い。Si酸化物は、地鉄と鉄系スケール(FeO、Fe23Fe 3 4 )との界面に存在することにより、鉄系スケールの厚みを制御する。このことからスケールにSi酸化物を含む必要がある。鉄系酸化物の厚み制御が主な目的であることから、Si酸化物は非常に薄くとも存在すれば良く、例えば、1nmであってもその効果を発揮する。 Next, the scale structure of the hot stamped molded body will be described. The steel plate for hot stamping of the present invention secures the scale adhesion by controlling the unevenness of the interface between the scale and the base steel. From this, the scale may be a scale mainly composed of Si oxide, Fe 3 O 4 , Fe 2 O 3 , and FeO. The Si oxide controls the thickness of the iron-based scale by being present at the interface between the ground iron and the iron-based scale (FeO, Fe 2 O 3 , Fe 3 O 4 ). From this, it is necessary to include Si oxide in the scale. Since the main purpose is to control the thickness of the iron-based oxide, the Si oxide may be present even if it is very thin. For example, even if it is 1 nm, the effect is exhibited.

成形体のスケールの組成分析は、浅絞り試験片の円筒部の底から板を切り出し、X線回折にて実施した。各酸化物のピーク強度比から、各Fe系酸化物の体積率を測定した。Si酸化物は、非常に薄く存在しており、体積率も1%未満であったことから、X線回折での定量評価は困難であった。ただし、EPMA(Electron Probe Micro Analyzer)の線分析にて、スケールと地鉄との界面にSi酸化物が存在することを確認することは可能である。   Composition analysis of the scale of the molded body was performed by cutting the plate from the bottom of the cylindrical portion of the shallow drawn test piece and performing X-ray diffraction. The volume fraction of each Fe-based oxide was measured from the peak intensity ratio of each oxide. Since the Si oxide was present very thin and the volume fraction was less than 1%, quantitative evaluation by X-ray diffraction was difficult. However, it is possible to confirm the presence of Si oxide at the interface between the scale and the base iron by line analysis of EPMA (Electron Probe Micro Analyzer).

スケールの厚みは、10μm以下であることが好ましい。スケールの厚みが10μm以下とすれば、スケール密着性がより向上する。スケールの厚みが10μmを超えるとホットスタンプ時の冷却の際に働く熱応力が原因でスケールが剥離し易くなる傾向がある。一方では、その後、ショットブラストまたはウェットブラストといったスケール除去工程において、Fe系のスケール間で割れが生じ、外側に存在するスケールが剥離する。この結果、スケール除去性にも劣ると言う課題を有していた。このことから、スケールの厚みは10μm以下であることが好ましい。より好ましくは7μm以下であり、更に好ましくは5μm以下である。スケールの厚みは、鋼板のSi含有量を所定の範囲内に制御することと同時に、塗油量を所定の範囲に制御することで達成される。図5に、塗油量とスケール厚みとの関係を示す。   The thickness of the scale is preferably 10 μm or less. When the thickness of the scale is 10 μm or less, the scale adhesion is further improved. When the thickness of the scale exceeds 10 μm, the scale tends to be easily exfoliated due to the thermal stress that works during cooling at the time of hot stamping. On the other hand, thereafter, in a scale removing process such as shot blasting or wet blasting, cracking occurs between Fe-based scales, and the scale present outside is exfoliated. As a result, it had the subject that it was inferior also to scale removability. From this, the thickness of the scale is preferably 10 μm or less. More preferably, it is 7 micrometers or less, More preferably, it is 5 micrometers or less. The thickness of the scale is achieved by controlling the amount of oil applied to a predetermined range at the same time as controlling the Si content of the steel sheet within a predetermined range. FIG. 5 shows the relationship between the amount of oil applied and the scale thickness.

本発明のホットスタンプ成形体における地鉄とスケールとの界面には、0.2μm〜8.0μmの凹凸を100μm辺り3個以上存在する。図6Aにはスケール密着性に優れる成形体の地鉄とスケールとの界面の写真を示し、図6Bには、スケール密着性に劣る地鉄とスケールとの界面の写真を示す。この凹凸は、ホットスタンプ時のスケール密着性向上に寄与することから、上記範囲に制御することで優れたスケール密着性を確保出来る。0.2μm未満の凹凸ではアンカー効果が十分でなく、スケール密着性に劣る。8.0μm以上の凹凸では、スケール密着性が強すぎてしまい、その後のスケール除去工程において、例えば、ショットブラストまたはウェットブラストでスケール除去し難いことから、スケールと地鉄との界面の凹凸は8.0μm以下にすることが好ましい。より好ましくは、6.0μm以下であり、更に好ましくは、4.0μm以下である。ただし、凹凸が8.0μmを超えたとしても、本発明の効果である優れたスケール密着性は確保出来る。   In the interface between the ground iron and the scale in the hot stamped molded article of the present invention, three or more irregularities having a diameter of 0.2 μm to 8.0 μm are present per 100 μm. FIG. 6A shows a photograph of the interface between the ground iron and the scale of the molded product excellent in scale adhesion, and FIG. 6B shows a photograph of the interface between the ground iron and the scale which is inferior in scale adhesion. This unevenness contributes to the improvement of the scale adhesion at the time of hot stamping, so that the excellent scale adhesion can be secured by controlling the above range. If the unevenness is less than 0.2 μm, the anchor effect is not sufficient and the scale adhesion is poor. If the unevenness is more than 8.0 μm, the scale adhesion is too strong, and it is difficult to remove the scale by, for example, shot blasting or wet blasting in the subsequent scale removing process, so the unevenness at the interface between the scale and the base iron is 8 It is preferable that the thickness be less than or equal to 0 μm. More preferably, it is 6.0 micrometers or less, More preferably, it is 4.0 micrometers or less. However, even if the unevenness exceeds 8.0 μm, the excellent scale adhesion which is the effect of the present invention can be ensured.

0.2μm〜8.0μmの凹凸の100μm当たりの個数が3個未満では、スケール密着性の改善効果が十分でないことから、3個以上とする。一方、その個数の上限は特に定めることなく本発明の効果である優れたスケール密着性は確保可能である。なお、成形体の凹凸は、図7に示すように鋼板の表面粗度Rzと相関があり、鋼板の表面粗さRz>2.5μmとすることで制御可能である。   If the number per 100 μm of irregularities of 0.2 μm to 8.0 μm is less than 3, the improvement effect of the scale adhesion is not sufficient, and therefore, it is 3 or more. On the other hand, the upper limit of the number is not particularly limited, and the excellent scale adhesion which is the effect of the present invention can be secured. In addition, as shown in FIG. 7, the unevenness | corrugation of a molded object has correlation with surface roughness Rz of a steel plate, and it can control by setting it as the surface roughness Rz> 2.5 micrometers of a steel plate.

次に、本発明の鋼板およびホットスタンプ成形体の化学組成について説明する。なお、以下、%は質量%を意味する。
C:0.100%〜0.600%
Cは、鋼板の強度を高めるために含有される元素である。C含有量が0.100%未満であると、1180MPa以上の引張強度を確保することができず、ホットスタンプの目的である高強度な成形体を確保できない。一方、C含有量が0.600%を超えると、溶接性や加工性が不充分となるので、C含有量は0.100%〜0.600%とする。好ましくは0.100%〜0.550%であり、より好ましくは0.150%〜0.500%である。ただし、成形体の強度を必要としないのであれば、C含有量が0.150%未満であっても優れたスケール密着性は確保出来る。
Next, the chemical compositions of the steel plate and the hot stamped steel of the present invention will be described. Hereinafter,% means mass%.
C: 0. 100% to 0.600%
C is an element contained to increase the strength of the steel plate. If the C content is less than 0.100%, a tensile strength of 1180 MPa or more can not be secured, and a high-strength molded body, which is the purpose of a hot stamp, can not be secured. On the other hand, if the C content exceeds 0.600%, the weldability and the processability become insufficient, so the C content is made 0.100% to 0.600%. It is preferably 0.100% to 0.550%, more preferably 0.150% to 0.500%. However, excellent scale adhesion can be ensured even if the C content is less than 0.150% as long as the strength of the molded body is not required.

Si:0.50%〜3.00%
Siはホットスタンプ時のスケール組成を制御することでスケール密着性を向上させることから必須の元素である。Si含有量が0.50%未満下であると、Fe系スケールの厚みを制御できず、優れたスケール密着性を確保できない。このことから、Si含有量は0.50%以上とする必要がある。また、ホットスタンプ時の成形が厳しい部材へ適用することを考えた場合、Si含有量を増加させることが好ましい。したがって、好ましくはSi含有量が0.70%以上であり、より好ましくは0.90%以上である。一方、Siは、Ae3点を増加させ、マルテンサイトを主相とするのに必要な加熱温度を増加させることから、過度に含まれていると生産性および経済性が低下する。このことから、Si含有量は3.00%を上限とする。好ましくはSi含有量の上限が2.5%であり、より好ましくは上限2.0%である。ただし、生産性および経済性を除いて優れたスケール密着性の確保は可能である。
Si: 0.50% to 3.00%
Si is an essential element because it improves scale adhesion by controlling the scale composition at the time of hot stamping. If the Si content is less than 0.50%, the thickness of the Fe-based scale can not be controlled, and excellent scale adhesion can not be secured. From this, the Si content needs to be 0.50% or more. In addition, in view of application to a member having severe molding at the time of hot stamping, it is preferable to increase the Si content. Therefore, the Si content is preferably 0.70% or more, more preferably 0.90% or more. On the other hand, Si increases the Ae3 point and increases the heating temperature required to make martensite the main phase, so if it is included excessively, the productivity and the economy decline. From this, the Si content has an upper limit of 3.00%. Preferably, the upper limit of the Si content is 2.5%, and more preferably the upper limit is 2.0%. However, it is possible to ensure excellent scale adhesion except for productivity and economy.

