これ以降は添付の図面と具体的な実施形態の方法を参照しながら例を挙げて本開示の技術的解決手段を詳しく説明する。
本開示の実施形態は高効率ショートトレーニングフィールドシーケンス生成方法および装置を開示するものであり、方法および装置は無線ローカルエリアネットワークに応用される。
図6は本開示による高効率ショートトレーニングフィールドシーケンス生成方法の一実施形態の手順構成の概略図である。図6に見られるように、方法は下記ステップを含んでよい。
ステップS110:周波数領域密度が増した周波数領域シーケンスを生成するため、第1の高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスの周波数領域密度を増加させる。
具体的な実装において、本開示の本実施形態における第1の高効率トレーニングフィールドシーケンスは先行技術のWLANシステムにおけるIEEE 802.11n規格のHT−STFであってよく、あるいはIEEE 802.11ac規格のVHT−STFであってよく、ここでIEEE 802.11nにおけるHT−STFの時間領域シーケンスの持続時間は4μsであり(サイクリックプレフィックスCPを含む)、4μsに5サイクルが含まれ、各サイクルの長さは800nsであり、IEEE 802.11acにおけるVHT−STFの時間領域シーケンスの持続時間も4μsであり、4μsに5サイクルが含まれ、各サイクルの長さは800nsである。通常、20 Mの帯域幅で先行技術のWLANにてHT−STFまたはVHT−STFに対応する周波数領域シーケンスは次の通りである。
シーケンス1:
[0,0,0,0,0,0,0,0,1+1i,0,0,0,−1−1i,0,0,0,1+1i,0,0,0,−1−1i,0,0,0,−1−1i,0,0,0,1+1i,0,0,0,...,0,0,0,−1−1i,0,0,0,−1−1i,0,0,0,+1i,0,0,0,1+1i,0,0,0,1+1i,0,0,0,1+1i,0,0,0,0,0,0,0]
最初の帯域幅20 MにてHT−STFまたはVHT−STFの周波数領域シーケンスで値の間に3つの0があることがシーケンス1から分かるであろう。
具体的な実装において、本開示の本実施形態における第1の高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスは、先行技術のWLANシステムでVHT−STFまたはHT−STFに対応する周波数領域シーケンスの周波数領域密度が本開示の方法を用いて1回または複数回増加された後に得られる周波数領域シーケンスであってよい。具体的に述べると、ステップS110において、第1の高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで非ゼロ値の間にある0の数量は減らされてよく、そうすることで周波数領域密度は増す。例えば、シーケンス1で値の間にある3つの0は2つの0に減らされてよく、あるいは1つの0に減らされてよい。シーケンス1の周波数領域密度が増加された後に得られる具体的なシーケンスについてはシーケンス2とシーケンス3を参照されたい。
シーケンス2:
[0,0,0,0,0,0,0,0,1+1i,0,0,−1−1i,0,0,−1−1i,0,0,−1−1i,0,0,1+1i,0,0,...,0,0,−1−1i,0,0,−1−1i,0,0,−1−1i,0,0,1+1i,0,0,1+1i,0,0,1+1i,0,0,0,0,0,0,0]
シーケンス3:
[0,0,0,0,0,0,0,0,1+1i,0,−1−1i,0,−1−1i,0,−1−1i,0,1+1i,0,...,0,−1−1i,0,−1−1i,0,−1−1i,0,1+1i,0,1+1i,0,1+1i,0,0,0,0,0,0,0]
20 Mの帯域幅にてHT−STFまたはVHT−STFの周波数領域シーケンスで値の間にある3つの0が2つの0に変えられると、あるいは1つの0に変えられると、対応する時間領域シーケンスのサイクル長は4/3倍と2倍にそれぞれ増大され、4μsの持続時間に3.75サイクルと2.5サイクルをそれぞれ含めることができ、サイクルの長さがそれぞれ3200/3nsと1600nsになることは、シーケンス2とシーケンス3から分かるであろう。
具体的な実装において、本開示の本実施形態における第1の高効率ショートトレーニングフィールドの周波数領域シーケンスは、大きい帯域幅でVHT−STFまたはHT−STFの時間領域シーケンスから取り込まれた時間領域シーケンスの1シーケンスを変換することによって形成される周波数領域シーケンスであってもよい。例えば、40MHzの帯域幅でVHT−STFまたはHT−STFの4μsの時間領域シーケンスから2.5サイクル(80サンプリングポイントを含む)が取り込まれ、取り込まれた2.5サイクルの80サンプリングポイントはその後20MHzにおけるサンプリングレートに従って変換され、これにより20MHzで時間領域サイクルが伸ばされた時間領域シーケンスのセグメントが得られてよい。その後、20MHzで時間領域サイクルが伸ばされた時間領域シーケンスは、時間領域シーケンスと周波数領域シーケンスとの変換関係に従って周波数領域シーケンスに変換される。具体的な実装において、40MHzの帯域幅でVHT−STFまたはHT−STFの4μsの時間領域シーケンスは5サイクルを含み、160サンプリングポイントを含み、ここで各サイクルは800nsである。2.5サイクルで80サンプリングポイントが取り込まれて20MHzにおけるサンプリングレートに従って変換された後に得られる時間領域シーケンスは4μsに2.5サイクルを含み、各サイクルは1600nsに変えられる。時間シーケンスは周波数領域シーケンスに変換され、周波数領域密度が増加された後に時間領域シーケンスが形成され、時間領域シーケンスは4μsに2.5サイクル未満を含む。各サイクルの持続時間は1600nsを上回る。
具体的な実装において、WLAN規格は20MHz、40MHz、80MHz、160MHz等の複数タイプの帯域幅構成をサポートし、ここで20MHzが最小帯域幅である。既存のWLAN規格でショートトレーニングフィールドSTFの周波数領域シーケンス(例えば前述したシーケンス1)は20MHzの帯域幅で規定され、より大きい帯域幅でSTFの周波数領域シーケンスは、周波数領域でSTFシーケンスを繰り返すことにより、さらに相回転を加えることにより、得られる。例えば、20MHzの帯域幅におけるSTF周波数領域は[L−STF]であり、40MHzの帯域幅におけるSTF周波数領域は[1*L−STF,j*L−LTF]である。
具体的な実装において、本開示の本実施形態のステップS110で第1の高効率ショートトレーニングフィールドの周波数領域シーケンスの周波数領域密度を増加させるのに使われる方法は、周波数領域シーケンスで非ゼロ値の間にある0の数量を減らす。先に例示したように、シーケンス2とシーケンス3はシーケンス1の周波数密度が増加された後に生成された周波数領域シーケンスである。あるいはまた、本開示の本実施形態において20MHzで時間領域サイクルが伸ばされた時間領域シーケンスを変換することによって得られる周波数領域シーケンスで非ゼロ値の間にある0の数量が増やされてもよく、そうすることで周波数領域密度が増した周波数領域シーケンス4が得られる。
ステップS111:周波数領域密度が増した周波数領域シーケンスに従って第2の高効率ショートトレーニングフィールドシーケンスを生成する。
具体的に述べると、ステップS111では周波数領域密度が増した周波数領域シーケンスに対して逆フーリエ変換が遂行されてよく、尚且つサイクリックプレフィックスが加えられてよく、そうすることで第2の高効率ショートトレーニングフィールドシーケンスが得られる。あるいはまた、ステップS111で周波数領域密度が増した周波数領域シーケンスに対し逆フーリエ変換が遂行されてよく、そうすることで第2の高効率ショートトレーニングフィールドシーケンスが得られる。
ステップS112:無線ローカルエリアネットワークWLANにてデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとして第2の高効率ショートトレーニングフィールドシーケンスを使用する。
具体的な実装において、WLANネットワークで第2段AGC調整を遂行するために使われるショートトレーニングフィールドシーケンスは、IEEE 802.11nのHT−STFシーケンスであってよく、あるいはIEEE 802.11acのVHT−STFシーケンスであってよく、あるいは次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド)であってよく、あるいは第2段AGC調整を遂行するために使われる別のショートトレーニングフィールドシーケンスであってよい。
前述した例を参照し、本開示の本実施形態では、シーケンス2とシーケンス3とに対応する時間領域シーケンスが、無線ローカルエリアネットワークWLANにてデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとして使用されてよい。あるいはまた、本開示の本実施形態では、周波数領域シーケンス4に対応する時間領域シーケンスが、無線ローカルエリアネットワークWLANにてデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとして使用されてもよい。
前述した例を参照し、シーケンス2とシーケンス3は4μsの持続時間に2.5サイクルを含み、各サイクルの長さ1600nsである。シーケンス2とシーケンス3とに対応する時間領域シーケンスが無線ローカルエリアネットワークWLANにおけるデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)として使われる場合は、WLANで使える最大循環シフト遅延CSD値が相応に増加する(シーケンス3が使われる場合、CSD値は先行技術の750nsから1550nsに変えられる)。さらに、プリアンブルシーケンスにあるL−STFと、本開示の本実施形態において第2の高効率ショートトレーニングフィールドで第2段AGC調整を遂行するために使われるサイクルが増大されたショートトレーニングフィールドシーケンスとをそれぞれ使用し、WLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。前述した例を参照し、周波数領域シーケンス4に対応する時間領域シーケンスは4μsに2.5サイクル未満を含み、各サイクルの持続時間は1600nsを上回る。サイクル持続時間が1600nsを上回る時間領域シーケンスが無線ローカルエリアネットワークWLANにおけるデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)として使われる場合は、WLANで使える最大循環シフト遅延CSD値が相応に増加する(先行技術の750nsから1550ns超に変えられる)。さらに、プリアンブルシーケンスにあるL−STFと、本開示の本実施形態において第2の高効率ショートトレーニングフィールドで第2段AGC調整を遂行するために使われるサイクルが増大されたショートトレーニングフィールドシーケンスとをそれぞれ使用し、WLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
具体的な実装において、本開示の本実施形態で上に挙げた第1の高効率ショートトレーニングフィールドシーケンスと第2の高効率ショートトレーニングフィールドシーケンスはいずれもサイクリックプレフィックスCPが加えられるシーケンスである。具体的な実装において、各帯域幅でサイクリックプレフィックスCPが加えられない場合、本開示の本実施形態における第1の高効率ショートトレーニングフィールドシーケンスの持続時間と第2の高効率ショートトレーニングフィールドシーケンスの持続時間は3.2μsであってよく、あるは別の値であってよい。第1の高効率ショートトレーニングフィールドシーケンスの持続時間と第2の高効率ショートトレーニングフィールドシーケンスの持続時間が3.2μsである場合は4サイクルが含まれ、各サイクルの持続時間は800nsである。
本開示のいくつかの実現可能な実装様態において、第1の高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスの周波数領域密度が増加されることによって周波数領域密度が増した周波数領域シーケンスが生成され、周波数領域密度が増した周波数領域シーケンスに従って第2の高効率ショートトレーニングフィールドシーケンスが生成され、第2の高効率ショートトレーニングフィールドシーケンスが無線ローカルエリアネットワークWLANにおけるデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))として使用されることは、上記の説明から分かるであろう。したがって、本開示の本実施形態でWLANにおけるデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングシーケンスのサイクルは、先行技術のIEEE 802.11nにおける既存HT−STFシーケンスのサイクルに比べて、あるはIEEE 802.11acにおける既存VHT−STFシーケンスのサイクルに比べて、増大され、さらに、WLANで使える最大循環シフト遅延CSD値は相応に増加する。さらに、L−STFシーケンスと、プリアンブルシーケンスのサイクルが増大されたHT−STFシーケンス、またはVHT−STFシーケンス、またはHE−STFシーケンスとをそれぞれ使用し、WLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
図7は本開示によるショートトレーニングフィールド生成方法の別の実施形態の手順構成の概略図である。図7に見られるように、方法は下記ステップを含んでよい。
ステップS210:第2の帯域幅に対応するプリアンブルシーケンスで第1の高効率ショートトレーニングフィールドシーケンスを得て、ここで第2の帯域幅は第1の帯域幅を上回る。
具体的な実装において、WLAN規格は20MHz、40MHz、80MHz、160MHz等の複数タイプの帯域幅構成をサポートし、ここで20MHzが最小帯域幅である。既存のWLAN規格で、ショートトレーニングフィールドSTFの周波数領域シーケンス(例えば前述したシーケンス1)は20MHzの帯域幅で規定され、より大きい帯域幅でSTFの周波数領域シーケンスは、周波数領域でSTFシーケンスを繰り返すことにより、さらに相回転を加えることにより、得られる。例えば、20MHzの帯域幅におけるSTF周波数領域は[L−STF]であり、40MHzの帯域幅におけるSTF周波数領域は[1*L−STF,j*L−LTF]である。様々な帯域幅でHT−STFまたはVHT−STFの時間領域シーケンスの持続時間は4μsである。あるいは、より大きい帯域幅は時間領域シーケンスによって使われるサンプリングポイントがより稠密であることを意味する。より大きい帯域幅はHT−STFまたはVHT−STFに対応するSTF時間領域シーケンスがより長いことを意味する。WLAN規格で第1の帯域幅は20MHz、40MHz、または80MHzのいずれか1つであってよいが、ただし第2の帯域幅は第1の帯域幅を上回るものとする。例えば、第1の帯域幅が20MHzなら、第2の帯域幅は40MHz、80MHz、または160MHzのいずれか1つであってよい。第1の帯域幅が40MHzなら、第2の帯域幅は80MHzまたは160MHzのいずれか一方であってよい。第1の帯域幅が80MHzなら、第2の帯域幅は160MHzであってよい。当然ながら、具体的な実装において、本開示の本実施形態で使われる第1の帯域幅と第2の帯域幅は先に挙げた値に限定され得ない。
