JP6784789B2 - Arsenic treatment method and arsenic-containing compounds - Google Patents

Arsenic treatment method and arsenic-containing compounds Download PDF

Info

Publication number
JP6784789B2
JP6784789B2 JP2019039028A JP2019039028A JP6784789B2 JP 6784789 B2 JP6784789 B2 JP 6784789B2 JP 2019039028 A JP2019039028 A JP 2019039028A JP 2019039028 A JP2019039028 A JP 2019039028A JP 6784789 B2 JP6784789 B2 JP 6784789B2
Authority
JP
Japan
Prior art keywords
arsenic
heat
volatile matter
sulfur
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019039028A
Other languages
Japanese (ja)
Other versions
JP2019094258A (en
Inventor
良介 辰巳
良介 辰巳
和浩 波多野
和浩 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of JP2019094258A publication Critical patent/JP2019094258A/en
Application granted granted Critical
Publication of JP6784789B2 publication Critical patent/JP6784789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0002Preliminary treatment
    • C22B15/001Preliminary treatment with modification of the copper constituent
    • C22B15/0013Preliminary treatment with modification of the copper constituent by roasting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、砒素の処理方法に関し、特に、砒素を含む銅鉱石の処理に利用可能な砒素の処理方法に関する。 The present invention relates to a method for treating arsenic, and more particularly to a method for treating arsenic that can be used for treating copper ore containing arsenic.

近年、世界中で稼働している銅鉱山において、採取される銅鉱石は、初生硫化鉱主体となってきており、鉄・硫黄、その他の不純物が増加し、銅品位は低下傾向にある。これは、乾式銅製錬向けの銅精鉱生産コストの増加を招く。 In recent years, copper ore collected in copper mines operating all over the world has been mainly composed of primary sulfide ore, and iron, sulfur and other impurities have increased, and the copper grade has been declining. This leads to an increase in copper concentrate production costs for dry copper smelting.

銅鉱石中の不純物の中で、最も問題視されているのは砒素である。砒素は、その存在形態にもよるが、極めて有害であり、産業分野での用途も僅少であるため、大部分は、安定的な形態で廃棄または貯蔵する必要がある。 Among the impurities in copper ore, arsenic is the most problematic. Arsenic, depending on its form of existence, is extremely harmful and has little use in the industrial field, so most of it needs to be disposed of or stored in a stable form.

そのため、買鉱乾式製錬所では、購入する銅精鉱中の砒素に対して、ある一定の制限(通常<0.3mass%程度)を付与している。鉱山側は、制限を超過した場合には、超過量に応じペナルティを製錬所側へ支払うことが一般的である。 Therefore, the pyrometallurgical smelter imposes a certain limit (usually <0.3 mass%) on the arsenic in the copper concentrate to be purchased. When the limit is exceeded, the mine side generally pays a penalty to the smelter according to the excess amount.

従って、鉱山にとってみれば、コスト低減、鉱山寿命延長のため、砒素を多く含む硫化鉱の効率的な処理方法は、重要な関心事である。一方、買鉱乾式製錬所側にとってみても、良質な鉱石の枯渇、銅精鉱需給の逼迫により、将来的に砒素を多く含む銅精鉱への対応が必要となる可能性が高い。 Therefore, for mines, efficient treatment of arsenic-rich sulfide ore is an important concern for cost reduction and extension of mine life. On the other hand, from the perspective of the pyrometallurgical smelter, there is a high possibility that it will be necessary to deal with copper concentrate containing a large amount of arsenic in the future due to the depletion of high-quality ore and the tight supply and demand of copper concentrate.

特開2009−39666号公報(特許文献1)では、砒素含有化合物を水分が少なくコンパクトな結晶化合物粒子形態とした後、得られた結晶化合物を樹脂でコートする砒素の処理方法が開示されている。 Japanese Unexamined Patent Publication No. 2009-39666 (Patent Document 1) discloses a method for treating arsenic in which an arsenic-containing compound is formed into a compact crystalline compound particle form having a low water content and then the obtained crystalline compound is coated with a resin. ..

特開2009−39666号公報JP-A-2009-39666

しかしながら、特許文献1に記載された方法では、樹脂でコートする砒素含有化合物を所定の形態に調整するための予備調整が複雑で、処理コストが高くなるという問題がある。砒素含有化合物の数年、数十年に渡る長期保存を考えた場合に、コートする樹脂自体も劣化して徐々に溶出が起こる可能性も考えられる。 However, the method described in Patent Document 1 has a problem that the preliminary adjustment for adjusting the arsenic-containing compound coated with the resin to a predetermined form is complicated and the processing cost is high. Considering the long-term storage of the arsenic-containing compound for several years or decades, it is possible that the resin to be coated also deteriorates and elution gradually occurs.

上記課題を鑑み、本発明は、砒素を含む銅鉱石に含まれる砒素をより安易な方法で長期的な貯蔵及び保存に適した安定的な形態に処理可能な砒素の処理方法を提供する。 In view of the above problems, the present invention provides a method for treating arsenic, which can treat arsenic contained in a copper ore containing arsenic in a stable form suitable for long-term storage and storage by a simpler method.