Mn:1.20%〜4.00%
Mnは、ホットスタンプ時の冷却過程でのフェライト変態を遅延し、ホットスタンプ成形体をマルテンサイト主相とする組織とするため、1.20%以上含有させる必要がある。Mn含有量が1.20%未満では、マルテンサイトを主相とすることが出来ず、ホットスタンプ成形体の目的である高強度の確保が難しいので、Mn含有量の下限を1.20%とする。ただし、成形体の強度を必要としないのであれば、Mn含有量が1.20%未満であっても優れたスケール密着性は確保出来る。一方、Mn含有量が4.00%を超えると効果が飽和するとともに、脆化を引き起こし、鋳造、冷間圧延、あるいは、熱間圧延の際に割れを引き起こすため、Mn含有量の上限は4.00%とする。好ましくはMn含有量が1.50%〜3.50%の範囲であり、より好ましくは2.00%〜3.00%の範囲である。
Mn: 1.20% to 4.00%
Mn is required to be contained by 1.20% or more in order to delay the ferrite transformation in the cooling process at the time of hot stamping and to make the hot stamped molded body into a structure having a martensitic main phase. When the Mn content is less than 1.20%, martensite can not be used as the main phase, and it is difficult to secure high strength, which is the purpose of the hot stamped steel, so the lower limit of the Mn content is 1.20%. Do. However, if the strength of the molded body is not required, excellent scale adhesion can be ensured even if the Mn content is less than 1.20%. On the other hand, if the Mn content exceeds 4.00%, the effect is saturated and embrittlement is caused to cause cracking during casting, cold rolling or hot rolling, so the upper limit of the Mn content is 4 And .00%. Preferably, the Mn content is in the range of 1.50% to 3.50%, and more preferably in the range of 2.00% to 3.00%.

Ti:0.005%〜0.100%
Tiは、Nと結合し、TiNを形成することで、Bが窒化物となることを抑制し、焼入れ性を向上させる元素である。この効果は、Ti含有量が0.005%以上で顕著となることから、Ti含有量は0.005%以上とする。但し、Ti含有量が0.100%を超えると、Ti炭化物が形成され、マルテンサイトの強化に寄与するC量が低減し、強度の低下が引き起こされるため、Ti含有量の上限は0.100%とする。好ましくはTi含有量が0.005%〜0.080%の範囲であり、より好ましくは、0.005%〜0.060%の範囲である。
Ti: 0.005% to 0.100%
Ti is an element that combines with N to form TiN, thereby suppressing B from becoming a nitride and improving the hardenability. Since this effect becomes remarkable when the Ti content is 0.005% or more, the Ti content is made 0.005% or more. However, if the Ti content exceeds 0.100%, Ti carbide is formed, the amount of C contributing to the strengthening of martensite is reduced, and a reduction in strength is caused, so the upper limit of the Ti content is 0.100. And%. Preferably, the Ti content is in the range of 0.005% to 0.080%, and more preferably in the range of 0.005% to 0.060%.

B:0.0005%〜0.0100%
Bは、ホットスタンプ時の焼き入れ性を高め、主相をマルテンサイトとすることに寄与する。この効果は、B含有量が0.0005%以上で顕著となるため、B含有量は0.0005%以上とする必要がある。一方、B含有量が0.0100%を超えると、その効果が飽和するとともに、鉄系の硼化物が析出し、Bの焼き入れ性の効果を失うため、B含有量の上限は0.0100%とする。好ましくはB含有量が0.0005%〜0.0080%の範囲であり、より好ましくは0.0005%〜0.0050%の範囲である。
B: 0.0005% to 0.0100%
B improves the hardenability at the time of hot stamping and contributes to making the main phase martensite. This effect is remarkable when the B content is 0.0005% or more, so the B content needs to be 0.0005% or more. On the other hand, when the B content exceeds 0.0100%, the effect saturates and iron boride precipitates, and the hardenability effect of B is lost, so the upper limit of the B content is 0.0100. And%. Preferably, the B content is in the range of 0.0005% to 0.0080%, and more preferably in the range of 0.0005% to 0.0050%.

P:0.100%以下
Pは、鋼板の板厚中央部に偏析する元素であり、また、溶接部を脆化させる元素でもある。したがって、P含有量の上限を0.100%とする。より好ましい上限は0.050%である。P含有量は低い方が好ましく、下限は特に定めることなく本発明の効果が発揮されるが、Pを0.001%未満に低減することは、脱Pの生産性およびコストの観点から、経済的に不利であるので、下限を0.001%とすることが好ましい。
P: 0. 100% or less P is an element that segregates in the central portion of the thickness of the steel sheet, and is also an element that embrittles the weld. Therefore, the upper limit of the P content is 0.100%. A more preferred upper limit is 0.050%. The lower P content is preferable, and the lower limit is not particularly defined. The effects of the present invention can be exhibited. However, reducing P to less than 0.001% is an economy from the viewpoint of de-P productivity and cost. And the lower limit is preferably 0.001%.

S:0.0001%〜0.0100%
Sは、スケール密着性に大きな影響を及ぼすことから、鋼板中の含有量を制限する必要がある。したがって、S含有量の上限を0.0100%とする。一方、脱Pの生産性およびコストの観点から、経済的に不利であるので、S含有量の下限を0.0001%とする。好ましくはS含有量が0.0001%〜0.0070%の範囲であり、より好ましくは0.0003%〜0.0050%の範囲である。
S: 0.0001% to 0.0100%
Since S has a large effect on scale adhesion, it is necessary to limit the content in the steel sheet. Therefore, the upper limit of the S content is made 0.0100%. On the other hand, since it is economically disadvantageous from the viewpoint of productivity and cost of de-P, the lower limit of the S content is made 0.0001%. Preferably, the S content is in the range of 0.0001% to 0.0070%, and more preferably in the range of 0.0003% to 0.0050%.

Al:0.005%〜1.000%
Alは、脱酸材として作用するので、Al含有量は0.005%以上とする。Al含有量が0.005%未満では十分な脱酸効果を得ることが出来ず、鋼板中に多量の介在物(酸化物)が存在することとなる。これら介在物は、ホットスタンプ時に破壊の起点となり、破断の原因となることから好ましくない。この効果は、Al含有量が0.005%以上となると顕著になるので、Al含有量は0.005%以上とする必要がある。一方、Al含有量が1.000%を超えると、Ac3点を増加させホットスタンプ時の加熱温度を増加させる。即ち、ホットスタンプは、鋼板をオーステナイト単相域に加熱し、鋼板を成形性に優れる熱間での金型プレスと、金型を用いた急冷とを実施することで、複雑な形状を有する高強度の成形体を得る技術である。この結果、Alが多量に含まれているとAc3点を著しく向上させ、オーステナイト単相域加熱に必要な加熱温度の増大を招き、生産性が低下してしまう。このことから、Al含有量の上限は1.000%とする必要がある。好ましくはAl含有量が0.005%〜0.500%の範囲であり、より好ましくは0.005%〜0.300%の範囲である。
Al: 0.005% to 1.000%
Since Al acts as a deoxidizer, the Al content is made 0.005% or more. If the Al content is less than 0.005%, a sufficient deoxidizing effect can not be obtained, and a large amount of inclusions (oxides) will be present in the steel sheet. These inclusions are not preferable because they become a starting point of breakage at the time of hot stamping and cause breakage. This effect is remarkable when the Al content is 0.005% or more, so the Al content needs to be 0.005% or more. On the other hand, if the Al content exceeds 1.000%, the Ac3 point is increased to increase the heating temperature at the time of hot stamping. That is, the hot stamp heats the steel plate to the austenite single-phase region, and performs a hot-pressing of the steel plate with excellent formability, and quenching by using a die to obtain a complex shape. It is a technology to obtain a strong molded body. As a result, when a large amount of Al is contained, the Ac3 point is significantly improved, the heating temperature required for heating the austenite single phase region is increased, and the productivity is lowered. From this, the upper limit of the Al content needs to be 1.000%. Preferably, the Al content is in the range of 0.005% to 0.500%, and more preferably in the range of 0.005% to 0.300%.

N:0.0100%以下
Nは、粗大な窒化物を形成し、曲げ性および穴拡げ性を劣化させる元素である。N含有量が0.0100%を超えると、曲げ性および穴拡げ性が顕著に劣化するので、N含有量の上限は0.0100%とする。なお、Nは、溶接時のブローホールの発生原因になるので、少ない方が好ましい。したがって、好ましくはN含有量が0.0070以下であり、より好ましくは0.0050%以下である。一方、N含有量の下限は、特に定める必要はないが、N含有量を0.0001%未満に低減すると、製造コストが大幅に増加するので、0.0001%が実質的な下限である。製造コストの観点から、N含有量は0.0005%以上がより好ましい。
N: 0.0100% or less N is an element that forms coarse nitrides and degrades bendability and hole expandability. If the N content exceeds 0.0100%, the bendability and the hole expansibility deteriorate significantly, so the upper limit of the N content is made 0.0100%. In addition, since it becomes a cause of generation | occurrence | production of the blowhole at the time of welding, it is preferable that there is little N. Therefore, preferably the N content is 0.0070 or less, more preferably 0.0050% or less. On the other hand, the lower limit of the N content does not have to be particularly defined, but when the N content is reduced to less than 0.0001%, the manufacturing cost is significantly increased, so 0.0001% is a substantial lower limit. From the viewpoint of the manufacturing cost, the N content is more preferably 0.0005% or more.

尚、その他不可避的元素を微量含有することがある。例えばOは、酸化物を形成し、介在物として存在する。
本発明鋼板においては、さらに、必要に応じて、以下の元素を含有する。
In addition, it may contain a trace amount of other unavoidable elements. For example, O forms an oxide and exists as an inclusion.
The steel sheet of the present invention further contains the following elements, as necessary.

Ni:0.01%〜2.00%
Cu:0.01%〜2.00%
Cr:0.01%〜2.00%
Mo:0.01%〜2.00%
Ni、Cu、Cr、およびMoは、ホットスタンプ時の焼き入れ性を高め、主相をマルテンサイトとすることで高強度化に寄与する元素である。この効果は、Ni、Cu、Cr、およびMoからなる群から選ばれる1種又は2種以上を、それぞれ、0.01%以上含有することで顕著になることから、これらの元素の含有量がそれぞれ0.01%であることが好ましい。各元素の含有量が、所定量を超えると、溶接性、熱間加工性などが劣化するか、あるいは、ホットスタンプ用鋼板の強度が高すぎてしまい製造トラブルを招く可能性があるので、これらの元素の含有量の上限は2.00%とすることが好ましい。
Ni: 0.01% to 2.00%
Cu: 0.01% to 2.00%
Cr: 0.01% to 2.00%
Mo: 0.01% to 2.00%
Ni, Cu, Cr, and Mo are elements contributing to high strength by enhancing the hardenability at the time of hot stamping and making the main phase martensite. Since this effect becomes remarkable when each of one or more selected from the group consisting of Ni, Cu, Cr and Mo is contained by 0.01% or more, the content of these elements is It is preferable that each is 0.01%. If the content of each element exceeds a predetermined amount, the weldability, hot workability, etc. may deteriorate, or the strength of the steel plate for hot stamping may be too high, which may cause manufacturing problems. It is preferable to set the upper limit of the content of the element of 2.00%.

