JP6507506B2 - Resin composition for sealing and semiconductor device - Google Patents

Resin composition for sealing and semiconductor device Download PDF

Info

Publication number
JP6507506B2
JP6507506B2 JP2014145613A JP2014145613A JP6507506B2 JP 6507506 B2 JP6507506 B2 JP 6507506B2 JP 2014145613 A JP2014145613 A JP 2014145613A JP 2014145613 A JP2014145613 A JP 2014145613A JP 6507506 B2 JP6507506 B2 JP 6507506B2
Authority
JP
Japan
Prior art keywords
group
resin composition
compound
sealing
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014145613A
Other languages
Japanese (ja)
Other versions
JP2016020464A (en
Inventor
純一 田部井
純一 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2014145613A priority Critical patent/JP6507506B2/en
Priority to KR1020177003859A priority patent/KR102166100B1/en
Priority to CN201580038820.2A priority patent/CN106536591B/en
Priority to PCT/JP2015/065723 priority patent/WO2016009730A1/en
Priority to TW104118103A priority patent/TWI657128B/en
Publication of JP2016020464A publication Critical patent/JP2016020464A/en
Application granted granted Critical
Publication of JP6507506B2 publication Critical patent/JP6507506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wire Bonding (AREA)

Description

本発明は、封止用樹脂組成物及び半導体装置に関する。   The present invention relates to a sealing resin composition and a semiconductor device.

ダイオード、トランジスタ、集積回路等の半導体素子(電子部品)は、エポキシ樹脂組成物等の硬化物によりモールドされた半導体装置として、市場に流通又は電子機器に組み込まれている。このような封止材に用いられるエポキシ樹脂組成物は、一般的に、エポキシ樹脂、フェノール樹脂系硬化剤、無機充填材、カップリング剤等の組成からなる。また、近年の電子機器の小型化、軽量化、高性能化等の動向に伴って電子部品の高集積化等が進み、封止材(封止用樹脂組成物)に要求される性能も高くなっている。封止材に要求される具体的性能としては、例えば密着性、耐半田性、流動性、耐熱性、高温保管特性等がある。   Semiconductor devices (electronic components) such as diodes, transistors, and integrated circuits are distributed in the market or incorporated in electronic devices as semiconductor devices molded with a cured product such as an epoxy resin composition. The epoxy resin composition used for such a sealing material generally comprises a composition of an epoxy resin, a phenol resin-based curing agent, an inorganic filler, a coupling agent, and the like. In addition, with the trend of miniaturization, weight reduction, high performance, etc. of electronic devices in recent years, high integration of electronic parts advances, etc., and the performance required for a sealing material (resin composition for sealing) is also high. It has become. Specific performances required of the sealing material include, for example, adhesion, solder resistance, flowability, heat resistance, high temperature storage characteristics and the like.

このような中、メルカプト基を有するシランカップリング剤等、メルカプト基を有する化合物を含有する封止用樹脂組成物が開発されている(特許文献1、特許文献2参照)。メルカプト基を有する化合物を含有させることで、電子部品等に対する密着性が高まるなどといった効果がある。   Among these, a sealing resin composition containing a compound having a mercapto group, such as a silane coupling agent having a mercapto group, has been developed (see Patent Document 1 and Patent Document 2). By containing a compound having a mercapto group, the adhesion to an electronic component or the like is enhanced.

一方、近年、半導体素子とリードフレームとの接続に用いられるボンディングワイヤ等の材料として、金に代わり安価な銅が使用されつつあるが、銅ワイヤ等の銅部材が用いられた半導体装置に対するより一層の優れた高温保管特性が求められており、このような半導体素子の封止に好適な封止用樹脂組成物の開発が望まれている。   On the other hand, in recent years, inexpensive copper is being used in place of gold as a material for bonding wires and the like used to connect the semiconductor element and the lead frame, but even more for semiconductor devices using copper members such as copper wires. Such high temperature storage characteristics are required, and development of a sealing resin composition suitable for sealing such a semiconductor element is desired.

特開2003−268200号公報JP 2003-268200 A 特開2008−201873号公報JP 2008-201873 A

本発明は、かかる事情に鑑みてなされたもので、金属に対して十分な密着性を有し、得られる半導体装置の高温保管特性も高い封止用樹脂組成物を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a sealing resin composition having sufficient adhesion to metal and also having high temperature storage characteristics of the obtained semiconductor device. .

本発明によれば、半導体素子をモールドする封止用樹脂組成物であって、以下の成分を含む封止用樹脂組成物が提供される。
(A)エポキシ樹脂
(B)硬化剤
(C)無機充填材
(D)下記式(1a)〜(1d)から選択される少なくとも1種のジアミノトリアジン化合物

Figure 0006507506
Figure 0006507506
Figure 0006507506
Figure 0006507506
(式(1d)中、Rはジオール部位とトリアジン環部位とを連結する連結基である。)。 ADVANTAGE OF THE INVENTION According to this invention, it is the resin composition for sealing which molds a semiconductor element, Comprising: The resin composition for sealing containing the following components is provided.
(A) Epoxy resin (B) Curing agent (C) Inorganic filler (D) At least one diaminotriazine compound selected from the following formulas (1a) to (1d)
Figure 0006507506
Figure 0006507506
Figure 0006507506
Figure 0006507506
(In formula (1d), R is a linking group linking a diol moiety and a triazine ring moiety.)

