JP6514164B2 - Rotation position device for synchronous motor, air conditioner and washing machine - Google Patents

Rotation position device for synchronous motor, air conditioner and washing machine Download PDF

Info

Publication number
JP6514164B2
JP6514164B2 JP2016173592A JP2016173592A JP6514164B2 JP 6514164 B2 JP6514164 B2 JP 6514164B2 JP 2016173592 A JP2016173592 A JP 2016173592A JP 2016173592 A JP2016173592 A JP 2016173592A JP 6514164 B2 JP6514164 B2 JP 6514164B2
Authority
JP
Japan
Prior art keywords
phase
synchronous motor
current
rotational position
pwm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016173592A
Other languages
Japanese (ja)
Other versions
JP2018042336A5 (en
JP2018042336A (en
Inventor
佐理 前川
佐理 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2016173592A priority Critical patent/JP6514164B2/en
Priority to KR1020170110216A priority patent/KR101934647B1/en
Priority to CN201710790477.8A priority patent/CN107947667B/en
Publication of JP2018042336A publication Critical patent/JP2018042336A/en
Publication of JP2018042336A5 publication Critical patent/JP2018042336A5/ja
Application granted granted Critical
Publication of JP6514164B2 publication Critical patent/JP6514164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Air Conditioning Control Device (AREA)
  • Inverter Devices (AREA)

Description

本発明の実施形態は、同期電動機の回転位置を推定する装置,及びその装置を備えた空調機並びに洗濯機に関する。   Embodiments of the present invention relate to an apparatus for estimating the rotational position of a synchronous motor, an air conditioner including the apparatus, and a washing machine.

従来、同期電動機の回転位置を推定する方法として、例えば同期電動機の速度に比例する誘起電圧を同期電動機への入力電圧と電流より演算し、その誘起電圧に基づいて推定する方法が広く用いられている。しかしながら、この方法は、同期電動機が高速で運転される領域では十分な精度が得られるが、誘起電圧情報が少なくなる極低速で運転される領域では、正確な推定ができないという問題がある。   Conventionally, as a method of estimating the rotational position of a synchronous motor, for example, a method of calculating an induced voltage proportional to the speed of the synchronous motor from an input voltage and current to the synchronous motor and estimating based on the induced voltage is widely used. There is. However, although this method can obtain sufficient accuracy in the region where the synchronous motor is operated at high speed, there is a problem that accurate estimation can not be performed in the region operated at extremely low speed where the induced voltage information decreases.

また、駆動周波数に関係しないセンシングのための交流信号を同期電動機に印加し、電圧電流の関係から回転位置を推定する方法も提案されている。しかし、交流信号の周波数がキャリア周波数以下となる数100Hz〜数kHz程度の場合、モータの電流リップル周波数が人の可聴域に入るため、モータの駆動騒音が悪化することになる。これに対して、特許文献1では、キャリア周期の半周期毎に各相PWM信号のパルス幅を制御することでキャリア周波数と同周波数の高周波電流を発生させ、騒音を抑制しながら回転位置を推定する手法が提案されている。   There is also proposed a method of applying an alternating current signal for sensing that is not related to the drive frequency to the synchronous motor and estimating the rotational position from the relationship between voltage and current. However, when the frequency of the AC signal is about several hundred Hz to several kHz, which is lower than the carrier frequency, the current ripple frequency of the motor falls within the audible range of human beings, thereby deteriorating the driving noise of the motor. On the other hand, in Patent Document 1, the high frequency current having the same frequency as the carrier frequency is generated by controlling the pulse width of each phase PWM signal for each half cycle of the carrier cycle, and the rotational position is estimated while suppressing noise. Methods have been proposed.

また、特許文献2では、キャリアの1周期を基準にして位相を120度ずつずらした3種類の三角波キャリアを用いて3相のPWM信号を生成することで、等価的に特許文献1と同様のキャリア周波数と同周波数の高周波電流を発生させ、その電流微分により回転位置を推定する手法が提案されている。   Further, in Patent Document 2, a three-phase PWM signal is generated using three types of triangular wave carriers whose phases are shifted by 120 degrees with respect to one cycle of the carrier, thereby being equivalent to Patent Document 1 equivalently. There has been proposed a method of generating a high frequency current having the same frequency as the carrier frequency and estimating the rotational position by differentiating the current.

特許第3454212号公報Patent No. 3454212 特許第4670045号公報Patent No. 4670045

インバータ出力に含まれる高周波成分やキャリア周波数成分の高周波電流を利用して回転位置を推定する方法は、高周波電圧に応じて流れる高周波電流がインバータ出力の基本波成分の電圧に対して外乱となるが、キャリア周波数は同期電動機の回転速度に対して十分に高いのでトルクに対する外乱とはならない。またこの方法は、回転位置推定においては電流帰還値にローパスフィルタを付加する等の必要がなく、制御システムとしての応答性が良好となる利点がある。   In the method of estimating the rotational position using the high frequency current of the high frequency component and the carrier frequency component included in the inverter output, the high frequency current flowing according to the high frequency voltage is a disturbance to the voltage of the fundamental wave component of the inverter output. Since the carrier frequency is sufficiently high with respect to the rotational speed of the synchronous motor, it does not become a disturbance for torque. Further, this method does not need to add a low pass filter to the current feedback value in rotational position estimation, and has an advantage that the response as a control system is improved.

ところがこの方法は、実用化の観点から見ると、キャリア周波数に対応する高周波電流の大きさは同期電動機のパラメータに依存して決まるため、その影響は使用する同期電動機に応じて異なり、様々なシステムに対して汎用的に適用できない。具体的には、突極性が小さい、或いはインダクタンスが大きい電動機では、キャリア周波数の電流リップル成分が小さく、回転位置推定のSN比が低下する問題がある。また、キャリア半周期毎にPWM信号のパルス幅を制御する場合、キャリア周波数が低い条件下では、騒音を十分に抑制ができない問題もある。   However, in this method, from the viewpoint of practical use, the magnitude of the high-frequency current corresponding to the carrier frequency is determined depending on the parameters of the synchronous motor, so the effect differs depending on the synchronous motor used and various systems Not universally applicable to Specifically, in an electric motor having a small saliency or a large inductance, there is a problem that the current ripple component of the carrier frequency is small and the SN ratio of rotational position estimation is lowered. In addition, when the pulse width of the PWM signal is controlled in each carrier half cycle, there is also a problem that noise can not be sufficiently suppressed under the condition where the carrier frequency is low.

更に、特許文献1,2共に、検出した電流を3相座標系ではなく2相座標系に変換し処理を行っている。すなわち、2相座標系に基づくベクトル制御を前提とした回転位置の推定であるが、ベクトル制御は演算が複雑で高価な演算器が必要となるため、モータの駆動システムを低コストで構成する用途には不向きである。   Further, in both Patent Documents 1 and 2, processing is performed by converting the detected current into a two-phase coordinate system instead of the three-phase coordinate system. In other words, although the estimation of the rotational position is based on vector control based on a two-phase coordinate system, vector control requires complicated arithmetic operations and expensive arithmetic units, so the application of configuring the motor drive system at low cost Is not suitable for

そこで、駆動騒音を抑制しつつ低コストで回転位置を推定できる同期電動機の回転位置推定装置,及びその装置を備えた空調機並びに洗濯機を提供する。   Therefore, a rotational position estimation device for a synchronous motor capable of estimating a rotational position at low cost while suppressing driving noise, and an air conditioner and a washing machine provided with the device are provided.

