JP5840644B2 - Arsenic treatment method - Google Patents

Arsenic treatment method Download PDF

Info

Publication number
JP5840644B2
JP5840644B2 JP2013075234A JP2013075234A JP5840644B2 JP 5840644 B2 JP5840644 B2 JP 5840644B2 JP 2013075234 A JP2013075234 A JP 2013075234A JP 2013075234 A JP2013075234 A JP 2013075234A JP 5840644 B2 JP5840644 B2 JP 5840644B2
Authority
JP
Japan
Prior art keywords
arsenic
sulfur
volatiles
aging agent
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013075234A
Other languages
Japanese (ja)
Other versions
JP2014198890A (en
Inventor
良介 辰巳
良介 辰巳
和浩 波多野
和浩 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51730249&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5840644(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013075234A priority Critical patent/JP5840644B2/en
Priority to CA2847573A priority patent/CA2847573C/en
Priority to CL2014000749A priority patent/CL2014000749A1/en
Priority to PE2014000429A priority patent/PE20150130A1/en
Priority to ARP140101403A priority patent/AR095927A1/en
Priority to PE2018002006A priority patent/PE20181943A1/en
Publication of JP2014198890A publication Critical patent/JP2014198890A/en
Publication of JP5840644B2 publication Critical patent/JP5840644B2/en
Application granted granted Critical
Priority to ARP190101754A priority patent/AR115618A2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、砒素の処理方法に関し、特に、砒素を含む銅鉱石の長期保管及び貯蔵に好適な砒素の処理方法に関する。   The present invention relates to a method for treating arsenic, and more particularly to a method for treating arsenic suitable for long-term storage and storage of copper ore containing arsenic.

近年、世界中で稼働している銅鉱山において、採取される銅鉱石は、初生硫化鉱主体となってきており、鉄・硫黄、その他の不純物が増加し、銅品位は低下傾向にある。これは、乾式銅製錬向けの銅精鉱生産コストの増加を招く。   In recent years, copper ores collected at copper mines operating all over the world have become the primary sulfide ore, and iron, sulfur and other impurities have increased, and the copper quality has been on the decline. This leads to an increase in copper concentrate production costs for dry copper smelting.

銅鉱石中の不純物の中で、最も問題視されているのは砒素である。砒素は、その存在形態にもよるが、極めて有害であり、産業分野での用途も僅少であるため、大部分は、安定的な形態で廃棄または貯蔵する必要がある。   Of the impurities in copper ore, arsenic is considered the most problematic. Although arsenic depends on the form of its existence, it is extremely harmful and has few applications in the industrial field, so most of it needs to be disposed or stored in a stable form.

そのため、買鉱乾式製錬所では、購入する銅精鉱中の砒素に対して、ある一定の制限(通常<0.3mass%程度)を付与している。鉱山側は、制限を超過した場合には、超過量に応じペナルティを製錬所側へ支払うことが一般的である。   For this reason, in the mine smelter, certain restrictions (usually <0.3 mass%) are given to arsenic in the copper concentrate to be purchased. When the limit is exceeded, the mine side generally pays a penalty to the smelter according to the excess amount.

従って、鉱山にとってみれば、コスト低減、鉱山寿命延長のため、砒素を多く含む硫化鉱の効率的な処理方法は、重要な関心事である。一方、買鉱乾式製錬所側にとってみても、良質な鉱石の枯渇、銅精鉱需給の逼迫により、将来的に砒素を多く含む銅精鉱への対応が必要となる可能性が高い。   Therefore, from the mine's point of view, an efficient method for treating sulfide ore containing a large amount of arsenic is an important concern for cost reduction and mine life extension. On the other hand, the purchase smelter is likely to need to deal with arsenic-rich copper concentrate in the future due to depletion of high-quality ore and tight supply and demand of copper concentrate.

特開2009−39666号公報(特許文献1)では、砒素含有化合物を水分が少なくコンパクトな結晶化合物粒子形態とした後、得られた結晶化合物を樹脂でコートする砒素の処理方法が開示されている。   Japanese Patent Application Laid-Open No. 2009-39666 (Patent Document 1) discloses an arsenic treatment method in which an arsenic-containing compound is made into a compact crystalline compound particle form with less moisture and then the obtained crystalline compound is coated with a resin. .

一方で、砒素を多く含む銅鉱石については、一般的に、コストをかけて選鉱段階でこれを除き、低砒素品位銅精鉱としている。しかしながら、近年は、高砒素品位銅精鉱のまま、または、選鉱段階で除かれた、高砒素含有精鉱を処理する試みもある。   On the other hand, copper ores containing a large amount of arsenic are generally made into low arsenic grade copper concentrate by removing the cost at the beneficiation stage. However, in recent years, there have also been attempts to treat high arsenic-containing concentrates that remain as high-arsenic grade copper concentrates or have been removed during the beneficiation stage.

例えば、特開2012−87400号公報(特許文献2)では、砒素を比較的高濃度で含む硫砒銅鉱或いは硫砒銅鉱を含む銅精鉱を不活性雰囲気中で焙焼処理し、硫化砒素を主体とする揮発物と、黄銅鉱を主体とする焼鉱に分け、焼鉱を湿式処理する方法が開示されている。   For example, in Japanese Patent Application Laid-Open No. 2012-87400 (Patent Document 2), arsenic copper ore containing relatively high concentration or copper concentrate containing arsenic copper ore is roasted in an inert atmosphere and mainly composed of arsenic sulfide. A method of wet-treating the sinter is divided into a volatile matter to be burned and a sinter mainly composed of chalcopyrite.