Figure 0006507506
(式中、Rは一価の有機基である。)
Figure 0006507506
(Wherein R is a monovalent organic group)

また、本発明によれば、
半導体素子と、
前記半導体素子に接続されるボンディングワイヤと、
上述の封止用樹脂組成物の硬化物により構成され、かつ前記半導体素子と前記ボンディングワイヤを封止する封止樹脂と、
を備える半導体装置が提供される。
Moreover, according to the present invention,
A semiconductor element,
A bonding wire connected to the semiconductor element;
A sealing resin which is formed of a cured product of the above-described sealing resin composition and which seals the semiconductor element and the bonding wire;
A semiconductor device is provided.

本発明の封止用樹脂組成物によれば、金属に対して十分な密着性を有し、得られる半導体装置の高温保管特性を向上させることができる。   According to the sealing resin composition of the present invention, it is possible to have sufficient adhesion to metals and to improve the high temperature storage characteristics of the obtained semiconductor device.

本実施形態に係る半導体装置を示す断面図である。It is a sectional view showing a semiconductor device concerning this embodiment.

以下、実施の形態について、適宜図面を用いて説明する。   Hereinafter, embodiments will be described using drawings as appropriate.

[封止用樹脂組成物]
本実施形態に係る封止用樹脂組成物は、半導体素子をモールドする封止用樹脂組成物であって、以下の成分を含む。
(A)エポキシ樹脂
(B)硬化剤
(C)無機充填材
(D)下記一般式(1)で示されるジアミノトリアジン化合物
[Resin composition for sealing]
The sealing resin composition according to the present embodiment is a sealing resin composition for molding a semiconductor element, and includes the following components.
(A) Epoxy resin (B) Hardener (C) Inorganic filler (D) Diaminotriazine compound represented by the following general formula (1)

Figure 0006507506
(式中、Rは一価の有機基である。)
Figure 0006507506
(Wherein R is a monovalent organic group)

以下、各成分について説明する。   Each component will be described below.

[(A)エポキシ樹脂]
(A)エポキシ樹脂は、1分子内に2個以上のエポキシ基を有する化合物(モノマー、オリゴマー及びポリマー)をいい、分子量及び分子構造を特に限定するものではない。(A)エポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂等の結晶性エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂等が挙げられる。これらは1種類を単独で用いても2種類以上を併用してもよい。
[(A) Epoxy resin]
The (A) epoxy resin is a compound (monomer, oligomer and polymer) having two or more epoxy groups in one molecule, and the molecular weight and the molecular structure are not particularly limited. (A) As epoxy resin, for example, crystalline epoxy resin such as biphenyl type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin; novolac type epoxy resin such as phenol novolac type epoxy resin, cresol novolac type epoxy resin; Multifunctional epoxy resin such as phenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin; Phenol aralkyl type epoxy resin such as phenol aralkyl type epoxy resin having phenylene skeleton, phenol aralkyl type epoxy resin having biphenylene skeleton; dihydroxynaphthalene Type epoxy resin, naphthol type epoxy resin such as epoxy resin obtained by glycidyl etherification of dimer of dihydroxy naphthalene; triglycidyl isocyanate Cyanurate, triazine nucleus-containing epoxy resins such as monoallyl diglycidyl isocyanurate; bridged cyclic hydrocarbon compound-modified phenol type epoxy resins such as dicyclopentadiene-modified phenol type epoxy resins. These may be used alone or in combination of two or more.

(A)エポキシ樹脂としては、下記式(3)で表されるフェノールアラルキル型エポキシ樹脂、及び下記式(4)で表されるビフェニル型エポキシ樹脂が好ましい。   As the epoxy resin (A), a phenol aralkyl type epoxy resin represented by the following formula (3) and a biphenyl type epoxy resin represented by the following formula (4) are preferable.

Figure 0006507506
Figure 0006507506

式(3)中、Arは、フェニレン基(フェノール構造からなる基であり、フェノールから結合手の数の水素原子を除いた構造)又はナフチレン基(ナフタレン構造からなる基であり、ナフタレンから結合手の数の水素原子を除いた構造)である。Arがナフチレン基の場合、グリシジルエーテル基はα位、β位のいずれに結合していてもよい。Arはフェニレン基、ビフェニレン基(ビフェニレン構造からなる基であり、ビフェニルから結合手の数の水素原子を除いた構造)及びナフチレン基のうちのいずれか1つの基である。R及びRは、それぞれ独立して炭素数1〜10の炭化水素基である。gは0〜5の整数である(但し、Arがフェニレン基の場合0〜3の整数である。)。hは0〜8の整数である(但し、Arがフェニレン基の場合0〜4の整数であり、ビフェニレン基の場合0〜6の整数である。)。nは重合度を表し、その平均値は1〜3である。 In the formula (3), Ar 1 is a phenylene group (a group consisting of a phenol structure and a structure obtained by removing hydrogen atoms of the number of bonds from phenol) or a naphthylene group (a group consisting of a naphthalene structure) The structure excluding the number of hydrogen atoms in the hand). When Ar 1 is a naphthylene group, the glycidyl ether group may be bonded to either the α position or the β position. Ar 2 is any one of a phenylene group, a biphenylene group (a group consisting of a biphenylene structure and a structure obtained by removing hydrogen atoms of the number of bonds from biphenyl) and a naphthalene group. R 3 and R 4 are each independently a hydrocarbon group having 1 to 10 carbon atoms. g is an integer of 0 to 5 (provided that Ar 1 is a phenylene group is an integer of 0 to 3). h is an integer of 0 to 8 (provided that Ar 2 is a phenylene group is an integer of 0 to 4 and a biphenylene group is an integer of 0 to 6). n 1 represents the degree of polymerization, and the average value thereof is 1 to 3.

