JP6511434B2 - Method of treating arsenic and compound containing arsenic - Google Patents

Method of treating arsenic and compound containing arsenic Download PDF

Info

Publication number
JP6511434B2
JP6511434B2 JP2016511555A JP2016511555A JP6511434B2 JP 6511434 B2 JP6511434 B2 JP 6511434B2 JP 2016511555 A JP2016511555 A JP 2016511555A JP 2016511555 A JP2016511555 A JP 2016511555A JP 6511434 B2 JP6511434 B2 JP 6511434B2
Authority
JP
Japan
Prior art keywords
arsenic
volatiles
heat treatment
heat
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016511555A
Other languages
Japanese (ja)
Other versions
JPWO2015151903A1 (en
Inventor
良介 辰巳
良介 辰巳
和浩 波多野
和浩 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of JPWO2015151903A1 publication Critical patent/JPWO2015151903A1/en
Application granted granted Critical
Publication of JP6511434B2 publication Critical patent/JP6511434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0002Preliminary treatment
    • C22B15/001Preliminary treatment with modification of the copper constituent
    • C22B15/0013Preliminary treatment with modification of the copper constituent by roasting

Description

本発明は、砒素の処理方法に関し、特に、砒素を含む銅鉱石の処理に利用可能な砒素の処理方法に関する。  The present invention relates to a method of treating arsenic, and more particularly to a method of treating arsenic that can be used to treat copper ore containing arsenic.

近年、世界中で稼働している銅鉱山において、採取される銅鉱石は、初生硫化鉱主体となってきており、鉄・硫黄、その他の不純物が増加し、銅品位は低下傾向にある。これは、乾式銅製錬向けの銅精鉱生産コストの増加を招く。  In recent years, in copper mines operating around the world, copper ore to be collected is mainly primary sulfide ore, iron, sulfur and other impurities increase, and copper grade tends to decrease. This results in increased copper concentrate production costs for dry copper smelting.

銅鉱石中の不純物の中で、最も問題視されているのは砒素である。砒素は、その存在形態にもよるが、極めて有害であり、産業分野での用途も僅少であるため、大部分は、安定的な形態で廃棄または貯蔵する必要がある。  Among the impurities in copper ore, the most problematic is arsenic. Arsenic, depending on the form of its presence, is extremely harmful and has few applications in the industrial sector, so most need to be disposed or stored in a stable form.

そのため、買鉱乾式製錬所では、購入する銅精鉱中の砒素に対して、ある一定の制限(通常<0.3mass%程度)を付与している。鉱山側は、制限を超過した場合には、超過量に応じペナルティを製錬所側へ支払うことが一般的である。  Therefore, the buy and dry type smelter has given a certain limit (usually about <0.3 mass%) to arsenic in the copper concentrate to be purchased. When the mine side exceeds the limit, it is common to pay a penalty to the smelter side according to the excess amount.

従って、鉱山にとってみれば、コスト低減、鉱山寿命延長のため、砒素を多く含む硫化鉱の効率的な処理方法は、重要な関心事である。一方、買鉱乾式製錬所側にとってみても、良質な鉱石の枯渇、銅精鉱需給の逼迫により、将来的に砒素を多く含む銅精鉱への対応が必要となる可能性が高い。  Therefore, from the viewpoint of mines, efficient treatment of sulphide ores containing a large amount of arsenic is an important concern for cost reduction and mine life extension. On the other hand, from the viewpoint of the buy and dry type smelter side, it is likely that it will be necessary to cope with copper concentrate containing a large amount of arsenic in the future due to the depletion of high quality ore and tight supply and demand of copper concentrate.

特開2009−39666号公報(特許文献1)では、砒素含有化合物を水分が少なくコンパクトな結晶化合物粒子形態とした後、得られた結晶化合物を樹脂でコートする砒素の処理方法が開示されている。  JP-A-2009-39666 (Patent Document 1) discloses a method of treating arsenic in which the obtained crystalline compound is coated with a resin after the arsenic-containing compound is formed into a compact crystalline compound particle form with a small amount of moisture. .

特開2009−39666号公報JP, 2009-39666, A

しかしながら、特許文献1に記載された方法では、樹脂でコートする砒素含有化合物を所定の形態に調整するための予備調整が複雑で、処理コストが高くなるという問題がある。砒素含有化合物の数年、数十年に渡る長期保存を考えた場合に、コートする樹脂自体も劣化して徐々に溶出が起こる可能性も考えられる。  However, in the method described in Patent Document 1, there is a problem that the preparatory adjustment for adjusting the arsenic-containing compound to be coated with the resin to a predetermined form is complicated and the processing cost becomes high. In the case of long-term storage of the arsenic-containing compound for several years and several decades, the coating resin itself may also be degraded and elution may occur gradually.

上記課題を鑑み、本発明は、砒素を含む銅鉱石に含まれる砒素をより安易な方法で長期的な貯蔵及び保存に適した安定的な形態に処理可能な砒素の処理方法を提供する。  SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a method of treating arsenic that can be processed into a stable form suitable for long-term storage and storage in a simpler method, which is contained in copper ore containing arsenic.