特開2009−39666号公報JP 2009-39666 A 特開2012−87400号公報JP 2012-87400 A

しかしながら、特許文献1に記載された方法では、樹脂でコートした砒素を含む化合物を長期間に渡って貯蔵及び保存した場合に、樹脂の劣化や外部圧力等によってコーティングが剥がれ、剥がれた部分から砒素含有化合物が溶出する可能性がある。   However, in the method described in Patent Document 1, when a compound containing arsenic coated with a resin is stored and stored for a long period of time, the coating is peeled off due to deterioration of the resin or external pressure, and arsenic is removed from the peeled portion. The contained compounds may be eluted.

特許文献2に記載された発明は、硫砒銅鉱或いは硫砒銅鉱を含む銅精鉱から焼鉱を取り出して、この焼鉱を湿式処理することついては開示があるが、銅鉱石から得られた砒素を含む揮発物の具体的な処理方法については記載も検討もされていない。   The invention described in Patent Document 2 discloses that a sinter is extracted from a copper concentrate containing arsenite or a copper concentrate containing arsenite, and this sinter is wet-treated, but contains arsenic obtained from copper ore. No specific treatment method for volatiles has been described or studied.

上記課題を鑑み、本発明は、砒素を含む銅鉱石に含まれる砒素を、長期間の貯蔵及び保存に耐え得る安定的な形態に処理可能な砒素の処理方法を提供する。   In view of the above problems, the present invention provides an arsenic treatment method capable of treating arsenic contained in copper ore containing arsenic into a stable form that can withstand long-term storage and preservation.

上記課題を解決するために、本発明者が鋭意検討したところ、砒素を含む銅鉱石を焙焼して銅鉱石から砒素を含む揮発物を抽出し、この揮発物に所定の処理を施すことで、砒素の溶出を長期間に渡って抑制可能な安定的な形態にできることを見出した。   In order to solve the above-mentioned problems, the present inventor has intensively studied, roasting copper ore containing arsenic, extracting volatiles containing arsenic from the copper ore, and applying a predetermined treatment to the volatiles. The present inventors have found that arsenic elution can be made stable and can be suppressed over a long period of time.

以上の知見を基礎として完成した本発明は一側面において、砒素を含む銅鉱石を不活性ガス雰囲気において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程と、焙焼工程で得られた揮発物中に硫黄と老化防止剤とを添加した後、不活性ガス雰囲気において熱処理し、揮発物中の砒素硫化物を融解させる熱処理工程とを含む砒素の処理方法である。
The present invention completed on the basis of the above knowledge is, in one aspect, a roasting step of roasting copper ore containing arsenic in an inert gas atmosphere and separating it into chalcopyrite and volatiles containing arsenic sulfide, A method of treating arsenic comprising adding a sulfur and an anti-aging agent to the volatiles obtained in the roasting step and then heat-treating in an inert gas atmosphere to melt the arsenic sulfide in the volatiles. is there.

本発明に係る砒素の処理方法は一実施形態において、焙焼工程で得られた揮発物に対し、該揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)が3以上となるように、硫黄を添加することを含む。   In one embodiment, the arsenic treatment method according to the present invention has a mass ratio (S / As mass ratio) of sulfur to arsenic in the volatile matter of 3 or more with respect to the volatile matter obtained in the roasting step. Including adding sulfur.

本発明に係る砒素の処理方法は別の一実施形態において、老化防止剤を0.2mol/m3以上添加することを含む。 In another embodiment, the method for treating arsenic according to the present invention includes adding an anti-aging agent in an amount of 0.2 mol / m 3 or more.

本発明に係る砒素の処理方法は更に別の一実施形態において、老化防止剤が、モノフェノール系、ビスフェノール系、ポリフェノール系の群の中から選ばれる1種以上である。   In still another embodiment of the method for treating arsenic according to the present invention, the anti-aging agent is at least one selected from the group consisting of monophenol, bisphenol, and polyphenol.

本発明に係る砒素の処理方法は更に別の一実施形態において、熱処理工程において、揮発物を200〜600℃で熱処理することを含む。   In yet another embodiment, the method for treating arsenic according to the present invention includes heat-treating volatiles at 200 to 600 ° C. in the heat treatment step.

本発明は、別の一側面において、砒素を含む銅鉱石を不活性ガス雰囲気において焙焼し、焙焼精鉱と、砒素硫化物を含む揮発物とに分離させることと、揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)が3以上となるように、必要に応じて硫黄を添加することと、該揮発物に更に老化防止剤を添加することと、老化防止剤を添加した揮発物を不活性ガス雰囲気において熱処理し、揮発物中の砒素硫化物を融解させることを含む砒素の処理方法である。
In another aspect of the present invention, copper ore containing arsenic is roasted in an inert gas atmosphere, separated into roasted concentrate and volatiles containing arsenic sulfide, and contained in the volatiles. Adding sulfur as necessary, adding an anti-aging agent to the volatiles, and an anti-aging agent so that the mass ratio of sulfur to arsenic (S / As mass ratio) is 3 or more Is a method for treating arsenic, comprising heat-treating a volatile material to which arsenic is added in an inert gas atmosphere and melting arsenic sulfide in the volatile material.

本発明によれば、砒素を含む銅鉱石に含まれる砒素を、長期間の貯蔵及び保存に耐え得る安定的な形態に処理可能な砒素の処理方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the processing method of the arsenic which can process the arsenic contained in the copper ore containing arsenic in the stable form which can endure long-term storage and preservation | save can be provided.