Arとしてはフェニレン基が好ましい。Arとしてはフェニレン基又はビフェニレン基が好ましい。Arをフェニレン基又はビフェニレン基とすること(フェニレン骨格又はビフェニレン骨格を導入すること)で、難燃性を高めることなどもできる。R及びRにおいてg、hが0でない場合、炭素数1〜10の炭化水素基としては、メチル基、エチル基等のアルキル基、ビニル基等のアルケニル基、フェニル基等のアリール基等を挙げることができる。g、hは0が好ましい。 As Ar 1 , a phenylene group is preferable. As Ar 2 , a phenylene group or a biphenylene group is preferable. The flame retardancy can also be enhanced by setting Ar 2 to a phenylene group or a biphenylene group (introducing a phenylene skeleton or a biphenylene skeleton). When g and h are not 0 in R 3 and R 4 , examples of the hydrocarbon group having 1 to 10 carbon atoms include alkyl groups such as methyl and ethyl, alkenyl groups such as vinyl, and aryl groups such as phenyl Can be mentioned. g and h are preferably 0.

Figure 0006507506
Figure 0006507506

式(4)中、複数存在するRは、それぞれ独立して、水素原子又は炭素数1〜4の炭化水素基である。nは重合度を表し、その平均値は0〜4である。炭素数1〜4の炭化水素基としては、メチル基、エチル基等のアルキル基、ビニル基等のアルケニル基等を挙げることができる。 In Formula (4), a plurality of R 5 's are each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. n 2 represents the degree of polymerization, the average value is 0-4. As a C1-C4 hydrocarbon group, alkenyl groups, such as alkyl groups, such as a methyl group and an ethyl group, a vinyl group, etc. can be mentioned.

(A)エポキシ樹脂の封止用樹脂組成物の固形分全体に対する含有量としては特に限定されないが、下限値としては、2質量%以上が好ましく、4質量%以上がより好ましい。(A)エポキシ樹脂の含有量を前記下限値以上とすることで、十分な密着性等を発揮することができる。(A)エポキシ樹脂の含有量の上限値としては、20質量%以下が好ましく、10質量%以下がより好ましい。エポキシ樹脂(A)の含有量を前記上限値以下とすることで、十分な低吸水性や低熱膨張性等を発揮することができる。   The content of the epoxy resin (A) relative to the total solid content of the encapsulating resin composition is not particularly limited, but the lower limit is preferably 2% by mass or more, and more preferably 4% by mass or more. (A) By making content of an epoxy resin more than the said lower limit, sufficient adhesiveness etc. can be exhibited. As an upper limit of content of an epoxy resin (A), 20 mass% or less is preferable, and 10 mass% or less is more preferable. By making content of an epoxy resin (A) below into the said upper limit, sufficient low water absorption, low thermal expansivity, etc. can be exhibited.

[(B)硬化剤]
硬化剤(B)は、エポキシ樹脂(A)を硬化可能な成分であれば特に限定されず、例えば、重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤を挙げることができる。
[(B) curing agent]
The curing agent (B) is not particularly limited as long as it is a component capable of curing the epoxy resin (A), and examples thereof include a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent. .

重付加型の硬化剤としては、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)等の脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m−フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)等の芳香族ポリアミン、その他に、ジシアンジアミド(DICY)、有機酸ジヒドララジド等を含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)等の脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)等の芳香族酸無水物を含む酸無水物;ノボラック型フェノール樹脂、フェノールポリマー等のポリフェノール化合物;ポリサルファイド、チオエステル、チオエーテル等のポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネート等のイソシアネート化合物;カルボン酸含有ポリエステル樹脂等の有機酸類;以下に詳述するフェノール樹脂系硬化剤;等が挙げられる。   As a polyaddition type curing agent, for example, aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), metaxylylenediamine (MXDA), diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA) And polyamine compounds containing dicyandiamide (DICY), organic acid dihydrazide, etc. in addition to aromatic polyamines such as diaminodiphenyl sulfone (DDS); alicyclic compounds such as hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA), etc. Acid anhydride, aromatic acid anhydride such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA), etc .; Anhydrides including aromatic anhydrides; novolac type phenol resin, phenol polymer, etc. Polyphenol compounds; Polymercaptan compounds such as polysulfides, thioesters and thioethers; Isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; Organic acids such as carboxylic acid-containing polyester resins; Phenol resin-based curing agents described in detail below; etc. Be

触媒型の硬化剤としては、例えば、ベンジルジメチルアミン(BDMA)、2,4,6−トリスジメチルアミノメチルフェノール(DMP−30)等の3級アミン化合物;
2−メチルイミダゾール、2−エチル−4−メチルイミダゾール(EMI24)等のイミダゾール化合物;BF錯体等のルイス酸等が挙げられる。
As a catalyst type curing agent, for example, tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30);
Imidazole compounds such as 2-methylimidazole and 2-ethyl-4-methylimidazole (EMI 24); Lewis acids such as BF 3 complex; and the like.