上記課題を解決するために、本発明者が鋭意検討したところ、砒素を含む銅鉱石を焙焼して銅鉱石から砒素を含む揮発物を抽出し、この揮発物に所定の処理を施した上で、更に処理後の揮発物の密度を上げるための所定の処理を行ってより安定的な形態に処理することで、従来に比べて砒素の溶出をより長期的に抑制可能であることを見出した。 In order to solve the above problems, the present inventor diligently studied, and found that arsenic-containing copper ore was roasted to extract arsenic-containing volatile matter from the copper ore, and the volatile matter was subjected to a predetermined treatment. Therefore, it was found that the elution of arsenic can be suppressed for a longer period of time than in the past by further performing a predetermined treatment for increasing the density of the volatile matter after the treatment to treat it in a more stable form. It was.

以上の知見を基礎として完成した本発明は一側面において、砒素を含む銅鉱石を非酸化性雰囲気下において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程と、焙焼工程で得られた揮発物を非酸化性雰囲気下において熱処理し、揮発物中の砒素硫化物を溶融させる熱処理工程と、熱処理工程後の揮発物を粉砕する粉砕工程と、粉砕工程後の揮発物を非酸化性雰囲気下で加熱して再溶融させる再溶融工程とを含む砒素の処理方法である。 The present invention completed on the basis of the above findings has, in one aspect, a roasting process in which a copper ore containing arsenic is roasted in a non-oxidizing atmosphere to separate brass ore and a volatile substance containing arsenic sulfide. , The heat treatment step of heat-treating the volatile matter obtained in the roasting step in a non-oxidizing atmosphere to melt the arsenic sulfide in the volatile matter, the crushing step of crushing the volatile matter after the heat treatment step, and the crushing step It is a method for treating arsenic including a remelting step of heating and remelting the volatile matter of the above in a non-oxidizing atmosphere.

本発明に係る砒素の処理方法は一実施形態において、再溶融工程は、揮発物を200〜250℃で加熱することを含む。 In one embodiment of the arsenic treatment method according to the present invention, the remelting step comprises heating the volatiles at 200-250 ° C.

本発明に係る砒素の処理方法は別の一実施形態において、再溶融工程は、再溶融後の揮発物の密度が1.5〜3.0g/cm3となるように揮発物を加熱することを含む。 In another embodiment of the arsenic treatment method according to the present invention, the remelting step is to heat the volatiles so that the density of the volatiles after remelting becomes 1.5 to 3.0 g / cm 3. including.

本発明に係る砒素の処理方法は更に別の一実施形態において、熱処理工程において、硫黄を添加することを更に含む。 In yet another embodiment, the method for treating arsenic according to the present invention further comprises adding sulfur in the heat treatment step.

本発明に係る砒素の処理方法は更に別の一実施形態において、熱処理工程において、揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)が1.2以上となるように硫黄の含有量を調整することを含む。 In still another embodiment of the method for treating arsenic according to the present invention, sulfur is contained in a volatile substance so that the mass ratio (S / As mass ratio) of sulfur contained in the volatile matter to arsenic is 1.2 or more in the heat treatment step. Includes adjusting the content of.

本発明に係る砒素の処理方法は更に別の一実施形態において、熱処理工程において、老化防止剤を更に添加することを含む。 In yet another embodiment, the method for treating arsenic according to the present invention includes further adding an antiaging agent in the heat treatment step.

本発明は別の一側面において、砒素と硫黄からなる固体状の砒素含有化合物であって、砒素濃度が、1〜40質量%、密度が1.5〜3.0g/cm3である砒素含有化合物である。 In another aspect, the present invention is a solid arsenic-containing compound composed of arsenic and sulfur, which contains arsenic having an arsenic concentration of 1 to 40% by mass and a density of 1.5 to 3.0 g / cm 3. It is a compound.

本発明によれば、砒素を含む銅鉱石に含まれる砒素をより安易な方法で長期的な貯蔵及び保存に適した安定的な形態に処理可能な砒素の処理方法が提供できる。 According to the present invention, it is possible to provide an arsenic treatment method capable of treating arsenic contained in a copper ore containing arsenic in a stable form suitable for long-term storage and storage by a simpler method.

本発明の実施の形態に係る砒素の処理方法を示すフローチャートである。It is a flowchart which shows the arsenic treatment method which concerns on embodiment of this invention. 熱処理工程で得られた熱処理物の性状を表す顕微鏡写真の例である。This is an example of a micrograph showing the properties of the heat-treated product obtained in the heat treatment step. 熱処理工程で処理された揮発物(熱処理物)の外観を示す写真である。It is a photograph which shows the appearance of the volatile matter (heat-treated matter) treated in the heat treatment process. 熱処理工程で処理された揮発物(熱処理物)の外観を示す写真である。It is a photograph which shows the appearance of the volatile matter (heat-treated matter) treated in the heat treatment process. 揮発、熱処理、再溶融処理によって得られる砒素含有化合物のAs溶出量の評価結果を示すグラフである。It is a graph which shows the evaluation result of the As elution amount of the arsenic-containing compound obtained by volatilization, heat treatment, and remelting treatment.