上記課題を解決するために、本発明者が鋭意検討したところ、砒素を含む銅鉱石を焙焼して銅鉱石から砒素を含む揮発物を抽出し、この揮発物に所定の処理を施した上で、更に処理後の揮発物の密度を上げるための所定の処理を行ってより安定的な形態に処理することで、従来に比べて砒素の溶出をより長期的に抑制可能であることを見出した。  In order to solve the above problems, the inventors of the present invention have intensively studied and found that copper ore containing arsenic is roasted to extract volatiles containing arsenic from copper ore, and the volatiles are subjected to a predetermined treatment. Furthermore, it is found that the elution of arsenic can be suppressed for a longer period of time as compared with the prior art by performing the predetermined treatment to further increase the density of volatiles after the treatment and processing it into a more stable form. The

以上の知見を基礎として完成した本発明は一側面において、砒素を含む銅鉱石を非酸化性雰囲気下において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程と、焙焼工程で得られた揮発物を非酸化性雰囲気下において熱処理し、揮発物中の砒素硫化物を溶融させる熱処理工程と、熱処理工程後の揮発物を粉砕する粉砕工程と、粉砕工程後の揮発物を非酸化性雰囲気下で加熱して再溶融させる再溶融工程とを含む砒素の処理方法である。  In one aspect, the present invention completed based on the above findings is a roasting step of roasting arsenic ore-containing copper ore in a non-oxidizing atmosphere and separating it into chalcopyrite and volatiles including arsenic sulfide. Heat-treating the volatiles obtained in the roasting step in a non-oxidative atmosphere to melt the arsenic sulfide in the volatiles, grinding step of grinding the volatiles after the heat-treating step, and the grinding step And re-melting step of heating and re-melting the volatiles in a non-oxidizing atmosphere.

本発明に係る砒素の処理方法は一実施形態において、再溶融工程は、揮発物を200〜250℃で加熱することを含む。  In one embodiment of the method of treating arsenic according to the present invention, the remelting step comprises heating volatiles at 200-250 ° C.

本発明に係る砒素の処理方法は別の一実施形態において、再溶融工程は、再溶融後の揮発物の密度が1.5〜3.0g/cm3となるように揮発物を加熱することを含む。In another embodiment of the method of treating arsenic according to the present invention, the remelting step comprises heating the volatiles so that the density of the volatiles after remelting is 1.5 to 3.0 g / cm 3. including.

本発明に係る砒素の処理方法は更に別の一実施形態において、熱処理工程において、硫黄を添加することを更に含む。  In yet another embodiment, the method of treating arsenic according to the present invention further comprises adding sulfur in the heat treatment step.

本発明に係る砒素の処理方法は更に別の一実施形態において、熱処理工程において、揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)が1.2以上となるように硫黄の含有量を調整することを含む。  In still another embodiment of the method of treating arsenic according to the present invention, in the heat treatment step, the sulfur is contained so that the mass ratio (S / As mass ratio) of sulfur contained in volatiles to arsenic is 1.2 or more. Including adjusting the content of

本発明に係る砒素の処理方法は更に別の一実施形態において、熱処理工程において、老化防止剤を更に添加することを含む。  In a further embodiment, the method of treating arsenic according to the present invention further comprises adding an anti-aging agent in the heat treatment step.

本発明は別の一側面において、砒素と硫黄からなる固体状の砒素含有化合物であって、砒素濃度が、1〜40質量%、密度が1.5〜3.0g/cm3である砒素含有化合物である。Another aspect of the present invention is a solid arsenic-containing compound comprising arsenic and sulfur, wherein the arsenic concentration is 1 to 40% by mass and the density is 1.5 to 3.0 g / cm 3. It is a compound.

本発明によれば、砒素を含む銅鉱石に含まれる砒素をより安易な方法で長期的な貯蔵及び保存に適した安定的な形態に処理可能な砒素の処理方法が提供できる。  According to the present invention, it is possible to provide a method of treating arsenic which can treat arsenic contained in copper ore containing arsenic in a more convenient manner and in a stable form suitable for long-term storage and preservation.

本発明の実施の形態に係る砒素の処理方法を示すフローチャートである。It is a flowchart which shows the processing method of the arsenic concerning embodiment of this invention. 熱処理工程で得られた熱処理物の性状を表す顕微鏡写真の例である。It is an example of the microscope picture showing the property of the heat processing thing obtained at the heat processing process. 熱処理工程で処理された揮発物(熱処理物)の外観を示す写真である。It is a photograph which shows the appearance of the volatile matter (heat-treated material) processed by the heat treatment process. 熱処理工程で処理された揮発物(熱処理物)の外観を示す写真である。It is a photograph which shows the appearance of the volatile matter (heat-treated material) processed by the heat treatment process. 揮発、熱処理、再溶融処理によって得られる砒素含有化合物のAs溶出量の評価結果を示すグラフである。It is a graph which shows the evaluation result of As elution amount of the arsenic containing compound obtained by volatilization, heat processing, and re-melting processing.

本発明の実施の形態に係る砒素の処理方法は、図1に示すように、砒素を含む銅鉱石を非酸化性雰囲気下において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程S1と、焙焼工程S1で得られた揮発物を、非酸化性雰囲気下において熱処理し、揮発物中の砒素硫化物を溶融させる熱処理工程S2と、熱処理工程S2後の揮発物を粉砕する粉砕工程S3と、粉砕工程S3後の揮発物を加熱して再溶融させる再溶融工程S4とを含む。  In the method of treating arsenic according to the embodiment of the present invention, as shown in FIG. 1, a copper ore containing arsenic is roasted in a non-oxidizing atmosphere to form chalcopyrite and volatiles containing arsenic sulfide. Heat treatment step S2 for heat treatment in a non-oxidative atmosphere to heat the volatiles obtained in the roasting step S1 to be separated and the roasting step S1 to melt the arsenic sulfide in the volatiles, and volatilization after the heat treatment step S2 And a re-melting step S4 for heating and re-melting volatiles after the grinding step S3.