縮合型の硬化剤としては、例えば、レゾール型フェノール樹脂;メチロール基含有尿素樹脂等の尿素樹脂;メチロール基含有メラミン樹脂等樹脂等が挙げられる。   Examples of the condensation type curing agent include resol type phenol resins; urea resins such as methylol group-containing urea resins; resins such as methylol group-containing melamine resins and the like.

これらの中でも、(B)硬化剤としては、フェノール樹脂系硬化剤が好ましい。フェノール樹脂系硬化剤を用いることで、耐燃性、耐湿性、電気特性、硬化性、保存安定性等をバランスよく発揮することができる。フェノール樹脂系硬化剤は、一分子内にフェノール性ヒドロキシ基を2個以上有する化合物(モノマー、オリゴマー及びポリマー)をいい、その分子量、分子構造を特に限定するものではない。   Among these, as the (B) curing agent, a phenol resin-based curing agent is preferable. By using a phenol resin-based curing agent, flame resistance, moisture resistance, electrical properties, curability, storage stability and the like can be exhibited in a well-balanced manner. The phenolic resin-based curing agent is a compound (monomer, oligomer and polymer) having two or more phenolic hydroxy groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited.

フェノール樹脂系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂等のノボラック型樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。   As a phenol resin-based curing agent, for example, novolak type resins such as phenol novolak resin and cresol novolac resin; polyfunctional phenol resins such as triphenolmethane type phenol resin; terpene modified phenolic resin, dicyclopentadiene modified phenolic resin and the like Modified phenolic resins; aralkyl type resins such as phenol aralkyl resins having a phenylene skeleton and / or a biphenylene skeleton, and naphthol aralkyl resins having a phenylene and / or a biphenylene skeleton; bisphenol compounds such as bisphenol A, bisphenol F, etc. One type may be used alone or two or more types may be used in combination.

(B)硬化剤としては、下記式(5)で表されるアラルキル型樹脂が好ましい。   As the curing agent (B), an aralkyl type resin represented by the following formula (5) is preferable.

Figure 0006507506
Figure 0006507506

式(5)中、Arは、フェニレン基(フェノール構造からなる基であり、フェノールから結合手の数の水素原子を除いた構造)又はナフチレン基(ナフタレン構造からなる基であり、ナフタレンから結合手の数の水素原子を除いた構造)である。Arがナフチレン基の場合、ヒドロキシ基はα位、β位のいずれに結合していてもよい。Arは、フェニレン基、ビフェニレン基(ビフェニレン構造からなる基であり、ビフェニルから結合手の数の水素原子を除いた構造)及びナフチレン基のうちのいずれか1つの基である。R及びRは、それぞれ独立して炭素数1〜10の炭化水素基である。iは0〜5の整数である(但し、Arがフェニレン基の場合0〜3の整数である。)。jは0〜8の整数である(但し、Arがフェニレン基の場合0〜4の整数であり、ビフェニレン基の場合0〜6の整数である。)。nは重合度を表し、その平均値は1〜3である。 In the formula (5), Ar 3 is a phenylene group (a group consisting of a phenol structure and a structure obtained by removing hydrogen atoms of the number of bonds from phenol) or a naphthylene group (a group consisting of a naphthalene structure) The structure excluding the number of hydrogen atoms in the hand). When Ar 3 is a naphthylene group, the hydroxy group may be bonded to either the α position or the β position. Ar 4 is any one of a phenylene group, a biphenylene group (a group consisting of a biphenylene structure and a structure obtained by removing hydrogen atoms of the number of bonds from biphenyl) and a naphthylene group. R 6 and R 7 are each independently a hydrocarbon group having 1 to 10 carbon atoms. i is an integer of 0 to 5 (however, when Ar 3 is a phenylene group, it is an integer of 0 to 3). j is an integer of 0 to 8 (provided that Ar 4 is a phenylene group is an integer of 0 to 4 and a biphenylene group is an integer of 0 to 6). n 3 represents the degree of polymerization, the average value is 1-3.

Arとしては、フェニレン基が好ましい。Arとしては、フェニレン基又はビフェニレン基が好ましい。なお、Arをフェニレン基又はビフェニレン基とすること(フェニレン骨格又はビフェニレン骨格を導入すること)で、難燃性等を高めることもできる。R及びRにおいてi、jが0でない場合、炭素数1〜10の炭化水素基としては、式(3)のR及びRで例示したものを挙げることができる。i、jは0が好ましい。 As Ar 3 , a phenylene group is preferable. As Ar 4 , a phenylene group or a biphenylene group is preferable. In addition, flame resistance etc. can also be improved by making Ar 4 into a phenylene group or a biphenylene group (introducing a phenylene skeleton or a biphenylene skeleton). When i and j are not 0 in R 6 and R 7 , examples of the hydrocarbon group having 1 to 10 carbon atoms include those exemplified for R 3 and R 4 in the formula (3). i and j are preferably 0.