Nb:0.005〜0.100%
V:0.005〜0.100%
W:0.005〜0.100%
Nb、V、およびWは、ホットスタンプ時にオーステナイトの成長を抑制することによって細粒強化し、強度上昇および靭性向上に寄与する元素である。このことから、これらの元素からなる群から選ばれる1種又は2種以上を含有してもよい。この効果は、各元素が0.005%以上含有することにより顕著となることから、これらの元素が0.005%以上含有することが好ましい。なお、これらの元素がそれぞれ0.100%超含まれていると、Nb、V、およびW炭化物が形成され、マルテンサイトの強化に寄与するC量が低減し、強度の低下が引き起こされることから好ましくない。好ましくは、それぞれ0.005%〜0.090%の範囲である。
Nb: 0.005 to 0.100%
V: 0.005 to 0.100%
W: 0.005 to 0.100%
Nb, V, and W are elements that strengthen fine grains by suppressing the growth of austenite at the time of hot stamping, and contribute to increase in strength and improvement in toughness. From this, you may contain 1 type, or 2 or more types selected from the group which consists of these elements. Since this effect becomes remarkable when each element is contained by 0.005% or more, it is preferable to contain these elements by 0.005% or more. If each of these elements is contained in excess of 0.100%, Nb, V, and W carbides are formed, the amount of C contributing to the strengthening of martensite is reduced, and a reduction in strength is caused. Not desirable. Preferably, they are each in the range of 0.005% to 0.090%.

REM、Ca、Ce、およびMgからなる群から選ばれる1種または2種以上の合計:0.0003%〜0.0300%
本発明では、さらに、REM、Ca、Ce、およびMgからなる群から選ばれる1種又は2種以上を、合計で0.0003%〜0.0300%含有してもよい。
REM、Ca、Ce、およびMgは、強度を向上させるとともに、材質の改善に寄与する元素である。REM、Ca、Ce、およびMgからなる群から選ばれる1種又は2種以上の合計が0.0003%未満であると、充分な効果が得られないので、合計の下限を0.0003%とすることが好ましい。一方、REM、Ca、Ce、およびMgからなる群から選ばれる1種又は2種以上の合計が0.0300%を超えると、鋳造性および熱間での加工性を劣化させる可能性があるので、合計の上限を0.0300%とすることが好ましい。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をさす。本発明においては、REMは、ミッシュメタルにて添加することが多く、また、Ceの他に、ランタノイド系列の元素を複合で含有する場合がある。
A total of one or more selected from the group consisting of REM, Ca, Ce, and Mg: 0.0003% to 0.0300%
In the present invention, one or more selected from the group consisting of REM, Ca, Ce, and Mg may be further contained in total of 0.0003% to 0.0300%.
REM, Ca, Ce, and Mg are elements contributing to the improvement of the material while improving the strength. If the sum of one or more selected from the group consisting of REM, Ca, Ce, and Mg is less than 0.0003%, a sufficient effect can not be obtained, so the lower limit of the sum is made 0.0003%. It is preferable to do. On the other hand, if the sum of one or more selected from the group consisting of REM, Ca, Ce, and Mg exceeds 0.0300%, castability and hot workability may be degraded. It is preferable to set the upper limit of the total as 0.0300%. REM is an abbreviation of Rare Earth Metal, and refers to an element belonging to the lanthanoid series. In the present invention, REM is often added as a misch metal, and in addition to Ce, it may contain a compound of a lanthanoid series element in a composite.

本発明では、不可避不純物として、La、Ce以外のランタノイド系列の元素を含んでいても、本発明の効果は発現するし、また、その他の金属等の元素を不純物として含有しても、本発明の効果は発現する。   In the present invention, even if elements of lanthanoid series other than La and Ce are contained as unavoidable impurities, the effect of the present invention is exhibited, and even if elements such as other metals are contained as impurities, the present invention Effects are manifested.

次に、本発明のホットスタンプ用鋼板並びにホットスタンプ成形体のミクロ組織の特徴について説明する。
化学組成、鋼板の表面粗度、並びに、塗油量が本発明の範囲を満たすのであれば、酸洗した熱延鋼板、熱延鋼板を冷間圧延した冷延鋼板、あるいは、冷間圧延後に焼鈍を実施した冷延鋼板のいずれであっても本発明の効果は発揮可能である。
Next, the features of the microstructures of the steel plate for hot stamping and the hot stamped steel according to the present invention will be described.
If the chemical composition, the surface roughness of the steel sheet, and the amount of coating oil satisfy the range of the present invention, then the pickled hot rolled steel sheet, cold rolled steel sheet obtained by cold rolling the hot rolled steel sheet, or after cold rolling The effect of the present invention can be exhibited with any of the cold-rolled steel sheets subjected to annealing.

これらの鋼板は、ホットスタンプ時に800℃超のオーステナイト域に加熱されることから、ミクロ組織は特に限定することなく本発明の効果である優れたスケール密着性を有するホットスタンプ用鋼板としての性能は発揮される。ただし、ホットスタンプに先立ち、鋼板の機械切断および冷間での打ち抜き加工を実施する場合は、金型、切断機の刃、あるいは、打ち抜きダイスの損耗を軽減するため、鋼板の強度はなるべく低い方が好ましい。このことから、ホットスタンプ用鋼板のミクロ組織は、フェライト及びパーライト組織、あるいは、ベイナイト組織およびマルテンサイトを焼き戻した組織とすることが好ましい。ただし、機械切断および冷間打ち抜き時のポンチおよびダイスの損耗を問題にしないのであれば、残留オーステナイト、焼き入れのままのマルテンサイト、およびベイナイトのうち1種または2種以上を含んでいたとしても、本発明の効果である優れたスケール密着性は確保可能である。また、鋼板の強度を低減するために、箱型焼鈍炉または連続焼鈍設備での熱処理を実施しても良い。あるいは、これら軟化処理の後、冷間圧延を実施し、所定の板厚に制御したとしても本発明の効果である優れたスケール密着性は確保される。   Since these steel plates are heated to an austenite region of over 800 ° C. during hot stamping, their performance as a steel plate for hot stamping having excellent scale adhesion, which is an effect of the present invention, is not particularly limited in microstructure. It is exhibited. However, when performing mechanical cutting and cold stamping of the steel plate prior to hot stamping, the strength of the steel plate should be as low as possible to reduce wear of the die, cutter blade, or punching die. Is preferred. From this, it is preferable that the microstructure of the steel plate for hot stamping be a ferrite and pearlite structure, or a bainite structure and a tempered structure of martensite. However, if the wear of punches and dies during machine cutting and cold punching is not an issue, even if it contains one or more of retained austenite, as-quenched martensite, and bainite. The excellent scale adhesion which is the effect of the present invention can be secured. Moreover, in order to reduce the strength of the steel plate, heat treatment in a box annealing furnace or continuous annealing equipment may be performed. Alternatively, after the softening treatment, cold rolling is performed to control the plate thickness to a predetermined thickness, and the excellent scale adhesion which is the effect of the present invention is secured.

ホットスタンプ後の成形体強度を高め、高い部材強度を得る場合は、成形体のミクロ組織は、マルテンサイトを主相とすることが好ましい。特に、引張強度を1180MPa以上確保するためには、主相であるマルテンサイトの体積率を60%以上とすることが好ましい。マルテンサイトは、ホットスタンプ後に焼き戻しを実施し、焼き戻しマルテンサイトとしても良い。マルテンサイト以外の組織として、ベイナイト、フェライト、パーライト、セメンタイト、および残留オーステナイトを含んでも良い。また、マルテンサイト体積率が60%未満であっても、本発明の優れたスケール密着性は確保可能である。   In order to increase the strength of the formed body after hot stamping and obtain high strength of the member, it is preferable that the microstructure of the formed body has martensite as a main phase. In particular, in order to secure a tensile strength of 1180 MPa or more, it is preferable to set the volume fraction of martensite which is the main phase to 60% or more. Martensite may be tempered after hot stamping, and may be tempered martensite. The structure other than martensite may include bainite, ferrite, pearlite, cementite, and retained austenite. In addition, even when the volume fraction of martensite is less than 60%, the excellent scale adhesion of the present invention can be secured.

鋼板組織を構成するミクロ組織(焼き戻しマルテンサイト、マルテンサイト、ベイナイト、フェライト、パーライト、残留オーステナイト及び残部組織)の同定、存在位置の確認、及び、面積率の測定は、以下の方法を用いる。例えば、ナイタール試薬及び特開昭59−219473号公報に開示の試薬で、鋼板圧延方向断面又は圧延方向直角方向断面を腐食して、1000〜100000倍の走査型電子顕微鏡(SEM:Scanning Electron Microscope)及び透過型電子顕微鏡(TEM:Transmission Electron Microscope)で組織を観察することで可能である。本発明者らは、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨し、ナイタールエッチングし、板厚の1/4を中心とする1/8〜3/8厚の範囲を電界放射型走査型電子顕微鏡(FE−SEM:Field Emission Scanning Electron Microscope)で観察して面積分率を測定し、それを持って体積分率とした。残留オーステナイトの体積分率は、母材鋼板の板面に平行かつ1/4厚の面を観察面としてX線回折を行い、体積分率を測定した。   The following methods are used for identification of the microstructure (tempered martensite, martensite, bainite, ferrite, pearlite, retained austenite and residual structure) that constitutes the steel sheet structure, confirmation of the location, and measurement of the area ratio. For example, with the Nital reagent and the reagent disclosed in JP-A-59-219473, the cross section in the steel plate rolling direction or the cross direction perpendicular to the rolling direction is corroded, and a scanning electron microscope (SEM: 1000 to 100000 times) It is possible by observing the tissue with a transmission electron microscope (TEM: Transmission Electron Microscope). The present inventors take a sample with a plate thickness section parallel to the rolling direction of the steel plate as an observation surface, polish the observation surface, and perform nital etching to make 1⁄4 to 1⁄4 of the plate thickness as a center The area fraction was measured by observing the range of 3/8 thickness with a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope), and it was taken as a volume fraction. The volume fraction of retained austenite was measured by performing X-ray diffraction using a plane having a thickness of 1⁄4 parallel to the plate surface of the base steel plate as an observation surface, and the volume fraction was measured.