本実施形態の処理対象物は、砒素を含む銅鉱石である。具体的には、例えば、硫砒銅鉱(Cu3AsS4)、四面砒銅鉱(Cu12As413)、または、これら砒素を含む銅鉱が混在する銅精鉱等が利用可能である。なお、これら銅鉱石の他にも、砒素を含む鉱石であって以下に示す二段階処理により処理可能な鉱石であれば、上記銅鉱石には限定されないことは勿論である。The processing object of the present embodiment is a copper ore containing arsenic. Specifically, for example, arsenopyrite (Cu 3 AsS 4 ), tetrahedral alumite (Cu 12 As 4 S 13 ), or a copper concentrate in which copper ore containing these arsenic is mixed can be used. The ore is not limited to the above copper ore, as long as it is an ore containing arsenic other than these copper ores and which can be treated by the two-step treatment described below.

例えば、本発明に利用可能な硫砒銅鉱を主体とする銅精鉱の品位は、共存する黄鉄鉱(FeS2)や脈石成分の品位によって異なるが、典型的には、銅を15〜35質量%、砒素を3〜15質量%含む。For example, the grade of copper concentrate mainly composed of arsenopyrite which can be used in the present invention varies depending on the grade of coexisting pyrite (FeS 2 ) and gangue components, but typically 15 to 35% by mass of copper And 3 to 15% by mass of arsenic.

本実施形態では、銅精鉱を、鉱物種及び品位が変化しない温度で、予備乾燥することが好ましい。通常、高温空気で銅精鉱を乾燥させる際には、乾燥機出口における銅精鉱の温度をおよそ90℃とし、銅精鉱の水分率を0.5質量%以下とする。  In this embodiment, the copper concentrate is preferably predried at a temperature at which the mineral species and grade do not change. Usually, when drying copper concentrate with high temperature air, the temperature of the copper concentrate at the dryer outlet is about 90 ° C., and the moisture content of the copper concentrate is 0.5 mass% or less.

−焙焼工程S1−
乾燥した銅精鉱は、非酸化性雰囲気下で、550℃〜700℃において、10〜60分間焙焼する。装置内を非酸化性雰囲気にするために供給されるガスとしては、例えば窒素ガスが用いられる。なお、焙焼工程S1における処理温度、および雰囲気の制御は、硫砒銅鉱主体の銅精鉱を硫化砒素と黄銅鉱等に変換するのに必要な条件であり、反応時間は未反応硫砒銅鉱を残さないために必要な時間である。
-Roasting process S1-
The dried copper concentrate is roasted at 550 ° C. to 700 ° C. for 10 to 60 minutes under a non-oxidizing atmosphere. For example, nitrogen gas is used as a gas supplied to make the inside of the apparatus non-oxidizing atmosphere. The control of the treatment temperature and atmosphere in the roasting step S1 is the conditions necessary to convert the copper concentrate containing arsenopyrite ore to arsenic sulfide, chalcopyrite or the like, and the reaction time is a residue of unreacted arsenoic acid ore. It's time you don't need it.

焙焼工程S1において、銅精鉱中の砒素硫化物の生成反応は、下記(1)式または(2) 式に従う。元の精鉱中に黄鉄鉱等が多く含まれていれば、(1)式中で添加するSは、(3)式の通り、処理温度帯における黄鉄鉱の分解によって、生成するSにより補填されるため不要となる。

4Cu3AsS4+12FeS+2S →12CuFeS2+As46 (1)
4Cu3AsS4+12FeS → 12CuFeS2+As44 (2)
FeS2 → FeS + S (3)
In the roasting step S1, the formation reaction of arsenic sulfide in copper concentrate follows the following equation (1) or (2). If pyrite and the like are contained in a large amount in the original concentrate, S added in the equation (1) is compensated by S generated by decomposition of pyrite in the treatment temperature zone as in the equation (3) Because it becomes unnecessary.

4Cu 3 AsS 4 + 12FeS + 2S → 12CuFeS 2 + As 4 S 6 (1)
4Cu 3 AsS 4 + 12FeS → 12CuFeS 2 + As 4 S 4 (2)
FeS 2 → FeS + S (3)

焙焼工程S1は、例えばロータリキルンなどを用いて行われる。上記(1)〜(3)式に示すように、焙焼によって、砒素を含む硫化化合物が生成され、生成した砒素化合物は、温度に応じた蒸気圧で揮発し、原料銅精鉱中から除去される。  The roasting step S1 is performed using, for example, a rotary kiln. As shown in the above formulas (1) to (3), the roasting produces a sulfurized compound containing arsenic, and the produced arsenic compound volatilizes at a vapor pressure according to the temperature, and is removed from the raw material copper concentrate Be done.