(B)硬化剤の封止用樹脂組成物の固形分全体に対する含有量としては特に限定されないが、下限値としては、0.5質量%以上が好ましく、2質量%以上がより好ましい。(B)硬化剤の含有量を前記下限値以上とすることで、十分な硬化性、密着性等を発揮することができる。(B)硬化剤の含有量の上限値としては、15質量%以下が好ましく、10質量%以下がより好ましい。(B)硬化剤の含有量を前記上限値以下とすることで、十分な流動性等を発揮することができる。   The content of the curing agent (B) relative to the total solid content of the sealing resin composition is not particularly limited, but the lower limit is preferably 0.5% by mass or more, and more preferably 2% by mass or more. By setting the content of the curing agent (B) to the above lower limit value or the like, sufficient curability, adhesion and the like can be exhibited. As an upper limit of content of a (B) hardening agent, 15 mass% or less is preferable, and 10 mass% or less is more preferable. By setting the content of the curing agent (B) to the upper limit or less, sufficient fluidity and the like can be exhibited.

[(C)無機充填材]
(C)無機充填材は、一般の封止用樹脂組成物に使用されている公知のものを用いることができる。(C)無機充填材としては、例えば、溶融球状シリカ、溶融破砕シリカ、結晶シリカ等のシリカ、タルク、アルミナ、チタンホワイト、窒化珪素等が挙げられる。これらの中でも、シリカが好ましく、球状溶融シリカがより好ましい。これらの(C)無機充填材は、1種を単独で用いても2種以上を併用してもよい。(C)無機充填材の形状としては、球状であり、粒度分布が広いものが好ましい。このような無機充填材を用いることで、封止用樹脂組成物の溶融粘度の上昇を抑え、また、(C)無機充填材の含有量を高めることができる。なお、粒度分布の広い(C)無機充填材を含有させるには、平均粒径の異なる複数種の無機充填材を混合して使用する方法などがある。また、(C)無機充填材は、カップリング剤により表面処理されていてもよい。さらに、必要に応じて、(C)無機充填材をエポキシ樹脂等で予め処理したものを用いてもよい。
[(C) inorganic filler]
As the inorganic filler (C), any known filler used in general sealing resin compositions can be used. Examples of the inorganic filler (C) include fused spherical silica, fused and crushed silica, silica such as crystalline silica, talc, alumina, titanium white, silicon nitride and the like. Among these, silica is preferable, and spherical fused silica is more preferable. These (C) inorganic fillers may be used alone or in combination of two or more. The shape of the inorganic filler (C) is preferably spherical and has a broad particle size distribution. By using such an inorganic filler, the rise in melt viscosity of the sealing resin composition can be suppressed, and the content of the (C) inorganic filler can be increased. In order to incorporate the (C) inorganic filler having a wide particle size distribution, there is a method of mixing and using a plurality of types of inorganic fillers having different average particle diameters. The (C) inorganic filler may be surface-treated with a coupling agent. Furthermore, you may use what processed the (C) inorganic filler previously with an epoxy resin etc. as needed.

(C)無機充填材の平均粒径としては特に限定されないが、下限値としては、0.1μm以上が好ましく、0.3μm以上がより好ましい。一方、上限値としては、40μm以下が好ましく、35μm以下がより好ましい。また、(C)無機充填材の比表面積の下限値としては、1m/g以上が好ましく、3m/g以上がより好ましい。一方、上限値としては、10m/g以下が好ましく、7m/g以下がより好ましい。このような範囲の平均粒径や比表面積を有する無機充填材を用いることで、流動性、低吸湿性等をより良好にすることができる。 The average particle diameter of the (C) inorganic filler is not particularly limited, but the lower limit thereof is preferably 0.1 μm or more, and more preferably 0.3 μm or more. On the other hand, as an upper limit, 40 micrometers or less are preferable, and 35 micrometers or less are more preferable. Moreover, as a lower limit of the specific surface area of the (C) inorganic filler, 1 m 2 / g or more is preferable, and 3 m 2 / g or more is more preferable. On the other hand, as an upper limit, 10 m < 2 > / g or less is preferable and 7 m < 2 > / g or less is more preferable. By using an inorganic filler having an average particle diameter and a specific surface area in such a range, fluidity, low hygroscopicity, and the like can be further improved.

また必要に応じて、例えば平均粒径0.1μm以上1μm以下の無機充填材と平均粒径10μm以上40μm以下の無機充填材を併用するなど、前記好ましい範囲の無機充填材を2種以上併用することも好ましい。   If necessary, two or more inorganic fillers in the preferred range may be used in combination, for example, using an inorganic filler having an average particle diameter of 0.1 μm to 1 μm and an inorganic filler having an average particle diameter of 10 μm to 40 μm. Is also preferred.