具体的な実装において、20MHzの帯域幅の場合、4μsの持続時間(サイクリックプレフィックスCPを含む)で高効率ショートトレーニングフィールド(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))シーケンスは80サンプリングポイントを含む。40MHzの帯域幅の場合、4μsの持続時間で高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))は160サンプリングポイントを含む。80MHzの帯域幅の場合、4μsの持続時間で高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))は320サンプリングポイントを含む。時間領域における20MHz帯域幅の持続時間と40MHz帯域幅の持続時間と80MHz帯域幅の持続時間はそれぞれ4μsである。したがって、40MHzまたは80MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスに対し取り込みが遂行されてよく、20MHzの帯域幅に対応するサンプリングレート(50ns)に従って取り込まれた時間領域シーケンスに対しデジタル・アナログ変換がその後遂行され、これにより20MHzで時間領域サイクルが増大された高効率ショートトレーニングフィールドシーケンスが得られる。具体的な実装では、取り込みが遂行される前に、予め符号化された周波数領域シーケンスを変換することによって本開示の本実施形態で取り込まれる時間領域シーケンスが形成される。
具体的な実装において、20MHzの帯域幅の場合、3.2μsの持続時間(サイクリックプレフィックスCPを含む)で高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))は64サンプリングポイントを含む。40MHzの帯域幅の場合、3.2μsの持続時間で高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))は128サンプリングポイントを含む。80MHzの帯域幅の場合、3.2μsの持続時間で高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))は256サンプリングポイントを含む。時間領域における20MHz帯域幅の持続時間と40MHz帯域幅の持続時間と80MHz帯域幅の持続時間はそれぞれ3.2μsである。したがって、40MHzまたは80MHzの帯域幅でショートトレーニングフィールドの時間領域シーケンスに対し取り込みが遂行されてよく、20MHzの帯域幅に対応するサンプリングレート(50ns)に従って取り込まれた時間領域シーケンスに対しデジタル・アナログ変換がその後遂行され、これにより20MHzで時間領域サイクルが増大されたショートトレーニングフィールドの時間領域シーケンスが得られる。
具体的な実装において、20MHzの帯域幅で対応するサンプリングレートは50nsであり、40MHzの帯域幅で対応するサンプリングレートは25nsであり、80MHzの帯域幅で対応するサンプリングレートは12.5nsであり、160MHzの帯域幅で対応するサンプリングレートは6.25nsである。
具体的な実装において、ステップS210で第1の帯域幅が20MHzなら、第2の帯域幅は40MHz、80MHz、または160MHzのいずれか1つであってよい。第1の高効率ショートトレーニングフィールドシーケンスは、40MHzで4μsの持続時間に160サンプリングポイントを含むシーケンスであってよく、あるいは80MHzの帯域幅で4μsの持続時間に320サンプリングポイントを含むシーケンスであってよく、あるいは160MHzの帯域幅で4μsの持続時間に640サンプリングポイントを含むシーケンスであってよい。第1の帯域幅が40MHzなら、第2の帯域幅は80MHzまたは160MHzのいずれか一方であってよい。第1の高効率ショートトレーニングフィールドシーケンスは、80MHzの帯域幅で4μsの持続時間に320サンプリングポイントを含むシーケンスであってよく、あるいは160MHzの帯域幅で4μsの持続時間に640サンプリングポイントを含むシーケンスであってよい。第1の帯域幅が80MHzなら、第2の帯域幅は160MHzであってよい。第1の高効率ショートトレーニングフィールドシーケンスは、160MHzの帯域幅で4μsの持続時間に640サンプリングポイントを含むシーケンスであってよい。
さらに、いくつかの実施形態において、本開示の第1の高効率ショートトレーニングフィールドシーケンスは4μsの持続時間に5サイクルを含んでよく、各サイクルの長さは800nsである。
ステップS211:得られた第1の高効率ショートトレーニングフィールドシーケンスからシーケンスのセグメントを取り込み、ここでシーケンスのセグメントに含まれるサンプリングポイントの数量は、第1の帯域幅に対応するプリアンブルシーケンスの高効率ショートトレーニングフィールドシーケンスに対応するサンプリングポイントの数量である。
具体的な実装において、得られた第1の高効率ショートトレーニングフィールドシーケンスからシーケンスのセグメントが取り込まれる際は、第2の帯域幅に対応するプリアンブルシーケンスにて第1の高効率ショートトレーニングフィールドシーケンスから既定の開始位置による正規順序でシーケンスのセグメントが取り込まれる。通常、取り込まれるシーケンスのセグメントは少なくとも1サイクルを含むものとする。
例えば、第1の帯域幅は20MHzであり、第2の帯域幅は40MHzであり、時間領域シーケンスの持続時間は4μsである。本開示の本実施形態では、40MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスにおける160サンプリングポイントから既定の開始位置(例えば40MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスの開始位置または非開始位置)による正規順序で80サンプリングポイントが取り込まれてよい(これは2.5サイクルの時間領域シーケンスを取り込むことに相当する)。
例えば、第1の帯域幅は20MHzであり、第2の帯域幅は80MHzであり、時間領域シーケンスの持続時間は4μsである。本開示の本実施形態では、80MHzの帯域幅でショートトレーニングフィールドの時間領域シーケンスにおける320サンプリングポイントから既定の開始位置(例えば80MHzの帯域幅でショートトレーニングフィールドの高効率ショートトレーニングフィールドシーケンスの開始位置または非開始位置)による正規順序で80サンプリングポイントが取り込まれてよい(これは1.25サイクルの時間領域シーケンスを取り込むことに相当する)。
具体的な実装において、得られた第1の高効率ショートトレーニングフィールドシーケンスからシーケンスのセグメントが取り込まれる際は、第2の帯域幅に対応するプリアンブルシーケンスにて第1の高効率ショートトレーニングフィールドシーケンスから既定の終了位置による逆順序でシーケンスのセグメントが取り込まれる。
例えば、第1の帯域幅は40MHzであり、第2の帯域幅は80MHzであり、時間領域シーケンスの持続時間は4μsである。本開示の本実施形態では、80MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスにおける320サンプリングポイントから既定の終了位置(例えば80MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスの終了位置または非終了位置)による逆順序で160サンプリングポイントが取り込まれてよい(これは2.5サイクルの時間領域シーケンスを取り込むことに相当する)。
例えば、第1の帯域幅は20MHzであり、第2の帯域幅は80MHzであり、時間領域シーケンスの持続時間は4μsである。本開示の本実施形態では、80MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスにおける320サンプリングポイントから既定の終了位置(例えば80MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスの終了位置または非終了位置)による逆順序で80サンプリングポイントが取り込まれてよい(これは1.25サイクルの時間領域シーケンスを取り込むことに相当する)。
ステップS212:第2の高効率ショートトレーニングフィールドシーケンスを得るため、取り込まれたシーケンスのセグメントのサンプリングレートを第1の帯域幅に対応するサンプリングレートに変える。
例えば、第1の帯域幅は20MHzであり、第2の帯域幅は40MHzであり、時間領域シーケンスの持続時間は4μsである。第1の帯域幅の時間領域シーケンスの持続時間と第2の帯域幅の時間領域シーケンスの持続時間はいずれも4μsであるため、40MHzの帯域幅で取り込まれた80サンプリングポイントのサンプリングレートが25nsから50nsに変えられた後(2.5サイクルの時間領域シーケンスを取り込むことに相当)、20MHzの帯域幅で相応に形成される第2の高効率ショートトレーニングフィールドシーケンスは4μsに2.5サイクルを含み、各サイクルの持続時間は1600nsに変えられる(説明を容易にするため、この時間領域シーケンスはシーケンス5と表記する)。
例えば、第1の帯域幅は20MHzであり、第2の帯域幅は80MHzであり、時間領域シーケンスの持続時間は4μsである。第1の帯域幅の時間領域シーケンスの持続時間と第2の帯域幅の時間領域シーケンスの持続時間はいずれも4μsであるため、80MHzの帯域幅で取り込まれた80サンプリングポイントのサンプリングレートが12.5nsから50nsに変えられた後(1.25サイクルの時間領域シーケンスを取り込むことに相当)、20MHzの帯域幅で相応に形成される第2の高効率ショートトレーニングフィールドシーケンスは4μsに1.25サイクルを含み、各サイクルの持続時間は3200nsに変えられる(説明を容易にするため、この時間領域シーケンスはシーケンス6と表記する)。
例えば、第1の帯域幅は40MHzであり、第2の帯域幅は80MHzであり、時間領域シーケンスの持続時間は4μsである。第1の帯域幅の時間領域シーケンスの持続時間と第2の帯域幅の時間領域シーケンスの持続時間はいずれも4μsであるため、80MHzの帯域幅で取り込まれた160サンプリングポイントのサンプリングレートが12.5nsから25nsに変えられた後(2.5サイクルの時間領域シーケンスを取り込むことに相当)、40MHzの帯域幅で相応に形成される第2の高効率ショートトレーニングフィールドシーケンスは4μsに2.5サイクルを含み、各サイクルの持続時間は1600nsに変えられる(説明を容易にするため、この時間領域シーケンスはシーケンス7と表記する)。
例えば、第1の帯域幅は20MHzであり、第2の帯域幅は80MHzであり、時間領域シーケンスの持続時間は3.2μsである。第1の帯域幅の時間領域シーケンスの持続時間と第2の帯域幅の時間領域シーケンスの持続時間はいずれも3.2μsであるため、80MHzの帯域幅で取り込まれた64サンプリングポイントのサンプリングレートが12.5nsから50nsに変えられた後(1サイクルの時間領域シーケンスを取り込むことに相当)、20MHzの帯域幅で相応に形成される第2の高効率ショートトレーニングフィールドシーケンスは3.2μsに1サイクルを含み、各サイクルの持続時間は3200nsに変えられる(説明を容易にするため、この時間領域シーケンスはシーケンス8と表記する)。
ステップS213:第1の帯域幅に対応するプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとして第2の高効率ショートトレーニングフィールドシーケンスを使用する。
具体的な実装において、WLANネットワークで第2段AGC調整を遂行するために使われるショートトレーニングフィールドシーケンスは、IEEE 802.11nのHT−STFシーケンスであってよく、あるいはIEEE 802.11acのVHT−STFシーケンスであってよく、あるいは次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド)であってよく、あるいは第2段AGC調整を遂行するために使われる別のショートトレーニングフィールドシーケンスであってよい。前述した例を参照し、本開示の本実施形態では、無線ローカルエリアネットワークWLANにて第1の帯域幅に対応するデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとして前述したシーケンス5からシーケンス8までが使用されてよい。
具体的に述べると、シーケンス5とシーケンス7は4μsの持続時間に2.5サイクルを含み、各サイクルの長さは1600nsである。したがって、無線ローカルエリアネットワークWLANにて第1の帯域幅(それぞれ20MHzと40MHz)に対応するデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとしてシーケンス5とシーケンス7とが使用される場合は、第1の帯域幅で使える最大循環シフト遅延CSD値が相応に増加する(先行技術の750nsから1550nsに変えられる)。さらに、プリアンブルシーケンスにあるL−STFと、本開示の本実施形態においてサイクルが増大されたシーケンス5またはシーケンス7とをそれぞれ使用し、20MHzの帯域幅か40MHzの帯域幅にてWLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると(最大CSD値は750nsから1550nsに増加)、より良好なAGC性能を得ることができる。
具体的に述べると、シーケンス6とシーケンス8の4μsの持続時間で各サイクルの長さは1600nsである。したがって、無線ローカルエリアネットワークWLANにて20MHzの帯域幅に対応するデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)としてシーケンス6とシーケンス8とが使用される場合は、20MHzの帯域幅にてWLANで使える最大循環シフト遅延CSD値が相応に増加する(先行技術の750nsから3150nsに変えられる)。さらに、プリアンブルシーケンスにあるL−STFと、本開示の本実施形態においてサイクルが増大されたシーケンス6またはシーケンス8(使用できる最大循環シフト遅延CSD値は先行技術の750nsから3150nsに変えられている)とをそれぞれ使用し、20MHzの帯域幅にてWLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
本開示のいくつかの実現可能な実装様態において、第2の帯域幅に対応するプリアンブルシーケンスで第1の高効率ショートトレーニングフィールドシーケンスが得られ、ここで第2の帯域幅は第1の帯域幅を上回り、得られた第1の高効率ショートトレーニングフィールドシーケンスからシーケンスのセグメントが取り込まれ、ここでシーケンスのセグメントに含まれるサンプリングポイントの数量は、第1の帯域幅に対応するプリアンブルシーケンスの高効率ショートトレーニングフィールドシーケンスに対応するサンプリングポイントの数量であり、第2の高効率ショートトレーニングフィールドシーケンスを得るため、取り込まれたシーケンスのセグメントのサンプリングレートは第1の帯域幅に対応するサンプリングレートに変えられ、第1の帯域幅に対応するプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)として第2の高効率ショートトレーニングフィールドシーケンスが使用されることは、上記の説明から分かるであろう。したがって、第1の帯域幅に対応するプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスのサイクルは増大され、さらに、第1の帯域幅で使える最大循環シフト遅延CSD値は相応に増加する。さらに、L−STFシーケンスと、プリアンブルシーケンスのサイクルが増大されたHT−STFシーケンス、またはVHT−STFシーケンス、またはHE−STFシーケンスとをそれぞれ使用し、第1の帯域幅にてWLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