この焙焼処理の結果、原料銅精鉱から、黄銅鉱とキューバ鉱を主体とする焼鉱と、揮発して回収される砒素化合物(硫化砒素)と単体硫黄を含む揮発物とが得られる。焼鉱の黄銅鉱とキューバ鉱の比率は、550℃〜700℃の温度範囲では、反応前に含まれる黄銅鉱、輝銅鉱などの硫化銅鉱量と、反応前に含まれる黄鉄鉱量、及び添加される黄鉄鉱量により変化する。  As a result of the roasting treatment, from the raw material copper concentrate, a calcined ore mainly composed of chalcopyrite and cubanite ore, and an arsenic compound (arsenic sulfide) which is volatilized and recovered, and a volatile matter containing elemental sulfur are obtained. In the temperature range of 550 ° C. to 700 ° C., the ratio of chalcopyrite of chalcopyrite and cubanite of pyrite ore, the amount of copper sulfide ore such as chalcopyrite and chalcopyrite included before reaction, the amount of pyrite included before reaction, and Change depending on the amount of pyrite

焙焼工程S1において揮発したAs硫化物および単体硫黄はガス形態であるため、非酸化性雰囲気下のまま冷却し、固化させて回収する。図2は、回収した揮発物の顕微鏡写真の例を示している。回収した揮発物は、直径約10〜15μm程度の粒状粒子を含み、As品位の異なる内層1と外層2の二層構造を備える。  Since As sulfide and elemental sulfur volatilized in the roasting step S1 are in the form of gas, they are cooled in a non-oxidative atmosphere, solidified, and recovered. FIG. 2 shows an example of a photomicrograph of the collected volatiles. The recovered volatile matter contains particulate particles of about 10 to 15 μm in diameter, and has a two-layer structure of an inner layer 1 and an outer layer 2 different in As grade.

揮発物粒子の内層1は砒素を約30mol%、硫黄を約70mol%含む層で構成されている。揮発物粒子の外層2は砒素を約5mol%、硫黄を約95mol%含む層で構成されている。即ち、焙焼工程S1で得られる粒状粒子からなる揮発物は、砒素を粒子内部に多く含む内層1の外側を硫黄を多く含む外層2で覆った二層構造を有している。  The inner layer 1 of the volatile particles is composed of a layer containing about 30 mol% of arsenic and about 70 mol% of sulfur. The outer layer 2 of the volatile particles is composed of a layer containing about 5 mol% of arsenic and about 95 mol% of sulfur. That is, the volatiles composed of particulate particles obtained in the roasting step S1 have a two-layer structure in which the outside of the inner layer 1 containing a large amount of arsenic in the particles is covered with the outer layer 2 containing a large amount of sulfur.

−熱処理工程S2−
熱処理工程S2では、図2に示す揮発物粒子に対して更に非酸化性雰囲気中で熱処理を行い、揮発物中の砒素硫化物(硫化砒素)を溶融させることで、揮発物の砒素溶出性をより低減させる。
-Heat treatment process S2-
In the heat treatment step S2, the volatile particles shown in FIG. 2 are further subjected to a heat treatment in a non-oxidative atmosphere to melt the arsenic sulfide (arsenic sulfide) in the volatile material, thereby removing the arsenic elution of the volatile material. Reduce more.

熱処理系内を非酸化性雰囲気とするガスとしては例えば窒素ガスが用いられる。熱処理工程S2の処理温度は、200〜600℃とすることが好ましく、より好ましくは250〜400℃である。処理温度が200℃よりも低い場合には、揮発物中の砒素硫化物が十分に溶融せず、砒素溶出量の低減効果が十分に得られない場合がある。処理温度が600℃よりも高い場合には、揮発物中の砒素硫化物として含まれる硫化水素がガス化して揮発するため、熱処理物が回収できない場合がある。  For example, nitrogen gas is used as a gas for making the inside of the heat treatment system non-oxidizing atmosphere. The treatment temperature of the heat treatment step S2 is preferably 200 to 600 ° C., more preferably 250 to 400 ° C. When the processing temperature is lower than 200 ° C., the arsenic sulfide in the volatiles may not be sufficiently melted, and the reduction effect of the arsenic elution amount may not be sufficiently obtained. If the processing temperature is higher than 600 ° C., the heat-treated product may not be recovered because hydrogen sulfide contained as arsenic sulfide in the volatiles is gasified and volatilized.

熱処理工程S2の処理時間は、処理温度によっても異なるが、完全に反応を進めるために、少なくとも30分以上、より好ましくは50分以上行うことが、熱処理物のAs溶出量低減の効果の面からは好ましい。  The treatment time of the heat treatment step S2 varies depending on the treatment temperature, but it is preferable to carry out the reaction for at least 30 minutes or more, more preferably 50 minutes or more, in order to complete the reaction. Is preferred.

熱処理工程S2に際し、揮発物に対して硫黄を添加することが好ましい。熱処理工程S2の処理温度が高くなるにつれて、硫黄の揮発量が増加して揮発物中の砒素濃度が高くなることで、硫黄が砒素と反応することによる砒素の溶出抑制効果が小さくなるからである。例えば、S/As質量比3.0の揮発物を400℃で処理した場合には、揮発物中のS分が揮発してS/As質量比が2.4程度に低下し、500℃で処理した場合にはS分が揮発してS/As質量比が1.2程度にまで低下する場合がある。添加する硫黄源としては単体硫黄が取り扱いの面からみて好ましい。硫黄の添加は、熱処理工程前に行ってもよいし、熱処理工程中に添加してもよい。  In the heat treatment step S2, it is preferable to add sulfur to volatiles. This is because the volatilization amount of sulfur increases and the concentration of arsenic in the volatiles increases as the processing temperature in the heat treatment step S2 increases, so that the elution suppression effect of arsenic due to the reaction of sulfur with arsenic decreases. . For example, when volatiles having an S / As mass ratio of 3.0 are treated at 400 ° C., the S content in the volatiles volatilizes and the S / As mass ratio decreases to about 2.4, and at 500 ° C. When treated, the S content may be volatilized to reduce the S / As mass ratio to about 1.2. As a sulfur source to be added, elemental sulfur is preferable in terms of handling. Sulfur may be added before the heat treatment step or may be added during the heat treatment step.