本発明の実施の形態に係る砒素の処理方法は、図1に示すように、砒素を含む銅鉱石を非酸化性雰囲気下において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程S1と、焙焼工程S1で得られた揮発物を、非酸化性雰囲気下において熱処理し、揮発物中の砒素硫化物を溶融させる熱処理工程S2と、熱処理工程S2後の揮発物を粉砕する粉砕工程S3と、粉砕工程S3後の揮発物を加熱して再溶融させる再溶融工程S4とを含む。 In the method for treating arsenic according to the embodiment of the present invention, as shown in FIG. 1, copper ore containing arsenic is roasted in a non-oxidizing atmosphere to form brass ore and volatile matter containing arsenic sulfide. The roasting step S1 to be separated, the heat treatment step S2 in which the volatile matter obtained in the roasting step S1 is heat-treated in a non-oxidizing atmosphere to melt the arsenic sulfide in the volatile matter, and the volatilization after the heat treatment step S2. The crushing step S3 for crushing an object and the remelting step S4 for heating and remelting the volatile matter after the crushing step S3 are included.

本実施形態の処理対象物は、砒素を含む銅鉱石である。具体的には、例えば、硫砒銅鉱(Cu3AsS4)、四面砒銅鉱(Cu12As413)、または、これら砒素を含む銅鉱が混在する銅精鉱等が利用可能である。なお、これら銅鉱石の他にも、砒素を含む鉱石であって以下に示す二段階処理により処理可能な鉱石であれば、上記銅鉱石には限定されないことは勿論である。 The object to be treated in this embodiment is a copper ore containing arsenic. Specifically, for example, enargite (Cu 3 AsS 4 ), tetrahedral arsenic ore (Cu 12 As 4 S 13 ), or a copper concentrate in which copper ores containing these arsenic are mixed can be used. In addition to these copper ores, it goes without saying that the ores containing arsenic and which can be treated by the following two-step treatment are not limited to the above copper ores.

例えば、本発明に利用可能な硫砒銅鉱を主体とする銅精鉱の品位は、共存する黄鉄鉱(FeS2)や脈石成分の品位によって異なるが、典型的には、銅を15〜35質量%、砒素を3〜15質量%含む。 For example, the grade of copper concentrate mainly composed of enargite, which can be used in the present invention, varies depending on the grade of coexisting pyrite (FeS 2 ) and gangue components, but typically 15 to 35% by mass of copper. , Contains 3-15% by mass of arsenic.

本実施形態では、銅精鉱を、鉱物種及び品位が変化しない温度で、予備乾燥することが好ましい。通常、高温空気で銅精鉱を乾燥させる際には、乾燥機出口における銅精鉱の温度をおよそ90℃とし、銅精鉱の水分率を0.5質量%以下とする。 In the present embodiment, it is preferable to pre-dry the copper concentrate at a temperature at which the mineral species and grade do not change. Normally, when the copper concentrate is dried with high temperature air, the temperature of the copper concentrate at the outlet of the dryer is set to about 90 ° C., and the moisture content of the copper concentrate is set to 0.5% by mass or less.

−焙焼工程S1−
乾燥した銅精鉱は、非酸化性雰囲気下で、550℃〜700℃において、10〜60分間焙焼する。装置内を非酸化性雰囲気にするために供給されるガスとしては、例えば窒素ガスが用いられる。なお、焙焼工程S1における処理温度、および雰囲気の制御は、硫砒銅鉱主体の銅精鉱を硫化砒素と黄銅鉱等に変換するのに必要な条件であり、反応時間は未反応硫砒銅鉱を残さないために必要な時間である。
-Roasting process S1-
The dried copper concentrate is roasted in a non-oxidizing atmosphere at 550 ° C. to 700 ° C. for 10 to 60 minutes. As the gas supplied to create a non-oxidizing atmosphere in the apparatus, for example, nitrogen gas is used. The treatment temperature and atmosphere control in the roasting step S1 are conditions necessary for converting copper concentrate mainly composed of enargite into arsenic sulfide, chalcopyrite, etc., and the reaction time leaves unreacted enargite. It's the time needed to not.

焙焼工程S1において、銅精鉱中の砒素硫化物の生成反応は、下記(1)式または(2) 式に従う。元の精鉱中に黄鉄鉱等が多く含まれていれば、(1)式中で添加するSは、(3)式の通り、処理温度帯における黄鉄鉱の分解によって、生成するSにより補填されるため不要となる。
4Cu3AsS4+12FeS+2S →12CuFeS2+As46 (1)
4Cu3AsS4+12FeS → 12CuFeS2+As44 (2)
FeS2 → FeS + S (3)
In the roasting step S1, the reaction for producing arsenic sulfide in the copper concentrate follows the following formula (1) or (2). If the original concentrate contains a large amount of pyrite, etc., the S added in Eq. (1) is supplemented by the S produced by the decomposition of pyrite in the treatment temperature range, as shown in Eq. (3). Therefore, it becomes unnecessary.
4Cu 3 AsS 4 + 12FeS + 2S → 12CuFeS 2 + As 4 S 6 (1)
4Cu 3 AsS 4 + 12FeS → 12CuFeS 2 + As 4 S 4 (2)
FeS 2 → FeS + S (3)

焙焼工程S1は、例えばロータリキルンなどを用いて行われる。上記(1)〜(3)式に示すように、焙焼によって、砒素を含む硫化化合物が生成され、生成した砒素化合物は、温度に応じた蒸気圧で揮発し、原料銅精鉱中から除去される。 The roasting step S1 is performed using, for example, a rotary kiln. As shown in the above formulas (1) to (3), a sulfide compound containing arsenic is produced by roasting, and the produced arsenic compound volatilizes at a vapor pressure according to the temperature and is removed from the raw material copper concentrate. Will be done.