図8は本開示による高効率ショートトレーニングフィールドシーケンス生成装置の一実施形態の構造構成の概略図である。図8に見られるように、装置は少なくとも処理モジュール31と、生成モジュール32と、設定モジュール33とを含んでよい。
処理モジュール31は、周波数領域密度が増した周波数領域シーケンスを生成するため、第1の高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスの周波数領域密度を増加させるよう構成される。
生成モジュール32は、処理モジュール31によって生成された周波数領域密度が増した周波数領域シーケンスに従って第2の高効率ショートトレーニングフィールドシーケンスを生成するよう構成される。
設定モジュール33は、無線ローカルエリアネットワークWLANにてデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドとして生成モジュール32によって生成された第2の高効率ショートトレーニングフィールドシーケンスを使用するよう構成される。
具体的な実装において、本開示の本実施形態における第1の高効率トレーニングフィールドシーケンスは先行技術のWLANシステムにおけるIEEE 802.11n規格のHT−STFであってよく、あるいはIEEE 802.11ac規格のVHT−STFであってよく、ここでIEEE 802.11nにおけるHT−STFの時間領域シーケンスの持続時間は4μsであり(サイクリックプレフィックスCPを含む)、4μsに5サイクルが含まれ、各サイクルの長さは800nsであり、IEEE 802.11acにおけるVHT−STFの時間領域シーケンスの持続時間も4μsであり、4μsに5サイクルが含まれ、各サイクルの長さは800nsである。通常、20 Mの帯域幅で先行技術のWLANにてHT−STFまたはVHT−STFに対応する周波数領域シーケンスは次の通りである。
シーケンス1:
[0,0,0,0,0,0,0,0,1+1i,0,0,0,−1−1i,0,0,0,1+1i,0,0,0,−1−1i,0,0,0,−1−1i,0,0,0,1+1i,0,0,0,...,0,0,0,−1−1i,0,0,0,−1−1i,0,0,0,+1i,0,0,0,1+1i,0,0,0,1+1i,0,0,0,1+1i,0,0,0,0,0,0,0]
最初の帯域幅20 MにてHT−STFまたはVHT−STFの周波数領域シーケンスで値の間に3つの0があることがシーケンス1から分かるであろう。
具体的な実装において、本開示の本実施形態における第1の高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスは、先行技術のWLANシステムでVHT−STFまたはHT−STFに対応する周波数領域シーケンスの周波数領域密度が本開示の方法を用いて1回または複数回増加された後に得られる周波数領域シーケンスであってよい。具体的に述べると、ステップS110において、第1の高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで非ゼロ値の間にある0の数量は減らされてよく、そうすることで周波数領域密度は増す。例えば、シーケンス1で値の間にある3つの0は2つの0に減らされてよく、あるいは1つの0に減らされてよい。シーケンス1の周波数領域密度が増加された後に得られる具体的なシーケンスについてはシーケンス2とシーケンス3を参照されたい。
シーケンス2:
[0,0,0,0,0,0,0,0,1+1i,0,0,−1−1i,0,0,−1−1i,0,0,−1−1i,0,0,1+1i,0,0,...,0,0,−1−1i,0,0,−1−1i,0,0,−1−1i,0,0,1+1i,0,0,1+1i,0,0,1+1i,0,0,0,0,0,0,0]
シーケンス3:
[0,0,0,0,0,0,0,0,1+1i,0,−1−1i,0,−1−1i,0,−1−1i,0,1+1i,0,...,0,−1−1i,0,−1−1i,0,−1−1i,0,1+1i,0,1+1i,0,1+1i,0,0,0,0,0,0,0]
20 Mの帯域幅にてHT−STFまたはVHT−STFの周波数領域シーケンスで値の間にある3つの0が2つの0に変えられると、あるいは1つの0に変えられると、対応する時間領域シーケンスのサイクル長は4/3倍と2倍にそれぞれ増大され、4μsの持続時間に3.75サイクルと2.5サイクルをそれぞれ含めることができ、サイクルの長さがそれぞれ3200/3nsと1600nsになることは、シーケンス2とシーケンス3から分かるであろう。
具体的な実装において、本開示の本実施形態における第1の高効率ショートトレーニングフィールドの周波数領域シーケンスは、大きい帯域幅でVHT−STFまたはHT−STFの時間領域シーケンスから取り込まれた時間領域シーケンスの1シーケンスを変換することによって形成される周波数領域シーケンスであってもよい。例えば、40MHzの帯域幅でVHT−STFまたはHT−STFの4μsの時間領域シーケンスから2.5サイクル(80サンプリングポイントを含む)が取り込まれ、取り込まれた2.5サイクルの80サンプリングポイントはその後20MHzにおけるサンプリングレートに従って変換され、これにより20MHzで時間領域サイクルが伸ばされた時間領域シーケンスのセグメントが得られてよい。その後、20MHzで時間領域サイクルが伸ばされた時間領域シーケンスは、時間領域シーケンスと周波数領域シーケンスとの変換関係に従って周波数領域シーケンスに変換される。具体的な実装において、40MHzの帯域幅でVHT−STFまたはHT−STFの4μsの時間領域シーケンスは5サイクルを含み、160サンプリングポイントを含み、ここで各サイクルは800nsである。2.5サイクルで80サンプリングポイントが取り込まれて20MHzにおけるサンプリングレートに従って変換された後に得られる時間領域シーケンスは4μsに2.5サイクルを含み、各サイクルは1600nsに変えられる。時間シーケンスは周波数領域シーケンスに変換され、周波数領域密度が増加された後に時間領域シーケンスが形成され、時間領域シーケンスは4μsに2.5サイクル未満を含む。各サイクルの持続時間は1600nsを上回る。
具体的な実装において、WLAN規格は20MHz、40MHz、80MHz、160MHz等の複数タイプの帯域幅構成をサポートし、ここで20MHzが最小帯域幅である。既存のWLAN規格でショートトレーニングフィールドSTFの周波数領域シーケンス(例えば前述したシーケンス1)は20MHzの帯域幅で規定され、より大きい帯域幅でSTFの周波数領域シーケンスは、周波数領域でSTFシーケンスを繰り返すことにより、さらに相回転を加えることにより、得られる。例えば、20MHzの帯域幅におけるSTF周波数領域は[L−STF]であり、40MHzの帯域幅におけるSTF周波数領域は[1*L−STF,j*L−LTF]である。
具体的な実装において、本開示の本実施形態で第1の高効率ショートトレーニングフィールドの周波数領域シーケンスの周波数領域密度を増加させるため処理モジュール31で使われる方法は、周波数領域シーケンスで非ゼロ値の間にある0の数量を減らす。先に例示したように、シーケンス2とシーケンス3はシーケンス1の周波数密度が増加された後に生成された周波数領域シーケンスである。あるいはまた、本開示の本実施形態において20MHzで時間領域サイクルが伸ばされた時間領域シーケンスを変換することによって得られる周波数領域シーケンスで非ゼロ値の間にある0の数量が増やされてもよく、そうすることで周波数領域密度が増した周波数領域シーケンス4が得られる。
具体的に述べると、生成モジュール32は、具体的には、周波数領域密度が増した周波数領域シーケンスに対し逆フーリエ変換を遂行してよく、尚且つサイクリックプレフィックスを加えてよく、そうすることで第2の高効率ショートトレーニングフィールドシーケンスを得る。あるいはまた、生成モジュール32は、具体的には、周波数領域密度が増した周波数領域シーケンスに対し逆フーリエ変換を遂行してよく、そうすることで第2の高効率ショートトレーニングフィールドシーケンスを得る。
具体的な実装において、WLANネットワークで第2段AGC調整を遂行するために使われるショートトレーニングフィールドシーケンスは、IEEE 802.11nのHT−STFシーケンスであってよく、あるいはIEEE 802.11acのVHT−STFシーケンスであってよく、あるいは次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド)であってよく、あるいは第2段AGC調整を遂行するために使われる別のショートトレーニングフィールドシーケンスであってよい。
前述した例を参照し、本開示の本実施形態で設定モジュール33は、無線ローカルエリアネットワークWLANにてデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとしてシーケンス2とシーケンス3とに対応する時間領域シーケンスを使用してよい。あるいはまた、本開示の本実施形態では、周波数領域シーケンス4に対応する時間領域シーケンスが、無線ローカルエリアネットワークWLANにてデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとして使用されてもよい。
前述した例を参照し、シーケンス2とシーケンス3は4μsの持続時間に2.5サイクルを含み、各サイクルの長さ1600nsである。シーケンス2とシーケンス3とに対応する時間領域シーケンスが無線ローカルエリアネットワークWLANにおけるデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)として使われる場合は、WLANで使える最大循環シフト遅延CSD値が相応に増加する(シーケンス3が使われる場合、CSD値は先行技術の750nsから1550nsに変えられる)。さらに、プリアンブルシーケンスにあるL−STFと、本開示の本実施形態において第2の高効率ショートトレーニングフィールドで第2段AGC調整を遂行するために使われるサイクルが増大されたショートトレーニングフィールドシーケンスとをそれぞれ使用し、WLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。前述した例を参照し、周波数領域シーケンス4に対応する時間領域シーケンスは4μsに2.5サイクル未満を含み、各サイクルの持続時間は1600nsを上回る。サイクル持続時間が1600nsを上回る時間領域シーケンスが無線ローカルエリアネットワークWLANにおけるデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)として使われる場合は、WLANで使える最大循環シフト遅延CSD値が相応に増加する(先行技術の750nsから1550ns超に変えられる)。さらに、プリアンブルシーケンスにあるL−STFと、本開示の本実施形態において第2の高効率ショートトレーニングフィールドで第2段AGC調整を遂行するために使われるサイクルが増大されたショートトレーニングフィールドシーケンスとをそれぞれ使用し、WLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
具体的な実装において、本開示の本実施形態で上に挙げた第1の高効率ショートトレーニングフィールドシーケンスと第2の高効率ショートトレーニングフィールドシーケンスはいずれもサイクリックプレフィックスCPが加えられるシーケンスである。具体的な実装において、各帯域幅でサイクリックプレフィックスCPが加えられない場合、本開示の本実施形態における第1の高効率ショートトレーニングフィールドシーケンスの持続時間と第2の高効率ショートトレーニングフィールドシーケンスの持続時間は3.2μsであってよく、あるは別の値であってよい。第1の高効率ショートトレーニングフィールドシーケンスの持続時間と第2の高効率ショートトレーニングフィールドシーケンスの持続時間が3.2μsである場合は4サイクルが含まれ、各サイクルの持続時間は800nsである。
本開示のいくつかの実現可能な実装様態において、第1の高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスの周波数領域密度が増加されることによって周波数領域密度が増した周波数領域シーケンスが生成され、周波数領域密度が増した周波数領域シーケンスに従って第2の高効率ショートトレーニングフィールドシーケンスが生成され、第2の高効率ショートトレーニングフィールドシーケンスが無線ローカルエリアネットワークWLANにおけるデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))として使用されることは、上記の説明から分かるであろう。したがって、本開示の本実施形態でWLANにおけるデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングシーケンスのサイクルは、先行技術のIEEE 802.11nにおける既存HT−STFシーケンスのサイクルに比べて、あるはIEEE 802.11acにおける既存VHT−STFシーケンスのサイクルに比べて、増大され、さらに、WLANで使える最大循環シフト遅延CSD値は相応に増加する。さらに、L−STFシーケンスと、プリアンブルシーケンスのサイクルが増大されたHT−STFシーケンス、またはVHT−STFシーケンス、またはHE−STFシーケンスとをそれぞれ使用し、WLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
図9は本開示による高効率ショートトレーニングフィールドシーケンス生成装置の別の実施形態の手順構成の概略図である。図9に見られるように、装置は少なくとも取得モジュール41と、取り込みモジュール42と、生成モジュール43と、設定モジュール44とを含んでよい。
取得モジュール41は、第2の帯域幅に対応するプリアンブルシーケンスで第1の高効率ショートトレーニングフィールドシーケンスを得るよう構成され、ここで第2の帯域幅は第1の帯域幅を上回る。
取り込みモジュール42は、取得モジュール41によって得られた第1の高効率ショートトレーニングフィールドシーケンスからシーケンスのセグメントを取り込むよう構成され、ここでシーケンスのセグメントに含まれるサンプリングポイントの数量は、第1の帯域幅に対応するプリアンブルシーケンスの高効率ショートトレーニングフィールドシーケンスに対応するサンプリングポイントの数量である。
生成モジュール43は、第2の高効率ショートトレーニングフィールドシーケンスを得るため、取り込みモジュール42によって取り込まれたシーケンスのセグメントのサンプリングレートを第1の帯域幅に対応するサンプリングレートに変えるよう構成される。
設定モジュール44は、第1の帯域幅に対応するプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとして生成モジュール43によって生成された第2の高効率ショートトレーニングフィールドシーケンスを使用するよう構成される。
具体的な実装において、WLAN規格は20MHz、40MHz、80MHz、160MHz等の複数タイプの帯域幅構成をサポートし、ここで20MHzが最小帯域幅である。既存のWLAN規格で、ショートトレーニングフィールドSTFの周波数領域シーケンス(例えば前述したシーケンス1)は20MHzの帯域幅で規定され、より大きい帯域幅でSTFの周波数領域シーケンスは、周波数領域でSTFシーケンスを繰り返すことにより、さらに相回転を加えることにより、得られる。例えば、20MHzの帯域幅におけるSTF周波数領域は[L−STF]であり、40MHzの帯域幅におけるSTF周波数領域は[1*L−STF,j*L−LTF]である。様々な帯域幅でHT−STFまたはVHT−STFの時間領域シーケンスの持続時間は4μsである。あるいは、より大きい帯域幅は時間領域シーケンスによって使われるサンプリングポイントがより稠密であることを意味する。より大きい帯域幅はHT−STFまたはVHT−STFに対応するSTF時間領域シーケンスがより長いことを意味する。WLAN規格で第1の帯域幅は20MHz、40MHz、または80MHzのいずれか1つであってよいが、ただし第2の帯域幅は第1の帯域幅を上回るものとする。例えば、第1の帯域幅が20MHzなら、第2の帯域幅は40MHz、80MHz、または160MHzのいずれか1つであってよい。第1の帯域幅が40MHzなら、第2の帯域幅は80MHzまたは160MHzのいずれか一方であってよい。第1の帯域幅が80MHzなら、第2の帯域幅は160MHzであってよい。当然ながら、具体的な実装において、本開示の本実施形態で使われる第1の帯域幅と第2の帯域幅は先に挙げた値に限定され得ない。