次に、本発明のホットスタンプ用鋼板の製造方法について説明する。
その他の操業条件としては、常法によるが、以下の条件が生産性の上で好ましい。
Next, the method for producing a steel plate for hot stamping according to the present invention will be described.
As other operation conditions, although it is based on a usual method, the following conditions are preferable on productivity.

本発明における鋼板を製造するには、まず、上述した鋼板の成分組成と同じ成分組成を有するスラブを鋳造する。熱間圧延に供するスラブとして、連続鋳造スラブや、薄スラブキャスターなどで製造したもの用いることができる。本発明の鋼板の製造方法では、鋳造後、直ちに熱間圧延を行う連続鋳造−直接圧延(CC−DR)のようなプロセスに適合する。
・スラブ加熱温度:1100℃以上
・熱間圧延完了温度:Ar3変態点以上
・巻取り温度:700℃以下
・冷間圧延率:30〜70%
In order to manufacture the steel plate in the present invention, first, a slab having the same composition as that of the steel plate described above is cast. As a slab to be subjected to hot rolling, one manufactured by a continuous casting slab, a thin slab caster or the like can be used. The method for producing a steel sheet of the present invention is compatible with a process such as continuous casting-direct rolling (CC-DR) in which hot rolling is immediately performed after casting.
Slab heating temperature: 1100 ° C. or more Hot rolling completion temperature: Ar 3 transformation point or more Winding temperature: 700 ° C. or less Cold rolling ratio: 30 to 70%

スラブ加熱温度は1100℃以上にすることが好ましい。1100℃未満の温度域でのスラブ加熱温度は、仕上げ圧延温度の低下を招くことから、仕上げ圧延時の強度も高くなりがちである。その結果、圧延が困難となったり、圧延後の鋼板の形状不良を招いたりする可能性があるので、スラブ加熱温度は1100℃以上とすることが好ましい。   The slab heating temperature is preferably 1100 ° C. or more. Since the slab heating temperature in the temperature range below 1100 ° C. causes a decrease in the finish rolling temperature, the strength during finish rolling tends to be high. As a result, there is a possibility that the rolling will be difficult or the shape defect of the steel sheet after rolling may be caused, so the slab heating temperature is preferably set to 1100 ° C. or more.

仕上げ圧延温度は、Ar3変態点以上とすることが好ましい。仕上げ圧延温度が、Ar3変態点を下回ると圧延荷重が高くなり、圧延が困難となったり、圧延後の鋼板の形状不良を招いたりする可能性があるので、仕上げ圧延温度の下限は、Ar3変態点とすることが好ましい。仕上げ圧延温度の上限は、特に定める必要はないが、仕上げ圧延温度を過度に高くすると、その温度を確保するため、スラブ加熱温度を過度に高くしなければならないので、仕上げ圧延温度の上限は1100℃が好ましい。   The finish rolling temperature is preferably set to the Ar3 transformation point or higher. If the finish rolling temperature is lower than the Ar3 transformation point, the rolling load becomes high, which may make rolling difficult or may cause shape defects of the steel sheet after rolling, so the lower limit of the finish rolling temperature is Ar3 transformation. It is preferable to make it a point. The upper limit of the finish rolling temperature is not particularly limited, but if the finish rolling temperature is excessively high, the slab heating temperature must be excessively high to secure the temperature, so the upper limit of the finish rolling temperature is 1100 ° C is preferred.

巻取り温度は700℃以下とすることが好ましい。巻取り温度が700℃を超えると、鋼板表面に形成する酸化物の厚さを過度に増大させて、酸洗性を劣化させるので好ましくない。この後、冷間圧延を行う場合は、巻き取り温度の下限を400℃とすることが好ましい。巻取り温度が400℃未満であると、極端に熱延鋼板の強度が増大して、冷間圧延時の板破断および形状不良を誘発し易いので、巻取り温度の下限は400℃とすることが好ましい。ただし、巻き取った熱延鋼板を箱型焼鈍炉または連続焼鈍設備にて加熱することで軟質化を図るのであれば、400℃未満の低温で巻き取っても構わない。なお、熱間圧延時に粗圧延板同士を接合して連続的に仕上げ圧延を行ってもよい。また、粗圧延板を一旦巻き取っても構わない。   The winding temperature is preferably 700 ° C. or less. When the coiling temperature exceeds 700 ° C., the thickness of the oxide formed on the surface of the steel sheet is excessively increased to deteriorate the pickling property, which is not preferable. After that, when cold rolling is performed, it is preferable to set the lower limit of the winding temperature to 400 ° C. If the coiling temperature is less than 400 ° C., the strength of the hot-rolled steel sheet is extremely increased and it is easy to induce sheet breakage and shape defect during cold rolling, so the lower limit of the coiling temperature is 400 ° C. Is preferred. However, if softening is achieved by heating the wound hot rolled steel sheet in a box annealing furnace or continuous annealing equipment, it may be wound at a low temperature of less than 400 ° C. In addition, rough rolling plates may be joined at the time of hot rolling, and finish rolling may be performed continuously. Also, the rough rolled plate may be wound up once.

次に、このようにして製造した熱延鋼板に、温度が80℃以上100℃未満、インヒビター入りで酸の濃度が3質量%〜20質量%の水溶液にて30秒以上酸洗を施す。本発明において、本条件での酸洗が極めて重要であり、鋼板の表面粗度Rzを2.5μm超に制御するために、上記条件での酸洗が必要である。尚、酸は塩酸、硫酸、などの水溶液が一般的で、王水などでも構わない。   Next, the hot-rolled steel plate manufactured in this manner is pickled in an aqueous solution with a temperature of 80 ° C. or more and less than 100 ° C., an inhibitor-containing acid concentration of 3% by mass to 20% by mass for 30 seconds or more. In the present invention, the pickling under these conditions is extremely important, and the pickling under the above conditions is necessary to control the surface roughness Rz of the steel sheet to more than 2.5 μm. The acid is generally an aqueous solution of hydrochloric acid, sulfuric acid or the like, and may be aqua regia or the like.

水溶液の温度を80℃以上100℃未満としたのは、80℃未満では反応速度が遅く、熱延鋼板の表面粗度を適正な範囲にするのに長時間を要するためである。一方、100℃以上の温度での加熱は、酸洗の反応は問題ないものの溶液が沸騰し、飛び散ることから危険であり好ましくない。   The temperature of the aqueous solution is set to 80 ° C. or more and less than 100 ° C. because the reaction rate is low at less than 80 ° C., and it takes a long time to bring the surface roughness of the heat-rolled steel sheet into an appropriate range. On the other hand, heating at a temperature of 100 ° C. or higher is not preferable because the solution boils and spatters although there is no problem in the reaction of pickling.

また、酸の濃度を3質量%〜20質量%としたのは、熱延鋼板の表面粗度Rzを適正な範囲に制御するためである。酸の濃度が3質量%未満では、酸洗による表面の凹凸制御に長時間を要する。一方、酸の濃度が20質量%を超えると、酸洗槽を大幅に損傷させ、設備管理が難しくなるので好ましくない。酸の濃度の好ましい範囲は、5質量%〜15質量%の範囲である。   The acid concentration is set to 3% by mass to 20% by mass in order to control the surface roughness Rz of the hot-rolled steel sheet within an appropriate range. When the concentration of the acid is less than 3% by mass, it takes a long time to control the surface asperity by pickling. On the other hand, when the concentration of the acid exceeds 20% by mass, the pickling tank is significantly damaged, and the facility management becomes difficult, which is not preferable. The preferred range of the concentration of the acid is in the range of 5% by mass to 15% by mass.

また、酸洗時間を30s以上としたのは、酸洗により鋼板表面に所定の凹凸(Rz>2.5μm以上の凹凸)を安定的に付与するためである。なお、酸洗槽が複数に分かれている場合は、個々の酸洗槽の濃度または温度が異なっていても、一部、あるいは、合計の酸洗時間が上記条件を満たすのであれば、熱延鋼板の表面粗度Rzを本発明の範囲とすることができる。また、酸洗を複数回に分けて実施しても良い。なお、本発明者らの実験では、インヒビター入りの塩酸を用いたが、酸洗により表面粗度Rzを制御できるのであれば、インヒビターを用いない塩酸、硫酸、硝酸等の他の酸であったり、これらの複合物であったりしても本発明の効果を得ることができる。   In addition, the reason why the pickling time is set to 30 seconds or more is to stably impart predetermined unevenness (roughness of Rz> 2.5 μm or more) on the surface of the steel plate by acid washing. In the case where the pickling tank is divided into a plurality, even if the concentration or temperature of each pickling tank is different, if the partial or total pickling time satisfies the above condition, hot rolling The surface roughness Rz of the steel plate can be made within the scope of the present invention. In addition, the pickling may be performed in plural times. In the experiments of the present inventors, hydrochloric acid containing an inhibitor was used. However, if the surface roughness Rz can be controlled by pickling, other acids such as hydrochloric acid, sulfuric acid, nitric acid, etc. which do not use an inhibitor may be used. The effects of the present invention can be obtained even with these compounds.

また、熱延鋼板の酸洗により形成される凹凸は、調質圧延、冷間圧延、あるいは、焼鈍を実施した後も残存することから、酸洗条件を制御し、酸洗後の板表面に凹凸を付与することは極めて重要である。このことから、酸洗後の熱延鋼板に調質圧延を実施しても良い。   Moreover, since the unevenness | corrugation formed by pickling of a heat-rolled steel plate remains after implementing temper rolling, cold rolling, or annealing, pickling conditions are controlled and it is on the plate surface after pickling. It is extremely important to impart asperities. From this, temper rolling may be performed on the hot-rolled steel sheet after pickling.