熱処理工程S2においては、揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)が1.2以上、より好ましくは2.3以上、更に好ましくは3以上となるように、必要に応じて硫黄を添加することにより揮発物中の硫黄と砒素の濃度を調整することが好ましい。S/As質量比が1.2よりも小さくなると、熱処理の処理時間を長くしても、砒素の溶出低減効果が十分に得られない場合がある。  In the heat treatment step S2, it is necessary that the mass ratio of sulfur contained in volatiles to arsenic (S / As mass ratio) is 1.2 or more, more preferably 2.3 or more, and still more preferably 3 or more. It is preferred to adjust the concentration of sulfur and arsenic in the volatiles by adding sulfur accordingly. If the S / As mass ratio is less than 1.2, the elution reduction effect of arsenic may not be sufficiently obtained even if the heat treatment treatment time is increased.

なお、S/As質量比の上限に特に制限はないが、S/As質量比が高ければ高いほど、短時間の熱処理でAs溶出抑制効果が得られる。一方で、S/As質量比を高くするために硫黄の添加量を増加させすぎても、As溶出抑制効果は大きく変わらず、むしろ硫黄が砒素に対して過剰となるために過剰な硫黄分の後処理が必要となりコスト上昇を招く場合がある。よって、S/As質量比の上限は6程度とすることができる。  The upper limit of the S / As mass ratio is not particularly limited, but as the S / As mass ratio is higher, the As elution suppression effect can be obtained by heat treatment for a short time. On the other hand, if the amount of added sulfur is increased too much to increase the S / As mass ratio, the As elution suppression effect does not change significantly, but rather the excess sulfur content because the sulfur is excessive to arsenic. Post-processing may be required, resulting in cost increase. Therefore, the upper limit of the S / As mass ratio can be about 6.

熱処理工程S2においては、単体硫黄の他に、ゴムの老化防止剤を添加してもよい。これにより、より長期間に渡って砒素を含む揮発物から砒素が溶出することを抑制できる。ゴムの老化防止剤としては、例えば、モノフェノール系、ビスフェノール系、ポリフェノール系から選択されるいずれか1種類以上の老化防止剤が利用可能である。老化防止剤の添加量は0.2mol/m3以上、より好ましくは0.4mol/m3以上供給することが好ましく、より具体的には0.2〜2.0mol/m3である。In heat treatment process S2, you may add the anti-aging agent of rubber | gum other than elemental sulfur. This can suppress the elution of arsenic from the arsenic-containing volatiles for a longer period of time. As the anti-aging agent for rubber, for example, any one or more kinds of anti-aging agent selected from monophenol-based, bisphenol-based and polyphenol-based can be used. The addition amount of the antioxidant is preferably 0.2 mol / m 3 or more, more preferably 0.4 mol / m 3 or more, and more specifically 0.2 to 2.0 mol / m 3 .

図3(a)は、熱処理工程S2で処理された揮発物(熱処理物)の外観を示す写真である。熱処理物は、外観上は嵩張った柱状物質として採取される。この熱処理物の砒素品位は12〜15mol%で、その密度は、約0.6〜1.5g/cm3程度である。熱処理工程S2によって試料が膨張するため、この熱処理物は、純物質の硫化砒素の密度と比べると半分程度となる。この熱処理物をそのまま保存することも可能であるが、密度が低いと比表面積が大きくなるため、熱処理物の外部の雰囲気(例えば空気や液体)との接触面積が大きくなり、溶出が起こりやすくなる場合がある。FIG. 3A is a photograph showing the appearance of the volatiles (heat-treated product) treated in the heat treatment step S2. The heat-treated product is collected as a bulky columnar substance in appearance. The arsenic grade of this heat-treated material is 12 to 15 mol%, and its density is about 0.6 to 1.5 g / cm 3 . Since the sample is expanded by the heat treatment step S2, this heat-treated product is about half the density of pure pure arsenic sulfide. Although this heat treated material can be stored as it is, when the density is low, the specific surface area increases, so the contact area of the heat treated material with the external atmosphere (for example, air or liquid) increases, and elution easily occurs. There is a case.

−粉砕工程S3、再溶融工程S4−
そこで本実施形態では、熱処理工程S2で処理された熱処理物を粉砕して、粉砕された熱処理物を再び加熱して再溶融させることで、熱処理物の密度を上げる。再溶融物の一例を図3(b)に示す。粉砕工程S3における粉砕方法は特定の方法に限定されるものではなく、従来から知られる公知の方法で実施可能である。例えば、所定の用具を用いて操作者が粉砕しても良いし、粉砕機を用いてもよい。
Grinding step S3, remelting step S4
Therefore, in the present embodiment, the heat-treated material processed in the heat treatment step S2 is pulverized, and the pulverized heat-treated material is again heated and remelted to increase the density of the thermally treated material. An example of the remelted material is shown in FIG. 3 (b). The pulverizing method in the pulverizing step S3 is not limited to a specific method, and can be carried out by a conventionally known method. For example, the operator may crush using a predetermined tool, or a crusher may be used.