具体的な実装において、20MHzの帯域幅の場合、4μsの持続時間(サイクリックプレフィックスCPを含む)で高効率ショートトレーニングフィールド(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))シーケンスは80サンプリングポイントを含む。40MHzの帯域幅の場合、4μsの持続時間で高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))は160サンプリングポイントを含む。80MHzの帯域幅の場合、4μsの持続時間で高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))は320サンプリングポイントを含む。時間領域における20MHz帯域幅の持続時間と40MHz帯域幅の持続時間と80MHz帯域幅の持続時間はそれぞれ4μsである。したがって、40MHzまたは80MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスに対し取り込みが遂行されてよく、20MHzの帯域幅に対応するサンプリングレート(50ns)に従って取り込まれた時間領域シーケンスに対しデジタル・アナログ変換がその後遂行され、これにより20MHzで時間領域サイクルが増大された高効率ショートトレーニングフィールドシーケンスが得られる。具体的な実装では、取り込みが遂行される前に、予め符号化された周波数領域シーケンスを変換することによって本開示の本実施形態で取り込まれる時間領域シーケンスが形成される。
具体的な実装において、20MHzの帯域幅の場合、3.2μsの持続時間(サイクリックプレフィックスCPを含む)で高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))は64サンプリングポイントを含む。40MHzの帯域幅の場合、3.2μsの持続時間で高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))は128サンプリングポイントを含む。80MHzの帯域幅の場合、3.2μsの持続時間で高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド))は256サンプリングポイントを含む。時間領域における20MHz帯域幅の持続時間と40MHz帯域幅の持続時間と80MHz帯域幅の持続時間はそれぞれ3.2μsである。したがって、40MHzまたは80MHzの帯域幅でショートトレーニングフィールドの時間領域シーケンスに対し取り込みが遂行されてよく、20MHzの帯域幅に対応するサンプリングレート(50ns)に従って取り込まれた時間領域シーケンスに対しデジタル・アナログ変換がその後遂行され、これにより20MHzで時間領域サイクルが増大されたショートトレーニングフィールドの時間領域シーケンスが得られる。
具体的な実装において、20MHzの帯域幅で対応するサンプリングレートは50nsであり、40MHzの帯域幅で対応するサンプリングレートは25nsであり、80MHzの帯域幅で対応するサンプリングレートは12.5nsであり、160MHzの帯域幅で対応するサンプリングレートは6.25nsである。
具体的な実装において、第1の帯域幅が20MHzなら、第2の帯域幅は40MHz、80MHz、または160MHzのいずれか1つであってよい。第1の高効率ショートトレーニングフィールドシーケンスは、40MHzの帯域幅で4μsの持続時間に160サンプリングポイントを含むシーケンスであってよく、あるいは80MHzの帯域幅で4μsの持続時間に320サンプリングポイントを含むシーケンスであってよく、あるいは160MHzの帯域幅で4μsの持続時間に640サンプリングポイントを含むシーケンスであってよい。第1の帯域幅が40MHzなら、第2の帯域幅は80MHzまたは160MHzのいずれか一方であってよい。第1の高効率ショートトレーニングフィールドシーケンスは、80MHzの帯域幅で4μsの持続時間に320サンプリングポイントを含むシーケンスであってよく、あるいは160MHzの帯域幅で4μsの持続時間に640サンプリングポイントを含むシーケンスであってよい。第1の帯域幅が80MHzなら、第2の帯域幅は160MHzであってよい。第1の高効率ショートトレーニングフィールドシーケンスは、160MHzの帯域幅で4μsの持続時間に640サンプリングポイントを含むシーケンスであってよい。
さらに、いくつかの実施形態において、本開示の第1の高効率ショートトレーニングフィールドシーケンスは4μsの持続時間に5サイクルを含んでよく、各サイクルの長さは800nsである。
具体的な実装において、得られた第1の高効率ショートトレーニングフィールドシーケンスからシーケンスのセグメントを取り込む際に、取り込みモジュール42は、第2の帯域幅に対応するプリアンブルシーケンスにて第1の高効率ショートトレーニングフィールドシーケンスから既定の開始位置による正規順序でシーケンスのセグメントを取り込む。通常、取り込まれるシーケンスのセグメントは少なくとも1サイクルを含むものとする。
例えば、第1の帯域幅は20MHzであり、第2の帯域幅は40MHzであり、時間領域シーケンスの持続時間は4μsである。本開示の本実施形態における取り込みモジュール42は、40MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスにおける160サンプリングポイントから既定の開始位置(例えば40MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスの開始位置または非開始位置)による正規順序で80サンプリングポイントを取り込んでよい(これは2.5サイクルの時間領域シーケンスを取り込むことに相当する)。
例えば、第1の帯域幅は20MHzであり、第2の帯域幅は80MHzであり、時間領域シーケンスの持続時間は4μsである。本開示の本実施形態における取り込みモジュール42は、80MHzの帯域幅でショートトレーニングフィールドの時間領域シーケンスにおける320サンプリングポイントから既定の開始位置(例えば80MHzの帯域幅でショートトレーニングフィールドの高効率ショートトレーニングフィールドシーケンスの開始位置または非開始位置)による正規順序で80サンプリングポイントを取り込んでよい(これは1.25サイクルの時間領域シーケンスを取り込むことに相当する)。
具体的な実装において、得られた第1の高効率ショートトレーニングフィールドシーケンスからシーケンスのセグメントを取り込む際に、取り込みモジュール42は、第2の帯域幅に対応するプリアンブルシーケンスにて第1の高効率ショートトレーニングフィールドシーケンスから既定の終了位置による逆順序でシーケンスのセグメントを取り込む。
例えば、第1の帯域幅は40MHzであり、第2の帯域幅は80MHzであり、時間領域シーケンスの持続時間は4μsである。本開示の本実施形態における取り込みモジュール42は、80MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスにおける320サンプリングポイントから既定の終了位置(例えば80MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスの終了位置または非終了位置)による逆順序で160サンプリングポイントを取り込んでよい(これは2.5サイクルの時間領域シーケンスを取り込むことに相当する)。
例えば、第1の帯域幅は20MHzであり、第2の帯域幅は80MHzであり、時間領域シーケンスの持続時間は4μsである。本開示の本実施形態における取り込みモジュール42は、80MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスにおける320サンプリングポイントから既定の終了位置(例えば80MHzの帯域幅で高効率ショートトレーニングフィールドシーケンスの終了位置または非終了位置)による逆順序で80サンプリングポイントを取り込んでよい(これは1.25サイクルの時間領域シーケンスを取り込むことに相当する)。
例えば、第1の帯域幅は20MHzであり、第2の帯域幅は40MHzであり、時間領域シーケンスの持続時間は4μsである。第1の帯域幅の時間領域シーケンスの持続時間と第2の帯域幅の時間領域シーケンスの持続時間はいずれも4μsであるため、生成モジュール43を用いて40MHzの帯域幅で取り込まれた80サンプリングポイントのサンプリングレートが25nsから50nsに変えられた後(2.5サイクルの時間領域シーケンスを取り込むことに相当)、20MHzの帯域幅で相応に形成される第2の高効率ショートトレーニングフィールドシーケンスは4μsに2.5サイクルを含み、各サイクルの持続時間は1600nsに変えられる(説明を容易にするため、この時間領域シーケンスはシーケンス5と表記する)。
例えば、第1の帯域幅は20MHzであり、第2の帯域幅は80MHzであり、時間領域シーケンスの持続時間は4μsである。第1の帯域幅の時間領域シーケンスの持続時間と第2の帯域幅の時間領域シーケンスの持続時間はいずれも4μsであるため、生成モジュール43を用いて80MHzの帯域幅で取り込まれた80サンプリングポイントのサンプリングレートが12.5nsから50nsに変えられた後(1.25サイクルの時間領域シーケンスを取り込むことに相当)、20MHzの帯域幅で相応に形成される第2の高効率ショートトレーニングフィールドシーケンスは4μsに1.25サイクルを含み、各サイクルの持続時間は3200nsに変えられる(説明を容易にするため、この時間領域シーケンスはシーケンス6と表記する)。
例えば、第1の帯域幅は40MHzであり、第2の帯域幅は80MHzであり、時間領域シーケンスの持続時間は4μsである。第1の帯域幅の時間領域シーケンスの持続時間と第2の帯域幅の時間領域シーケンスの持続時間はいずれも4μsであるため、生成モジュール43を用いて80MHzの帯域幅で取り込まれた160サンプリングポイントのサンプリングレートが12.5nsから25nsに変えられた後(2.5サイクルの時間領域シーケンスを取り込むことに相当)、40MHzの帯域幅で相応に形成される第2の高効率ショートトレーニングフィールドシーケンスは4μsに2.5サイクルを含み、各サイクルの持続時間は1600nsに変えられる(説明を容易にするため、この時間領域シーケンスはシーケンス7と表記する)。
例えば、第1の帯域幅は20MHzであり、第2の帯域幅は80MHzであり、時間領域シーケンスの持続時間は3.2μsである。第1の帯域幅の時間領域シーケンスの持続時間と第2の帯域幅の時間領域シーケンスの持続時間はいずれも3.2μsであるため、生成モジュール43を用いて80MHzの帯域幅で取り込まれた64サンプリングポイントのサンプリングレートが12.5nsから50nsに変えられた後(1サイクルの時間領域シーケンスを取り込むことに相当する)、20MHzの帯域幅で相応に形成される第2の高効率ショートトレーニングフィールドシーケンスは3.2μsに1サイクルを含み、各サイクルの持続時間は3200nsに変えられる(説明を容易にするため、この時間領域シーケンスはシーケンス8と表記する)。
具体的な実装において、WLANネットワークで第2段AGC調整を遂行するために使われるショートトレーニングフィールドシーケンスは、IEEE 802.11nのHT−STFシーケンスであってよく、あるいはIEEE 802.11acのVHT−STFシーケンスであってよく、あるいは次世代WLANネットワークのHE−STF(High−Efficiency−Short Training Field、高効率ショートトレーニングフィールド)であってよく、あるいは第2段AGC調整を遂行するために使われる別のショートトレーニングフィールドシーケンスであってよい。
前述した例を参照し、本開示の本実施形態における設定モジュール44は、無線ローカルエリアネットワークWLANにて第1の帯域幅に対応するデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとして前述したシーケンス5からシーケンス8までを使用してよい。
具体的に述べると、シーケンス5とシーケンス7は4μsの持続時間に2.5サイクルを含み、各サイクルの長さは1600nsである。したがって、設定モジュール44が無線ローカルエリアネットワークWLANにて第1の帯域幅(それぞれ20MHzと40MHz)に対応するデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとしてシーケンス5とシーケンス7とを使用する場合は、第1の帯域幅で使える最大循環シフト遅延CSD値が相応に増加する(先行技術の750nsから1550nsに変えられる)。さらに、プリアンブルシーケンスにあるL−STFと、本開示の本実施形態においてサイクルが増大されたシーケンス5またはシーケンス7とをそれぞれ使用し、20MHzの帯域幅か40MHzの帯域幅にてWLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると(最大CSD値は750nsから1550nsに増加)、より良好なAGC性能を得ることができる。
具体的に述べると、シーケンス6とシーケンス8の4μsの持続時間で各サイクルの長さは1600nsである。したがって、設定モジュール44が無線ローカルエリアネットワークWLANにて20MHzの帯域幅に対応するデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)としてシーケンス6とシーケンス8とを使用する場合は、20MHzの帯域幅にてWLANで使える最大循環シフト遅延CSD値が相応に増加する(先行技術の750nsから3150nsに変えられる)。さらに、プリアンブルシーケンスにあるL−STFと、本開示の本実施形態においてサイクルが増大されたシーケンス6またはシーケンス8(使用できる最大循環シフト遅延CSD値は先行技術の750nsから3150nsに変えられている)とをそれぞれ使用し、20MHzの帯域幅にてWLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
本開示のいくつかの実現可能な実装様態において、第2の帯域幅に対応するプリアンブルシーケンスで第1の高効率ショートトレーニングフィールドシーケンスが得られ、ここで第2の帯域幅は第1の帯域幅を上回り、得られた第1の高効率ショートトレーニングフィールドシーケンスからシーケンスのセグメントが取り込まれ、ここでシーケンスのセグメントに含まれるサンプリングポイントの数量は、第1の帯域幅に対応するプリアンブルシーケンスの高効率ショートトレーニングフィールドシーケンスに対応するサンプリングポイントの数量であり、第2の高効率ショートトレーニングフィールドシーケンスを得るため、取り込まれたシーケンスのセグメントのサンプリングレートは第1の帯域幅に対応するサンプリングレートに変えられ、第1の帯域幅に対応するプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)として第2の高効率ショートトレーニングフィールドシーケンスが使用されることは、上記の説明から分かるであろう。したがって、第1の帯域幅に対応するプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスのサイクルは増大され、さらに、第1の帯域幅で使える最大循環シフト遅延CSD値は相応に増加する。さらに、L−STFシーケンスと、プリアンブルシーケンスのサイクルが増大されたHT−STFシーケンス、またはVHT−STFシーケンス、またはHE−STFシーケンスとをそれぞれ使用し、第1の帯域幅にてWLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