(C)無機充填材の封止用樹脂組成物の固形分全体に対する含有量としては特に限定されないが、下限値としては、35質量%以上が好ましく、70質量%以上がより好ましく、75質量%以上が特に好ましい。(C)無機充填材の含有量を前記下限値以上とすることで、十分な低吸湿性、低熱膨張性等を発揮することができる。(C)無機充填材の含有量の上限値としては、95質量%以下が好ましく、92質量%以下がより好ましい。(C)無機充填材の含有量を前記上限値以下とすることで、十分な流動性等を発揮することができる。   The content of the inorganic filler (C) relative to the total solid content of the encapsulating resin composition is not particularly limited, but the lower limit is preferably 35% by mass or more, more preferably 70% by mass or more, and 75% by mass The above is particularly preferable. (C) By setting the content of the inorganic filler to the above lower limit value or the like, sufficient low hygroscopicity, low thermal expansion and the like can be exhibited. As an upper limit of content of an (C) inorganic filler, 95 mass% or less is preferable, and 92 mass% or less is more preferable. By setting the content of the (C) inorganic filler to the upper limit value or less, sufficient fluidity and the like can be exhibited.

[(D)ジアミノトリアジン化合物]
(D)ジアミノトリアジン化合物は、下記式(1)で表される化合物である。(D)ジアミノトリアジン化合物は、1種類を単独で用いても2種以上を併用してもよい。本実施形態の封止用樹脂組成物は、トリアジン環構造にアミノ基が2つを有する特定の化合物を含有するため、金属に対する十分な密着性と、得られる半導体装置の高い高温保管特性との両立を達成することができる。
この理由は定かではないが、トリアジン骨格中の6−位に備える有機基が封止用樹脂組成物中のエポキシ樹脂との相溶性を向上させ、結果として樹脂組成物が金属周辺部に対して、流動しやすくなるためと考えられる。また、トリアジン骨格中の2−位および4−位に備える2つのアミノ基と3−位の窒素原子とが、リードフレームや有機基板、チップ等との密着性を向上させると考えられる。
[(D) diaminotriazine compound]
The (D) diaminotriazine compound is a compound represented by the following formula (1). The (D) diaminotriazine compound may be used alone or in combination of two or more. Since the sealing resin composition of the present embodiment contains a specific compound having two amino groups in the triazine ring structure, sufficient adhesion to metals and high-temperature storage characteristics of the resulting semiconductor device can be obtained. Both can be achieved.
The reason for this is not clear, but the organic group provided at the 6-position in the triazine skeleton improves the compatibility with the epoxy resin in the sealing resin composition, and as a result, the resin composition acts on the metal peripheral portion. It is thought that it becomes easy to flow. Further, it is considered that the two amino groups provided at the 2- and 4-positions in the triazine skeleton and the nitrogen atom at the 3-position improve the adhesion to a lead frame, an organic substrate, a chip or the like.

Figure 0006507506
(式中、Rは一価の有機基である。)
Figure 0006507506
(Wherein R is a monovalent organic group)

なお、式(1)における置換基Rは、一価の有機基であれば、発明の目的を損なわない限りにおいて適宜設定することができる。ここで、「一価の有機基」とは、トリアジン環骨格の6−位に存在する置換基Rの中に少なくとも1つの炭素原子が存在することを示す。すなわち、トリアジン骨格の6−位の炭素と置換基Rとの連結は必ずしも炭素−炭素結合に限られず、炭素と、窒素原子、酸素原子、硫黄原子等、他のヘテロ原子との結合であっても構わない。置換基Rの中に含まれる炭素原子は2以上が好ましく、3以上がさらに好ましい。また、R置換基内の炭素数の上限値としては、たとえば30以下であり、20以下が好ましく、15以下がさらに好ましい。
また、置換基Rは炭素原子(C)と水素原子(H)、窒素原子(N)、酸素原子(O)、硫黄原子(S)以外にもケイ素原子(Si)、ゲルマニウム原子(Ge)等の半金属原子や、フッ素原子(F)、塩素原子(Cl)、臭素原子(Br)、ヨウ素原子(I)のハロゲン原子を含むものも採用することができる。
また、置換基Rとしては、その置換基内にエーテル結合、エステル結合、アミド結合、ウレタン結合、スルフィド結合、チオエステル結合等の結合基を有していてもよく、また、フェニル基、ナフチル基等の芳香族置換基、ピロール、ピリジン、チオフェン、フラン、インドール等のヘテロ原子を含む芳香族置換基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の脂環式置換基等を含んでいてもよい。
In addition, if substituent R in Formula (1) is a monovalent organic group, it can be set suitably, as long as the object of the invention is not impaired. Here, "monovalent organic group" indicates that at least one carbon atom is present in the substituent R present at the 6-position of the triazine ring skeleton. That is, the connection between the 6-position carbon of the triazine skeleton and the substituent R is not necessarily limited to the carbon-carbon bond, but is a bond between carbon and other hetero atoms such as nitrogen atom, oxygen atom, sulfur atom, etc. I don't care. 2 or more are preferable and, as for the carbon atom contained in the substituent R, 3 or more are more preferable. The upper limit of the number of carbon atoms in the R substituent is, for example, 30 or less, preferably 20 or less, and more preferably 15 or less.
In addition to the carbon atoms (C) and hydrogen atoms (H), nitrogen atoms (N), oxygen atoms (O), sulfur atoms (S), the substituent R is also silicon atoms (Si), germanium atoms (Ge), etc. Those containing a metalloid atom of the above, a fluorine atom (F), a chlorine atom (Cl), a bromine atom (Br), and a halogen atom of an iodine atom (I) can also be adopted.
Further, as the substituent R, a linking group such as an ether bond, an ester bond, an amide bond, a urethane bond, a sulfide bond, a thioester bond or the like may be contained in the substituent, and a phenyl group, a naphthyl group, etc. Aromatic substituents including hetero atoms such as pyrrole, pyridine, thiophene, furan, indole and the like; alicyclic substituents such as cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and the like; It is also good.