焙焼工程で得られた揮発物の性状を示す顕微鏡写真の例である。It is an example of the microscope picture which shows the property of the volatile matter obtained at the roasting process. 硫黄を添加した揮発物(試料1、3)と硫黄を添加しない揮発物(試料2)に老化防止剤A〜Cを加え、熱処理した場合の熱処理物の老化防止剤添加に対するAs溶出量の影響を表すグラフである。Effect of As leaching amount on addition of anti-aging agent to heat-treated products when anti-aging agents A to C are added to volatiles (samples 1 and 3) to which sulfur is added and volatiles (sample 2) to which sulfur is not added and heat-treated It is a graph showing. 従来の砒素含有熱処理物(試料4)と本発明の実施の形態に係る砒素の処理方法を用いて得られた砒素を含む熱処理物(試料5〜7)のAs溶出量の経時安定性を示すグラフである。2 shows the aging stability of the As elution amount of a conventional arsenic-containing heat-treated product (sample 4) and a heat-treated product containing arsenic (samples 5 to 7) obtained by using the arsenic processing method according to the embodiment of the present invention. It is a graph.

以下、本発明を実施するための実施の形態について説明する。本発明の実施の形態に係る砒素の処理方法における処理対象物は、砒素を含む銅鉱石である。具体的には、例えば、硫砒銅鉱(Cu3AsS4)、四面砒銅鉱(Cu12As413)、または、これら砒素を含む銅鉱が混在する銅精鉱等が利用可能である。なお、これら銅鉱石の他にも、砒素を含む鉱石であって以下に示す二段階処理により処理可能な鉱石であれば、上記銅鉱石には限定されないことは勿論である。 Embodiments for carrying out the present invention will be described below. The processing object in the arsenic processing method according to the embodiment of the present invention is copper ore containing arsenic. Specifically, for example, copper arsenite (Cu 3 AsS 4 ), tetrahedral arsenite (Cu 12 As 4 S 13 ), or copper concentrate in which copper ores containing these arsenic are mixed can be used. In addition to these copper ores, it is a matter of course that the present invention is not limited to the copper ores as long as they are ores containing arsenic and can be processed by the following two-stage treatment.

例えば、本発明に利用可能な硫砒銅鉱を主体とする銅精鉱の品位は、共存する黄鉄鉱(FeS2)や脈石成分の品位によって異なるが、典型的には、銅を15〜35質量%、砒素を3〜15質量%含む。 For example, the grade of copper concentrate mainly composed of arsenite that can be used in the present invention varies depending on the grade of coexisting pyrite (FeS 2 ) and gangue components, but typically copper is 15 to 35% by mass. And 3-15% by mass of arsenic.

本実施形態では、銅精鉱を、鉱物種及び品位が変化しない温度で、予備乾燥することが好ましい。通常、高温空気で銅精鉱を乾燥させる際には、乾燥機出口における銅精鉱の温度をおよそ90℃とし、銅精鉱の水分率を0.5質量%以下とする。   In this embodiment, it is preferable to pre-dry the copper concentrate at a temperature at which the mineral species and quality do not change. Normally, when copper concentrate is dried with high-temperature air, the temperature of the copper concentrate at the outlet of the dryer is set to approximately 90 ° C., and the moisture content of the copper concentrate is set to 0.5 mass% or less.

乾燥した銅精鉱は、不活性ガス雰囲気中で、550℃〜700℃において、10〜60分間焙焼する(焙焼工程)。不活性ガスとしては、例えば窒素ガスが用いられる。焙焼工程における処理温度、および雰囲気の制御は、硫砒銅鉱主体の銅精鉱を、硫化砒素と黄銅鉱等に変換にするのに必要な条件であり、反応時間は、未反応硫砒銅鉱を残さないために、必要な時間である。   The dried copper concentrate is roasted at 550 ° C. to 700 ° C. for 10 to 60 minutes in an inert gas atmosphere (roasting step). For example, nitrogen gas is used as the inert gas. Control of the treatment temperature and atmosphere in the roasting process is a necessary condition for converting copper concentrate mainly composed of arsenite to arsenic sulfide and chalcopyrite, and the reaction time leaves unreacted arsenite. There is no time needed.

焙焼工程において、銅精鉱中の砒素硫化物の生成反応は、下記(1)式または(2)式に従う。元の精鉱中に黄鉄鉱等が多く含まれていれば、(1)式中で添加するSは、(3)式の通り、処理温度帯における黄鉄鉱の分解によって、生成するSにより補償されるため不要となる。

4Cu3AsS4+12FeS+2S →12CuFeS2+As46 (1)
4Cu3AsS4+12FeS → 12CuFeS2+As44 (2)
FeS2 → FeS + S (3)
In the roasting step, the formation reaction of arsenic sulfide in the copper concentrate follows the following formula (1) or (2). If the original concentrate contains a lot of pyrite, etc., the S added in the formula (1) is compensated by the generated S by the decomposition of the pyrite in the processing temperature zone as shown in the formula (3). Therefore, it becomes unnecessary.

4Cu 3 AsS 4 + 12FeS + 2S → 12CuFeS 2 + As 4 S 6 (1)
4Cu 3 AsS 4 + 12FeS → 12CuFeS 2 + As 4 S 4 (2)
FeS 2 → FeS + S (3)

焙焼工程は、例えばロータリキルンなどを用いて行われる。上記(1)〜(3)式に示すように、焙焼によって、砒素化合物が生成され、生成した砒素化合物は、温度に応じた蒸気圧で揮発し、原料銅精鉱中から除去される。   The roasting process is performed using, for example, a rotary kiln. As shown in the above formulas (1) to (3), an arsenic compound is produced by roasting, and the produced arsenic compound volatilizes at a vapor pressure corresponding to the temperature and is removed from the raw copper concentrate.