図10は本開示による高効率ショートトレーニングフィールドシーケンス生成装置の別の実施形態の構造構成の概略図である。図10に見られるように、本実施形態のショートトレーニングフィールド生成装置は入力装置101と、出力装置102と、通信リンク103と、送受信装置104と、メモリ105と、プロセッサ106とを含んでよい。
入力装置101は外部から高効率ショートトレーニングフィールドシーケンス生成装置に入力される入力データを受け取るよう構成される。
具体的な実装において、本開示の本実施形態における入力装置101は、キーボード、マウス、光電子入力装置、音声入力装置、タッチ方式入力装置、スキャナ等を含んでよい。
出力装置102は高効率ショートトレーニングフィールドシーケンス生成装置の出力データを外部へ出力するよう構成される。具体的な実装において、本開示の本実施形態における出力装置102は、ディスプレイ、ラウドスピーカ、プリンタ等を含んでよい。
通信リンク103は高効率ショートトレーニングフィールドシーケンス生成装置と別のデバイスとの間に通信接続を成立させるよう構成される。具体的な実装において、本開示の本実施形態における通信リンク103は伝搬媒体の一種であってよい。伝搬媒体は通常、コンピュータ可読命令、データ構造、プログラムモジュール、またはその他データを別の変調データ信号(キャリヤや他の搬送機構等)の形に具現できる。例えば、伝搬媒体は有線ネットワークや直接有線接続等の有線媒体を含んでよい。あるいはまた、伝搬媒体は音波や高周波や赤外線等の有線媒体を含んでよい。
送受信装置104は通信リンク103を使って別のデバイスと通信するよう構成され、例えばデータを送受する。具体的な実装において、送受信装置104はアンテナであってよく、あるいは別の送受信装置であってよい。
メモリ105は様々な機能を有するプログラムデータを格納するよう構成される。具体的な実装において、本開示の本実施形態におけるメモリ105は、揮発性メモリ(RAM等)や不揮発性メモリ(ROM、フラッシュメモリ等)や揮発性メモリと不揮発性メモリとの組み合わせといったシステムメモリであってよい。具体的な実装において、本開示の本実施形態におけるメモリ105は、磁気ディスクやディスクや磁気テープといったシステムの外部にある外部メモリであってもよい。
プロセッサ106はメモリ105に格納されたプログラムデータを呼び出すよう構成され、これにより下記処理を、すなわち、
周波数領域密度が増した周波数領域シーケンスを生成するため、第1の高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスの周波数領域密度を増加させるステップと、
周波数領域密度が増した周波数領域シーケンスに従って第2の高効率ショートトレーニングフィールドシーケンスを生成するステップと、
無線ローカルエリアネットワークWLANにてデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとして第2の高効率ショートトレーニングフィールドシーケンスを使用するステップとを実行する。
いくつかの実現可能な実装様態において、プロセッサ106が周波数領域密度が増した周波数領域シーケンスに従って第2の高効率ショートトレーニングフィールドシーケンスを生成するステップを遂行することは、
第2の高効率ショートトレーニングフィールドシーケンスを得るため、周波数領域密度が増した周波数領域シーケンスに対し逆フーリエ変換を遂行するステップと、サイクリックプレフィックスを加えるステップとを含む。
いくつかの実現可能な実装様態において、第1の高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスにおける非ゼロ値は順に1+1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,1+1i,1+1i,および1+1iであり、隣接する非ゼロ値の間にあるゼロ値の数量は3または2である。
図11は本開示による高効率ショートトレーニングフィールドシーケンス生成装置の別の実施形態の構造構成の概略図である。図11に見られるように、本実施形態の高効率ショートトレーニングフィールドシーケンス生成装置は入力装置111と、出力装置112と、通信リンク113と、送受信装置114と、メモリ115と、プロセッサ116とを含んでよい。
入力装置111は外部から高効率ショートトレーニングフィールドシーケンス生成装置に入力される入力データを受け取るよう構成される。具体的な実装において、本開示の本実施形態における入力装置111は、キーボード、マウス、光電子入力装置、音声入力装置、タッチ方式入力装置、スキャナ等を含んでよい。
出力装置112は高効率ショートトレーニングフィールドシーケンス生成装置の出力データを外部へ出力するよう構成される。具体的な実装において、本開示の本実施形態における出力装置112は、ディスプレイ、ラウドスピーカ、プリンタ等を含んでよい。
通信リンク113は高効率ショートトレーニングフィールドシーケンス生成装置と別のデバイスとの間に通信接続を成立させるよう構成される。具体的な実装において、本開示の本実施形態における通信リンク113は伝搬媒体の一種であってよい。伝搬媒体は通常、コンピュータ可読命令、データ構造、プログラムモジュール、またはその他データを別の変調データ信号(キャリヤや他の搬送機構等)の形に具現できる。例えば、伝搬媒体は有線ネットワークや直接有線接続等の有線媒体を含んでよい。あるいはまた、伝搬媒体は音波や高周波や赤外線等の有線媒体を含んでよい。
送受信装置114は通信リンク113を使って別のデバイスと通信するよう構成され、例えばデータを送受する。具体的な実装において、送受信装置114はアンテナであってよく、あるいは別の送受信装置であってよい。
メモリ115は様々な機能を有するプログラムデータを格納するよう構成される。具体的な実装において、本開示の本実施形態におけるメモリ115は、揮発性メモリ(RAM等)や不揮発性メモリ(ROM、フラッシュメモリ等)や揮発性メモリと不揮発性メモリとの組み合わせといったシステムメモリであってよい。具体的な実装において、本開示の本実施形態におけるメモリ115は、磁気ディスクやディスクや磁気テープといったシステムの外部にある外部メモリであってもよい。
プロセッサ116はメモリ115に格納されたプログラムデータを呼び出すよう構成され、これにより下記処理を、すなわち、
第2の帯域幅に対応するプリアンブルシーケンスで第1の高効率ショートトレーニングフィールドシーケンスを得るステップであって、第2の帯域幅は第1の帯域幅を上回る、ステップと、
得られた第1の高効率ショートトレーニングフィールドシーケンスからシーケンスのセグメントを取り込むステップであって、シーケンスのセグメントに含まれるサンプリングポイントの数量は、第1の帯域幅に対応するプリアンブルシーケンスの高効率ショートトレーニングフィールドシーケンスに対応するサンプリングポイントの数量である、ステップと、
第2の高効率ショートトレーニングフィールドシーケンスを得るため、取り込まれたシーケンスのセグメントのサンプリングレートを第1の帯域幅に対応するサンプリングレートに変えるステップと、
第1の帯域幅に対応するプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスとして第2の高効率ショートトレーニングフィールドシーケンスを使用するステップとを実行する。
いくつかの実現可能な実装様態において、得られた第1の高効率ショートトレーニングフィールドシーケンスからシーケンスのセグメントを取り込むステップを遂行する際に、プロセッサ116は、具体的には、第2の帯域幅に対応するプリアンブルシーケンスにて第1の高効率ショートトレーニングフィールドシーケンスから既定の開始位置による正規順序でシーケンスのセグメントを取り込む。
いくつかの実現可能な実装様態において、得られた第1の高効率ショートトレーニングフィールドシーケンスからシーケンスのセグメントを取り込むステップを遂行する際に、プロセッサ116は、具体的には、第2の帯域幅に対応するプリアンブルシーケンスにて第1の高効率ショートトレーニングフィールドシーケンスから既定の終了位置による逆順序でシーケンスのセグメントを取り込む。
いくつかの実現可能な実装様態において、第2の帯域幅に対応するプリアンブルシーケンスにおける第1の高効率ショートトレーニングフィールドシーケンスはサイクリックプレフィックスを含まない。
いくつかの実現可能な実装様態において、第2の帯域幅に対応するプリアンブルシーケンスにおける第1の高効率ショートトレーニングフィールドシーケンスは予め符号化された周波数領域シーケンスを変換することによって形成される。
いくつかの実現可能な実装様態において、第2の帯域幅に対応するプリアンブルシーケンスにおける第1の高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、5サイクルを含み、各サイクルの長さは800nsである。
相応に、本開示の実施形態は信号送信方法と、信号受信方法と、関連装置とをさらに開示する。
図12は本開示による信号送信方法の一実施形態の概略流れ図である。図12に見られるように、方法は下記ステップを含んでよい。
ステップS120:プリアンブルシーケンスを生成し、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで隣接する非ゼロ値の間にあるゼロ値の数量は3未満である。
具体的な実装において、本実施形態における高効率ショートトレーニングフィールドシーケンスは、本開示の図6に見られる実施形態で上述した高効率ショートトレーニングシーケンス方法で生成される様々な高効率ショートトレーニングフィールドシーケンスであってよい。当然ながら、本実施形態における高効率ショートトレーニングフィールドは別の高効率ショートトレーニング方法に従って生成されるシーケンスであってもよい。
ステップS121:生成されたプリアンブルシーケンスを送信する。
いくつかの実現可能な実装様態において、本実施形態の周波数領域シーケンスにおける非ゼロ値は順に1+1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,1+1i,1+1i,および1+1iである。この周波数領域シーケンスの全体については前述したシーケンス1を参照されたい。
いくつかの実現可能な実装様態において、本実施形態で高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスにおいて隣接する非ゼロ値の間にあるゼロ値の数量は1または2である。例えば、隣接する非ゼロ値の間にあるゼロ値の数量が1または2である周波数領域シーケンスは、前述したシーケンス2またはシーケンス3である。
本開示のいくつかの実現可能な実装様態で、プリアンブルシーケンスが生成され、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)を含み、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで隣接する非ゼロ値の間にあるゼロ値の数量は3未満であり、生成されたプリアンブルシーケンスが送信されることは、上記の説明から分かるであろう。したがって、本開示の本実施形態でWLANにおけるデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングシーケンスのサイクルは、先行技術のIEEE 802.11nにおける既存HT−STFシーケンスのサイクルに比べて、あるはIEEE 802.11acにおける既存VHT−STFシーケンスのサイクルに比べて、増大され、さらに、WLANで使える最大循環シフト遅延CSD値は相応に増加する。さらに、L−STFシーケンスと、プリアンブルシーケンスのサイクルが増大されたHT−STFシーケンス、またはVHT−STFシーケンス、またはHE−STFシーケンスとをそれぞれ使用し、WLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
図13は本開示による信号受信方法の一実施形態の概略流れ図である。この方法は図12の信号送信方法に対応している。図13に見られるように、方法は下記ステップを具体的に含む。
ステップS130:プリアンブルシーケンスを受信し、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで隣接する非ゼロ値の間にあるゼロ値の数量は3未満である。
いくつかの実現可能な実装様態において、本実施形態の周波数領域シーケンスにおける非ゼロ値は順に1+1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,1+1i,1+1i,および1+1iである。
いくつかの実現可能な実装様態において、本実施形態で高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスにおいて隣接する非ゼロ値の間にあるゼロ値の数量は1または2である。
本開示のいくつかの実現可能な実装様態で、プリアンブルシーケンスが受信され、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)を含み、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで隣接する非ゼロ値の間にあるゼロ値の数量が3未満であることは、上記の説明から分かるであろう。本開示の本実施形態でWLANにおけるデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングシーケンスのサイクルは、先行技術のIEEE 802.11nにおける既存HT−STFシーケンスのサイクルに比べて、あるはIEEE 802.11acにおける既存VHT−STFシーケンスのサイクルに比べて、増大され、さらに、WLANで使える最大循環シフト遅延CSD値は相応に増加する。さらに、L−STFシーケンスと、プリアンブルシーケンスのサイクルが増大されたHT−STFシーケンス、またはVHT−STFシーケンス、またはHE−STFシーケンスとをそれぞれ使用し、WLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
図14は本開示による信号送信方法の別の実施形態の概略流れ図である。図14に見られるように、方法は下記ステップを含んでよい。
ステップS140:現行帯域幅に対応するプリアンブルシーケンスを生成し、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスは基準帯域幅に対応するプリアンブルシーケンスにある高効率トレーニングフィールドシーケンスにおけるシーケンスのセグメントに対応しており、シーケンスのセグメントのサンプリングレートは現行帯域幅に対応するサンプリングレートであり、基準帯域幅は現行帯域幅を上回る。
具体的な実装において、本実施形態の高効率ショートトレーニングフィールドシーケンスは図7の方法で生成される第2の高効率ショートトレーニングフィールドシーケンスであってよい。この場合、現行帯域幅は第1の帯域幅に相当し、基準帯域幅は第2の帯域幅に相当する。当然ながら、本実施形態で高効率ショートトレーニングシーケンスを生成したり得たりすることは図7の方法に限定されない。
ステップS141:生成されたプリアンブルシーケンスを送信する。