実施形態の同期電動機の回転位置推定装置は、同期電動機の相電流を検出する電流検出部と、前記同期電動機の回転位置に追従するように3相のPWM信号パターンを生成するPWM生成部と、前記PWM信号の搬送波に基づいて、検出タイミング信号を生成する検出タイミング信号生成部と、前記検出タイミング信号に応じて、前記電流検出部により検出される相電流の変化量を求める電流変化量検出部と、3種類の電圧ベクトル期間に対応する前記変化量の大小関係を比較することで、前記同期電動機の回転位置を推定する回転位置推定部とを備える。 The rotation position estimation device for a synchronous motor according to the embodiment includes a current detection unit that detects a phase current of the synchronous motor, and a PWM generation unit that generates a three-phase PWM signal pattern so as to follow the rotation position of the synchronous motor. A detection timing signal generation unit that generates a detection timing signal based on a carrier wave of the PWM signal; and a current change amount detection unit that obtains a change amount of the phase current detected by the current detection unit according to the detection timing signal And a rotational position estimation unit configured to estimate a rotational position of the synchronous motor by comparing magnitude relationships of the change amounts corresponding to three types of voltage vector periods .

そして、前記PWM生成部は、前記搬送波の1周期内において前記検出タイミング信号生成部により生成される固定された6点の検出タイミング信号に応じて、前記電流変化量検出部が3種類の電圧ベクトル期間に対応する相電流変化量を検出できるように、3相のPWM信号パターンを生成する。   The PWM generation unit is configured such that the current change amount detection unit generates three types of voltage vectors according to the fixed six detection timing signals generated by the detection timing signal generation unit within one cycle of the carrier wave. A three-phase PWM signal pattern is generated so that the phase current change amount corresponding to the period can be detected.

第1実施形態であり、モータ制御装置の構成を示す機能ブロック図A functional block diagram showing a configuration of a motor control device according to a first embodiment インバータ回路を構成するスイッチング素子のオン状態を空間ベクトルで表した図A diagram in which the on state of the switching elements constituting the inverter circuit is represented by a space vector 各相の電流変化量と回転位置との関係を示す図Diagram showing the relationship between the amount of change in current in each phase and the rotational position 回転位置推定部の構成を示す機能ブロック図Functional block diagram showing the configuration of the rotational position estimation unit 各相のPWMキャリア及びパルス信号と、電流検出タイミングとを示す図Diagram showing PWM carrier and pulse signals of each phase and current detection timing 第2実施形態であり、各相のPWMキャリア及びパルス信号と、電流検出タイミングとを示す図It is a 2nd embodiment, and is a figure showing PWM carrier and pulse signal of each phase, and current detection timing. 第3実施形態であり、モータ制御装置を空気調和機の圧縮機モータに適用した場合を示す図It is a 3rd embodiment and a figure showing a case where a motor control device is applied to a compressor motor of an air conditioner. 第4実施形態であり、モータ制御装置を洗濯乾燥機のドラムモータ及び/又は圧縮機モータに適用した場合を示す図It is a 4th embodiment and is a figure showing the case where a motor control device is applied to a drum motor and / or a compressor motor of a washing drier. 洗濯乾燥機に使用されるヒートポンプの構成を示す図Diagram showing the configuration of a heat pump used in a washing and drying machine

(第1実施形態)
以下、第1実施形態について図1から図5を参照して説明する。図1は、モータ制御装置の構成を示す機能ブロック図である。直流電源1は、回転子に永久磁石を備える永久磁石同期モータ(以下、単にモータと称す)2を駆動する電力源である。直流電源1は、交流電源を直流に変換したものでも良い。インバータ回路3は、6個のスイッチング素子,例えばNチャネルMOSFET4U+,4Y+,4W+,4U−,4Y−,4W−を3相ブリッジ接続して構成されており、後述するPWM生成部5で生成される3相分6つのスイッチング信号に基づいて、モータ2を駆動する電圧を生成する。
First Embodiment
The first embodiment will be described below with reference to FIGS. 1 to 5. FIG. 1 is a functional block diagram showing a configuration of a motor control device. The direct current power source 1 is a power source for driving a permanent magnet synchronous motor (hereinafter simply referred to as a motor) 2 provided with a permanent magnet in a rotor. The direct current power supply 1 may be one obtained by converting an alternating current power supply into a direct current. The inverter circuit 3 is configured by three-phase bridge connection of six switching elements, for example, N-channel MOSFETs 4U +, 4Y +, 4W +, 4U-, 4Y-, 4W-, and is generated by the PWM generation unit 5 described later A voltage for driving the motor 2 is generated based on six switching signals of three phases.

電圧検出部6は、直流電源1の電圧VDCを検出する。電流検出部7は、インバータ回路3の負側電源線と直流電源1の負側端子との間に接続されている。電流検出部7は、一般にシャント抵抗やホールCTなどを用いた電流センサ及び信号処理回路で構成され、モータ2に流れる直流電流Idcを検出する。   Voltage detection unit 6 detects voltage VDC of DC power supply 1. The current detection unit 7 is connected between the negative power supply line of the inverter circuit 3 and the negative terminal of the DC power supply 1. The current detection unit 7 is generally composed of a current sensor and a signal processing circuit using a shunt resistor, a hole CT, and the like, and detects a direct current Idc flowing through the motor 2.

電流変化量検出部8は、後述する検出タイミング信号生成部9から入力される検出タイミング信号t1〜t6に基づいて直流電流Idcを6回検出し、2回毎の検出値の差分値を変化量dIu_V1,dIv_V3,dIw_V5として算出する。回転位置演算部10は、上記変化量dIu_V1,dIv_V3,dIw_V5からモータ2の回転位置検出値θcを算出する。3相電圧指令値生成部11は、指令値である電圧振幅指令値Vampと電圧位相指令値φvとから、3相の電圧指令値Vu,Vv,Vwを生成する。   The current change amount detection unit 8 detects the DC current Idc six times based on detection timing signals t1 to t6 input from the detection timing signal generation unit 9 described later, and changes the difference value of the detection value every two times Calculated as dIu_V1, dIv_V3, and dIw_V5. The rotational position calculation unit 10 calculates the rotational position detection value θc of the motor 2 from the variation amounts dIu_V1, dIv_V3, and dIw_V5. Three-phase voltage command value generation unit 11 generates three-phase voltage command values Vu, Vv, Vw from voltage amplitude command value Vamp, which is a command value, and voltage phase command value φv.

デューティ生成部12は、3相電圧指令値Vu,Vv,Vwを直流電圧VDCで除すことで各相の変調指令Du,Dv,Dwを演算する。PWM生成部5は、3相変調指令Du,Dv,DwとPWMキャリア,搬送波とを比較して各相のPWM信号パルスを生成する。1相当たりのパルスにはデッドタイムが付加され、それぞれ3相上下のNチャネルMOSFET4に出力するスイッチング信号U+,U−,V+,V−,W+,W−を生成する。   Duty generation unit 12 calculates modulation commands Du, Dv, Dw of each phase by dividing three-phase voltage command values Vu, Vv, Vw by DC voltage VDC. The PWM generation unit 5 compares the three-phase modulation commands Du, Dv, Dw with the PWM carrier and the carrier to generate PWM signal pulses of each phase. Dead time is added to the pulse corresponding to one, and the switching signals U +, U-, V +, V-, W-, and W- output to the three-phase upper and lower N-channel MOSFETs 4 are generated.

以上の構成において、モータ2,インバータ回路3を除いたものが、回転位置検出装置13構成している。そして、回転位置検出装置13にインバータ回路3を加えたものがモータ制御装置14を構成している。
In the above configuration, the rotational position detection device 13 is configured without the motor 2 and the inverter circuit 3 . The motor control device 14 is configured by adding the inverter circuit 3 to the rotational position detection device 13.