更に、冷間圧延のみを行った冷延鋼板、あるいは、冷間圧延後に連続焼鈍設備あるいは箱型焼鈍炉にて熱処理した冷延鋼板でも、冷間圧延前に酸洗を行うことにより、表面に凹凸を形成させて所定の効果を得ることができる。尚、冷間圧延用のロール粗度Rzは1.0μm〜20.0μmの範囲で冷間圧することが好ましく、冷間圧延用ロールには調質圧延用ロールも含む。   Furthermore, even cold-rolled steel sheets that have only been cold-rolled or cold-rolled steel sheets that have been heat-treated in a continuous annealing facility or a box-type annealing furnace after cold rolling can also be surface pickled by cold pickling. The unevenness can be formed to obtain a predetermined effect. In addition, it is preferable to cold-press the roll roughness Rz for cold rolling in the range of 1.0 micrometer-20.0 micrometers, and the roll for temper rolling is also included in the roll for cold rolling.

以上のような条件で酸洗した熱延鋼板に、圧下率30%〜80%で冷間圧延を施し、連続焼鈍設備を通板しても良い。圧下率が30%未満であると、鋼板の形状を平坦に保つことが困難となり、また、最終製品の延性が劣化するので、圧下率の下限は30%とすることが好ましい。一方、圧下率が80%を超えると、圧延荷重が大きくなりすぎて、冷間圧延が困難となるので、圧下率の上限は80%とすることが好ましい。より好ましくは圧下率が40%〜70%である。なお、圧延パスの回数、およびパス毎の圧下率は、特に規定しなくても、本発明の効果は発現するので、圧延パスの回数、およびパス毎の圧下率は、規定する必要がない。   The hot-rolled steel sheet pickled under the conditions as described above may be cold-rolled at a rolling reduction of 30% to 80% and passed through a continuous annealing facility. If the rolling reduction is less than 30%, it will be difficult to keep the shape of the steel sheet flat and the ductility of the final product will deteriorate, so the lower limit of the rolling reduction is preferably 30%. On the other hand, if the rolling reduction exceeds 80%, the rolling load becomes too large and cold rolling becomes difficult, so it is preferable to set the upper limit of the rolling reduction to 80%. More preferably, the rolling reduction is 40% to 70%. Since the effect of the present invention is exhibited even if the number of rolling passes and the rolling reduction per pass are not particularly defined, the number of rolling passes and the rolling reduction per pass need not be defined.

その後、冷延鋼板を、連続焼鈍ラインに通板しても良い。この処理の目的は、冷間圧延により高強度化した鋼板を軟化することが目的であることから、鋼板が軟化する条件であればどのような条件でも良い。例えば、焼鈍温度が550℃〜750℃の範囲であれば、冷間圧延時に導入された転位が、回復、再結晶、あるいは、相変態により解放されるので、この温度域で焼鈍を行うことが好ましい。   Thereafter, the cold rolled steel sheet may be passed through a continuous annealing line. Since the purpose of this treatment is to soften the steel plate which has been strengthened by cold rolling, any conditions may be used as long as the steel plate is softened. For example, if the annealing temperature is in the range of 550 ° C. to 750 ° C., the dislocation introduced during cold rolling is released by recovery, recrystallization or phase transformation, so annealing may be performed in this temperature range. preferable.

同様の目的で、箱型炉による焼鈍を行っても、本発明のスケール密着性に優れたホットスタンプ用の鋼板を得ることが出来る。   For the same purpose, even if annealing is performed in a box furnace, the steel plate for hot stamping excellent in the scale adhesion of the present invention can be obtained.

その後、塗油を実施する。塗油方法としては静電塗油、スプレー、ロールコーター等が一般的に使用されるが、50mg/m〜1500mg/mの範囲の塗油量が確保できれば方法は限定しない。本発明では、静電塗油機にて所定の量の塗油を実施した。また、50mg/m〜1500mg/mの範囲の塗油量が確保できるのであれば、それ以上の量の防錆剤を塗油して脱脂を行ってもよい。After that, apply oil. Oiling method as electrostatic coating oil, spray, although a roll coater or the like are generally used, the method is not limited as long ensured coating oil amount in the range of 50mg / m 2 ~1500mg / m 2 . In the present invention, a predetermined amount of oiling was carried out with an electrostatic oiling machine. Further, if the coating amount of oil in the range of 50mg / m 2 ~1500mg / m 2 can be ensured, it may be degreased by oiled the more the amount of rust inhibitor.

ホットスタンプ条件は、特に限定することなく本発明の効果である優れたスケール密着性と防錆性との両立を図ることができる。例えば、以下に示す製造方法で製造することで、1180MPa以上の引張強度という優れた性能と生産性との両立が図れる。ホットスタンプを行う際に、800℃〜1100℃の温度域に、2℃/秒以上の加熱速度で加熱することが好ましい。2℃/秒以上の速度で加熱することで、加熱時のスケール生成を抑制でき、スケール密着性の改善に効果がある。より好ましくは、加熱速度は5℃/秒以上であり、さらに好ましくは、10℃/秒以上である。また、加熱速度の増大は、生産性高めるためにも有効である。   The hot stamping conditions are not particularly limited, and it is possible to achieve both of the excellent scale adhesion and the rust resistance which are the effects of the present invention. For example, by manufacturing with the manufacturing method shown below, coexistence with the outstanding performance and productivity of the tensile strength of 1180 Mpa or more can be achieved. When hot stamping is performed, it is preferable to heat in a temperature range of 800 ° C. to 1100 ° C. at a heating rate of 2 ° C./sec or more. By heating at a rate of 2 ° C./sec or more, scale formation during heating can be suppressed, which is effective in improving scale adhesion. More preferably, the heating rate is 5 ° C./second or more, and more preferably 10 ° C./second or more. In addition, an increase in heating rate is also effective for enhancing productivity.

ホットスタンプを行う際の焼鈍温度は、800℃〜1100℃の範囲とすることが好ましい。この温度域で焼鈍を行うことで、オーステナイト単相組織とすることが可能であり、引き続いて行われる冷却により組織をマルテンサイトを主相とする組織とすることができる。この際の焼鈍温度が800℃を下回ると、焼鈍時の組織がフェライトおよびオーステナイト組織となるとともに、冷却過程でこのフェライトが成長し、フェライト体積率が10%超となり、ホットスタンプ成形体の引張強度が1180MPaを下回ってしまう。このことから、焼鈍温度の下限は800℃にすることが好ましい。一方、焼鈍温度が1100℃を超えると、その効果が飽和するばかりでなく、スケール厚みを大幅に増大させてしまい、スケール密着性が低下する懸念がある。このことから、1100℃以下で焼鈍を行うことが好ましい。より好ましくは、焼鈍温度は830℃〜1050℃の範囲である。   It is preferable to make the annealing temperature at the time of hot stamping into the range of 800 degreeC-1100 degreeC. By annealing in this temperature range, it is possible to obtain an austenite single-phase structure, and by performing subsequent cooling, it is possible to make the structure a structure having martensite as a main phase. At this time, if the annealing temperature is below 800 ° C., the structure at the time of annealing becomes a ferrite and an austenite structure, and this ferrite grows in the cooling process, and the volume fraction of ferrite becomes more than 10%, and the tensile strength of the hot stamped molded product Falls below 1180 MPa. From this, it is preferable to set the lower limit of the annealing temperature to 800 ° C. On the other hand, when the annealing temperature exceeds 1100 ° C., not only the effect is saturated but also the scale thickness is significantly increased, which may lower the scale adhesion. From this, it is preferable to perform annealing at 1100 ° C. or less. More preferably, the annealing temperature is in the range of 830 ° C to 1050 ° C.

加熱後に800℃〜1100℃の温度域で保持を行っても良い。高温で保持を実施すると、鋼板に含まれる炭化物の溶解が可能であり、鋼板の強度上昇および焼き入れ性の向上に寄与する。保持とは、本温度域での滞留、除加熱、および除冷却を含む。炭化物の溶解が目的であることから、本温度域での滞留時間を確保さえすれば、その目的が達成される。保持時間の制限は特に設けないが、保持時間が1000s以上になるとスケール厚みが過大となり、スケール密着性が劣化することから1000sを上限とすることが好ましい。   Holding may be performed in a temperature range of 800 ° C. to 1100 ° C. after heating. When holding at a high temperature, it is possible to dissolve carbides contained in the steel sheet, which contributes to the increase in strength and hardenability of the steel sheet. Holding includes retention, deheating, and decooling in this temperature range. Since the purpose is to dissolve carbides, the purpose can be achieved as long as the residence time in this temperature range is secured. There is no particular limitation on the holding time, but if the holding time is 1000 s or more, the scale thickness becomes excessive and the scale adhesion deteriorates, so it is preferable to set the upper limit to 1000 s.

その後、800℃〜700℃を5℃/秒以上の平均冷却速度で冷却することが好ましい。ここで、700℃は型冷却開始温度であり、800℃〜700℃を5℃/秒以上とするのは、フェライト変態、ベイナイト変態、およびパーライト変態を回避し、組織をマルテンサイト主相とするためである。冷却速度が5℃/秒未満では、これら軟質な組織が形成してしまい、1180MPa以上の引張強度を確保することが難しい。一方、冷却速度の上限は特に定めることなく、本発明の効果は発揮される。5℃/秒以上で冷却する温度範囲を800℃〜700℃とするのは、この温度範囲ではフェライトなどの強度の低下を引き起こす組織が形成される可能性があるためである。この際の冷却は、連続冷却に限定するものでなく、この温度域での保持および加熱を行っても、平均冷却速度が5℃/秒以上であれば、本発明の効果は発揮される。冷却方法も特に限定することなく本発明の効果を発揮できる。即ち、金型を用いた冷却、水冷を併用した金型冷却のいずれであっても、本発明の効果を発揮可能である。   Then, it is preferable to cool 800 degreeC-700 degreeC with the average cooling rate of 5 degree-C / sec or more. Here, 700 ° C. is a mold cooling start temperature, and setting 800 ° C. to 700 ° C. to 5 ° C./sec or more avoids ferrite transformation, bainite transformation, and pearlite transformation, and makes the structure a martensitic main phase It is for. When the cooling rate is less than 5 ° C./sec, these soft tissues are formed, and it is difficult to secure a tensile strength of 1180 MPa or more. On the other hand, the effect of the present invention is exhibited without particularly setting the upper limit of the cooling rate. The temperature range for cooling at 5 ° C./sec or more is set to 800 ° C. to 700 ° C. because a structure that causes a decrease in strength such as ferrite may be formed in this temperature range. The cooling at this time is not limited to continuous cooling, and the effect of the present invention is exhibited as long as the average cooling rate is 5 ° C./sec or more, even when holding and heating in this temperature range. The effect of the present invention can be exhibited without particularly limiting the cooling method. That is, the effect of the present invention can be exhibited regardless of cooling using a mold and mold cooling using water cooling in combination.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, although the Example of this invention is described, the conditions in an Example are one condition example employ | adopted in order to confirm the practicability and effect of this invention, and this invention is the one condition example. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the scope of the present invention.