いくつかの実現可能な実装様態において、本実施形態におけるシーケンスのセグメントは少なくとも1サイクルを含む。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は20MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、80サンプリングポイントを含み、50nsのサンプリングレートに対応し、
基準帯域幅は40MHz、80MHz、または160MHzのいずれか1つであり、
40MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、160サンプリングポイントを含み、25nsのサンプリングレートに対応し、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は20MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、64サンプリングポイントを含み、50nsのサンプリングレートに対応し、
基準帯域幅は40MHz、80MHz、または160MHzのいずれか1つであり、
40MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、128サンプリングポイントを含み、25nsのサンプリングレートに対応し、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は40MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、160サンプリングポイントを含み、25nsのサンプリングレートに対応し、
基準帯域幅は80MHzまたは160MHzのいずれか一方であり、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は40MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、128サンプリングポイントを含み、25nsのサンプリングレートに対応し、
基準帯域幅は80MHzまたは160MHzのいずれか一方であり、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は80MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
基準帯域幅は160MHzであり、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は80MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
基準帯域幅は160MHzであり、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
本開示のいくつかの実現可能な実装様態で、現行帯域幅に対応するプリアンブルシーケンスが生成され、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)を含み、高効率ショートトレーニングフィールドシーケンスは基準帯域幅に対応するプリアンブルシーケンスにある高効率トレーニングフィールドシーケンスにおけるシーケンスのセグメントに対応しており、シーケンスのセグメントのサンプリングレートは現行帯域幅に対応するサンプリングレートであり、基準帯域幅は現行帯域幅を上回り、生成されたプリアンブルシーケンスが送信されることは、上記の説明から分かるであろう。したがって、現行帯域幅に対応するプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスのサイクルは、先行技術のIEEE 802.11nにおける既存HT−STFシーケンスのサイクルに比べて、あるはIEEE 802.11acにおける既存VHT−STFシーケンスのサイクルに比べて、増大され、さらに、現行帯域幅にてWLANシステムで使える最大循環シフト遅延CSD値は相応に増加する。さらに、L−STFシーケンスと、プリアンブルシーケンスのサイクルが増大されたHT−STFシーケンス、またはVHT−STFシーケンス、またはHE−STFシーケンスとをそれぞれ使用し、現行帯域幅にてWLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
図15は本開示による信号受信方法の別の実施形態の概略流れ図である。この方法は図14の信号送信方法に対応している。図15に見られるように、方法は下記ステップを含む。
ステップS150:現行帯域幅に対応するプリアンブルシーケンスを受信し、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスは基準帯域幅に対応するプリアンブルシーケンスにある高効率トレーニングフィールドシーケンスにおけるシーケンスのセグメントに対応しており、シーケンスのセグメントのサンプリングレートは現行帯域幅に対応するサンプリングレートであり、基準帯域幅は現行帯域幅を上回る。
いくつかの実現可能な実装様態において、本実施形態におけるシーケンスのセグメントは少なくとも1サイクルを含む。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は20MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、80サンプリングポイントを含み、50nsのサンプリングレートに対応し、
基準帯域幅は40MHz、80MHz、または160MHzのいずれか1つであり、
40MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、160サンプリングポイントを含み、25nsのサンプリングレートに対応し、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は20MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、64サンプリングポイントを含み、50nsのサンプリングレートに対応し、
基準帯域幅は40MHz、80MHz、または160MHzのいずれか1つであり、
40MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、128サンプリングポイントを含み、25nsのサンプリングレートに対応し、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は40MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、160サンプリングポイントを含み、25nsのサンプリングレートに対応し、
基準帯域幅は80MHzまたは160MHzのいずれか一方であり、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は40MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、128サンプリングポイントを含み、25nsのサンプリングレートに対応し、
基準帯域幅は80MHzまたは160MHzのいずれか一方であり、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は80MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
基準帯域幅は160MHzであり、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は80MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
基準帯域幅は160MHzであり、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
本開示のいくつかの実現可能な実装様態で、現行帯域幅に対応するプリアンブルシーケンスが受信され、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)を含み、高効率ショートトレーニングフィールドシーケンスは基準帯域幅に対応するプリアンブルシーケンスにある高効率トレーニングフィールドシーケンスにおけるシーケンスのセグメントに対応しており、シーケンスのセグメントのサンプリングレートは現行帯域幅に対応するサンプリングレートであり、基準帯域幅が現行帯域幅を上回ることは、上記の説明から分かるであろう。したがって、現行帯域幅に対応するプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスのサイクルは、先行技術のIEEE 802.11nにおける既存HT−STFシーケンスのサイクルに比べて、あるはIEEE 802.11acにおける既存VHT−STFシーケンスのサイクルに比べて、増大され、さらに、現行帯域幅にてWLANシステムで使える最大循環シフト遅延CSD値は相応に増加する。さらに、L−STFシーケンスと、プリアンブルシーケンスのサイクルが増大されたHT−STFシーケンス、またはVHT−STFシーケンス、またはHE−STFシーケンスとをそれぞれ使用し、現行帯域幅にてWLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
図16は本開示による信号送信デバイスの一実施形態の構造構成の概略図である。このデバイスは図12の信号送信方法を実施するよう構成されてよい。図16に見られるように、デバイスは生成モジュール160と送信モジュール161とを含んでよい。
生成モジュール160はプリアンブルシーケンスを生成するよう構成され、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで隣接する非ゼロ値の間にあるゼロ値の数量は3未満である。
送信モジュール161は生成されたプリアンブルシーケンスを送信するよう構成される。
具体的な実装において、本実施形態における高効率ショートトレーニングフィールドシーケンスは、図6に見られる前述の方法で生成される第2の高効率ショートトレーニングフィールドシーケンスであってよい。当然ながら、本実施形態の高効率ショートトレーニングフィールドシーケンスは別の様態で生成されたり得られたりしてもよい。
いくつかの実現可能な実装様態において、本実施形態の周波数領域シーケンスにおける非ゼロ値は順に1+1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,1+1i,1+1i,および1+1iである。この周波数領域シーケンスの完全なシーケンスは前述したシーケンス1である。
いくつかの実現可能な実装様態において、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスにおいて隣接する非ゼロ値の間にあるゼロ値の数量は1または2である。例えば、非ゼロ値の間にあるゼロ値の数量が1であるシーケンスは前述したシーケンス2であってよく、非ゼロ値の間にあるゼロ値の数量が1であるシーケンスは前述したシーケンス3であってよい。
本開示のいくつかの実現可能な実装様態で、プリアンブルシーケンスが生成され、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)を含み、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで隣接する非ゼロ値の間にあるゼロ値の数量は3未満であり、生成されたプリアンブルシーケンスが送信されることは、上記の説明から分かるであろう。したがって、本開示の本実施形態でWLANにおけるデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングシーケンスのサイクルは、先行技術のIEEE 802.11nにおける既存HT−STFシーケンスのサイクルに比べて、あるはIEEE 802.11acにおける既存VHT−STFシーケンスのサイクルに比べて、増大され、さらに、WLANで使える最大循環シフト遅延CSD値は相応に増加する。さらに、L−STFシーケンスと、プリアンブルシーケンスのサイクルが増大されたHT−STFシーケンス、またはVHT−STFシーケンス、またはHE−STFシーケンスとをそれぞれ使用し、WLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
図17は本開示による信号受信デバイスの一実施形態の構造構成の概略図である。このデバイスは図13の信号受信方法を実施するよう構成されてよい。図17に見られるように、デバイスは、
プリアンブルシーケンスを受信するよう構成された受信モジュール170であって、プリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで隣接する非ゼロ値の間にあるゼロ値の数量は3未満である、受信モジュール170を含んでよい。
いくつかの実現可能な実装様態において、本実施形態の周波数領域シーケンスにおける非ゼロ値は順に1+1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,1+1i,1+1i,および1+1iである。この周波数領域シーケンスの完全なシーケンスは前述したシーケンス1である。
いくつかの実現可能な実装様態において、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスにおいて隣接する非ゼロ値の間にあるゼロ値の数量は1または2である。例えば、非ゼロ値の間にあるゼロ値の数量が1であるシーケンスは前述したシーケンス2であってよく、非ゼロ値の間にあるゼロ値の数量が1であるシーケンスは前述したシーケンス3であってよい。
本開示のいくつかの実現可能な実装様態で、プリアンブルシーケンスが受信され、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)を含み、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで隣接する非ゼロ値の間にあるゼロ値の数量が3未満であることは、上記の説明から分かるであろう。本開示の本実施形態でWLANにおけるデータ伝送フレームのプリアンブルシーケンスで高効率ショートトレーニングシーケンスのサイクルは、先行技術のIEEE 802.11nにおける既存HT−STFシーケンスのサイクルに比べて、あるはIEEE 802.11acにおける既存VHT−STFシーケンスのサイクルに比べて、増大され、さらに、WLANで使える最大循環シフト遅延CSD値は相応に増加する。さらに、L−STFシーケンスと、プリアンブルシーケンスのサイクルが増大されたHT−STFシーケンス、またはVHT−STFシーケンス、またはHE−STFシーケンスとをそれぞれ使用し、WLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
図18は本開示による信号送信デバイスの別の実施形態の構造構成の概略図である。このデバイスは図14で前述した信号送信方法を実施するよう構成されてよい。図18に見られるように、デバイスは生成モジュール180と送信モジュール181とを含んでよい。
生成モジュール180は現行帯域幅に対応するプリアンブルシーケンスを生成するよう構成され、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスは基準帯域幅に対応するプリアンブルシーケンスにある高効率トレーニングフィールドシーケンスにおけるシーケンスのセグメントに対応しており、シーケンスのセグメントのサンプリングレートは現行帯域幅に対応するサンプリングレートであり、基準帯域幅は現行帯域幅を上回る。
送信モジュール181は生成されたプリアンブルシーケンスを送信するよう構成される。