ここで、本実施形態における回転位置検出方法の原理を説明する。(1)式は、突極性を有する同期電動機の3相インダクタンスを示している。

Figure 0006514164
(1)式に示すように、各相のインダクタンスLu,Lv,Lwは回転位置θに応じて変化する。このインダクタンスの回転位置に対する依存性を利用することで、モータの速度がゼロ近傍となる条件下でも転位置を推定することができる。 Here, the principle of the rotational position detection method in the present embodiment will be described. Equation (1) shows the three-phase inductance of the synchronous motor having saliency.
Figure 0006514164
As shown in the equation (1), the inductances Lu, Lv and Lw of each phase change according to the rotational position θ. By utilizing the dependency of the inductance on the rotational position, it is possible to estimate the displacement even under conditions where the motor speed is near zero.

図2は、インバータ回路を構成するスイッチング素子のオン状態を空間ベクトルと呼ばれる手法で表したものである。例えば(1,0,0)は,U相上側のスイッチング素子がオン、V相及びW相の上側スイッチング素子がオフの状態を示しており、電圧ベクトルはV0〜V7の8つのパターンが存在する。   FIG. 2 illustrates the on state of the switching elements that constitute the inverter circuit by a method called a space vector. For example, (1, 0, 0) indicates that the U-phase upper switching element is on and the V-phase and W-phase upper switching elements are off, and the voltage vector has eight patterns V0 to V7. .

ここで,電圧ベクトルV1(1,0,0)を印加している再のモータの相間電圧方程式を(2)式に示す。上からUV線間電圧,VW線間電圧,WU線間電圧を示している。

Figure 0006514164
但し、Vdcは直流電圧,Eu,Ev,Ewは各相の誘起電圧,Rは巻線抵抗,Iu_V1,Iv_V1,Iw_V1は、電圧ベクトルV1を印加した際の3相電流値である。ここでモータ回転数が極低速であり,巻線抵抗による電圧降下と誘起電圧が直流電圧Vdcに比べ非常に小さい場合、(2)式中の各相の電流微分値は(3)式を用いて(4)式に近似できる。
Figure 0006514164
ここで、インダクタンス値L0,L1と直流電圧Vdcとを(5)式のようにAと置くと、(4)式は(6)式に変形できる。
Figure 0006514164
同様に、電圧ベクトルV3印加中のV相電流微分値dIv_V3/dt,電圧ベクトルV5印加中のW相電流微分値dIw_V5/dtは(7)式で示される。電圧ベクトルV1,V3,V5印加中のU,V,W相の電流微分値に微分時間dtを乗じて電流変化量とし、まとめたものが(8)式である。
Figure 0006514164
Here, the inter-phase voltage equation of the second motor applying the voltage vector V1 (1, 0, 0) is shown in equation (2). From the top, UV line voltage, VW line voltage, and WU line voltage are shown.
Figure 0006514164
Where Vdc is a DC voltage, Eu, Ev and Ew are induced voltages of respective phases, R is a winding resistance, and Iu_V1, Iv_V1 and Iw_V1 are three-phase current values when a voltage vector V1 is applied. Here, when the motor rotation speed is extremely low and the voltage drop due to the winding resistance and the induced voltage are very small compared to the DC voltage Vdc, the current differential value of each phase in the equation (2) uses the equation (3) (4) can be approximated.
Figure 0006514164
Here, when the inductance values L0, L1 and the DC voltage Vdc are set to A as shown in the equation (5), the equation (4) can be transformed into the equation (6).
Figure 0006514164
Similarly, the V-phase current differential value dIv_V3 / dt during application of the voltage vector V3 and the W-phase current differential value dIw_V5 / dt during application of the voltage vector V5 are represented by Expression (7). The current differential values of the U, V, and W phases during application of the voltage vectors V1, V3, and V5 are multiplied by the differential time dt to obtain a current change amount.
Figure 0006514164

これら3つの電流変化量は、図3に示すように直流オフセット量2dt/Aを持ち,振幅L1dt/(AL0)で回転位置2θに応じて、それぞれの位相差2d/3で変化する交流信号である。これらは交流信号であるが、そのオフセット量2dt/Aや振幅L1dt/(AL0)にはモータのパラメータが含まれている。そこで、パラメータを用いない簡易な回転位置演算を行うため、3つの信号の差分値のゼロクロス信号を生成し、それに基づき推定回転位置θcを求める。(8)式で示す3相の電流変化量がそれぞれ交差する回転位置は(9)式のようになる。

Figure 0006514164
それぞれの交差位置がそれぞれ2種類の回転位置θを表すのは、(8)式の電流変化量が2θで変化するからである。 These three current change amounts have a DC offset amount 2 dt / A as shown in FIG. 3, and an alternating current signal having an amplitude L1 dt / (AL0) and a phase difference of 2 d / 3 according to the rotational position 2θ. It is. These are AC signals, but the offset amount 2 dt / A and the amplitude L 1 dt / (AL 0) include motor parameters. Therefore, in order to perform a simple rotational position calculation without using parameters, a zero cross signal of the difference value between the three signals is generated, and an estimated rotational position θc is determined based thereon. The rotational position at which the three-phase current change amounts shown in equation (8) cross each other is as shown in equation (9).
Figure 0006514164
The respective intersection positions respectively represent two types of rotational positions θ because the amount of change in current in equation (8) changes with 2θ.

また、これらの交差位置に基づくと、各相の大小関係によって6つのセクタに分けることができる。

Figure 0006514164
ここで、回転位置の分解能を「12」とすれば、上記セクタ内における回転位置は、各相電流変化量の交差角度を平均した角度として()内のように表すことができる。 Moreover, based on these intersection positions, it can be divided into six sectors according to the magnitude relationship of each phase.
Figure 0006514164
Here, when the resolution of the rotational position is “12”, the rotational position in the sector can be expressed as in () as an angle obtained by averaging the crossing angles of the phase current change amounts.

次に、セクタ毎に2種類の回転位置のどちらを選択するかを決定するアルゴリズムについて説明する。モータが回転すると、電気角1周期中に上記セクタは1から6まで変化した後、再度1から6まで変化する。そこで、最初のセクタ1〜6までをセクタの第1周期とし、続く第2周期は別セクタとして考える。つまり、下記に示すように、セクタ数を「12」としてそれぞれに回転位置を割り当てる。これは、セクタが1→6まで変化した後にカウントアップするカウンタを用いることで容易に実現できる。

Figure 0006514164
また、別の実現方法として、(9)式で示した各相電流変化量の交差角度を用いて、電流変化量が交差した場合に回転位置を交差角度に更新する方法でも良い。 Next, an algorithm for determining which of two types of rotational positions to select for each sector will be described. When the motor rotates, the sector changes from 1 to 6 during one electrical angle cycle, and then changes from 1 to 6 again. Therefore, the first sectors 1 to 6 are considered as the first cycle of the sector, and the subsequent second cycle is considered as another sector. That is, as shown below, the rotational position is assigned to the number of sectors as “12”. This can be easily realized by using a counter that counts up after the sector changes from 1 to 6.
Figure 0006514164
Further, as another realization method, a method may be employed in which the rotational position is updated to the intersection angle when the amount of change in current intersects, using the intersection angle of the amount of change in phase current shown in equation (9).