まず、表1に示すA〜S、a〜nの成分組成のスラブを鋳造し、一旦室温まで冷却した後、炉温=1230℃の加熱炉にて220分加熱を実施し、その仕上げ圧延温度=920℃〜960℃にて熱間圧延を実施し、表2で示す温度条件にて巻き取りを実施した。   First, slabs having the component compositions A to S and a to n shown in Table 1 are cast and temporarily cooled to room temperature, and then heated for 220 minutes in a heating furnace with a furnace temperature of 1230 ° C. Hot rolling was performed at T = 920 ° C. to 960 ° C., and winding was performed under the temperature conditions shown in Table 2.

なお、熱延鋼板としてホットスタンプに供する熱延鋼板の仕上げ板厚は、1.6mmとした。一方、冷間圧延に供する熱延鋼板の板厚は3.2mmとした。その後、表2の条件にて酸洗を実施し、冷間圧延を行う場合は50%(3.2mm→1.6mm)の板厚とした。その後、一部の鋼板に関しては、連続焼鈍設備で焼鈍を行い、冷延鋼板とした。その後、NOX-RUST503F(パーカー興産)を用い、無塗油〜6090mg/mの範囲でNOX503F(パーカー興産)を静電塗油機にて塗油を熱延鋼板および冷延鋼板に塗布した。The finished plate thickness of the heat-rolled steel plate to be subjected to hot stamping as a heat-rolled steel plate was 1.6 mm. On the other hand, the thickness of the hot rolled steel sheet to be subjected to cold rolling was 3.2 mm. Thereafter, pickling was carried out under the conditions of Table 2, and in the case of cold rolling, the plate thickness was 50% (3.2 mm → 1.6 mm). Then, about a part of steel plates, annealing was performed by continuous annealing equipment, and it was set as the cold rolled steel plate. After that, using NOX-RUST 503F (Parker Kosan), the coating oil was applied to the hot-rolled steel plate and the cold-rolled steel plate in an electrostatic oiling machine at NOX 503F (Parker Kosan) in the range of no oil -6090 mg / m 2 .

その後に、鋼板を所定のサイズに切断した後、50℃/秒にて900℃まで通電加熱を行い、900℃で10秒の保持を実施し、その後、10sの放冷を行い、650℃以上の温度で上記熱間浅絞り金型にて焼き入れを行った。得られたホットスタンプ成形体の目視観察を行い、スケールの剥離のない鋼板をスケール密着に優れた鋼板とした。   Thereafter, the steel plate is cut into a predetermined size, and then conduction heating is performed at 50 ° C./second to 900 ° C., holding is performed at 900 ° C. for 10 seconds, and then 10 seconds of free cooling is performed, 650 ° C. or more Quenching was carried out using the above hot shallow drawing die at a temperature of Visual observation of the obtained hot stamped steel compact was performed, and a steel plate without scale peeling was used as a steel plate excellent in scale adhesion.

防錆性に関しては、室温にて、30日間保持を実施し、鋼板表面に錆が発生しなかった鋼板を防錆性に優れた鋼板と定義した。併せて、平板試験片を用い、上述の条件でホットスタンプを行い、引張特性を評価した。評価結果を表3に示す。   The rust resistance was maintained at room temperature for 30 days, and a steel plate in which rust was not generated on the surface of the steel plate was defined as a steel plate excellent in rust resistance. In addition, using a flat plate test piece, hot stamping was performed under the conditions described above, and tensile properties were evaluated. The evaluation results are shown in Table 3.

引張特性は、JIS Z 2201に準拠した引張試験片を採取し、引張試験を、JIS Z 2241に準拠して行い、引張最大強度を測定した。引張最大強度が1180MPa以上のものを、本発明の成形体とした。   For tensile properties, tensile test pieces in accordance with JIS Z 2201 were collected, and tensile tests were performed in accordance with JIS Z 2241 to measure the maximum tensile strength. The maximum tensile strength of 1180 MPa or more was used as the molded article of the present invention.

成形体のスケールの組成分析は、浅絞り試験片の円筒部の底から板を切り出し、X線回折にて実施した。各酸化物のピーク強度比から、各Fe系酸化物の体積率を測定した。Si酸化物は、非常に薄く存在しており、体積率も1%未満であったことから、X線回折での定量評価は困難であった。ただし、EPMAの線分析にて、スケールと地鉄との界面に存在することは確認できた。
成形体に形成されたスケールと地鉄との界面の凹凸評価は、上記位置より切り出した鋼板を埋め込み研磨を実施した後、圧延方向に垂直な断面から3000倍にてSEM観察した。各試験片5視野観察し、100μm長さ当たりの0.2μm〜1.0μmの範囲となる凹凸の個数密度を測定した。
Composition analysis of the scale of the molded body was performed by cutting the plate from the bottom of the cylindrical portion of the shallow drawn test piece and performing X-ray diffraction. The volume fraction of each Fe-based oxide was measured from the peak intensity ratio of each oxide. Since the Si oxide was present very thin and the volume fraction was less than 1%, quantitative evaluation by X-ray diffraction was difficult. However, it was confirmed by EPMA line analysis that it exists at the interface between the scale and the ground iron.
The unevenness of the interface between the scale formed on the formed body and the base iron was evaluated by SEM observation at a magnification of 3000 from a cross section perpendicular to the rolling direction after the embedded steel plate cut out from the above position was embedded and polished. Each test piece was observed in 5 fields of view, and the number density of the unevenness which became the range of 0.2 μm to 1.0 μm per 100 μm length was measured.

本発明の条件を満たすものは、優れた防錆性と優れたスケール密着性とを両立できた。発明の条件を満たさないものは、スケール密着性に劣る、あるいは、耐食性に劣った。   Those satisfying the conditions of the present invention have both excellent rust resistance and excellent scale adhesion. Those that did not satisfy the conditions of the invention were inferior in scale adhesion or corrosion resistance.

本発明によれば、ホットスタンプ時のスケール密着性に優れた鋼板を提供でき、ホットスタンプ時の金型の損耗、金型へのめっき付着、およびそれに伴う押し込み疵の問題を解決可能であることから、大幅な生産性の向上をもたらすことができ、工業的に大きな価値がある。   According to the present invention, it is possible to provide a steel plate excellent in scale adhesion at the time of hot stamping, and to solve the problem of wear of the mold at the time of hot stamping, plating adhesion to the mold, and indentation defects associated therewith. Therefore, it can bring about a significant improvement in productivity, and has great industrial value.

Claims (13)