この焙焼処理の結果、原料銅精鉱から、黄銅鉱とキューバ鉱を主体とする焼鉱と、揮発して回収される砒素化合物(硫化砒素)と単体硫黄を含む揮発物とが得られる。焼鉱の黄銅鉱とキューバ鉱の比率は、550℃〜700℃の温度範囲では、反応前に含まれる黄銅鉱、輝銅鉱などの硫化銅鉱量と、反応前に含まれる黄鉄鉱量、及び添加される黄鉄鉱量により変化する。 As a result of this roasting treatment, from the raw material copper concentrate, a burnt ore mainly composed of chalcopyrite and Cubanite, and a volatile substance containing an arsenic compound (arsenic sulfide) and elemental sulfur that are volatilized and recovered can be obtained. The ratio of chalcopyrite to Cubanite in the burnt ore is added in the temperature range of 550 ° C to 700 ° C, the amount of chalcopyrite such as chalcopyrite and chalcocite contained before the reaction, the amount of pyrite contained before the reaction, and the amount added. It changes depending on the amount of chalcopyrite.

焙焼工程S1において揮発したAs硫化物および単体硫黄はガス形態であるため、非酸化性雰囲気下のまま冷却し、固化させて回収する。図2は、回収した揮発物の顕微鏡写真の例を示している。回収した揮発物は、直径約10〜15μm程度の粒状粒子を含み、As品位の異なる内層1と外層2の二層構造を備える。 Since the As sulfide and elemental sulfur volatilized in the roasting step S1 are in the gas form, they are cooled in a non-oxidizing atmosphere, solidified and recovered. FIG. 2 shows an example of a micrograph of the recovered volatile matter. The recovered volatile matter contains granular particles having a diameter of about 10 to 15 μm, and has a two-layer structure of an inner layer 1 and an outer layer 2 having different As grades.

揮発物粒子の内層1は砒素を約30mol%、硫黄を約70mol%含む層で構成されている。揮発物粒子の外層2は砒素を約5mol%、硫黄を約95mol%含む層で構成されている。即ち、焙焼工程S1で得られる粒状粒子からなる揮発物は、砒素を粒子内部に多く含む内層1の外側を硫黄を多く含む外層2で覆った二層構造を有している。 The inner layer 1 of the volatile particles is composed of a layer containing about 30 mol% of arsenic and about 70 mol% of sulfur. The outer layer 2 of the volatile particles is composed of a layer containing about 5 mol% of arsenic and about 95 mol% of sulfur. That is, the volatile matter composed of granular particles obtained in the roasting step S1 has a two-layer structure in which the outside of the inner layer 1 containing a large amount of arsenic inside is covered with the outer layer 2 containing a large amount of sulfur.

−熱処理工程S2−
熱処理工程S2では、図2に示す揮発物粒子に対して更に非酸化性雰囲気中で熱処理を行い、揮発物中の砒素硫化物(硫化砒素)を溶融させることで、揮発物の砒素溶出性をより低減させる。
-Heat treatment step S2-
In the heat treatment step S2, the volatile particles shown in FIG. 2 are further heat-treated in a non-oxidizing atmosphere to melt the arsenic sulfide (arsenic sulfide) in the volatile matter, thereby improving the arsenic elution property of the volatile matter. Reduce more.

熱処理系内を非酸化性雰囲気とするガスとしては例えば窒素ガスが用いられる。熱処理工程S2の処理温度は、200〜600℃とすることが好ましく、より好ましくは250〜400℃である。処理温度が200℃よりも低い場合には、揮発物中の砒素硫化物が十分に溶融せず、砒素溶出量の低減効果が十分に得られない場合がある。処理温度が600℃よりも高い場合には、揮発物中の砒素硫化物として含まれる硫化水素がガス化して揮発するため、熱処理物が回収できない場合がある。 For example, nitrogen gas is used as the gas that creates a non-oxidizing atmosphere in the heat treatment system. The treatment temperature in the heat treatment step S2 is preferably 200 to 600 ° C, more preferably 250 to 400 ° C. When the treatment temperature is lower than 200 ° C., the arsenic sulfide in the volatile matter may not be sufficiently melted, and the effect of reducing the amount of arsenic elution may not be sufficiently obtained. When the treatment temperature is higher than 600 ° C., hydrogen sulfide contained as arsenic sulfide in the volatile matter is vaporized and volatilized, so that the heat-treated product may not be recovered.

熱処理工程S2の処理時間は、処理温度によっても異なるが、完全に反応を進めるために、少なくとも30分以上、より好ましくは50分以上行うことが、熱処理物のAs溶出量低減の効果の面からは好ましい。 The treatment time of the heat treatment step S2 varies depending on the treatment temperature, but in order to completely proceed the reaction, it is necessary to carry out at least 30 minutes or more, more preferably 50 minutes or more from the viewpoint of the effect of reducing the amount of As elution of the heat-treated product. Is preferable.