再溶融工程S4において、粉砕後の熱処理物(揮発物)は、窒素などを用いた非酸化性雰囲気下で加熱し、熱処理物中の砒素硫化物を溶融させる。熱処理物は、再溶融後の熱処理物の密度が1.5〜3.0g/cm3となるように加熱することが好ましい。再溶融工程S4における熱処理物の処理温度は200〜250℃とするのが好ましく、より好ましくは220〜250℃程度である。処理温度が200℃よりも低いと熱処理物が十分に溶融しない場合がある。処理温度が250℃よりも高いと、原料に含まれる硫黄の一部が揮発して試料を膨張させるため、密度が上がらない場合がある。In the remelting step S4, the pulverized heat-treated product (volatile material) is heated in a non-oxidizing atmosphere using nitrogen or the like to melt the arsenic sulfide in the heat-treated product. The heat-treated product is preferably heated so that the density of the heat-treated product after remelting is 1.5 to 3.0 g / cm 3 . The processing temperature of the heat-treated product in the remelting step S4 is preferably 200 to 250 ° C, and more preferably about 220 to 250 ° C. If the treatment temperature is lower than 200 ° C., the heat-treated product may not be sufficiently melted. When the treatment temperature is higher than 250 ° C., part of the sulfur contained in the raw material is volatilized to expand the sample, so the density may not be increased.

再溶融工程S4により得られた再溶融物(硫黄含有化合物)は、砒素と硫黄からなる固体状の砒素含有化合物であって、砒素濃度が、1〜40質量%、密度が1.5〜3.0g/cm3である。この再溶融物を、好ましくは水中で保存することにより、砒素を含む銅鉱石に含まれる砒素を安定的な形態で、長期的に貯蔵及び保存できる。The remelted product (sulfur-containing compound) obtained in the remelting step S4 is a solid arsenic-containing compound composed of arsenic and sulfur, and has an arsenic concentration of 1 to 40 mass% and a density of 1.5 to 3 It is .0 g / cm 3 . By storing the remelted product, preferably in water, it is possible to store and store the arsenic contained in the copper ore containing arsenic in a stable form for a long time.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。  Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited thereto.

(実施例1)
原料銅精鉱として、Cu品位21mass%、Fe品位23mass%、S品位38mass%、As品位6.8mass%の高As品位銅精鉱を使用した。この高As品位銅精鉱に対してX線回折(XRD)及び電子線マイクロアナライザ(EPMA)を用いて特性された主な鉱物組成は、黄銅鉱(CuFeS2)11mass%、黄鉄鉱(FeS2)42mass%、硫砒銅鉱(Cu3AsS4)36mass%、脈石成分(SiO2等)11mass%であった。
Example 1
As a raw material copper concentrate, a high As grade copper concentrate of 21 mass% of Cu grade, 23 mass% of Fe grade, 38 mass% of S grade, and 6.8 mass% of As grade was used. The main mineral composition characterized by X-ray diffraction (XRD) and electron beam microanalyzer (EPMA) for this high As grade copper concentrate is 11 mass% of chalcopyrite (CuFeS 2 ), pyrite (FeS 2 ) 42mass%, enargite (Cu 3 AsS 4) 36mass% , was gangue component (SiO 2, etc.) 11mass%.

この砒素を含む銅精鉱100gを予備乾燥した後、窒素ガス雰囲気中において650℃の処理温度で焙焼したところ、表1に示すように、砒素をほとんど含まない黄銅鉱を含む精鉱(焙焼精鉱)と、砒素を33質量%、硫黄を64質量%含む揮発物とに分離できた。  When 100 g of this copper concentrate containing arsenic was predried and then roasted at a processing temperature of 650 ° C. in a nitrogen gas atmosphere, as shown in Table 1, the concentrate containing chalcopyrite containing almost no arsenic It could be separated into (burn concentrate) and volatiles containing 33% by mass of arsenic and 64% by mass of sulfur.

Figure 0006511434
Figure 0006511434

焙焼工程で得られた揮発物を冷却、固化して回収したところ、揮発物のS/As質量比は2.3であった。この揮発物を、非酸化性雰囲気下で熱処理温度280℃、熱処理時間30分で熱処理して、熱処理物を得た。得られた熱処理物を粉砕し、粉砕物を非酸化性雰囲気下で240℃で10分間加熱して再溶融物を得た。  The volatiles obtained in the roasting step were cooled and solidified to be recovered, and the S / As mass ratio of the volatiles was 2.3. The volatiles were heat-treated at a heat treatment temperature of 280 ° C. for a heat treatment time of 30 minutes in a non-oxidative atmosphere to obtain a heat-treated product. The obtained heat-treated material was pulverized, and the pulverized material was heated at 240 ° C. for 10 minutes under a non-oxidizing atmosphere to obtain a remelted product.