質量%で、
C:0.100%〜0.600%、
Si:0.50%〜3.00%、
Mn:1.20%〜4.00%、
Ti:0.005%〜0.100%、
B:0.0005%〜0.0100%、
P:0.100%以下、
S:0.0001%〜0.0100%、
Al:0.005%〜1.000%、
N:0.0100%以下、
Ni:0%〜2.00%、
Cu:0%〜2.00%、
Cr:0%〜2.00%、
Mo:0%〜2.00%、
Nb:0%〜0.100%、
V:0%〜0.100%、
W:0%〜0.100%、および
REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上の合計:0%〜0.0300%
を含有し、残部がFeおよび不純物からなる組成であり、鋼板の表面粗度がRz>2.5μmであり、表面に塗油量50mg/m2〜1500mg/m2の塗油が塗布されており、
前記表面に塗布される塗油中に含まれるS量が質量%で5%以下であることを特徴とするホットスタンプ用鋼板。
In mass%,
C: 0. 100% to 0.600%,
Si: 0.50% to 3.00%,
Mn: 1.20% to 4.00%,
Ti: 0.005% to 0.100%,
B: 0.0005% to 0.0100%,
P: 0. 100% or less,
S: 0.0001% to 0.0100%,
Al: 0.005% to 1.000%,
N: 0.0100% or less,
Ni: 0% to 2.00%,
Cu: 0% to 2.00%,
Cr: 0% to 2.00%,
Mo: 0% to 2.00%,
Nb: 0% to 0.100%,
V: 0% to 0.100%,
W: 0% to 0.100%, and one or more selected from the group consisting of REM, Ca, Ce and Mg in total: 0% to 0.0300%
Containing a composition the balance being Fe and impurities, the surface roughness of the steel sheet is the Rz> 2.5 [mu] m, the coating oil oiled amount 50mg / m 2 ~1500mg / m 2 on the surface is coated Yes,
The steel sheet for hot stamping, wherein the amount of S contained in the oil applied to the surface is 5% or less by mass.
前記鋼板の組成が、質量%で、
Ni:0.01%〜2.00%、
Cu:0.01%〜2.00%、
Cr:0.01%〜2.00%、
Mo:0.01%〜2.00%、
Nb:0.005%〜0.100%、
V:0.005%〜0.100%、および
W:0.005%〜0.100%、
からなる群から選ばれる1種又は2種以上を含有することを特徴とする請求項1に記載のホットスタンプ用鋼板。
The composition of the steel plate is in mass%,
Ni: 0.01% to 2.00%,
Cu: 0.01% to 2.00%,
Cr: 0.01% to 2.00%,
Mo: 0.01% to 2.00%,
Nb: 0.005% to 0.100%,
V: 0.005% to 0.100%, and W: 0.005% to 0.100%,
The steel plate for hot stamping according to claim 1, containing one or more selected from the group consisting of
前記鋼板の組成が、質量%で、
REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上を合計で0.0003%〜0.0300%含有することを特徴とする請求項1又は2に記載のホットスタンプ用鋼板。
The composition of the steel plate is in mass%,
The steel plate for hot stamping according to claim 1 or 2, characterized in that it contains 0.0003% to 0.0300% in total of one or more selected from the group consisting of REM, Ca, Ce and Mg. .
質量%で、
C:0.100%〜0.600%、
Si:0.50%〜3.00%、
Mn:1.20%〜4.00%、
Ti:0.005%〜0.100%、
B:0.0005%〜0.0100%、
P:0.100%以下、
S:0.0001%〜0.0100%、
Al:0.005%〜1.000%、
N:0.0100%以下、
Ni:0%〜2.00%、
Cu:0%〜2.00%、
Cr:0%〜2.00%、
Mo:0%〜2.00%、
Nb:0%〜0.100%、
V:0%〜0.100%、
W:0%〜0.100%、および
REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上の合計:0%〜0.0300%
を含有し、残部がFeおよび不純物からなるスラブを鋳造して、直接または一旦冷却した後加熱して熱間圧延を行い、熱延鋼板を得る工程と、
前記熱延鋼板を、温度が80℃以上100℃未満、インヒビター入りで酸の濃度が3質量%〜20質量%の水溶液にて30秒以上の酸洗を実施する工程と、
前記酸洗を実施した後にS量が質量%で5%以下である防錆油を鋼板に塗布する工程と、
を有し、
鋼板表面の防錆油残存量を50mg/m2〜1500mg/m2に制限することを特徴とするホットスタンプ用鋼板の製造方法。
In mass%,
C: 0. 100% to 0.600%,
Si: 0.50% to 3.00%,
Mn: 1.20% to 4.00%,
Ti: 0.005% to 0.100%,
B: 0.0005% to 0.0100%,
P: 0. 100% or less,
S: 0.0001% to 0.0100%,
Al: 0.005% to 1.000%,
N: 0.0100% or less,
Ni: 0% to 2.00%,
Cu: 0% to 2.00%,
Cr: 0% to 2.00%,
Mo: 0% to 2.00%,
Nb: 0% to 0.100%,
V: 0% to 0.100%,
W: 0% to 0.100%, and one or more selected from the group consisting of REM, Ca, Ce and Mg in total: 0% to 0.0300%
Casting a slab containing Fe and the remainder comprising Fe and impurities, directly or temporarily cooling, and then heating and hot rolling to obtain a hot rolled steel sheet;
Carrying out pickling for 30 seconds or more in an aqueous solution having a temperature of 80 ° C. or more and less than 100 ° C. and an inhibitor-containing acid concentration of 3% by mass to 20% by mass;
Applying an anticorrosion oil having an S content of 5% or less by mass on a steel plate after the pickling;
Have
Method for producing a hot stamping steel plate, characterized in that to limit the anti-rust oil residual amount of the steel sheet surface to 50mg / m 2 ~1500mg / m 2 .
前記酸洗した熱延鋼板に前記防錆油を塗布することを特徴とする請求項4に記載のホットスタンプ用鋼板の製造方法。   The method for producing a steel plate for hot stamping according to claim 4, wherein the rustproof oil is applied to the pickled hot-rolled steel plate. 前記酸洗した熱延鋼板に冷間圧延を実施して冷延鋼板を得る工程を更に有し、
前記冷延鋼板に前記防錆油を塗布することを特徴とする請求項4に記載のホットスタンプ用鋼板の製造方法。
The method further includes the step of performing cold rolling on the pickled hot rolled steel plate to obtain a cold rolled steel plate,
The method for producing a steel plate for hot stamping according to claim 4, wherein the rustproof oil is applied to the cold rolled steel plate.
前記酸洗した熱延鋼板に冷間圧延を実施し、さらに連続焼鈍設備又は箱型焼鈍炉にて熱処理を行って冷延鋼板を得る工程を更に有し、
前記冷延鋼板に前記防錆油を塗布することを特徴とする請求項4に記載のホットスタンプ用鋼板の製造方法。
The method further includes the step of performing cold rolling on the pickled hot-rolled steel plate, and further performing heat treatment in a continuous annealing facility or a box-type annealing furnace to obtain a cold-rolled steel plate,
The method for producing a steel plate for hot stamping according to claim 4, wherein the rustproof oil is applied to the cold rolled steel plate.
前記スラブの組成が、質量%で、
Ni:0.01%〜2.00%、
Cu:0.01%〜2.00%、
Cr:0.01%〜2.00%、
Mo:0.01%〜2.00%、
Nb:0.005%〜0.100%、
V:0.005%〜0.100%、および
W:0.005%〜0.100%、
からなる群から選ばれる1種又は2種以上を含有することを特徴とする請求項4〜7のいずれか1項に記載のホットスタンプ用鋼板の製造方法。
The composition of the slab is, in mass%,
Ni: 0.01% to 2.00%,
Cu: 0.01% to 2.00%,
Cr: 0.01% to 2.00%,
Mo: 0.01% to 2.00%,
Nb: 0.005% to 0.100%,
V: 0.005% to 0.100%, and W: 0.005% to 0.100%,
The manufacturing method of the steel plate for hot stamps of any one of the Claims 4-7 characterized by containing 1 type (s) or 2 or more types selected from the group which consists of.
前記スラブの組成が、質量%で、
REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上を合計で0.0003%〜0.0300%含有することを特徴とする請求項4〜8のいずれか1項に記載のホットスタンプ用鋼板の製造方法。
The composition of the slab is, in mass%,
The total content of one or more selected from the group consisting of REM, Ca, Ce, and Mg is 0.0003% to 0.0300%, any one of claims 4 to 8 is contained. Manufacturing method of steel plate for hot stamping.
量%で、
C:0.100%〜0.600%、
Si:0.50%〜3.00%、
Mn:1.20%〜4.00%、
Ti:0.005%〜0.100%、
B:0.0005%〜0.0100%、
P:0.100%以下、
S:0.0001%〜0.0100%、
Al:0.005%〜1.000%、
N:0.0100%以下、
Ni:0%〜2.00%、
Cu:0%〜2.00%、
Cr:0%〜2.00%、
Mo:0%〜2.00%、
Nb:0%〜0.100%、
V:0%〜0.100%、
W:0%〜0.100%、および
REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上の合計:0%〜0.0300%
を含有し、残部がFeおよび不純物からなる組成を有し、スケールと地鉄との界面に、深さ0.2μm〜8.0μmの範囲となる凹凸が100μm当たり、3個以上存在し、前記スケールの厚みが10μm以下であり、引張強度が1180MPa以上であることを特徴とするホットスタンプ成形体。
In mass%,
C: 0. 100% to 0.600%,
Si: 0.50% to 3.00%,
Mn: 1.20% to 4.00%,
Ti: 0.005% to 0.100%,
B: 0.0005% to 0.0100%,
P: 0. 100% or less,
S: 0.0001% to 0.0100%,
Al: 0.005% to 1.000%,
N: 0.0100% or less,
Ni: 0% to 2.00%,
Cu: 0% to 2.00%,
Cr: 0% to 2.00%,
Mo: 0% to 2.00%,
Nb: 0% to 0.100%,
V: 0% to 0.100%,
W: 0% to 0.100%, and one or more selected from the group consisting of REM, Ca, Ce and Mg in total: 0% to 0.0300%
Contain, comprises the balance consisting of Fe and impurities, the interface between the scale and the base steel, Ri per unevenness 100μm to be a range of depth 0.2Myuemu~8.0Myuemu, there three or more And a thickness of the scale is 10 μm or less, and a tensile strength is 1180 MPa or more.
前記ホットスタンプ成形体の表面に、Si酸化物、FeO、Fe34、およびFe23を有することを特徴とする請求項10に記載のホットスタンプ成形体。 The hot to the surface of the stamping member, Si oxide, FeO, Fe 3 O 4, and hot stamping molded article according to claim 10, characterized in that to have a Fe 2 O 3. 前記ホットスタンプ成形体の組成が、質量%で、
Ni:0.01%〜2.00%、
Cu:0.01%〜2.00%、
Cr:0.01%〜2.00%、
Mo:0.01%〜2.00%、
Nb:0.005%〜0.100%、
V:0.005%〜0.100%、および
W:0.005%〜0.100%、
からなる群から選ばれる1種又は2種以上を含有することを特徴とする請求項10又は11に記載のホットスタンプ成形体。
The composition of the hot stamped molded body is, by mass%,
Ni: 0.01% to 2.00%,
Cu: 0.01% to 2.00%,
Cr: 0.01% to 2.00%,
Mo: 0.01% to 2.00%,
Nb: 0.005% to 0.100%,
V: 0.005% to 0.100%, and W: 0.005% to 0.100%,
The hot stamped molded article according to claim 10 or 11, wherein it contains one or more selected from the group consisting of
前記ホットスタンプ成形体の組成が、質量%で、
REM、Ca、Ce及びMgからなる群から選ばれる1種又は2種以上を合計で0.0003%〜0.0300%含有することを特徴とする請求項10〜12のいずれか1項に記載のホットスタンプ成形体。
The composition of the hot stamped molded body is, by mass%,
The total content of one or more selected from the group consisting of REM, Ca, Ce, and Mg is 0.0003% to 0.0300%, as described in any one of claims 10 to 12. Hot stamped molded body.
JP2017510030A 2015-03-31 2016-03-29 Steel plate for hot stamping, method of manufacturing the same, and hot stamped steel Active JP6515356B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015072280 2015-03-31
JP2015072280 2015-03-31
PCT/JP2016/060145 WO2016158961A1 (en) 2015-03-31 2016-03-29 Steel sheet for hot stamping, method for manufacturing same, and hot stamp molded article

Publications (2)

Publication Number Publication Date
JPWO2016158961A1 JPWO2016158961A1 (en) 2018-01-18
JP6515356B2 true JP6515356B2 (en) 2019-05-22

Family

ID=57004387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017510030A Active JP6515356B2 (en) 2015-03-31 2016-03-29 Steel plate for hot stamping, method of manufacturing the same, and hot stamped steel

Country Status (12)