熱処理工程S2に際し、揮発物に対して硫黄を添加することが好ましい。熱処理工程S2の処理温度が高くなるにつれて、硫黄の揮発量が増加して揮発物中の砒素濃度が高くなることで、硫黄が砒素と反応することによる砒素の溶出抑制効果が小さくなるからである。例えば、S/As質量比3.0の揮発物を400℃で処理した場合には、揮発物中のS分が揮発してS/As質量比が2.4程度に低下し、500℃で処理した場合にはS分が揮発してS/As質量比が1.2程度にまで低下する場合がある。添加する硫黄源としては単体硫黄が取り扱いの面からみて好ましい。硫黄の添加は、熱処理工程前に行ってもよいし、熱処理工程中に添加してもよい。 In the heat treatment step S2, it is preferable to add sulfur to the volatile matter. This is because as the treatment temperature in the heat treatment step S2 increases, the amount of sulfur volatilized increases and the arsenic concentration in the volatile matter increases, so that the effect of suppressing the elution of arsenic due to the reaction of sulfur with arsenic decreases. .. For example, when a volatile matter having an S / As mass ratio of 3.0 is treated at 400 ° C., the S content in the volatile matter volatilizes and the S / As mass ratio drops to about 2.4, and at 500 ° C. In the case of treatment, the S content may volatilize and the S / As mass ratio may decrease to about 1.2. As the sulfur source to be added, elemental sulfur is preferable from the viewpoint of handling. Sulfur may be added before the heat treatment step or during the heat treatment step.

熱処理工程S2においては、揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)が1.2以上、より好ましくは2.3以上、更に好ましくは3以上となるように、必要に応じて硫黄を添加することにより揮発物中の硫黄と砒素の濃度を調整することが好ましい。S/As質量比が1.2よりも小さくなると、熱処理の処理時間を長くしても、砒素の溶出低減効果が十分に得られない場合がある。 In the heat treatment step S2, it is necessary that the mass ratio (S / As mass ratio) of sulfur contained in the volatile matter to arsenic is 1.2 or more, more preferably 2.3 or more, and further preferably 3 or more. It is preferable to adjust the concentration of sulfur and arsenic in the volatile matter by adding sulfur according to the above. If the S / As mass ratio is smaller than 1.2, the effect of reducing arsenic elution may not be sufficiently obtained even if the heat treatment treatment time is lengthened.

なお、S/As質量比の上限に特に制限はないが、S/As質量比が高ければ高いほど、短時間の熱処理でAs溶出抑制効果が得られる。一方で、S/As質量比を高くするために硫黄の添加量を増加させすぎても、As溶出抑制効果は大きく変わらず、むしろ硫黄が砒素に対して過剰となるために過剰な硫黄分の後処理が必要となりコスト上昇を招く場合がある。よって、S/As質量比の上限は6程度とすることができる。 The upper limit of the S / As mass ratio is not particularly limited, but the higher the S / As mass ratio, the more the effect of suppressing As elution can be obtained by a short heat treatment. On the other hand, even if the amount of sulfur added is increased too much in order to increase the S / As mass ratio, the effect of suppressing As elution does not change significantly, but rather the excess sulfur content is due to the excess sulfur with respect to arsenic. Post-processing is required, which may lead to cost increase. Therefore, the upper limit of the S / As mass ratio can be set to about 6.

熱処理工程S2においては、単体硫黄の他に、ゴムの老化防止剤を添加してもよい。これにより、より長期間に渡って砒素を含む揮発物から砒素が溶出することを抑制できる。ゴムの老化防止剤としては、例えば、モノフェノール系、ビスフェノール系、ポリフェノール系から選択されるいずれか1種類以上の老化防止剤が利用可能である。老化防止剤の添加量は0.2mol/m3以上、より好ましくは0.4mol/m3以上供給することが好ましく、より具体的には0.2〜2.0mol/m3である。 In the heat treatment step S2, a rubber antiaging agent may be added in addition to elemental sulfur. This makes it possible to suppress the elution of arsenic from the arsenic-containing volatile matter for a longer period of time. As the anti-aging agent for rubber, for example, any one or more anti-aging agents selected from monophenol-based, bisphenol-based, and polyphenol-based can be used. The amount of the antiaging agent added is preferably 0.2 mol / m 3 or more, more preferably 0.4 mol / m 3 or more, and more specifically 0.2 to 2.0 mol / m 3 .