これらの方法を用いる場合、モータが回転する前、すなわち初期回転位置においては、上記のカウンタがカウントを開始する前であるため、各相の電流変化量からどちらの位置が正しいか判定する必要がある。例えば、検出した電流変化量の大小関係が
dIv_V3>dIu_V1>dIw_V5であるとき、該当するセクタは1又は7であり、回転位置は75°又は−105°となる。
When using these methods, it is necessary to determine which position is correct from the amount of change in current of each phase before the motor rotates, that is, at the initial rotation position, before the counter starts counting. is there. For example, when the magnitude relation of the detected current variation is dIv_V3>dIu_V1> dIw_V5, the corresponding sector is 1 or 7, and the rotational position is 75 ° or -105 °.

モータ駆動前の停止状態において上記のどちらかを判定するためには、初期位置の同定アルゴリズムが必要となる。これについては、従来の公知技術である磁気飽和の特性を用いた方式にて判定を行う。本公知技術については、例えば下記の文献などの手法がある。
電気学会論文誌D(産業応用部門誌)Vol.125(2005),No.3「パルス電圧を用いた表面磁石同期モータの初期回転位置推定法」,山本修,荒隆裕
以上のアルゴリズムによって、検出した電流変化量から同期電動機の回転位置を推定できる。
In order to determine either of the above in the stopped state before the motor drive, an identification algorithm of the initial position is required. This determination is performed by a method using the characteristic of magnetic saturation which is a conventional known technique. About this well-known technique, there exist methods, such as the following literature, for example.
Journal of the Institute of Electrical Engineers of Japan, Journal of the Institute of Electrical Engineers of Japan, Vol. 125 (2005), No. 3 "Initial Rotation Position Estimation Method of Surface Magnet Synchronous Motor Using Pulse Voltage", Osamu Yamamoto, Yutaka Arataka The rotational position of the synchronous motor can be estimated from the amount of current change.

図4に回転位置演算部10の構成を示す。コンパレータ21uは、入力される電流変化量dIu_V1とdIv_V3とを比較する。コンパレータ21vは、入力される電流変化量dIv_V3とdIw_V5とを比較する。コンパレータ21wは、入力される電流変化量dIw_V5とdIu_V1とを比較する。コンパレータ21u〜21wの出力信号は、2θc演算部22に入力される。2θc演算部22は、コンパレータ21により入力される各信号の二値レベルの組み合わせから6つのセクタに基づく回転位置2θcを演算し、カウンタ演算部23に出力する。カウンタ演算部23は、上述のようにセクタ数セクタが1→6まで変化した後にカウントアップするカウンタであり「12」のセクタに応じた回転位置θcを出力する。   FIG. 4 shows the configuration of the rotational position calculation unit 10. The comparator 21 u compares the input current change amount dIu_V1 with dIv_V3. The comparator 21v compares the input current change amount dIv_V3 with dIw_V5. The comparator 21 w compares the input current change amount dIw_V5 with dIu_V1. The output signals of the comparators 21 u to 21 w are input to the 2θc calculator 22. The 2θc calculating unit 22 calculates the rotational position 2θc based on six sectors from the combination of binary levels of the signals input by the comparator 21, and outputs the calculated rotational position 2θc to the counter calculating unit 23. The counter operation unit 23 is a counter that counts up after the number of sectors in the sector changes from 1 to 6 as described above, and outputs the rotational position θc according to the “12” sector.

次に、(8)式で示した3種類の電圧ベクトル印加中の電流変化量の検出方法について説明する。それぞれ、電圧ベクトルV1印加中のU相電流、V3印加中のV相電流、V5印加中のW相電流を検出する必要がある。ここで、本実施形態では、図5に示すように各相のPWM信号を生成するためのキャリアを、それぞれ波形が異なる3種類用いる。例えばU相は三角波キャリア、V相は逆鋸波キャリア、W相は鋸波キャリアである。これらのようなキャリアを用いてPWM信号を生成すると、U相の三角波キャリアを基準とした場合、
U相PWMパルス:三角波の谷を基準に両側へ発生
V相PWMパルス:三角波の山を基準に左側へ発生
W相PWMパルス:三角波の山を基準に右側へ発生
となる。そして、6回の電流の検出タイミング信号t1〜t6を、図5に示すように与える。
・直流電流IdcからU相の電流変化量dIu_V1を検出するための信号t1,t2は、三角波の谷を基準にその前後にΔT/2ずれた時刻
・直流電流IdcからV相の電流変化量dIv_V3を検出するための信号t3,t4は、三角波の山よりもΔT前の時刻及び三角波の山の時刻
・直流電流IdcからW相の電流変化量dIw_V5を検出するための信号t5,t6は、三角波の山の時刻及び三角波の山よりもΔT遅れた時刻
上記を基準とする。
Next, a method of detecting the amount of change in current during application of three types of voltage vectors shown in equation (8) will be described. It is necessary to detect the U-phase current during voltage vector V1, the V-phase current during V3, and the W-phase current during V5 application, respectively. Here, in the present embodiment, as shown in FIG. 5, three types of carriers having different waveforms are used as carriers for generating the PWM signal of each phase. For example, U phase is triangular wave carrier, V phase is reverse sawtooth wave carrier, and W phase is sawtooth wave carrier. When a PWM signal is generated using a carrier such as these, with reference to the U-phase triangular wave carrier,
U-phase PWM pulse: generated to both sides with respect to the valley of the triangular wave V-phase PWM pulse: generated to the left with reference to the mountain of the triangular wave W-phase PWM pulse: generated to the right with reference to the mountain of the triangular wave. Then, six detection timing signals t1 to t6 of current are given as shown in FIG.
The signals t1 and t2 for detecting the U-phase current change amount dIu_V1 from the direct current Idc are shifted by ΔT / 2 before and after the valley of the triangular wave. The DC current Idc to the V-phase current change amount dIv_V3 The signals t3 and t4 for detecting the current are ΔT before the peak of the triangular wave, and the times t and t6 for detecting the current change amount dIw_V5 of the W phase from the peak current and time Ic of the triangular wave The above is used as a reference at the time of ΔT later than the time of the mountain and the peak of the triangular wave.

また、実際にはパルスが発生した直後はノイズによる電流検出値への影響が大きい場合もあるので、検出タイミングを上記の基準値から数μs程度ずらすこともある。そして、これらt1〜t6の検出タイミングは、インバータ回路に入力されるPWM信号によらず常に一定,すなわち固定された6点のタイミングとなる。   In addition, since the influence of noise on the current detection value may be large immediately after the pulse is generated, the detection timing may be shifted from the above reference value by about several microseconds. The detection timings of these t1 to t6 are six timings which are always constant, that is, fixed, regardless of the PWM signal input to the inverter circuit.

これらの固定タイミングで検出する電流値が、それぞれベクトルV1印加中のU相電流、ベクトルV3印加中のV相電流、ベクトルV5印加中のW相電流となるためには、各相のパルス幅に以下のような一定の制限を設ける必要がある。
<dIu_V1の検出可能条件>
・U相デューティDu>ΔT
・V相デューティDv<50%−ΔT/2
・W相デューティDw<50%−ΔT/2
<dIv_V3の検出可能条件>
・U相デューティDu<100%−2ΔT
・V相デューティDv>ΔT
・W相デューティDw<100%−ΔT
<dIw_V5の検出可能条件>
・U相デューティDu<100%−2ΔT
・V相デューティDv<100%−ΔT
・W相デューティDw>ΔT
このため、本実施形態のように回転位置を推定する場合、インバータ回路3が出力可能な変調率が制限されるが、一般にモータの停止・低速時には変調率が低いため、問題にはなり難い。
In order for the current values detected at these fixed timings to be U-phase current during vector V1 application, V-phase current during vector V3 application, and W-phase current during vector V5 application, the pulse width of each phase is used. It is necessary to set certain limitations as follows.
<DIu_V1 detectable condition>
U phase duty Du> ΔT
· V phase duty Dv <50%-ΔT / 2
· W phase duty Dw <50%-ΔT / 2
<DIv_V3 detectable condition>
・ U-phase duty Du <100% -2ΔT
· V phase duty Dv> ΔT
· W phase duty Dw <100%-ΔT
<Detectable Condition of dIw_V5>
・ U-phase duty Du <100% -2ΔT
· V phase duty Dv <100%-ΔT
· W phase duty Dw> ΔT
For this reason, when the rotational position is estimated as in the present embodiment, the modulation factor that can be output by the inverter circuit 3 is limited, but the modulation factor is generally low when the motor is stopped or at low speed.