(実施例2)
実施例1の焙焼工程で得られた揮発物(S/As質量比2.3)に揮発物中のS/As質量比が4.1となるように単体硫黄を加え、更にモノフェノール系老化防止剤(2,6−ジ−t−ブチル−4−メチルフェノール)を0.5mol/m3を添加し、窒素ガス雰囲気下で処理温度280℃、熱処理時間30分で熱処理した。得られた熱処理物を粉砕し、粉砕物を240℃で10分間加熱して再溶融物を得た。
(Example 2)
Single sulfur is added to the volatiles (S / As mass ratio of 2.3) obtained in the roasting step of Example 1 so that the mass ratio of S / As in the volatiles is 4.1, and monophenol system is further added. An antioxidant (2,6-di-t-butyl-4-methylphenol) was added at 0.5 mol / m 3 , and heat treatment was performed under a nitrogen gas atmosphere at a treatment temperature of 280 ° C. for a heat treatment time of 30 minutes. The obtained heat-treated material was crushed, and the crushed material was heated at 240 ° C. for 10 minutes to obtain a remelted material.

(溶出結果)
実施例1及び実施例2の各工程で得られた揮発物、熱処理物及び再溶融物に対し、米国環境保護庁(EPA)における土壌汚染物質の溶出分析(TCLP)によりAs溶出量を評価した。この溶出分析では、揮発物、溶出物及び再溶融物をそれぞれ破砕して、粒径9.5mm未満(0.5〜5mm)とした試料に対し、溶出溶媒として脱イオン水、酢酸または酢酸緩衝液を使用し、pHを2.88とし、液固比20、温度22.3℃、振とう方法は回転振とうで30rpm、振とう時間を18時間で、固液分離を加圧ろ過(0.6〜0.8μmGFFフィルタ使用)として溶出分析を行った。結果を図4に示す。
(Dissolution result)
The elution amount of As was evaluated by the elution analysis (TCLP) of soil contaminants in the United States Environmental Protection Agency (EPA) with respect to the volatile matter, the heat-treated material and the remelted material obtained in each step of Example 1 and Example 2. . In this elution analysis, volatiles, eluates and remelts were crushed to make the particle size smaller than 9.5 mm (0.5 to 5 mm), and the sample was treated with deionized water, acetic acid or acetate buffer as an elution solvent. Liquid is used, pH is 2.88, solid-solid ratio is 20, temperature is 22.3 ° C, shaking method is rotary shaking and 30 rpm, shaking time is 18 hours, pressure filtration of solid-liquid separation (0 Elution analysis was carried out as (.6 to 0.8 μm GFF filter used). The results are shown in FIG.

図4に示すように、焙焼、熱処理工程、再溶融工程を行うほどAsの溶出量は減少した。また、実施例1及び2のいずれにおいても、最終的に得られる再溶融物では、Asの溶出量を1mg/L以下に低減できた。  As shown in FIG. 4, the elution amount of As decreased as the roasting, the heat treatment step, and the remelting step were performed. In addition, in any of Examples 1 and 2, in the finally obtained remelted product, the elution amount of As could be reduced to 1 mg / L or less.

(密度)
実施例1の熱処理物と再溶融物についてそれぞれ密度を測定したところ、熱処理物の密度は1.0g/cm3であったのに対し、再溶融物の密度は2.5g/cm3であった。添加剤を加えた実施例2の熱処理物と再溶融物の密度についても測定した結果、熱処理物の密度は1.0g/cm3であったのに対し、再溶融物の密度は2.4g/cm3であった。即ち、再溶融により密度を上げて塊状(ブロック状)とすることで、As溶出性の低いより安定的な形態にすることができた。
(density)
The density of each of the heat-treated product and the remelted product of Example 1 was measured, and the density of the heat-treated product was 1.0 g / cm 3 , while the density of the remelted product was 2.5 g / cm 3. The The density of the heat-treated product and the remelted product of Example 2 to which the additive was added was also measured. As a result, the density of the heat-treated product was 1.0 g / cm 3 while the density of the remelted product was 2.4 g. It was / cm 3 . That is, by raising the density by remelting to form a block (block shape), it was possible to obtain a more stable form with low As elution.

1:内層
2:外層
1: Inner layer 2: Outer layer

Claims (6)

砒素を含む銅鉱石を非酸化性雰囲気下において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程と、
前記焙焼工程で得られた前記揮発物を非酸化性雰囲気下において熱処理し、前記揮発物中の砒素硫化物を溶融させる熱処理工程と、
前記熱処理工程後の前記揮発物を粉砕する粉砕工程と、
前記粉砕工程後の前記揮発物を非酸化性雰囲気下で加熱して再溶融させる再溶融工程と
を含むことを特徴とする砒素の処理方法。
A roasting step of roasting a copper ore containing arsenic in a non-oxidizing atmosphere and separating it into chalcopyrite and volatiles including arsenic sulfide;
A heat treatment step of heat treating the volatiles obtained in the roasting step under a non-oxidative atmosphere to melt arsenic sulfide in the volatiles;
A grinding step of grinding the volatiles after the heat treatment step;
A re-melting step of heating and re-melting the volatiles after the grinding step in a non-oxidative atmosphere.
前記再溶融工程は、前記揮発物を200〜250℃で加熱することを含む請求項1に記載の砒素の処理方法。   The method of treating arsenic according to claim 1, wherein the remelting step includes heating the volatiles at 200 to 250 ° C. 前記再溶融工程は、再溶融後の前記揮発物の密度が1.5〜3.0g/cm3となるように前記揮発物を加熱することを含む請求項1又は2に記載の砒素の処理方法。 The treatment of arsenic according to claim 1 or 2, wherein the remelting step includes heating the volatiles so that the density of the volatiles after remelting is 1.5 to 3.0 g / cm 3. Method. 前記熱処理工程において、硫黄を添加することを更に含む請求項1〜3のいずれか1項に記載の砒素の処理方法。   The method of treating arsenic according to any one of claims 1 to 3, further comprising adding sulfur in the heat treatment step. 前記熱処理工程において、前記揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)が1.2以上となるように硫黄の含有量を調整することを含む請求項1〜4のいずれか1項に記載の砒素の処理方法。   The heat treatment step includes adjusting the content of sulfur so that the mass ratio (S / As mass ratio) of sulfur contained in the volatile matter to arsenic is 1.2 or more. The processing method of the arsenic as described in any one. 前記熱処理工程において、老化防止剤を更に添加することを含む請求項1〜5のいずれか1項に記載の砒素の処理方法。   The method of treating arsenic according to any one of claims 1 to 5, further comprising adding an anti-aging agent in the heat treatment step.
JP2016511555A 2014-03-31 2015-03-23 Method of treating arsenic and compound containing arsenic Active JP6511434B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014073831 2014-03-31
JP2014073831 2014-03-31
PCT/JP2015/058761 WO2015151903A1 (en) 2014-03-31 2015-03-23 Arsenic processing method and arsenic-containing compound