図3(a)は、熱処理工程S2で処理された揮発物(熱処理物)の外観を示す写真である。熱処理物は、外観上は嵩張った柱状物質として採取される。この熱処理物の砒素品位は12〜15mol%で、その密度は、約0.6〜1.5g/cm3程度である。熱処理工程S2によって試料が膨張するため、この熱処理物は、純物質の硫化砒素の密度と比べると半分程度となる。この熱処理物をそのまま保存することも可能であるが、密度が低いと比表面積が大きくなるため、熱処理物の外部の雰囲気(例えば空気や液体)との接触面積が大きくなり、溶出が起こりやすくなる場合がある。 FIG. 3A is a photograph showing the appearance of the volatile matter (heat-treated product) treated in the heat treatment step S2. The heat-treated product is collected as a columnar substance that is bulky in appearance. The arsenic grade of this heat-treated product is 12 to 15 mol%, and its density is about 0.6 to 1.5 g / cm 3 . Since the sample expands in the heat treatment step S2, the density of this heat-treated product is about half that of the density of arsenic sulfide, which is a pure substance. It is possible to store this heat-treated product as it is, but if the density is low, the specific surface area becomes large, so the contact area of the heat-treated product with the outside atmosphere (for example, air or liquid) becomes large, and elution is likely to occur. In some cases.

−粉砕工程S3、再溶融工程S4−
そこで本実施形態では、熱処理工程S2で処理された熱処理物を粉砕して、粉砕された熱処理物を再び加熱して再溶融させることで、熱処理物の密度を上げる。再溶融物の一例を図3(b)に示す。粉砕工程S3における粉砕方法は特定の方法に限定されるものではなく、従来から知られる公知の方法で実施可能である。例えば、所定の用具を用いて操作者が粉砕しても良いし、粉砕機を用いてもよい。
-Crushing step S3, remelting step S4-
Therefore, in the present embodiment, the heat-treated product treated in the heat treatment step S2 is crushed, and the crushed heat-treated product is reheated and remelted to increase the density of the heat-treated product. An example of the remelted product is shown in FIG. 3 (b). The pulverization method in the pulverization step S3 is not limited to a specific method, and can be carried out by a conventionally known known method. For example, the operator may crush using a predetermined tool, or a crusher may be used.

再溶融工程S4において、粉砕後の熱処理物(揮発物)は、窒素などを用いた非酸化性雰囲気下で加熱し、熱処理物中の砒素硫化物を溶融させる。熱処理物は、再溶融後の熱処理物の密度が1.5〜3.0g/cm3となるように加熱することが好ましい。再溶融工程S4における熱処理物の処理温度は200〜250℃とするのが好ましく、より好ましくは220〜250℃程度である。処理温度が200℃よりも低いと熱処理物が十分に溶融しない場合がある。処理温度が250℃よりも高いと、原料に含まれる硫黄の一部が揮発して試料を膨張させるため、密度が上がらない場合がある。 In the remelting step S4, the heat-treated product (volatile matter) after pulverization is heated in a non-oxidizing atmosphere using nitrogen or the like to melt the arsenic sulfide in the heat-treated product. The heat-treated product is preferably heated so that the density of the heat-treated product after remelting is 1.5 to 3.0 g / cm 3 . The treatment temperature of the heat-treated product in the remelting step S4 is preferably 200 to 250 ° C, more preferably 220 to 250 ° C. If the treatment temperature is lower than 200 ° C., the heat-treated product may not be sufficiently melted. If the treatment temperature is higher than 250 ° C., a part of sulfur contained in the raw material volatilizes and expands the sample, so that the density may not increase.

再溶融工程S4により得られた再溶融物(硫黄含有化合物)は、砒素と硫黄からなる固体状の砒素含有化合物であって、砒素濃度が、1〜40質量%、密度が1.5〜3.0g/cm3である。この再溶融物を、好ましくは水中で保存することにより、砒素を含む銅鉱石に含まれる砒素を安定的な形態で、長期的に貯蔵及び保存できる。 The remelt (sulfur-containing compound) obtained in the remelting step S4 is a solid arsenic-containing compound composed of arsenic and sulfur, and has an arsenic concentration of 1 to 40% by mass and a density of 1.5 to 3. It is 0.0 g / cm 3 . By storing this remelted product in water, arsenic contained in copper ore containing arsenic can be stored and stored in a stable form for a long period of time.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

(実施例1)
原料銅精鉱として、Cu品位21mass%、Fe品位23mass%、S品位38mass%、As品位6.8mass%の高As品位銅精鉱を使用した。この高As品位銅精鉱に対してX線回折(XRD)及び電子線マイクロアナライザ(EPMA)を用いて特性された主な鉱物組成は、黄銅鉱(CuFeS2)11mass%、黄鉄鉱(FeS2)42mass%、硫砒銅鉱(Cu3AsS4)36mass%、脈石成分(SiO2等)11mass%であった。
(Example 1)
As the raw material copper concentrate, a high As grade copper concentrate having a Cu grade of 21 mass%, an Fe grade of 23 mass%, an S grade of 38 mass% and an As grade of 6.8 mass% was used. The main mineral compositions characterized for this high As grade copper concentrate using X-ray diffraction (XRD) and electron probe microanalyzer (EPMA) are chalcopyrite (CuFeS 2 ) 11 mass%, pyrite (FeS 2 ). It was 42 mass%, 36 mass% of enargite (Cu 3 AsS 4 ), and 11 mass% of vein stone component (SiO 2 etc.).