以上のように本実施形態によれば、検出タイミング信号生成部9は、PWM信号の搬送波に基づいて検出タイミング信号t1〜t6を生成し、電流変化量検出部8は、検出タイミング信号t1〜t6に応じて電流検出部7により検出される相電流の変化量を求める。回転位置演算部10は、相電流の変化量に基づいて、モータ2の回転位置を推定する。   As described above, according to the present embodiment, the detection timing signal generation unit 9 generates the detection timing signals t1 to t6 based on the carrier wave of the PWM signal, and the current change amount detection unit 8 detects the detection timing signals t1 to t6. The amount of change of the phase current detected by the current detection unit 7 is determined according to The rotational position calculation unit 10 estimates the rotational position of the motor 2 based on the amount of change of the phase current.

そして、PWM生成部5は、PWMキャリアの1周期内において、固定された6点の検出タイミング信号t1〜t6に応じて、電流変化量検出部8が3種類の電圧ベクトル期間V1,V3,V5に対応する相電流変化量dIu_V1,dIv_V3,dIw_V5を検出できるように3相のPWM信号パターンを生成する。   Then, in one cycle of the PWM carrier, the PWM generation unit 5 generates three types of voltage vector periods V1, V3, V5 according to the fixed six detection timing signals t1 to t6. The three-phase PWM signal pattern is generated so as to detect the phase current change amounts dIu_V1, dIv_V3, and dIw_V5 corresponding to the above.

具体的には、PWM生成部5は、3相のPWM信号のうちU相は、PWMキャリア周期の任意の位相を基準として遅れ側,進み側の双方向にデューティDuを増減させ、V相は前記任意の位相を基準として遅れ側,進み側の一方向にデューティDvを増減させ、W相は、前記任意の位相を基準として前記方向とは逆方向にデューティDwを増減させるようにした。これにより、高価な演算能力を持つ演算器を用いることなく、検出した電流変化量の大小関係のみに基づく簡易なアルゴリズムによる安価な演算器を用いて、モータ2の停止又は低速領域におけるセンサレス駆動が可能となる。   Specifically, the PWM generation unit 5 increases or decreases the duty Du in both directions of the delay side and the lead side with reference to an arbitrary phase of the PWM carrier cycle among the three phase PWM signals, and the V phase The duty Dv is increased or decreased in one direction on the delay side or the advance side with respect to the arbitrary phase, and the duty Dw is increased or decreased in the opposite direction to the direction with respect to the arbitrary phase. As a result, sensorless drive in the stop or low speed region of the motor 2 can be performed using an inexpensive computing element by a simple algorithm based only on the magnitude relationship of the detected current change amount without using an computing element having an expensive computing capability. It becomes possible.

また、PWM生成部5は、各相のPWMパルスを発生させる基準を、キャリアの振幅が最大又は最小となる位相に基づいて設定するので、基準の設定が簡単になる。更に、PWM生成部5は、U相については三角波を、V相については前記三角波の振幅が最大又は最小を示す位相に振幅が最大を示す位相が一致する鋸歯状波を、W相については前記鋸歯状波に対して逆相となる鋸歯状波をそれぞれキャリアとして使用する。その際に、各相の基準を、各キャリア振幅の最大値又は最小値が全て一致する位相に基づいて設定する。これにより、各相のPWMパルスの伸長方向を簡単に設定できる。   Further, since the PWM generation unit 5 sets the reference for generating the PWM pulse of each phase based on the phase at which the carrier amplitude is maximum or minimum, setting of the reference is simplified. Furthermore, the PWM generation unit 5 is a sawtooth wave whose phase shows maximum amplitude to the phase whose amplitude shows maximum or minimum at the phase where the amplitude of the triangular wave shows maximum or minimum for the V phase. Sawtooth waves that are in reverse phase to the sawtooth waves are used as carriers respectively. At that time, the reference of each phase is set based on the phase in which the maximum value or the minimum value of each carrier amplitude is all coincident. Thereby, the extension direction of the PWM pulse of each phase can be easily set.

(第2実施形態)
以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。第2実施形態では、各相に使用するPWMキャリアを図6に示すように設定する。各相について使用するキャリアの波形は同じであるが、第2実施形態では、U相の三角波の谷とV,W相の鋸歯状波のゼロ点とを一致させている。
Second Embodiment
Hereinafter, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted, and different parts will be described. In the second embodiment, PWM carriers to be used for each phase are set as shown in FIG. The carrier waveform used for each phase is the same, but in the second embodiment, the valleys of the U-phase triangle wave and the zero points of the V and W-phase sawtooth waves are matched.

また、第2実施形態では、回転位置を推定するために必要な電流変化量についても、電圧ベクトルのパターンが以下のように異なる。
・電圧ベクトルV2印加時のW相電流変化量:dIw_V2
・電圧ベクトルV4印加時のU相電流変化量:dIu_V4
・電圧ベクトルV6印加時のV相電流変化量:dIv_V6
となる。
以上のような第2実施形態によれば、第1実施形態と同様の効果が得られる。
Further, in the second embodiment, the pattern of the voltage vector is also different as described below with respect to the amount of change in current required to estimate the rotational position.
・ W-phase current change when voltage vector V2 is applied: dIw_V2
· U-phase current change amount when voltage vector V4 is applied: dIu_V4
・ V phase current change when voltage vector V6 is applied: dIv_V6
It becomes.
According to the second embodiment as described above, the same effect as that of the first embodiment can be obtained.

(第3実施形態)
図7に示すは第3実施形態であり、第1又は第2実施形態のモータ制御装置を空気調和機の圧縮機モータに適用した場合を示す。ヒートポンプシステム31を構成する圧縮機32は、圧縮部33とモータ34を同一の鉄製密閉容器35内に収容して構成され、モータ34のロータシャフトが圧縮部33に連結されている。そして、圧縮機32、四方弁36、室内側熱交換器37、減圧装置38、室外側熱交換器39は、熱伝達媒体流路たるパイプにより閉ループを構成するように接続されている。尚、圧縮機32は、例えばロータリ型の圧縮機であり、モータ34は、例えば3相IPM(Interior Permanent Magnet)モータである。また、モータ34はブラシレスDCモータである。空気調和機30は、上記のヒートポンプシステム31を有して構成されている。
Third Embodiment
FIG. 7 shows a third embodiment, and shows a case where the motor control device of the first or second embodiment is applied to a compressor motor of an air conditioner. The compressor 32 constituting the heat pump system 31 is configured by housing the compression unit 33 and the motor 34 in the same iron airtight container 35, and the rotor shaft of the motor 34 is connected to the compression unit 33. The compressor 32, the four-way valve 36, the indoor heat exchanger 37, the pressure reducing device 38, and the outdoor heat exchanger 39 are connected to form a closed loop by a pipe serving as a heat transfer medium channel. The compressor 32 is, for example, a rotary compressor, and the motor 34 is, for example, a three-phase IPM (Interior Permanent Magnet) motor. The motor 34 is a brushless DC motor. The air conditioner 30 is configured to have the above-described heat pump system 31.