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019039028A Division JP6784789B2 (en) 2014-03-31 2019-03-04 Arsenic treatment method and arsenic-containing compounds

Publications (2)

Publication Number Publication Date
JPWO2015151903A1 JPWO2015151903A1 (en) 2017-04-13
JP6511434B2 true JP6511434B2 (en) 2019-05-15

Family

ID=54240231

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016511555A Active JP6511434B2 (en) 2014-03-31 2015-03-23 Method of treating arsenic and compound containing arsenic
JP2019039028A Active JP6784789B2 (en) 2014-03-31 2019-03-04 Arsenic treatment method and arsenic-containing compounds

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019039028A Active JP6784789B2 (en) 2014-03-31 2019-03-04 Arsenic treatment method and arsenic-containing compounds

Country Status (4)

Country Link
JP (2) JP6511434B2 (en)
CA (1) CA2944421C (en)
CL (1) CL2016002439A1 (en)
WO (1) WO2015151903A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325711B2 (en) * 1975-01-22 1978-07-28
JPS5195997A (en) * 1975-02-12 1976-08-23 RYUKAHISODENBUTSUNOKAATSUZORYUHENSEIHO
JPS5659627A (en) * 1979-10-13 1981-05-23 Sumitomo Metal Mining Co Ltd Treatment of arsenic sulfide precipitate
JP5654321B2 (en) * 2010-10-20 2015-01-14 Jx日鉱日石金属株式会社 Copper concentrate processing method
PL2652161T3 (en) * 2010-12-14 2018-11-30 Outotec (Finland) Oy Process and plant for treating ore concentrate particles containing valuable metal
JP5840644B2 (en) * 2013-03-29 2016-01-06 Jx日鉱日石金属株式会社 Arsenic treatment method

Also Published As

Publication number Publication date
JP6784789B2 (en) 2020-11-11
JP2019094258A (en) 2019-06-20
CA2944421A1 (en) 2015-10-08
CL2016002439A1 (en) 2017-01-20
CA2944421C (en) 2018-12-04
WO2015151903A1 (en) 2015-10-08
JPWO2015151903A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP5881638B2 (en) Arsenic treatment method
JP6267042B2 (en) Arsenic treatment method
Tang et al. A cleaner process for valuable metals recovery from hydrometallurgical zinc residue
Han et al. Selective sulfidation of lead smelter slag with sulfur
JPH11310832A (en) Treatement of metal oxide of steel making waste
AU2011318944B2 (en) Copper concentrate treatment method
CN109136576B (en) Method for removing arsenic from arsenic-containing smoke dust
Zhang et al. Efficient and safe disposition of arsenic by incorporation in smelting slag through copper flash smelting process
JP2013209719A (en) Method for treating copper concentrate
JP5840644B2 (en) Arsenic treatment method
JP6511434B2 (en) Method of treating arsenic and compound containing arsenic
US4409020A (en) Recovery of metals from grinding sludges
WO2020132751A1 (en) Method for obtaining antimony trioxide (sb2o3), arsenic trioxide (as2o3) and lead (pb)
JP2012132038A (en) Method for recovering valuable component in steel slag
KR102113558B1 (en) Manufacturing process of various metals and derivatives derived from copper and sulfur
US20150367327A1 (en) Catalytic Zinc Oxide
WO2016131445A1 (en) Processing method and processing device for arsenopyrite concentrates
JPS5929659B2 (en) Indium separation method
US3689249A (en) Method of pelletizing using copper-containing siliceous waste materials
Rhamdhani et al. Basic nickel carbonate: Part II. Microstructure evolution during industrial nickel production from basic nickel carbonate
US1790088A (en) Removing arsenic from ores
Xu et al. Removal of Arsenic from Leaching Residue of Tungsten
TIAN et al. Synergistic recovery of copper, lead and zinc via sulfurization–reduction method from copper smelting slag
JP5651978B2 (en) Method for recovering sodium and sulfur components from sulfurized copper slag
JP2023167518A (en) Method for producing crude zinc oxide sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6511434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250