Country Link
US (1) US20180044754A1 (en)
EP (1) EP3278895B1 (en)
JP (1) JP6515356B2 (en)
KR (1) KR102000863B1 (en)
CN (1) CN107427889B (en)
BR (1) BR112017020165A2 (en)
CA (1) CA2979978A1 (en)
ES (1) ES2781465T3 (en)
MX (1) MX2017012377A (en)
RU (1) RU2683397C1 (en)
TW (1) TWI597370B (en)
WO (1) WO2016158961A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10822680B2 (en) * 2015-04-08 2020-11-03 Nippon Steel Corporation Steel sheet for heat treatment
EP3282031B1 (en) 2015-04-08 2020-02-19 Nippon Steel Corporation Heat-treated steel sheet member, and production method therefor
RU2686713C1 (en) 2015-04-08 2019-04-30 Ниппон Стил Энд Сумитомо Метал Корпорейшн Element of heat-treated steel sheet and method of its production
DE102016218957A1 (en) * 2016-09-30 2018-04-05 Thyssenkrupp Ag Temporary corrosion protection layer
TWI632240B (en) * 2017-01-17 2018-08-11 新日鐵住金股份有限公司 Hot stamping formed body and method of manufacturing same
WO2018215813A1 (en) * 2017-05-22 2018-11-29 Arcelormittal Method for producing a steel part and corresponding steel part
KR101938092B1 (en) * 2017-09-26 2019-04-11 현대제철 주식회사 Method of manufacturing hot stamping component and hot stamping component manyfactured thereby
MX2020009944A (en) * 2018-03-27 2020-10-16 Kobe Steel Ltd Steel plate for hot stamping.
JP7353768B2 (en) * 2018-03-27 2023-10-02 株式会社神戸製鋼所 Steel plate for hot stamping
WO2020065372A1 (en) * 2018-09-25 2020-04-02 Arcelormittal High strength hot rolled steel having excellent scale adhesivness and a method of manufacturing the same
CN109136485A (en) * 2018-09-30 2019-01-04 南京理工大学 The manufacturing method of automobile stabilizer bar unimach and stabiliser bar
CN111801436B (en) 2019-02-05 2021-10-29 日本制铁株式会社 Steel member, steel sheet, and method for producing same
CN109706377A (en) * 2019-03-01 2019-05-03 本钢板材股份有限公司 A kind of the think gauge PHS1500 steel and its production technology of suitable hot forming processing
CN110257702B (en) * 2019-06-24 2021-04-27 鞍钢股份有限公司 Steel for hot stamping forming and hot forming method thereof
US20220186351A1 (en) * 2019-07-02 2022-06-16 Nippon Steel Corporation Zinc-plated steel sheet for hot stamping, method of manufacturing zinc-plated steel sheet for hot stamping, and hot-stamping formed body
KR102236851B1 (en) * 2019-11-04 2021-04-06 주식회사 포스코 High strength steel having high yield ratio and excellent durability, and method for producing same
CN111926248B (en) * 2020-07-14 2021-11-30 辽宁科技学院 Ce alloy-added hot stamping forming steel and hot stamping forming process
US20230407428A1 (en) * 2021-01-19 2023-12-21 Nippon Steel Corporation Steel
CN112981069B (en) * 2021-02-04 2022-04-26 山西太钢不锈钢股份有限公司 Preparation method of low-glossiness stainless steel panel material
TWI779686B (en) * 2021-06-25 2022-10-01 中國鋼鐵股份有限公司 Steel material for hot-stamping and method of manufacturing steel material
CN113755758B (en) * 2021-09-03 2023-02-03 本钢板材股份有限公司 8 mm-thick hot stamping steel prepared by adding cerium microalloy and hot stamping process thereof
CN114012056B (en) * 2021-10-14 2023-10-13 首钢集团有限公司 1500 MPa-level hot forming steel and preparation method thereof
CN114561591A (en) * 2022-02-28 2022-05-31 北京理工大学重庆创新中心 Y-element-added coating-free enhanced high-temperature oxidation-resistant hot stamping forming steel
CN114561590A (en) * 2022-02-28 2022-05-31 北京理工大学重庆创新中心 Uncoated high-temperature oxidation resistant hot stamping forming steel added with Ce element
DE102022108111A1 (en) 2022-04-05 2023-10-05 Voestalpine Metal Forming Gmbh Process for producing hardened steel components

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1265968A (en) * 1967-12-23 1972-03-08
JPH01230715A (en) 1987-06-26 1989-09-14 Nippon Steel Corp Manufacture of high strength cold rolled steel sheet having superior press formability
JPH0733551B2 (en) 1989-02-18 1995-04-12 新日本製鐵株式会社 Method for producing high strength steel sheet having excellent formability
JP3195509B2 (en) * 1995-02-01 2001-08-06 株式会社神戸製鋼所 Manufacturing method of hot rolled steel sheet with excellent surface properties
JP3143046B2 (en) * 1995-07-31 2001-03-07 日本鋼管株式会社 Organic composite coated steel sheet with excellent press formability and perforated corrosion resistance
JPH0976004A (en) * 1995-09-11 1997-03-25 Nisshin Steel Co Ltd Lubricating and rustproofing oil coated steel sheet excellent in workability in press
JP3882474B2 (en) 2000-07-06 2007-02-14 住友金属工業株式会社 Hot press forming method for metal plate
JP2002143935A (en) 2000-11-13 2002-05-21 Sumitomo Metal Ind Ltd Warm press forming method of metal plate
JP3766626B2 (en) 2001-11-22 2006-04-12 新日本製鐵株式会社 Manufacturing method of high strength steel plate press-formed body
JP3504655B2 (en) * 2001-12-06 2004-03-08 新日本製鐵株式会社 Ferritic stainless steel sheet excellent in press formability and workability and manufacturing method thereof
JP4023248B2 (en) * 2002-07-23 2007-12-19 住友金属工業株式会社 Lubricated steel strip for strong processing
JP2004106034A (en) 2002-09-19 2004-04-08 Nippon Steel Corp Apparatus and method for processing sheet metal
JP4941003B2 (en) 2007-02-28 2012-05-30 Jfeスチール株式会社 Hot-rolled steel sheet for die quench and method for producing the same
WO2008110670A1 (en) * 2007-03-14 2008-09-18 Arcelormittal France Steel for hot working or quenching with a tool having an improved ductility
JP4782056B2 (en) * 2007-03-27 2011-09-28 新日本製鐵株式会社 High-strength steel sheet with excellent scale adhesion during hot pressing and manufacturing method thereof
PL2204463T3 (en) * 2007-10-29 2019-10-31 Nippon Steel & Sumitomo Metal Corp Martensitic non-heat-treated steel for hot forging and non-heat-treated steel hot forgings
KR101622429B1 (en) * 2008-12-04 2016-05-18 뵈스트알파인 스탈 게엠베하 Method for producing molded bodies from sheet steel galvanized on one or both sides
JP2010174302A (en) * 2009-01-28 2010-08-12 Jfe Steel Corp Steel sheet for die quenching
MX2012014594A (en) * 2010-06-14 2013-02-21 Nippon Steel & Sumitomo Metal Corp Hot-stamp-molded article, process for production of steel sheet for hot stamping, and process for production of hot-stamp-molded article.
JP5029749B2 (en) * 2010-09-17 2012-09-19 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method
MX359051B (en) * 2010-10-22 2018-09-13 Nippon Steel & Sumitomo Metal Corp Process for producing hot stamp molded article, and hot stamp molded article.
MX361834B (en) * 2010-10-22 2018-12-18 Nippon Steel & Sumitomo Metal Corp Steel sheet and steel sheet production process.
MX366958B (en) * 2012-03-07 2019-08-01 Nippon Steel Corp Star Steel sheet for hot stamping, method for producing same, and hot-stamped steel material.
WO2013161831A1 (en) * 2012-04-23 2013-10-31 株式会社神戸製鋼所 Method for producing galvanized steel sheet for hot stamping, alloyed hot-dipped galvanized steel sheet for hot stamping and method for producing same, and hot stamped component
KR101663207B1 (en) * 2013-03-27 2016-10-06 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same
CN103614640B (en) * 2013-12-12 2016-10-05 马鸣图 A kind of non-coating hot press-formed steel of resistance to high temperature oxidation

Also Published As

Publication number Publication date
KR102000863B1 (en) 2019-07-16
CA2979978A1 (en) 2016-10-06
MX2017012377A (en) 2017-12-14
EP3278895B1 (en) 2020-03-11
CN107427889A (en) 2017-12-01
TWI597370B (en) 2017-09-01
EP3278895A4 (en) 2018-09-05
BR112017020165A2 (en) 2018-06-05
KR20170122823A (en) 2017-11-06
TW201702403A (en) 2017-01-16
ES2781465T3 (en) 2020-09-02
WO2016158961A1 (en) 2016-10-06
EP3278895A1 (en) 2018-02-07
JPWO2016158961A1 (en) 2018-01-18
US20180044754A1 (en) 2018-02-15
CN107427889B (en) 2019-10-25
RU2683397C1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP6515356B2 (en) Steel plate for hot stamping, method of manufacturing the same, and hot stamped steel
CN107148487B (en) Hot-dip galvanized steel sheet
JP6566128B2 (en) Hot stamping body
JP5648757B2 (en) Hot stamp molded body and method for producing hot stamp molded body
KR101918876B1 (en) Hot-dip galvanized steel sheet
JP5942841B2 (en) Hot stamping molded body excellent in strength and hydrogen embrittlement resistance and method for producing hot stamping molded body
JP6136476B2 (en) Cold rolled steel sheet and method for producing cold rolled steel sheet
WO2018179397A1 (en) Surface-treated steel sheet
JP7269526B2 (en) Steel plate for hot stamping
CN114981467B (en) Hot-stamped molded article
CN115066516B (en) Hot-stamped molded article
WO2022091351A1 (en) Zn-plated hot-stamped molded article
JP2021181618A (en) Hot press member and method for producing the same
JP2021181617A (en) Hot press member and method for producing the same
WO2023132350A1 (en) Steel sheet for hot stamping, method for producing steel sheet for hot stamping, and hot-stamped molded article
CN118510929A (en) Steel sheet for hot stamping, method for producing steel sheet for hot stamping, and hot stamped article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R151 Written notification of patent or utility model registration

Ref document number: 6515356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151