暖房時には、四方弁36は実線で示す状態にあり、圧縮機32の圧縮部33で圧縮された高温冷媒は、四方弁36から室内側熱交換器37に供給されて凝縮し、その後、減圧装置38で減圧され、低温となって室外側熱交換器39に流れ、ここで蒸発して圧縮機32へと戻る。一方、冷房時には、四方弁36は破線で示す状態に切り替えられる。このため、圧縮機32の圧縮部33で圧縮された高温冷媒は、四方弁6から室外側熱交換器39に供給されて凝縮し、その後、減圧装置8で減圧され、低温となって室内側熱交換器37に流れ、ここで蒸発して圧縮機32へと戻る。そして、室内側、室外側の各熱交換器37,39には、それぞれファン40,41により送風が行われ、その送風によって各熱交換器37,39と室内空気、室外空気の熱交換が効率良く行われるように構成されている。そして、モータ34を第1〜第3実施形態のモータ制御装置によって駆動制御する。   At the time of heating, the four-way valve 36 is in the state shown by the solid line, and the high-temperature refrigerant compressed by the compression unit 33 of the compressor 32 is supplied from the four-way valve 36 to the indoor heat exchanger 37 and is condensed. The pressure is reduced at 38 and becomes low temperature and flows to the outdoor heat exchanger 39 where it evaporates and returns to the compressor 32. On the other hand, at the time of cooling, the four-way valve 36 is switched to the state shown by the broken line. For this reason, the high temperature refrigerant compressed by the compression unit 33 of the compressor 32 is supplied from the four-way valve 6 to the outdoor heat exchanger 39 to be condensed, and then decompressed by the decompression device 8 to become a low temperature to be indoors. It flows to the heat exchanger 37 where it evaporates back to the compressor 32. The fans 40 and 41 blow air to the indoor and outdoor heat exchangers 37 and 39, respectively, and the air flow efficiently exchanges heat between the heat exchangers 37 and 39, indoor air, and outdoor air. It is configured to be well done. Then, drive control of the motor 34 is performed by the motor control device of the first to third embodiments.

以上のように構成される第3実施形態によれば、空気調和機30におけるヒートポンプシステム31を構成する圧縮機32のモータ34を、実施形態のモータ制御装置により駆動制御することで、空気調和機30の運転効率を向上させることができる。   According to the third embodiment configured as described above, the motor 34 of the compressor 32 constituting the heat pump system 31 of the air conditioner 30 is drive-controlled by the motor control device of the embodiment so that the air conditioner can be operated. 30 operating efficiency can be improved.

(第4実施形態)
図8及び図9に示す第4実施形態は、モータ制御装置を洗濯乾燥機のドラムモータ及び/又は圧縮機モータに適用した場合を示す。図8は、ドラム式洗濯乾燥機51の内部構成を概略的に示す縦断側面図である。ドラム式洗濯乾燥機51の外殻を形成する外箱52は、前面に円形状に開口する洗濯物出入口53を有しており、この洗濯物出入口53は、ドア54により開閉される。外箱52の内部には、背面が閉鎖された有底円筒状の水槽55が配置されており、この水槽45の背面中央部にはモータ50のステータがねじ止めにより固着されている。モータ50の回転軸56は、後端部,図8では右側の端部がモータ50のロータの軸取付部に固定されており、前端部,図8では左側の端部が水槽55内に突出している。
Fourth Embodiment
The fourth embodiment shown in FIGS. 8 and 9 shows the case where the motor control device is applied to a drum motor and / or a compressor motor of a washing and drying machine. FIG. 8 is a longitudinal side view schematically showing an internal configuration of the drum-type washing and drying machine 51. As shown in FIG. The outer case 52 forming the outer shell of the drum-type washing and drying machine 51 has a laundry entrance 53 opened in a circular shape on the front face, and the laundry entrance 53 is opened and closed by a door 54. Inside the outer case 52, a bottomed cylindrical water tank 55 whose back is closed is disposed, and a stator of the motor 50 is fixed to the back center of the water tank 45 by screwing. The rotating shaft 56 of the motor 50 is fixed to the shaft mounting portion of the rotor of the motor 50 at the rear end, the right end in FIG. 8, and the front end, the left end in FIG. ing.

回転軸56の前端部には、背面が閉鎖された有底円筒状のドラム57が水槽55に対して同軸状となるように固定されており、このドラム57は、モータ50の駆動によりロータ及び回転軸56と一体的に回転する。なお、ドラム57には、空気および水を流通可能な複数の流通孔58と、ドラム57内の洗濯物の掻き上げやほぐしを行うための複数のバッフル59が設けられている。水槽55には給水弁60が接続されており、当該給水弁60が開放されると、水槽55内に給水される。また、水槽55には排水弁61を有する排水ホース62が接続されており、当該排水弁61が開放されると、水槽55内の水が排出される。   At the front end of the rotating shaft 56, a bottomed cylindrical drum 57 whose rear surface is closed is fixed coaxially to the water tank 55. The drum 57 is driven by a motor 50 to provide a rotor and a rotor. It rotates integrally with the rotating shaft 56. The drum 57 is provided with a plurality of flow holes 58 through which air and water can flow, and a plurality of baffles 59 for scraping and loosening the laundry in the drum 57. A water supply valve 60 is connected to the water tank 55, and when the water supply valve 60 is opened, water is supplied into the water tank 55. Further, a drainage hose 62 having a drainage valve 61 is connected to the water tank 55, and when the drainage valve 61 is opened, the water in the water tank 55 is drained.

水槽55の下方には、前後方向へ延びる通風ダクト63が設けられている。この通風ダクト63の前端部は前部ダクト64を介して水槽55内に接続されており、後端部は後部ダクト65を介して水槽55内に接続されている。通風ダクト63の後端部には、送風ファン66が設けられており、この送風ファン66の送風作用により、水槽55内の空気が、矢印で示すように、前部ダクト64から通風ダクト63内に送られ、後部ダクト65を通して水槽55内に戻されるようになっている。   Below the water tank 55, a ventilating duct 63 extending in the front-rear direction is provided. The front end of the ventilation duct 63 is connected to the water tank 55 through the front duct 64, and the rear end is connected to the water tank 55 through the rear duct 65. A ventilation fan 66 is provided at the rear end portion of the ventilation duct 63, and the air inside the water tank 55 is indicated by an arrow by the ventilation action of the ventilation fan 66, from the front duct 64 to the ventilation duct 63. , And returned to the water tank 55 through the rear duct 65.

通風ダクト63内部の前端側には蒸発器67が配置されており、後端側には凝縮器68が配置されている。これら蒸発器67及び凝縮器68は、図9に示すように圧縮機69および絞り弁70と共にヒートポンプ71を構成しており、通風ダクト63内を流れる空気は、蒸発器67により除湿され凝縮器68により加熱されて、水槽55内に循環される。絞り弁70は膨張弁から成り、開度調整機能を有している。   An evaporator 67 is disposed on the front end side of the inside of the ventilation duct 63, and a condenser 68 is disposed on the rear end side. The evaporator 67 and the condenser 68 constitute a heat pump 71 together with the compressor 69 and the throttle valve 70 as shown in FIG. 9. The air flowing in the ventilation duct 63 is dehumidified by the evaporator 67 and the condenser 68 is dehumidified. And is circulated in the water tank 55. The throttle valve 70 is an expansion valve, and has an opening adjustment function.