ここで、一般式(1)で示される(D)ジアミノトリアジン化合物は、置換基R内にアルコール性水酸基、フェノール性水酸基及びカルボキシル基から選ばれる活性水素原子を有する基1つ以上を有することが好ましい。
置換基Rがこのような活性水素原子を有する基を置換基内に含むことで、(D)ジアミノトリアジン化合物と封止用樹脂組成物中の他の成分との相溶性をさらに向上させることができる。
(D)ジアミノトリアジン化合物の1分子中における活性水素原子を有する基の数は適宜設定することができるが、たとえば下限値として1以上であり、上限値としてはたとえば10以下であり、好ましくは5以下である。
Here, the (D) diaminotriazine compound represented by the general formula (1) has at least one group having an active hydrogen atom selected from an alcoholic hydroxyl group, a phenolic hydroxyl group and a carboxyl group in a substituent R preferable.
When the substituent R contains a group having such an active hydrogen atom in the substituent, the compatibility between the (D) diaminotriazine compound and other components in the sealing resin composition is further improved. it can.
(D) The number of groups having an active hydrogen atom in one molecule of the diaminotriazine compound can be set as appropriate, but it is, for example, 1 or more as the lower limit, and 10 or less as the upper limit, preferably 5 It is below.

(D)ジアミノトリアジン化合物の分子量は、適宜設定することができるが、その下限値として、たとえば135以上であり、好ましくは150以上であり、より好ましくは180以上である。また、この化合物の分子量の上限値としては、たとえば600以下であり、好ましくは500以下であり、より好ましくは400以下である。
このような範囲に設定することで、効率的に所望の効果を発現することができる。
The molecular weight of the (D) diaminotriazine compound can be set as appropriate, but the lower limit thereof is, for example, 135 or more, preferably 150 or more, and more preferably 180 or more. The upper limit value of the molecular weight of this compound is, for example, 600 or less, preferably 500 or less, and more preferably 400 or less.
By setting such a range, desired effects can be efficiently exhibited.

本実施形態において好ましく用いられる(D)ジアミノトリアジン化合物としては、たとえば以下の化合物群が挙げられる。   As a (D) diamino triazine compound preferably used in this embodiment, the following compound groups are mentioned, for example.

Figure 0006507506
Figure 0006507506

Figure 0006507506
Figure 0006507506

Figure 0006507506
Figure 0006507506

(D)ジアミノトリアジン化合物の封止用樹脂組成物の固形分全体に対する含有量としては特に限定されないが、下限値としては、0.01質量%以上が好ましく、0.03質量%以上がより好ましい。(D)ジアミノトリアジン化合物の含有量を前記下限値以上とすることで、十分な高温保管特性等を発揮することができる。(D)ジアミノトリアジン化合物の含有量の上限値としては、1.0質量%以下が好ましく、0.5質量%以下がより好ましく、0.2質量%以下が特に好ましい。(D)ジアミノトリアジン化合物の含有量を前記上限値以下とすることで、十分な流動性等を発揮することができる。   The content of the (D) diaminotriazine compound relative to the total solid content of the encapsulating resin composition is not particularly limited, but the lower limit thereof is preferably 0.01% by mass or more, more preferably 0.03% by mass or more . By setting the content of the (D) diaminotriazine compound to the above lower limit value or the like, sufficient high temperature storage characteristics and the like can be exhibited. As an upper limit of content of a (D) diamino triazine compound, 1.0 mass% or less is preferable, 0.5 mass% or less is more preferable, 0.2 mass% or less is especially preferable. By setting the content of the (D) diaminotriazine compound to the upper limit value or less, sufficient fluidity and the like can be exhibited.

[(E)カップリング剤]
封止用樹脂組成物は、(E)カップリング剤をさらに含有していてもよい。(E)カップリング剤は、樹脂成分である(A)エポキシ樹脂等と(C)無機充填材とを連結させる成分である。(E)カップリング剤としては、エポキシシラン、アミノシラン、メルカプトシラン(メルカプト基を有するシランカップリング剤)(E1)等のシランカップリング剤を挙げることができる。これらの(E)カップリング剤は、1種を単独で用いても2種以上を併用してもよい。
[(E) coupling agent]
The sealing resin composition may further contain (E) a coupling agent. (E) A coupling agent is a component which connects the (A) epoxy resin etc. which are resin components, and the (C) inorganic filler. (E) As a coupling agent, silane coupling agents, such as an epoxysilane, an aminosilane, a mercaptosilane (silane coupling agent which has a mercapto group) (E1), can be mentioned. These (E) coupling agents may be used alone or in combination of two or more.