この砒素を含む銅精鉱100gを予備乾燥した後、窒素ガス雰囲気中において650℃の処理温度で焙焼したところ、表1に示すように、砒素をほとんど含まない黄銅鉱を含む精鉱(焙焼精鉱)と、砒素を33質量%、硫黄を64質量%含む揮発物とに分離できた。 After pre-drying 100 g of this arsenic-containing copper concentrate, it was roasted at a treatment temperature of 650 ° C. in a nitrogen gas atmosphere. As shown in Table 1, a concentrate containing chalcopyrite containing almost no arsenic (roasting). Chalcopyrite) and volatiles containing 33% by mass of arsenic and 64% by mass of sulfur could be separated.

焙焼工程で得られた揮発物を冷却、固化して回収したところ、揮発物のS/As質量比は2.3であった。この揮発物を、非酸化性雰囲気下で熱処理温度280℃、熱処理時間30分で熱処理して、熱処理物を得た。得られた熱処理物を粉砕し、粉砕物を非酸化性雰囲気下で240℃で10分間加熱して再溶融物を得た。 When the volatile matter obtained in the roasting step was cooled, solidified and recovered, the S / As mass ratio of the volatile matter was 2.3. This volatile matter was heat-treated in a non-oxidizing atmosphere at a heat treatment temperature of 280 ° C. and a heat treatment time of 30 minutes to obtain a heat-treated product. The obtained heat-treated product was pulverized, and the pulverized product was heated at 240 ° C. for 10 minutes in a non-oxidizing atmosphere to obtain a remelted product.

(実施例2)
実施例1の焙焼工程で得られた揮発物(S/As質量比2.3)に揮発物中のS/As質量比が4.1となるように単体硫黄を加え、更にモノフェノール系老化防止剤(2,6−ジ−t−ブチル−4−メチルフェノール)を0.5mol/m3を添加し、窒素ガス雰囲気下で処理温度280℃、熱処理時間30分で熱処理した。得られた熱処理物を粉砕し、粉砕物を240℃で10分間加熱して再溶融物を得た。
(Example 2)
Elemental sulfur is added to the volatile matter (S / As mass ratio 2.3) obtained in the roasting step of Example 1 so that the S / As mass ratio in the volatile matter is 4.1, and further monophenolic. An anti-aging agent (2,6-di-t-butyl-4-methylphenol) was added at 0.5 mol / m 3 , and heat treatment was performed in a nitrogen gas atmosphere at a treatment temperature of 280 ° C. and a heat treatment time of 30 minutes. The obtained heat-treated product was pulverized, and the pulverized product was heated at 240 ° C. for 10 minutes to obtain a remelted product.

(溶出結果)
実施例1及び実施例2の各工程で得られた揮発物、熱処理物及び再溶融物に対し、米国環境保護庁(EPA)における土壌汚染物質の溶出分析(TCLP)によりAs溶出量を評価した。この溶出分析では、揮発物、溶出物及び再溶融物をそれぞれ破砕して、粒径9.5mm未満(0.5〜5mm)とした試料に対し、溶出溶媒として脱イオン水、酢酸または酢酸緩衝液を使用し、pHを2.88とし、液固比20、温度22.3℃、振とう方法は回転振とうで30rpm、振とう時間を18時間で、固液分離を加圧ろ過(0.6〜0.8μmGFFフィルタ使用)として溶出分析を行った。結果を図4に示す。
(Elution result)
The amount of As elution was evaluated for the volatiles, heat-treated products, and remelts obtained in each step of Example 1 and Example 2 by the elution analysis (TCLP) of soil pollutants by the US Environmental Protection Agency (EPA). .. In this elution analysis, deionized water, acetic acid or acetic acid buffer was used as the elution solvent for a sample having a particle size of less than 9.5 mm (0.5 to 5 mm) by crushing the volatiles, eluates and remelts, respectively. A liquid is used, the pH is 2.88, the liquid-solidity ratio is 20, the temperature is 22.3 ° C., the shaking method is rotary shaking at 30 rpm, the shaking time is 18 hours, and the solid-liquid separation is pressurized filtration (0). The elution analysis was performed as (using a 6 to 0.8 μm GFF filter). The results are shown in FIG.

図4に示すように、焙焼、熱処理工程、再溶融工程を行うほどAsの溶出量は減少した。また、実施例1及び2のいずれにおいても、最終的に得られる再溶融物では、Asの溶出量を1mg/L以下に低減できた。 As shown in FIG. 4, the amount of As eluted decreased as the roasting, heat treatment, and remelting steps were performed. Further, in both Examples 1 and 2, the elution amount of As could be reduced to 1 mg / L or less in the finally obtained remelt.

(密度)
実施例1の熱処理物と再溶融物についてそれぞれ密度を測定したところ、熱処理物の密度は1.0g/cm3であったのに対し、再溶融物の密度は2.5g/cm3であった。添加剤を加えた実施例2の熱処理物と再溶融物の密度についても測定した結果、熱処理物の密度は1.0g/cm3であったのに対し、再溶融物の密度は2.4g/cm3であった。即ち、再溶融により密度を上げて塊状(ブロック状)とすることで、As溶出性の低いより安定的な形態にすることができた。
(density)
When the densities of the heat-treated product and the remelted product of Example 1 were measured, the density of the heat-treated product was 1.0 g / cm 3 , whereas the density of the remelted product was 2.5 g / cm 3. It was. As a result of measuring the densities of the heat-treated product and the remelted product of Example 2 to which the additive was added, the density of the heat-treated product was 1.0 g / cm 3 , whereas the density of the remelted product was 2.4 g. It was / cm 3 . That is, by increasing the density by remelting to form a lump (block shape), a more stable form with low As elution property could be obtained.