この焙焼処理の結果、原料銅精鉱から、黄銅鉱とキューバ鉱を主体とする焙焼精鉱(焼鉱)と、揮発して回収される砒素化合物(硫化砒素)と単体硫黄を含む揮発物とが得られる。焼鉱中の黄銅鉱とキューバ鉱の比率は、550℃〜700℃の温度範囲では、反応前に含まれる黄銅鉱、輝銅鉱などの硫化銅鉱量と、反応前に含まれる黄鉄鉱量、及び添加される黄鉄鉱量により変化する。   As a result of this roasting treatment, from raw copper concentrate, roasted concentrate (calcined ore) mainly composed of chalcopyrite and Cubanite, volatilization including volatilized and recovered arsenic compound (arsenic sulfide) and elemental sulfur Things are obtained. The ratio of chalcopyrite and cuba ore in the sinter is within the temperature range of 550 ° C to 700 ° C, the amount of copper ores such as chalcopyrite and chalcopyrite included before the reaction, the amount of pyrite included before the reaction, and addition Varies depending on the amount of pyrite produced.

焙焼工程において揮発したAs硫化物および単体硫黄はガス形態であるため、不活性雰囲気下のまま冷却し、固化させて回収する。図1は、回収した揮発物の顕微鏡写真の例を示している。回収した揮発物は、直径約10〜15μm程度の粒状粒子を含み、As品位の異なる内層1と外層2の二層構造を備える。   Since As sulfide and elemental sulfur volatilized in the roasting process are in a gas form, they are cooled, solidified and recovered in an inert atmosphere. FIG. 1 shows an example of a micrograph of recovered volatiles. The recovered volatiles include granular particles having a diameter of about 10 to 15 μm and have a two-layer structure of an inner layer 1 and an outer layer 2 having different As grades.

揮発物粒子の内層1は砒素を約30mol%、硫黄を約70mol%含む層で構成されている。揮発物粒子の外層2は砒素を約5mol%、硫黄を約95mol%含む層で構成されている。即ち、焙焼工程で得られる粒状粒子は、砒素を粒子内部に多く含む内層1の外側を硫黄を多く含む外層2で覆った二層構造を有している。   The inner layer 1 of volatile particles is composed of a layer containing about 30 mol% arsenic and about 70 mol% sulfur. The outer layer 2 of volatile particles is composed of a layer containing about 5 mol% arsenic and about 95 mol% sulfur. That is, the granular particles obtained in the roasting process have a two-layer structure in which the outer side of the inner layer 1 containing a large amount of arsenic inside the particles is covered with the outer layer 2 containing a large amount of sulfur.

焙焼工程後に実施する熱処理工程では、図1に示す揮発物粒子に対して更に不活性ガス雰囲気中で熱処理を行い、揮発物中の砒素硫化物(硫化砒素)を融解させることで、揮発物の砒素溶出性をより低減させるとともに、硫黄の存在の下で老化防止剤を添加することで、長期間安定的に保存可能な熱処理物を生成させる。
In the heat treatment step carried out after the roasting step, the volatile particles shown in FIG. 1 are further heat-treated in an inert gas atmosphere to melt arsenic sulfide (arsenic sulfide) in the volatile matter, thereby producing volatile matter. In addition to further reducing the arsenic elution property, an anti-aging agent is added in the presence of sulfur to produce a heat-treated product that can be stored stably for a long period of time.

不活性ガスとしては、例えば窒素ガスが用いられる。熱処理工程の処理温度は200〜600℃とすることが好ましく、より好ましくは250〜400℃である。処理温度が200℃よりも低い場合には、揮発物中の砒素硫化物が十分に溶解せず、砒素溶出量の低減効果が十分に得られない場合がある。処理温度が600℃よりも高い場合には、揮発物中の砒素硫化物として含まれる硫化水素がガス化して揮発するため、熱処理物が回収できない場合がある。   For example, nitrogen gas is used as the inert gas. The treatment temperature in the heat treatment step is preferably 200 to 600 ° C, more preferably 250 to 400 ° C. When the processing temperature is lower than 200 ° C., the arsenic sulfide in the volatiles may not be sufficiently dissolved, and the effect of reducing the arsenic elution amount may not be sufficiently obtained. When the processing temperature is higher than 600 ° C., hydrogen sulfide contained as arsenic sulfide in the volatiles is gasified and volatilizes, so that the heat-treated product may not be recovered.

熱処理工程の処理時間は、処理温度によっても異なるが、完全に反応を進めるために、少なくとも30分以上、より好ましくは50分以上行うことが、熱処理物のAs溶出量低減の効果の面からは好ましい。   Although the treatment time of the heat treatment step varies depending on the treatment temperature, in order to completely advance the reaction, it is preferable to carry out the treatment for at least 30 minutes or more, more preferably 50 minutes or more from the aspect of reducing the As elution amount of the heat treatment product. preferable.

熱処理工程に際しては、揮発物に対して硫黄と老化防止剤を添加する。硫黄を添加するのは、熱処理工程の処理温度が高くなるにつれて、硫黄の揮発量が増加して揮発物中の砒素濃度が高くなることで、硫黄が砒素と反応することによる砒素の溶出抑制効果が小さくなるからである。例えば、S/As質量比3.0の揮発物を400℃で処理した場合には、揮発物中のS分が揮発してS/As質量比が2.4程度に低下し、500℃で処理した場合にはS分が揮発してS/As質量比が1.2程度にまで低下する場合がある。   In the heat treatment step, sulfur and an antioxidant are added to the volatiles. Sulfur is added because the volatilization amount of sulfur increases and the arsenic concentration in the volatiles increases as the processing temperature of the heat treatment process increases, and the arsenic elution suppression effect due to the reaction of sulfur with arsenic This is because becomes smaller. For example, when a volatile matter having an S / As mass ratio of 3.0 is treated at 400 ° C., the S content in the volatile matter is volatilized, and the S / As mass ratio is reduced to about 2.4, at 500 ° C. In the case of treatment, the S component volatilizes and the S / As mass ratio may be reduced to about 1.2.