具体的な実装において、本実施形態の高効率ショートトレーニングフィールドシーケンスは図7の方法で生成される第2の高効率ショートトレーニングフィールドシーケンスであってよい。この場合、現行帯域幅は第1の帯域幅に相当し、基準帯域幅は第2の帯域幅に相当する。当然ながら、本実施形態で高効率ショートトレーニングシーケンスを生成したり得たりすることは図7の方法に限定されない。
いくつかの実現可能な実装様態において、本実施形態におけるシーケンスのセグメントは少なくとも1サイクルを含む。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は20MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、80サンプリングポイントを含み、50nsのサンプリングレートに対応し、
基準帯域幅は40MHz、80MHz、または160MHzのいずれか1つであり、
40MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、160サンプリングポイントを含み、25nsのサンプリングレートに対応し、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は20MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、64サンプリングポイントを含み、50nsのサンプリングレートに対応し、
基準帯域幅は40MHz、80MHz、または160MHzのいずれか1つであり、
40MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、128サンプリングポイントを含み、25nsのサンプリングレートに対応し、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は40MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、160サンプリングポイントを含み、25nsのサンプリングレートに対応し、
基準帯域幅は80MHzまたは160MHzのいずれか一方であり、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は40MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、128サンプリングポイントを含み、25nsのサンプリングレートに対応し、
基準帯域幅は80MHzまたは160MHzのいずれか一方であり、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は80MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
基準帯域幅は160MHzであり、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は80MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
基準帯域幅は160MHzであり、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
本開示のいくつかの実現可能な実装様態で、現行帯域幅に対応するプリアンブルシーケンスが生成され、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)を含み、高効率ショートトレーニングフィールドシーケンスは基準帯域幅に対応するプリアンブルシーケンスにある高効率トレーニングフィールドシーケンスにおけるシーケンスのセグメントに対応しており、シーケンスのセグメントのサンプリングレートは現行帯域幅に対応するサンプリングレートであり、基準帯域幅は現行帯域幅を上回り、生成されたプリアンブルシーケンスが送信されることは、上記の説明から分かるであろう。したがって、現行帯域幅に対応するプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスのサイクルは、先行技術のIEEE 802.11nにおける既存HT−STFシーケンスのサイクルに比べて、あるはIEEE 802.11acにおける既存VHT−STFシーケンスのサイクルに比べて、増大され、さらに、現行帯域幅にてWLANシステムで使える最大循環シフト遅延CSD値は相応に増加する。さらに、L−STFシーケンスと、プリアンブルシーケンスのサイクルが増大されたHT−STFシーケンス、またはVHT−STFシーケンス、またはHE−STFシーケンスとをそれぞれ使用し、現行帯域幅にてWLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
図19は本開示による信号受信デバイスの別の実施形態の構造構成の概略図である。このデバイスは図15の信号受信方法を実施するよう構成されてよい。図19に見られるように、デバイスは、
現行帯域幅に対応するプリアンブルシーケンスを受信するよう構成された受信モジュール190であって、プリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスは基準帯域幅に対応するプリアンブルシーケンスにある高効率トレーニングフィールドシーケンスにおけるシーケンスのセグメントに対応しており、シーケンスのセグメントのサンプリングレートは現行帯域幅に対応するサンプリングレートであり、基準帯域幅は現行帯域幅を上回る、受信モジュール190を含んでよい。
いくつかの実現可能な実装様態において、本実施形態におけるシーケンスのセグメントは少なくとも1サイクルを含む。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は20MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、80サンプリングポイントを含み、50nsのサンプリングレートに対応し、
基準帯域幅は40MHz、80MHz、または160MHzのいずれか1つであり、
40MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、160サンプリングポイントを含み、25nsのサンプリングレートに対応し、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は20MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、64サンプリングポイントを含み、50nsのサンプリングレートに対応し、
基準帯域幅は40MHz、80MHz、または160MHzのいずれか1つであり、
40MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、128サンプリングポイントを含み、25nsのサンプリングレートに対応し、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は40MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、160サンプリングポイントを含み、25nsのサンプリングレートに対応し、
基準帯域幅は80MHzまたは160MHzのいずれか一方であり、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は40MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、128サンプリングポイントを含み、25nsのサンプリングレートに対応し、
基準帯域幅は80MHzまたは160MHzのいずれか一方であり、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は80MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
基準帯域幅は160MHzであり、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は80MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
基準帯域幅は160MHzであり、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
本開示のいくつかの実現可能な実装様態で、現行帯域幅に対応するプリアンブルシーケンスが受信され、ここでプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンス(例えばIEEE 802.11nのHT−STFシーケンス、またはIEEE 802.11acのVHT−STFシーケンス、または次世代WLANネットワークのHE−STF)を含み、高効率ショートトレーニングフィールドシーケンスは基準帯域幅に対応するプリアンブルシーケンスにある高効率トレーニングフィールドシーケンスにおけるシーケンスのセグメントに対応しており、シーケンスのセグメントのサンプリングレートは現行帯域幅に対応するサンプリングレートであり、基準帯域幅が現行帯域幅を上回ることは、上記の説明から分かるであろう。したがって、現行帯域幅に対応するプリアンブルシーケンスで高効率ショートトレーニングフィールドシーケンスのサイクルは、先行技術のIEEE 802.11nにおける既存HT−STFシーケンスのサイクルに比べて、あるはIEEE 802.11acにおける既存VHT−STFシーケンスのサイクルに比べて、増大され、さらに、現行帯域幅にてWLANシステムで使える最大循環シフト遅延CSD値は相応に増加する。さらに、L−STFシーケンスと、プリアンブルシーケンスのサイクルが増大されたHT−STFシーケンス、またはVHT−STFシーケンス、またはHE−STFシーケンスとをそれぞれ使用し、現行帯域幅にてWLANシステムで受信される信号に対し2段階からなる自動利得制御AGC調整が遂行されると、より良好なAGC性能を得ることができる。
図20は本開示による信号送信デバイスの別の実施形態の構造構成の概略図である。このデバイスは図12の信号送信方法を実施するよう構成されてよい。図20に見られるように、デバイスは入力装置2011と、出力装置2012と、通信リンク2013と、送受信装置2014と、メモリ2015と、プロセッサ2016とを含む。
入力装置2011は外部から信号送信デバイスに入力される入力データを受け取るよう構成される。
具体的な実装において、本開示の本実施形態における入力装置2011は、キーボード、マウス、光電子入力装置、音声入力装置、タッチ方式入力装置、スキャナ等を含んでよい。
出力装置2012は信号送信デバイスの出力データを外部へ出力するよう構成される。具体的な実装において、本開示の本実施形態における出力装置2012は、ディスプレイ、ラウドスピーカ、プリンタ等を含んでよい。
通信リンク2013は信号送信デバイスと別のデバイスとの間に通信接続を成立させるよう構成される。具体的な実装において、本開示の本実施形態における通信リンク2013は伝搬媒体の一種であってよい。伝搬媒体は通常、コンピュータ可読命令、データ構造、プログラムモジュール、またはその他データを別の変調データ信号(キャリヤや他の搬送機構等)の形に具現できる。例えば、伝搬媒体は有線ネットワークや直接有線接続等の有線媒体を含んでよい。あるいはまた、伝搬媒体は音波や高周波や赤外線等の有線媒体を含んでよい。
送受信装置2014は通信リンク2013を使って別のデバイスと通信するよう構成され、例えばデータを送受する。具体的な実装において、送受信装置2014はアンテナであってよく、あるいは別の送受信装置であってよい。
メモリ2015は様々な機能を有するプログラムデータを格納するよう構成される。具体的な実装において、本開示の本実施形態におけるメモリ2015は、揮発性メモリ(RAM等)や不揮発性メモリ(ROM、フラッシュメモリ等)や揮発性メモリと不揮発性メモリとの組み合わせといったシステムメモリであってよい。具体的な実装において、本開示の本実施形態におけるメモリ2015は、磁気ディスクやディスクや磁気テープといったシステムの外部にある外部メモリであってもよい。
プロセッサ2016はメモリ2015に格納されたプログラムデータを呼び出すよう構成され、これにより下記処理を、すなわち、
プリアンブルシーケンスを生成するステップであって、プリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで隣接する非ゼロ値の間にあるゼロ値の数量は3未満である、ステップと、
生成されたプリアンブルシーケンスを送信のため送受信装置2014へ送るステップと
を実行する。
いくつかの実現可能な実装様態において、本実施形態の周波数領域シーケンスにおける非ゼロ値は順に1+1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,1+1i,1+1i,および1+1iである。
いくつかの実現可能な実装様態において、本実施形態で高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスにおいて隣接する非ゼロ値の間にあるゼロ値の数量は1または2である。
図21は本開示による信号受信デバイスの別の実施形態の構造構成の概略図である。このデバイスは図13の信号受信方法を実施するよう構成されてよい。図21に見られるように、デバイスは入力装置2111と、出力装置2112と、通信リンク2113と、送受信装置2114と、メモリ2115と、プロセッサ2116とを含んでよい。
入力装置2111は外部から信号受信デバイスに入力される入力データを受け取るよう構成される。具体的な実装において、本開示の本実施形態における入力装置2111は、キーボード、マウス、光電子入力装置、音声入力装置、タッチ方式入力装置、スキャナ等を含んでよい。
出力装置2112は信号受信デバイスの出力データを外部へ出力するよう構成される。具体的な実装において、本開示の本実施形態における出力装置2112は、ディスプレイ、ラウドスピーカ、プリンタ等を含んでよい。
通信リンク2113は信号受信デバイスと別のデバイスとの間に通信接続を成立させるよう構成される。具体的な実装において、本開示の本実施形態における通信リンク2113は伝搬媒体の一種であってよい。伝搬媒体は通常、コンピュータ可読命令、データ構造、プログラムモジュール、またはその他データを別の変調データ信号(キャリヤや他の搬送機構等)の形に具現できる。例えば、伝搬媒体は有線ネットワークや直接有線接続等の有線媒体を含んでよい。あるいはまた、伝搬媒体は音波や高周波や赤外線等の有線媒体を含んでよい。
送受信装置2114は通信リンク2113を使って別のデバイスと通信するよう構成され、例えばデータを送受する。具体的な実装において、送受信装置2114はアンテナであってよく、あるいは別の送受信装置であってよい。本実施形態で送受信装置2114によって受信されるプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで隣接する非ゼロ値の間にあるゼロ値の数量は3未満である。
メモリ2115は様々な機能を有するプログラムデータを格納するよう構成される。具体的な実装において、本開示の本実施形態におけるメモリ2115は、揮発性メモリ(RAM等)や不揮発性メモリ(ROM、フラッシュメモリ等)や揮発性メモリと不揮発性メモリとの組み合わせといったシステムメモリであってよい。具体的な実装において、本開示の本実施形態におけるメモリ2115は、磁気ディスクやディスクや磁気テープといったシステムの外部にある外部メモリであってもよい。
プロセッサ2116はメモリ2115に格納されたプログラムデータを呼び出すよう構成され、これにより下記処理を、すなわち、
送受信装置2114からプリアンブルシーケンスを受け取るステップを実行する。
いくつかの実現可能な実装様態において、本実施形態の周波数領域シーケンスにおける非ゼロ値は順に1+1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,−1−1i,−1−1i,1+1i,1+1i,1+1i,および1+1iである。