1:内層
2:外層
1: Inner layer 2: Outer layer

Claims (1)

砒素と硫黄からなる固体状の砒素含有化合物であって、砒素濃度が、1〜40質量%、密度が1.5〜3.0g/cm3であり、米国環境保護庁(EPA)における土壌汚染物質の溶出分析(TCLP)によりAs溶出量を測定したときに、Asの溶出量が1mg/L以下である砒素含有化合物。 A solid arsenic-containing compound consisting of arsenic and sulfur, arsenic concentration, 1 to 40 wt%, Ri density 1.5~3.0g / cm 3 der, soil in the United States Environmental Protection Agency (EPA) when measured with As elution amount by dissolution analysis of pollutants (TCLP), elution amount is 1 mg / L or less der Ru arsenic-containing compounds of As.
JP2019039028A 2014-03-31 2019-03-04 Arsenic treatment method and arsenic-containing compounds Active JP6784789B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014073831 2014-03-31
JP2014073831 2014-03-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016511555A Division JP6511434B2 (en) 2014-03-31 2015-03-23 Method of treating arsenic and compound containing arsenic

Publications (2)

Publication Number Publication Date
JP2019094258A JP2019094258A (en) 2019-06-20
JP6784789B2 true JP6784789B2 (en) 2020-11-11

Family

ID=54240231

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016511555A Active JP6511434B2 (en) 2014-03-31 2015-03-23 Method of treating arsenic and compound containing arsenic
JP2019039028A Active JP6784789B2 (en) 2014-03-31 2019-03-04 Arsenic treatment method and arsenic-containing compounds

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016511555A Active JP6511434B2 (en) 2014-03-31 2015-03-23 Method of treating arsenic and compound containing arsenic

Country Status (4)

Country Link
JP (2) JP6511434B2 (en)
CA (1) CA2944421C (en)
CL (1) CL2016002439A1 (en)
WO (1) WO2015151903A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325711B2 (en) * 1975-01-22 1978-07-28
JPS5195997A (en) * 1975-02-12 1976-08-23 RYUKAHISODENBUTSUNOKAATSUZORYUHENSEIHO
JPS5659627A (en) * 1979-10-13 1981-05-23 Sumitomo Metal Mining Co Ltd Treatment of arsenic sulfide precipitate
JP5654321B2 (en) * 2010-10-20 2015-01-14 Jx日鉱日石金属株式会社 Copper concentrate processing method
AU2010365664B2 (en) * 2010-12-14 2015-05-21 Outotec Oyj Process and plant for treating ore concentrate particles containing valuable metal
JP5840644B2 (en) * 2013-03-29 2016-01-06 Jx日鉱日石金属株式会社 Arsenic treatment method

Also Published As

Publication number Publication date
JP6511434B2 (en) 2019-05-15
CA2944421A1 (en) 2015-10-08
CA2944421C (en) 2018-12-04
JPWO2015151903A1 (en) 2017-04-13
JP2019094258A (en) 2019-06-20
CL2016002439A1 (en) 2017-01-20
WO2015151903A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP5881638B2 (en) Arsenic treatment method
JP6267042B2 (en) Arsenic treatment method
Tang et al. A cleaner process for valuable metals recovery from hydrometallurgical zinc residue
Min et al. Removal and stabilization of arsenic from anode slime by forming crystal scorodite
AU2011318944B2 (en) Copper concentrate treatment method
EP3012226A1 (en) Hematite manufacturing method and hematite manufactured by same
JPH11310832A (en) Treatement of metal oxide of steel making waste
Han et al. Selective sulfidation of lead smelter slag with sulfur
JP2013209719A (en) Method for treating copper concentrate
JPS61135678A (en) Treatment of free particle and material used therein
JP6784789B2 (en) Arsenic treatment method and arsenic-containing compounds
JP5840644B2 (en) Arsenic treatment method
WO2015011981A1 (en) Method for manufacturing briquettes and reduced iron
CN108138260B (en) Process for producing metals and derivatives thereof from copper-and sulfur-containing materials
Mi et al. Technological mineralogy and environmental activity of zinc leaching residue from zinc hydrometallurgical process
JP4385103B2 (en) Iron oxide powder and method for producing the same
US3689249A (en) Method of pelletizing using copper-containing siliceous waste materials
WO2016131445A1 (en) Processing method and processing device for arsenopyrite concentrates
JPS5929659B2 (en) Indium separation method
EA035804B1 (en) Method of gold extraction from double refractory concentrates
JP2017025410A (en) Method for processing sludge-like raw material
CA2844453A1 (en) Method for processing arsenic
JP2019116670A (en) Recover method of copper, and manufacturing method of electronic copper
US959578A (en) Process of treating sulfid ores containing copper.
JPH04285136A (en) Method for recovering lead and zinc from dust leaching residue of copper converter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201023

R151 Written notification of patent or utility model registration

Ref document number: 6784789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250