添加する硫黄源としては単体硫黄が、取り扱いの面からみて好ましい。硫黄の添加は、熱処理工程前に行ってもよいし、熱処理工程中に添加してもよい。処理効率の面を鑑みると、熱処理工程前に予め濃度調整しておくことが好ましい。硫黄の添加は、処理対象とする銅鉱石中に予め硫黄が多量に含まれる場合には行わなくても良い。   As the sulfur source to be added, simple sulfur is preferable from the viewpoint of handling. Sulfur may be added before the heat treatment step or may be added during the heat treatment step. In view of the processing efficiency, it is preferable to adjust the concentration in advance before the heat treatment step. The addition of sulfur may not be performed when a large amount of sulfur is previously contained in the copper ore to be treated.

老化防止剤としては、ゴムの老化防止剤が利用可能である。ゴムの老化防止剤としては、モノフェノール系、ビスフェノール系、ポリフェノール系の群の中から選ばれる1種以上が好適に用いられる。老化防止剤が、後述する熱処理によって、硫黄と反応することで、熱処理工程後に得られる砒素を含む熱処理物の酸化による劣化が抑制される。   As the anti-aging agent, an anti-aging agent for rubber can be used. As the rubber anti-aging agent, one or more selected from the group consisting of monophenol, bisphenol and polyphenol are preferably used. When the anti-aging agent reacts with sulfur by a heat treatment described later, deterioration due to oxidation of the heat-treated product containing arsenic obtained after the heat treatment step is suppressed.

老化防止剤の添加量は0.2mol/m3以上、より好ましくは0.4mol/m3以上供給することが好ましく、より具体的には0.2〜2.0mol/m3である。この添加量は一般的なゴムに添加される添加量の半分以下の量である。 The addition amount of the antioxidant is preferably 0.2 mol / m 3 or more, more preferably 0.4 mol / m 3 or more, and more specifically 0.2 to 2.0 mol / m 3 . The amount added is less than half the amount added to general rubber.

例えば、老化防止剤として、モノフェノール系老化防止剤を使用する場合には、砒素を含む揮発物に0.4mol/m3以上添加することがより好ましい。老化防止剤として、ビスフェノール系老化防止剤を使用する場合には、0.9mol/m3以上添加することがより好ましい。老化防止剤として、ポリフェノール系老化防止剤を使用する場合には、1.6mol/m3以上添加することがより好ましい。砒素を含む揮発物に老化防止剤を添加して熱処理することで、熱処理後の砒素を含む熱処理物からのAsの溶出を長期に渡って抑制することができる。 For example, when a monophenol type anti-aging agent is used as an anti-aging agent, it is more preferable to add 0.4 mol / m 3 or more to a volatile material containing arsenic. When using a bisphenol type anti-aging agent as an anti-aging agent, it is more preferable to add 0.9 mol / m 3 or more. When using a polyphenol type anti-aging agent as an anti-aging agent, it is more preferable to add 1.6 mol / m 3 or more. By adding an anti-aging agent to a volatile material containing arsenic and performing heat treatment, it is possible to suppress elution of As from the heat-treated product containing arsenic after the heat treatment over a long period of time.

熱処理工程においては、揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)が3以上、より好ましくは4以上となるように、必要に応じて硫黄を添加することにより揮発物中の硫黄と砒素の濃度を調整することが好ましい。S/As質量比が例えば2程度であると、熱処理の処理時間を長くしても、砒素の長期に渡る溶出低減効果が十分に得られない場合がある。   In the heat treatment step, volatiles are added by adding sulfur as necessary so that the mass ratio of sulfur to arsenic (S / As mass ratio) in the volatiles is 3 or more, more preferably 4 or more. It is preferable to adjust the concentration of sulfur and arsenic therein. If the S / As mass ratio is, for example, about 2, even if the heat treatment time is increased, the arsenic elution reduction effect over a long period of time may not be sufficiently obtained.

なお、S/As質量比の上限に特に制限はないが、S/As質量比が高ければ高いほど、短時間の熱処理でAs長期溶出抑制効果が得られる。一方で、S/As質量比を高くするために硫黄の添加量を増加させすぎても、As溶出抑制効果は大きく変わらず、むしろ硫黄が砒素に対して過剰となるために過剰な硫黄分の後処理が必要となりコスト上昇を招く場合がある。よって、S/As質量比の上限は6程度とすることができる。   In addition, there is no restriction | limiting in particular in the upper limit of S / As mass ratio, However, As S / As mass ratio is high, As long-term elution inhibitory effect is acquired by heat processing for a short time. On the other hand, if the amount of sulfur added is increased too much in order to increase the S / As mass ratio, the As elution suppression effect does not change greatly. Rather, since sulfur is excessive with respect to arsenic, excess sulfur content is not increased. Post-processing is required and may increase costs. Therefore, the upper limit of the S / As mass ratio can be about 6.

本発明の実施の形態に係る砒素の処理方法によって最終的に得られた砒素を含む熱処理物の砒素品位は12〜15mol%である。熱処理物は、角張った不規則な形状の粒状物質で構成されており、図1に示すような焙焼工程後に得られた揮発物のような砒素と硫黄の存在の偏りは見られない。   The heat-treated product containing arsenic finally obtained by the arsenic treatment method according to the embodiment of the present invention has an arsenic quality of 12 to 15 mol%. The heat-treated product is composed of angular and irregularly shaped granular materials, and there is no bias in the presence of arsenic and sulfur such as volatiles obtained after the roasting process as shown in FIG.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