外箱52の前面にはドア54の上方に位置して操作パネル72が設けられており、この操作パネル72には運転コースなどを設定するための図示しない複数の操作スイッチが設けられている。操作パネル72は、マイクロコンピュータを主体として構成されドラム式洗濯乾燥機51の運転全般を制御する制御回路部(図示せず)に接続されており、当該制御回路部は、操作パネル72を介して設定された内容に従って、モータ50、給水弁60、排水弁61、圧縮機69、絞り弁70などの駆動を制御しながら各種の運転コースを実行する。そして、モータ50及び/又は圧縮機69を構成する圧縮機モータを第1又は第2実施形態のモータ制御装置によって駆動制御する。   An operation panel 72 is provided on the front of the outer case 52 above the door 54, and the operation panel 72 is provided with a plurality of operation switches (not shown) for setting an operation course and the like. The operation panel 72 is connected to a control circuit unit (not shown) that mainly includes a microcomputer and controls the overall operation of the drum-type washing and drying machine 51. The control circuit unit is connected via the operation panel 72. Various operation courses are executed while controlling the driving of the motor 50, the water supply valve 60, the drain valve 61, the compressor 69, the throttle valve 70 and the like according to the set contents. Then, the motor control device of the first or second embodiment drives and controls the compressor motor that constitutes the motor 50 and / or the compressor 69.

以上のように構成される第4実施形態によれば、洗濯乾燥機51におけるドラム回転用のモータ50及び/又はヒートポンプシステム71を構成する圧縮機69のモータを、実施形態のモータ制御装置により駆動制御することで、洗濯乾燥機51の運転効率を向上させることができる。   According to the fourth embodiment configured as described above, the motor control device according to the embodiment drives the motor 50 for rotating the drum in the washing / drying machine 51 and / or the compressor 69 constituting the heat pump system 71. By controlling, the operating efficiency of the washing and drying machine 51 can be improved.

(その他の実施形態)
3相のPWM信号を各実施形態のように発生させるためには、3種類のキャリアを用いることに限らず、位相シフト機能等を利用しても良いし、1種のキャリアのデューティ設定タイミングや、パルス発生の比較極性等を変更するなどの方法を利用しても良い。
電流変化量検出部8が、キャリア周期内で3相の電流を検出するタイミングは、必ずしもキャリアのレベルが最小又は最大を示す位相を基準とする必要はなく、3相の電流を検出可能な範囲でキャリアの任意の位相に基づいて設定すれば良い。
(Other embodiments)
In order to generate a three-phase PWM signal as in each embodiment, the phase shift function or the like may be used without being limited to the use of three types of carriers, or the duty setting timing of one type of carrier may be used. Alternatively, methods such as changing the comparison polarity of pulse generation may be used.
The timing at which the current change detection unit 8 detects the three-phase current in the carrier cycle does not have to be based on the phase at which the level of the carrier exhibits the minimum or maximum, and a range in which the three-phase current can be detected It may be set based on an arbitrary phase of the carrier.

また、電流を検出するタイミングは、PWMキャリアの周期に一致させる必要はなく、例えばキャリア周期の2倍や4倍の周期で検出を行っても良い。したがって、電流変化量検出部8に入力する電流検出タイミング信号は、キャリアから得られた信号そのものである必要はなく、別個のタイマで生成した信号であっても良い。
電流検出部はシャント抵抗でもCTでも良い。
スイッチング素子はMOSFET,IGBT,パワートランジスタ、SiC,GaN等のワイドギャップ半導体等を使用しても良い。
Further, the timing for detecting the current does not have to coincide with the period of the PWM carrier, and for example, the detection may be performed with a period twice or four times the carrier period. Therefore, the current detection timing signal input to the current change amount detection unit 8 does not have to be the signal itself obtained from the carrier, but may be a signal generated by a separate timer.
The current detection unit may be a shunt resistor or a CT.
The switching element may be a MOSFET, an IGBT, a power transistor, or a wide gap semiconductor such as SiC or GaN.

本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.

図面中、1は直流電源、2は永久磁石同期モータ、3はインバータ回路、4はNチャネルMOSFET、5はPWM生成部、7は電流検出部、8は電流変化量検出部、9は検出タイミング信号生成部、10は回転位置演算部を示す。   In the drawing, 1 is a DC power supply, 2 is a permanent magnet synchronous motor, 3 is an inverter circuit, 4 is an N channel MOSFET, 5 is a PWM generation unit, 7 is a current detection unit, 8 is a current change detection unit, 9 is detection timing Reference numeral 10 denotes a rotational position calculation unit.

Claims (6)

同期電動機の相電流を検出する電流検出部と、
前記同期電動機の回転位置に追従するように3相のPWM信号パターンを生成するPWM生成部と、
前記PWM信号の搬送波に基づいて、検出タイミング信号を生成する検出タイミング信号生成部と、
前記検出タイミング信号に応じて、前記電流検出部により検出される相電流の変化量を求める電流変化量検出部と、
3種類の電圧ベクトル期間に対応する前記変化量の大小関係を比較することで、前記同期電動機の回転位置を推定する回転位置推定部とを備え、
前記PWM生成部は、前記搬送波の1周期内において前記検出タイミング信号生成部により生成される固定された6点の検出タイミング信号に応じて、前記電流変化量検出部が3種類の電圧ベクトル期間に対応する相電流変化量を検出できるように、3相のPWM信号パターンを生成する同期電動機の回転位置推定装置。
A current detection unit that detects a phase current of the synchronous motor;
A PWM generation unit that generates a three-phase PWM signal pattern so as to follow the rotational position of the synchronous motor;
A detection timing signal generation unit that generates a detection timing signal based on the carrier wave of the PWM signal;
A current change amount detection unit for obtaining a change amount of the phase current detected by the current detection unit according to the detection timing signal;
A rotational position estimation unit configured to estimate a rotational position of the synchronous motor by comparing magnitude relationships of the change amounts corresponding to three types of voltage vector periods ;
The PWM generation unit is configured such that the current change amount detection unit detects three types of voltage vector periods according to the fixed six detection timing signals generated by the detection timing signal generation unit within one cycle of the carrier wave. A synchronous motor rotation position estimation device that generates a three-phase PWM signal pattern so that a corresponding phase current change amount can be detected.
前記PWM生成部は、3相のPWM信号のうち1相については、前記搬送波周期の任意の位相を基準として遅れ側,進み側の双方向にデューティを増減させ、
他の1相については、前記搬送波周期の任意の位相を基準として遅れ側,進み側の一方向にデューティを増減させ、
残りの1相については、前記搬送波周期の任意の位相を基準として前記方向とは逆方向にデューティを増減させる請求項1記載の同期電動機の回転位置推定装置。
The PWM generation unit increases or decreases the duty in one of the delay side and the lead side with respect to an arbitrary phase of the carrier wave period with respect to one of three phases of PWM signals.
For one other phase, the duty is increased or decreased in one direction on the delay side or the lead side with reference to an arbitrary phase of the carrier cycle,
The rotational position estimation device for a synchronous motor according to claim 1, wherein the duty is increased or decreased in the opposite direction to the direction with reference to an arbitrary phase of the carrier wave for the remaining one phase.
前記PWM生成部は、前記各相の基準を、搬送波の振幅が最大又は最小となる位相に基づいて設定する請求項2記載の同期電動機の回転位置推定装置。   The rotation position estimation device for a synchronous motor according to claim 2, wherein the PWM generation unit sets the reference of each phase based on a phase at which the amplitude of the carrier wave is maximum or minimum. 前記PWM生成部は、3相のPWM信号のうち1相については、三角波を搬送波として使用し、
他の1相については、前記三角波の振幅が最大又は最小を示す位相に、振幅が最大を示す位相が一致する鋸歯状波を搬送波として使用し、
残りの1相については、前記鋸歯状波に対して逆相となる鋸歯状波を搬送波として使用し、
前記各相の基準を、各搬送波振幅の最大値又は最小値が全て一致する位相に基づいて設定する請求項3記載の同期電動機の回転位置推定装置。
The PWM generation unit uses a triangular wave as a carrier for one of the three-phase PWM signals,
For the other one phase, a sawtooth wave whose phase coincides with the maximum amplitude is used as a carrier wave as a phase whose amplitude indicates the maximum or minimum amplitude of the triangular wave,
For the remaining one phase, a sawtooth wave that is antiphase to the sawtooth wave is used as a carrier,
The rotational position estimation device for a synchronous motor according to claim 3, wherein the reference of each phase is set based on a phase in which the maximum value or the minimum value of each carrier wave amplitude is the same.
同期電動機と、
3相ブリッジ接続された複数のスイッチング素子を所定のPWM信号パターンに従いオンオフ制御することで、直流を3相交流に変換して前記同期電動機を駆動するインバータ回路と、
請求項1から4の何れか一項に記載の回転位置推定装置とを備え、前記同期電動機が発生する回転駆動力により空調運転を行う空調機。
Synchronous motor,
An inverter circuit that converts a direct current into a three-phase alternating current to drive the synchronous motor by on-off controlling a plurality of switching elements connected in a three-phase bridge according to a predetermined PWM signal pattern;
An air conditioner comprising the rotational position estimation device according to any one of claims 1 to 4 and performing an air conditioning operation by a rotational driving force generated by the synchronous motor.
同期電動機と、
3相ブリッジ接続された複数のスイッチング素子を所定のPWM信号パターンに従いオンオフ制御することで、直流を3相交流に変換して前記同期電動機を駆動するインバータ回路と、
請求項1から4の何れか一項に記載の回転位置推定装置とを備え、前記同期電動機が発生する回転駆動力により洗濯運転を行う洗濯機。
Synchronous motor,
An inverter circuit that converts a direct current into a three-phase alternating current to drive the synchronous motor by on-off controlling a plurality of switching elements connected in a three-phase bridge according to a predetermined PWM signal pattern;
A washing machine comprising the rotational position estimation device according to any one of claims 1 to 4, and performing a washing operation by a rotational driving force generated by the synchronous motor.
JP2016173592A 2016-09-06 2016-09-06 Rotation position device for synchronous motor, air conditioner and washing machine Active JP6514164B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016173592A JP6514164B2 (en) 2016-09-06 2016-09-06 Rotation position device for synchronous motor, air conditioner and washing machine
KR1020170110216A KR101934647B1 (en) 2016-09-06 2017-08-30 Rotational positioning device of synchronous motor, air conditioner and a washing machine
CN201710790477.8A CN107947667B (en) 2016-09-06 2017-09-05 Rotation position estimation device for synchronous motor, air conditioner, and washing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016173592A JP6514164B2 (en) 2016-09-06 2016-09-06 Rotation position device for synchronous motor, air conditioner and washing machine