いくつかの実現可能な実装様態において、本実施形態で高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスにおいて隣接する非ゼロ値の間にあるゼロ値の数量は1または2である。
図22は本開示による信号送信デバイスの別の実施形態の構造構成の概略図である。このデバイスは図14の信号送信方法を実施するよう構成されてよい。図22に見られるように、デバイスは入力装置2211と、出力装置2212と、通信リンク2213と、送受信装置2214と、メモリ2215と、プロセッサ2216とを含んでよい。
入力装置2211は外部から信号送信デバイスに入力される入力データを受け取るよう構成される。具体的な実装において、本開示の本実施形態における入力装置2211は、キーボード、マウス、光電子入力装置、音声入力装置、タッチ方式入力装置、スキャナ等を含んでよい。
出力装置2212は信号送信デバイスの出力データを外部へ出力するよう構成される。具体的な実装において、本開示の本実施形態における出力装置2212は、ディスプレイ、ラウドスピーカ、プリンタ等を含んでよい。
通信リンク2213は信号送信デバイスと別のデバイスとの間に通信接続を成立させるよう構成される。具体的な実装において、本開示の本実施形態における通信リンク2213は伝搬媒体の一種であってよい。伝搬媒体は通常、コンピュータ可読命令、データ構造、プログラムモジュール、またはその他データを別の変調データ信号(キャリヤや他の搬送機構等)の形に具現できる。例えば、伝搬媒体は有線ネットワークや直接有線接続等の有線媒体を含んでよい。あるいはまた、伝搬媒体は音波や高周波や赤外線等の有線媒体を含んでよい。
送受信装置2214は通信リンク2213を使って別のデバイスと通信するよう構成され、例えばデータを送受する。具体的な実装において、送受信装置2214はアンテナであってよく、あるいは別の送受信装置であってよい。本実施形態で送受信装置2214によって受信されるプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスに対応する周波数領域シーケンスで隣接する非ゼロ値の間にあるゼロ値の数量は3未満である。
メモリ2215は様々な機能を有するプログラムデータを格納するよう構成される。具体的な実装において、本開示の本実施形態におけるメモリ2215は、揮発性メモリ(RAM等)や不揮発性メモリ(ROM、フラッシュメモリ等)や揮発性メモリと不揮発性メモリとの組み合わせといったシステムメモリであってよい。具体的な実装において、本開示の本実施形態におけるメモリ2215は、磁気ディスクやディスクや磁気テープといったシステムの外部にある外部メモリであってもよい。
プロセッサ2216はメモリ2215に格納されたプログラムデータを呼び出すよう構成され、これにより下記処理を、すなわち、
現行帯域幅に対応するプリアンブルシーケンスを生成するステップであって、プリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスは基準帯域幅に対応するプリアンブルシーケンスにある高効率トレーニングフィールドシーケンスにおけるシーケンスのセグメントに対応しており、シーケンスのセグメントのサンプリングレートは現行帯域幅に対応するサンプリングレートであり、基準帯域幅は現行帯域幅を上回る、ステップと、
生成されたプリアンブルシーケンスを送信のため送受信装置へ送るステップと
を実行する。
いくつかの実現可能な実装様態において、本実施形態におけるシーケンスのセグメントは少なくとも1サイクルを含む。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は20MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、80サンプリングポイントを含み、50nsのサンプリングレートに対応し、
基準帯域幅は40MHz、80MHz、または160MHzのいずれか1つであり、
40MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、160サンプリングポイントを含み、25nsのサンプリングレートに対応し、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は20MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、64サンプリングポイントを含み、50nsのサンプリングレートに対応し、
基準帯域幅は40MHz、80MHz、または160MHzのいずれか1つであり、
40MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、128サンプリングポイントを含み、25nsのサンプリングレートに対応し、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は40MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、160サンプリングポイントを含み、25nsのサンプリングレートに対応し、
基準帯域幅は80MHzまたは160MHzのいずれか一方であり、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は40MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、128サンプリングポイントを含み、25nsのサンプリングレートに対応し、
基準帯域幅は80MHzまたは160MHzのいずれか一方であり、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は80MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
基準帯域幅は160MHzであり、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は80MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
基準帯域幅は160MHzであり、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
図23は本開示による信号受信デバイスの別の実施形態の構造構成の概略図である。このデバイスは図15の信号受信方法を実施するよう構成されてよい。図23に見られるように、デバイスは入力装置2311と、出力装置2312と、通信リンク2313と、送受信装置2314と、メモリ2315と、プロセッサ2316とを含んでよい。
入力装置2311は外部から信号送信デバイスに入力される入力データを受け取るよう構成される。具体的な実装において、本開示の本実施形態における入力装置2311は、キーボード、マウス、光電子入力装置、音声入力装置、タッチ方式入力装置、スキャナ等を含んでよい。
出力装置2312は信号送信デバイスの出力データを外部へ出力するよう構成される。具体的な実装において、本開示の本実施形態における出力装置2312は、ディスプレイ、ラウドスピーカ、プリンタ等を含んでよい。
通信リンク2313は信号送信デバイスと別のデバイスとの間に通信接続を成立させるよう構成される。具体的な実装において、本開示の本実施形態における通信リンク2313は伝搬媒体の一種であってよい。伝搬媒体は通常、コンピュータ可読命令、データ構造、プログラムモジュール、またはその他データを別の変調データ信号(キャリヤや他の搬送機構等)の形に具現できる。例えば、伝搬媒体は有線ネットワークや直接有線接続等の有線媒体を含んでよい。あるいはまた、伝搬媒体は音波や高周波や赤外線等の有線媒体を含んでよい。
送受信装置2314は通信リンク2313を使って別のデバイスと通信するよう構成され、例えばデータを送受する。具体的な実装において、送受信装置2314はアンテナであってよく、あるいは別の送受信装置であってよい。本実施形態で送受信装置2314によって受信されるプリアンブルシーケンスは高効率ショートトレーニングフィールドシーケンスを含み、高効率ショートトレーニングフィールドシーケンスは基準帯域幅に対応するプリアンブルシーケンスにある高効率トレーニングフィールドシーケンスにおけるシーケンスのセグメントに対応しており、シーケンスのセグメントのサンプリングレートは現行帯域幅に対応するサンプリングレートであり、基準帯域幅は現行帯域幅を上回る。
メモリ2315は様々な機能を有するプログラムデータを格納するよう構成される。具体的な実装において、本開示の本実施形態におけるメモリ2315は、揮発性メモリ(RAM等)や不揮発性メモリ(ROM、フラッシュメモリ等)や揮発性メモリと不揮発性メモリとの組み合わせといったシステムメモリであってよい。具体的な実装において、本開示の本実施形態におけるメモリ2315は、磁気ディスクやディスクや磁気テープといったシステムの外部にある外部メモリであってもよい。
プロセッサ2316はメモリ2315に格納されたプログラムデータを呼び出すよう構成され、これにより下記処理を、すなわち、
送受信装置2314からプリアンブルシーケンスを受け取るステップを実行する。
いくつかの実現可能な実装様態において、本実施形態におけるシーケンスのセグメントは少なくとも1サイクルを含む。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は20MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、80サンプリングポイントを含み、50nsのサンプリングレートに対応し、
基準帯域幅は40MHz、80MHz、または160MHzのいずれか1つであり、
40MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、160サンプリングポイントを含み、25nsのサンプリングレートに対応し、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は20MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、64サンプリングポイントを含み、50nsのサンプリングレートに対応し、
基準帯域幅は40MHz、80MHz、または160MHzのいずれか1つであり、
40MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、128サンプリングポイントを含み、25nsのサンプリングレートに対応し、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は40MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、160サンプリングポイントを含み、25nsのサンプリングレートに対応し、
基準帯域幅は80MHzまたは160MHzのいずれか一方であり、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は40MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、128サンプリングポイントを含み、25nsのサンプリングレートに対応し、
基準帯域幅は80MHzまたは160MHzのいずれか一方であり、
80MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は80MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、320サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
基準帯域幅は160MHzであり、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは4μsの持続時間を有し、640サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
いくつかの実現可能な実装様態において、本実施形態における現行帯域幅は80MHzであり、現行帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは3.2μsの持続時間を有し、256サンプリングポイントを含み、12.5nsのサンプリングレートに対応し、
基準帯域幅は160MHzであり、
160MHzの基準帯域幅に対応するプリアンブルシーケンスに含まれる高効率ショートトレーニングフィールドシーケンスは43.2μsの持続時間を有し、512サンプリングポイントを含み、6.25nsのサンプリングレートに対応する。
加えて、本開示の一実施形態はコンピュータ記憶媒体をさらに提供し、ここでコンピュータ記憶媒体はプログラムを格納してよく、プログラムが実行されると、本開示の実施形態で説明された方法のステップの一部または全部が遂行されてよい。具体的な実装において、本開示の本実施形態におけるコンピュータ記憶媒体は、RAM、ROM、EEPROM、フラッシュメモリ、CD−ROM、DVD、または別の光学式メモリ、磁気テープ、磁気ディスク、または別の磁気式メモリ、あるいは必要情報を格納するよう構成され得て計算デバイスによってアクセスされ得る他の何らかの媒体を含む。
図24は本開示の技術的解決手段による受信機のAGC性能と既存の技術的解決手段による受信機のAGC性能との比較の概略図である。図24で、L−STFは先行技術のWLAN規格でHT−STF部分かVHT−STF部分に使われるSTFシーケンスを表している。M1_Opt1とM1_Opt2は本開示で前述したシーケンス2とシーケンス3の周波数領域密度が増加された後に得られた2種類のシーケンスをそれぞれ表しており、M2は本開示でより大きい帯域幅で時間領域シーケンスを取り込むことによって20MHzの帯域幅で得られたSTF時間領域シーケンスを表している。
図24で、水平座標は受信信号におけるデータ部分の電力に対するSTF部分の電力の比(dB)を表しており、垂直座標は比の累積分布関数(CDF)値を表している。3グループのCSD値が使われている。第1のグループでCSD_acは先行技術のIEEE 802.11ac規格でプリアンブルシーケンスのVHT−STF部分とデータ部分に使われるCSDシーケンスを示している。
CSD_ac:[0,−400,−200,−600,−350,−650,−100,−750]
第2のグループと第3のグループでCSD_Lは最大値が増加されたCSDシーケンスを示している。
CSD_L1:[0,−500,−250,−700,−400,−800,−150,−900]
CSD_L2:[0,−800,−400,−1000,−600,−1200,−200,−1400]
CSDシーケンス(曲線1)がまったく使われない場合にSTF部分の電力とデータ部分の電力との間に甚だしい不一致があることが、図24の結果から分かるであろう。その結果、受信機はAGCを効果的に調整できなくなり、受信機の全体的性能が大幅に損なわれる。既存規格の解決手段(曲線2)によると、電力の一致度は大幅に改善され得る。ただし、本開示の技術的解決手段(曲線3〜曲線6)を用いることでCDF曲線がさらに改善されることが分かるであろう。特に、より大きい帯域幅で時間領域シーケンスを取り込むことによって得られたSTF時間領域シーケンスのCDF曲線(曲線5および曲線6)は大いに改善されている。本開示の実施形態で提供される技術的解決手段を用いることで、WLANシステムで受信機のAGC性能を効果的に改善できることが分かるであろう。
当然ながら、当業者は本開示の精神と範囲から逸脱せずに本開示に様々な改良や変更を加えることができる。これらの改良や変更が以降の請求項ならびに同等の技術によって規定される保護範囲内にある限り、これらの改良や変更は本開示の範囲に含まれる。