(老化防止剤添加によるAs溶出量の影響)
原料銅精鉱として、Cu品位21mass%、Fe品位23mass%、S品位38mass%、As品位6.8mass%の高As品位銅精鉱を使用した。この高As品位銅精鉱に対してX線回折(XRD)及び電子線マイクロアナライザ(EPMA)を用いて特性された主な鉱物組成は、黄銅鉱(CuFeS2)11mass%、黄鉄鉱(FeS2)42mass%、硫砒銅鉱(Cu3AsS4)36mass%、脈石成分(SiO2等)11mass%であった。
(Effect of As elution amount due to addition of anti-aging agent)
As the raw material copper concentrate, a high As grade copper concentrate having a Cu grade of 21 mass%, an Fe grade of 23 mass%, an S grade of 38 mass%, and an As grade of 6.8 mass% was used. The main mineral composition characterized using X-ray diffraction (XRD) and electron microanalyzer (EPMA) for this high As grade copper concentrate is 11 mass% of chalcopyrite (CuFeS 2 ), pyrite (FeS 2 ). They were 42 mass%, arsenite (Cu 3 AsS 4 ) 36 mass%, and gangue components (SiO 2 etc.) 11 mass%.

この砒素を含む銅精鉱100gを予備乾燥した後、窒素ガス雰囲気中において650℃の処理温度で焙焼したところ、表1に示すように、砒素をほとんど含まない黄銅鉱を含む精鉱(焙焼精鉱)と、砒素を33質量%、硫黄を64質量%含む揮発物とに分離できた。   After 100 g of this copper concentrate containing arsenic was pre-dried and then baked at a processing temperature of 650 ° C. in a nitrogen gas atmosphere, as shown in Table 1, the concentrate containing the chalcopyrite containing almost no arsenic (roasted Sinter) and volatiles containing 33% by mass of arsenic and 64% by mass of sulfur.

焙焼工程で得られた揮発物を冷却、固化して回収したところ、揮発物のS/As質量比は2.3であった。得られた揮発物そのままの試料1と、揮発物中に単体硫黄を添加して揮発物中のS/As質量比を5.9に調整した揮発物の試料2、3を用意した。試料1及び3に対しては老化防止剤を添加し、試料2については老化防止剤を添加しなかった。   When the volatiles obtained in the roasting step were cooled, solidified and recovered, the S / As mass ratio of the volatiles was 2.3. The obtained volatile matter sample 1 was prepared, and volatile samples 2 and 3 prepared by adding simple sulfur to the volatile matter to adjust the S / As mass ratio in the volatile matter to 5.9. An anti-aging agent was added to Samples 1 and 3, and an anti-aging agent was not added to Sample 2.

試料1に対し、モノフェノール系老化防止剤(図2において老化防止剤A)として2,6−ジ−t−ブチル−4−メチルフェノールを0.5質量%揮発物に添加した場合と、ビスフェノール系老化防止剤(図2において老化防止剤B)として4−エチル−6t−ノチルフェノール(別名:2,2−メチレンビス)を2質量%揮発物に添加した場合と、ポリフェノール系老化防止剤(図2において老化防止剤C)として2,5−ジ−t−ブチルハイドロキノンを1質量%揮発物に添加した場合について、それぞれAs溶出量を評価した。試料3に対しては、上記3種類の老化防止剤についてそれぞれ試料1の半量を揮発物に添加して、熱処理物のAs溶出量を評価した。   When 2,6-di-t-butyl-4-methylphenol was added to sample 1 as a monophenol-based anti-aging agent (anti-aging agent A in FIG. 2) to 0.5 mass% volatiles, and bisphenol When 4-ethyl-6t-notylphenol (also known as 2,2-methylenebis) is added to 2% by mass of volatiles as an anti-aging agent (anti-aging agent B in FIG. 2), a polyphenol anti-aging agent ( In FIG. 2, the As elution amount was evaluated for the case where 2,5-di-t-butylhydroquinone was added to 1% by mass of volatiles as the antioxidant C). For Sample 3, half of Sample 1 was added to the volatile matter for each of the three types of anti-aging agents, and the As elution amount of the heat-treated product was evaluated.

これら試料1〜3に対して、窒素ガス雰囲気の下、熱処理時間30分、熱処理温度280℃で熱処理を行って、熱処理物を得た。得られた熱処理物を、米国環境保護庁(EPA)における土壌汚染物質の溶出分析(TCLP)により確認した。即ち、熱処理物の溶出分析では、粒径9.5mm未満(0.5〜5mm)の熱処理物に対し、溶出溶媒として脱イオン水、酢酸または酢酸緩衝液を使用し、pHを2.88とし、液固比20、温度22.3℃、振とう方法は回転振とうで30rpm、振とう時間を18時間で、固液分離を加圧ろ過(0.6〜0.8μmGFFフィルタ使用)として溶出分析を行った。結果を図2に示す。   These samples 1 to 3 were heat-treated in a nitrogen gas atmosphere at a heat treatment time of 30 minutes and a heat treatment temperature of 280 ° C. to obtain heat-treated products. The heat-treated product obtained was confirmed by soil pollutant elution analysis (TCLP) at the US Environmental Protection Agency (EPA). That is, in the elution analysis of the heat-treated product, deionized water, acetic acid or an acetic acid buffer solution is used as the elution solvent for the heat-treated product having a particle size of less than 9.5 mm (0.5 to 5 mm), and the pH is set to 2.88. , Liquid-solid ratio 20, temperature 22.3 ° C, shaking method is 30rpm with rotary shaking, shaking time is 18 hours, solid-liquid separation is eluted as pressure filtration (using 0.6-0.8μm GFF filter) Analysis was carried out. The results are shown in FIG.