Publications (3)

Publication Number Publication Date
JP2018042336A JP2018042336A (en) 2018-03-15
JP2018042336A5 JP2018042336A5 (en) 2018-06-14
JP6514164B2 true JP6514164B2 (en) 2019-05-15

Family

ID=61624148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016173592A Active JP6514164B2 (en) 2016-09-06 2016-09-06 Rotation position device for synchronous motor, air conditioner and washing machine

Country Status (3)

Country Link
JP (1) JP6514164B2 (en)
KR (1) KR101934647B1 (en)
CN (1) CN107947667B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11557993B2 (en) 2020-07-24 2023-01-17 Hyundai Motor Company Motor-driving control system and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022085227A (en) * 2020-11-27 2022-06-08 オリエンタルモーター株式会社 Ac motor control device and drive system including the same
JP2022110307A (en) * 2021-01-18 2022-07-29 オリエンタルモーター株式会社 Motor control device and drive system provided with the same
CN114719476B (en) * 2022-03-03 2023-12-15 上海海立(集团)股份有限公司 Compressor, operation control method and system thereof, and storage medium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312520B2 (en) * 1995-01-24 2002-08-12 富士電機株式会社 Magnetic pole position detection device for motor
JP4513536B2 (en) * 2004-12-06 2010-07-28 株式会社豊田自動織機 Inverter device
JP2006230169A (en) * 2005-02-21 2006-08-31 Toshiba Corp Controller for synchronous machine
DE102010020215A1 (en) * 2010-05-12 2011-11-17 Andreas Stihl Ag & Co. Kg Method for operating an electronically commutated electric motor and device for carrying out the method
JP5178799B2 (en) * 2010-09-27 2013-04-10 株式会社東芝 Motor control device
US9930569B2 (en) 2011-08-04 2018-03-27 Qualcomm Incorporated Systems, methods and apparatus for wireless condition based multiple radio access bearer communications
JP5433657B2 (en) * 2011-09-15 2014-03-05 株式会社東芝 Motor control device
JP6067402B2 (en) * 2013-02-13 2017-01-25 株式会社東芝 Motor control device
JP6208005B2 (en) 2013-12-25 2017-10-04 株式会社東芝 Electric pole position estimating device for electric motor, inverter device and electric motor system
JP6290028B2 (en) * 2014-07-30 2018-03-07 株式会社東芝 Motor control device, air conditioner, washing machine and refrigerator
US9774284B2 (en) * 2015-02-19 2017-09-26 Rockwell Automation Technologies, Inc. Rotor position estimation apparatus and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11557993B2 (en) 2020-07-24 2023-01-17 Hyundai Motor Company Motor-driving control system and method

Also Published As

Publication number Publication date
CN107947667A (en) 2018-04-20
CN107947667B (en) 2020-03-24
KR20180027348A (en) 2018-03-14
KR101934647B1 (en) 2019-01-02
JP2018042336A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
KR100732717B1 (en) Motor system and control method thereof, and compressor using the same
KR100810851B1 (en) Motor driving apparatus of a washing and drying machine
JP6514164B2 (en) Rotation position device for synchronous motor, air conditioner and washing machine
US9580858B2 (en) Motor control device, air conditioner, washing machine and refrigerator
JP6342079B2 (en) Inverter control device and air conditioner
JP6165470B2 (en) Motor control device, heat pump system and air conditioner
JP6805035B2 (en) Integrated circuit
WO2016002074A1 (en) Power converter, dehumidifier, air conditioner, and refrigeration equipment
KR20160111037A (en) Power conversion device
JP2006230049A (en) Motor control device and motor current detector
US20090164047A1 (en) Method for controlling motor of air conditioner
JP6718356B2 (en) Motor control device and heat pump type refrigeration cycle device
CN103795316A (en) Vector control apparatus, motor control apparatus using same, and air conditioner
KR102362995B1 (en) Motor drive device and system
KR20180105074A (en) Rotating position device of synchronous motor, air conditioner, and washing machine
WO2019229885A1 (en) Permanent-magnet synchronous motor and ventilation blower
JP3650012B2 (en) Compressor control device
JP4197974B2 (en) Motor control device and motor control method
JP2004040861A (en) Driving-gear of motor
JP5975830B2 (en) Motor control device and refrigeration equipment using the same
JP7150186B2 (en) Motor drive device, motor drive system and refrigeration cycle device
JP6591081B2 (en) Inverter device, compressor drive device and air conditioner
JP2003037988A (en) Method and device for driving brushless dc motor
WO2018055820A1 (en) Motor control device and heat pump-type refrigeration cycle device
KR102217538B1 (en) Motor driving apparatus and home appliance including the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190411

R151 Written notification of patent or utility model registration

Ref document number: 6514164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151