焙焼工程後の揮発物に硫黄を添加していない試料2では、老化防止剤の添加によるAs溶出量の効果は見られなかった。一方、焙焼工程後の揮発物に硫黄を添加した試料1及び3では、老化防止剤を添加することにより、老化防止剤を添加しない場合に比べてAs溶出量を低減できた。試料3は老化防止剤の添加量を試料1の半量とした例であるが、As溶出量を環境基準以下に低減できた。   In Sample 2 in which sulfur was not added to the volatiles after the roasting step, the effect of the As elution amount due to the addition of the anti-aging agent was not observed. On the other hand, in Samples 1 and 3 in which sulfur was added to the volatiles after the roasting step, the amount of As elution could be reduced by adding an anti-aging agent compared to the case where no anti-aging agent was added. Sample 3 is an example in which the addition amount of the anti-aging agent is half that of Sample 1, but the As elution amount could be reduced below the environmental standard.

(As溶出量の経時安定性)
実施例1の焙焼工程で得られた揮発物に対して、単体硫黄を添加して、揮発物中のS/As質量比を5.9に調整した。調整後の揮発物に対して、老化防止剤を添加しない試料4、モノフェノール系老化防止剤(2,6−ジ−t−ブチル−4−メチルフェノール)を0.5質量%揮発物に添加した試料5、ビスフェノール系老化防止剤(2,2−メチレンビス)を2質量%揮発物に添加した試料6、ポリフェノール系老化防止剤(2,5−ジ−t−ブチルハイドロキノン)を1質量%揮発物に添加した試料7をそれぞれ用意した。
(Stability of As elution amount over time)
Single-body sulfur was added with respect to the volatile matter obtained at the roasting process of Example 1, and S / As mass ratio in a volatile matter was adjusted to 5.9. Sample 4 with no anti-aging agent added to volatiles after adjustment, monophenolic anti-aging agent (2,6-di-t-butyl-4-methylphenol) added to 0.5% by mass of volatiles Sample 5, sample 6 with bisphenol-based anti-aging agent (2,2-methylenebis) added to 2% by mass volatiles, polyphenol-based anti-aging agent (2,5-di-t-butylhydroquinone) with 1% by mass volatilized Samples 7 added to the product were prepared.

これら試料4〜7に対して、窒素ガス雰囲気の下、熱処理時間30分、熱処理温度を280℃で熱処理を行って、熱処理物を得た。熱処理直後に得られた熱処理物と、熱処理直後から1ヶ月間、空気中に保管した後の熱処理物に対して、上述の溶出分析と同様の条件でAs溶出量を評価した。結果を図3に示す。   These samples 4 to 7 were heat-treated in a nitrogen gas atmosphere at a heat treatment time of 30 minutes and a heat treatment temperature of 280 ° C. to obtain heat-treated products. The amount of As elution was evaluated on the heat-treated product obtained immediately after the heat treatment and the heat-treated product stored in the air for one month immediately after the heat treatment under the same conditions as in the above elution analysis. The results are shown in FIG.

老化防止剤を添加しなかった試料4では、熱処理直後はAs溶出量を低く抑えることができたが、1ヶ月後には、As溶出量が40mg/Lにまで上昇した。老化防止剤を添加した試料5〜7では、熱処理直後及び1ヶ月後のいずれも、酸化等の外部の影響を受けることなく、安定してAs溶出量を5mg/L以下に維持することができた。   In Sample 4 to which no antioxidant was added, the As elution amount could be kept low immediately after the heat treatment, but the As elution amount increased to 40 mg / L after one month. In samples 5 to 7 to which an anti-aging agent was added, the As elution amount could be stably maintained at 5 mg / L or less immediately after heat treatment and after one month without being affected by external effects such as oxidation. It was.

1:内層
2:外層
1: Inner layer 2: Outer layer

Claims (6)

砒素を含む銅鉱石を不活性ガス雰囲気において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程と、
前記焙焼工程で得られた前記揮発物中に硫黄と老化防止剤とを添加した後、不活性ガス雰囲気において熱処理し、前記揮発物中の前記砒素硫化物を融解させる熱処理工程と
を含む砒素の処理方法。
A roasting step of roasting copper ore containing arsenic in an inert gas atmosphere and separating it into chalcopyrite and volatiles containing arsenic sulfide;
A heat treatment step of adding sulfur and an anti-aging agent to the volatile matter obtained in the roasting step and then heat-treating in an inert gas atmosphere to melt the arsenic sulfide in the volatile matter. Processing method.
前記焙焼工程で得られた前記揮発物に対し、該揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)が3以上となるように、硫黄を添加することを含む請求項1に記載の砒素の処理方法。   The method includes adding sulfur such that a mass ratio (S / As mass ratio) of sulfur contained in the volatile matter to arsenic is 3 or more with respect to the volatile matter obtained in the roasting step. Item 2. The method for treating arsenic according to Item 1. 前記老化防止剤を0.2mol/m3以上添加することを含む請求項1又は2に記載の砒素の処理方法。 The method for treating arsenic according to claim 1 or 2, comprising adding 0.2 mol / m 3 or more of the anti-aging agent. 前記老化防止剤が、モノフェノール系、ビスフェノール系、ポリフェノール系の群の中から選ばれる1種以上である請求項1〜3のいずれか1項に記載の砒素の処理方法。   The method for treating arsenic according to any one of claims 1 to 3, wherein the anti-aging agent is at least one selected from the group consisting of monophenol, bisphenol, and polyphenol. 前記熱処理工程において、前記揮発物を200〜600℃で熱処理することを含む請求項1〜4のいずれか1項に記載の砒素の処理方法。   The method for treating arsenic according to any one of claims 1 to 4, wherein in the heat treatment step, the volatile material is heat treated at 200 to 600 ° C. 砒素を含む銅鉱石を不活性ガス雰囲気において焙焼し、焙焼精鉱と、砒素硫化物を含む揮発物とに分離させることと、
前記揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)が3以上となるように、必要に応じて硫黄を添加することと、
該揮発物に更に老化防止剤を添加することと、
前記老化防止剤を添加した前記揮発物を不活性ガス雰囲気において熱処理し、前記揮発物中の前記砒素硫化物を融解させること
を含む砒素の処理方法。
Roasting copper ore containing arsenic in an inert gas atmosphere and separating it into roasted concentrate and volatiles containing arsenic sulfide;
Adding sulfur as necessary so that the mass ratio of sulfur to arsenic contained in the volatiles (S / As mass ratio) is 3 or more;
Adding further anti-aging agents to the volatiles;
A method of treating arsenic, comprising: heat-treating the volatile matter added with the anti-aging agent in an inert gas atmosphere to melt the arsenic sulfide in the volatile matter.
JP2013075234A 2013-03-29 2013-03-29 Arsenic treatment method Active JP5840644B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013075234A JP5840644B2 (en) 2013-03-29 2013-03-29 Arsenic treatment method
CA2847573A CA2847573C (en) 2013-03-29 2014-03-25 Method for processing arsenic
CL2014000749A CL2014000749A1 (en) 2013-03-29 2014-03-26 Method for arsenic processing comprising a calcination process in which a copper mineral containing arsenic is calcined in an inert gas atmosphere to separate chalcopyrite from a volatile matter containing arsenic sulphides, and a thermal treatment process in which sulfur and an antioxidant are added
ARP140101403A AR095927A1 (en) 2013-03-29 2014-03-27 METHOD FOR PROCESSING ARSENIC
PE2014000429A PE20150130A1 (en) 2013-03-29 2014-03-27 METHOD FOR PROCESSING ARSENIC
PE2018002006A PE20181943A1 (en) 2013-03-29 2014-03-27 METHOD FOR PROCESSING ARSENIC
ARP190101754A AR115618A2 (en) 2013-03-29 2019-06-24 METHOD TO PROCESS ARSENIC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075234A JP5840644B2 (en) 2013-03-29 2013-03-29 Arsenic treatment method

Publications (2)

Publication Number Publication Date
JP2014198890A JP2014198890A (en) 2014-10-23
JP5840644B2 true JP5840644B2 (en) 2016-01-06

Family

ID=51730249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075234A Active JP5840644B2 (en) 2013-03-29 2013-03-29 Arsenic treatment method

Country Status (5)

Country Link
JP (1) JP5840644B2 (en)
AR (2) AR095927A1 (en)
CA (1) CA2847573C (en)
CL (1) CL2014000749A1 (en)
PE (2) PE20181943A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511434B2 (en) * 2014-03-31 2019-05-15 Jx金属株式会社 Method of treating arsenic and compound containing arsenic
CN115193210B (en) * 2022-07-19 2023-09-26 中南大学 Method for regulating and controlling condensation growth of gaseous arsenic oxide and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325711B2 (en) * 1975-01-22 1978-07-28
JP5188298B2 (en) * 2007-08-09 2013-04-24 Dowaメタルマイン株式会社 Method for processing non-ferrous smelting intermediates containing arsenic
JP5654321B2 (en) * 2010-10-20 2015-01-14 Jx日鉱日石金属株式会社 Copper concentrate processing method
JP5881638B2 (en) * 2013-03-29 2016-03-09 Jx金属株式会社 Arsenic treatment method

Also Published As

Publication number Publication date
CL2014000749A1 (en) 2014-07-25
CA2847573C (en) 2016-10-04
PE20181943A1 (en) 2018-12-13
AR115618A2 (en) 2021-02-10
AR095927A1 (en) 2015-11-25
CA2847573A1 (en) 2014-09-29
JP2014198890A (en) 2014-10-23
PE20150130A1 (en) 2015-02-07

Similar Documents

Publication Publication Date Title
JP5881638B2 (en) Arsenic treatment method
JP6267042B2 (en) Arsenic treatment method
AU2011318944B2 (en) Copper concentrate treatment method
TW200907072A (en) A method for recycling residues having an elevated content of zinc and sulfates
AU2014245391B2 (en) Method for recovering gold from gold ore containing pyrite
JP2013209719A (en) Method for treating copper concentrate
KR20210105950A (en) pure iron-containing compounds
JP5840644B2 (en) Arsenic treatment method
KR102113558B1 (en) Manufacturing process of various metals and derivatives derived from copper and sulfur
JP6784789B2 (en) Arsenic treatment method and arsenic-containing compounds
ES2887206T3 (en) Method for producing a concentrate containing metals, rare metals and rare earth metals from waste generated in the zinc production chain and concentrate obtained by said method
KR102421952B1 (en) Removal method of selenium
CA2844453A1 (en) Method for processing arsenic
JPS589942A (en) Extraction of metals from sulfide-containing ore
KR102044481B1 (en) Method of recovering cobalt from byproduct generated in smelting of zinc
WO2016131445A1 (en) Processing method and processing device for arsenopyrite concentrates
JPS5929659B2 (en) Indium separation method
JP5651978B2 (en) Method for recovering sodium and sulfur components from sulfurized copper slag
Peltekov et al. Behavior of arsenic in hydrometallurgical zinc production and environmental impact
Li et al. Selective Separation of Arsenic from Arsenic-bearing Copper Dust by Vulcanization Reduction
JP2020070460A (en) Copper concentrate processing method
Padilla et al. Decomposition and Oxidation of Bismuthinite in Nitrogen–Oxygen Atmospheres
JP2022093213A (en) Method for determining arsenic removal ratio and method for manufacturing roasted ore in dearsination roast of copper concentrate
KR20060122942A (en) Selective reduction of cupriferous calcine
WO2014033243A2 (en) Method for the treatment and/or recycling of sawing slurries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151111

R150 Certificate of patent or registration of utility model

Ref document number: 5840644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250