エポキシシランとしては、例えば、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。   Examples of epoxysilanes include γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane and the like.

アミノシランとしては、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン(アニリノシランと呼ぶことがある)等を挙げることができる。   Examples of the aminosilane include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane (sometimes called anilinosilane), and the like.

メルカプトシラン(E1)としては、例えば、γ−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン等を挙げることができる。また、メルカプトシランとしては、その他に、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド等、熱分解することによって同様の機能を発現する化合物も含む。   Examples of mercaptosilane (E1) include γ-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane and the like. The mercaptosilane also includes, in addition, compounds which exhibit the same function by thermal decomposition, such as bis (3-triethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) disulfide.

これらの(E)カップリング剤の中でもエポキシシラン、アニリノシラン、メルカプトシラン(E1)、あるいはこれらを組合せて用いることが好ましい。アニリノシランは流動性の向上に有効であり、メルカプトシラン(E1)は、密着性を高めることができるが、本実施形態の封止用樹脂組成物によれば、特定のトリアジン化合物を含有しているため、前述メルカプトシランを使用する場合よりもより一層優れた高温保管特性と金属に対する高い密着性とを両立することができる。   Among these (E) coupling agents, it is preferable to use epoxysilane, anilinosilane, mercaptosilane (E1), or a combination thereof. Anilinosilane is effective in improving fluidity, and mercaptosilane (E1) can enhance adhesion, but according to the sealing resin composition of the present embodiment, it contains a specific triazine compound Therefore, the high temperature storage characteristics and the high adhesion to metals can be more compatible than in the case of using the mercaptosilane.

(E)カップリング剤の樹脂組成物の固形分全体に対する含有量としては特に限定されないが、下限値としては、0.01質量%以上が好ましく、0.05質量%以上がより好ましい。上限値としては、1質量%以下が好ましく、0.5質量%以下がより好ましい。(E)カップリング剤の含有量を上記範囲とすることにより、(E)カップリング剤の機能を効果的に発現させることができる。   The content of the (E) coupling agent relative to the total solid content of the resin composition is not particularly limited, but the lower limit is preferably 0.01% by mass or more, and more preferably 0.05% by mass or more. As an upper limit, 1 mass% or less is preferable, and 0.5 mass% or less is more preferable. By setting the content of the (E) coupling agent to the above range, the function of the (E) coupling agent can be effectively expressed.

また(D)ジアミノトリアジン化合物とメルカプトシラン(E1)とを併用する場合は、該メルカプトシランの含有量の下限値としては、0.01質量%以上が好ましく、0.02質量%以上がより好ましい。メルカプトシラン(E1)の含有量を前記下限値以上とすることで、密着性を効果的に高めることなどができる。メルカプトシラン(E1)の含有量の上限値としては、0.1質量%以下が好ましく、0.07質量%以下がより好ましい。メルカプトシラン(E1)の含有量を前記上限値以下とすることで、より一層優れた高温保管特性と金属に対する高い密着性とを両立することができる。   When the (D) diaminotriazine compound and mercaptosilane (E1) are used in combination, the lower limit value of the content of the mercaptosilane is preferably 0.01% by mass or more, and more preferably 0.02% by mass or more . By making content of a mercaptosilane (E1) more than the said lower limit, adhesiveness etc. can be improved effectively. As an upper limit of content of mercaptosilane (E1), 0.1 mass% or less is preferable, and 0.07 mass% or less is more preferable. By setting the content of mercaptosilane (E1) to the above upper limit value or less, it is possible to achieve both more excellent high temperature storage characteristics and high adhesion to metal.

[(F)硬化促進剤]
本実施形態の封止用樹脂組成物は、(F)硬化促進剤をさらに含有していてもよい。(F)硬化促進剤は、(A)エポキシ樹脂と(B)硬化剤との反応を促進する機能を有する成分であり、一般に使用される硬化促進剤が用いられる。
[(F) curing accelerator]
The sealing resin composition of the present embodiment may further contain (F) a curing accelerator. The curing accelerator (F) is a component having a function of accelerating the reaction of (A) epoxy resin and (B) curing agent, and commonly used curing accelerators are used.

(F)硬化促進剤としては、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8−ジアザビシクロ(5,4,0)ウンデセン−7、ベンジルジメチルアミン、2−メチルイミダゾール等のアミジンや3級アミン、さらには前記アミジン、アミンの4級塩等の窒素原子含有化合物等を挙げることができ、これらのうちの1種又は2種以上を組み合わせて用いることができる。
これらのうち、硬化性、密着性等の観点からはリン原子含有化合物が好ましい。さらには、耐半田性、流動性等の観点からは、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物が特に好ましく、連続成形における金型の汚染が軽度である点等からは、テトラ置換ホスホニウム化合物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物は特に好ましい。
(F) As a curing accelerator, a phosphorus atom-containing compound such as an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, an adduct of a phosphonium compound and a silane compound; -Mentioning an amidine such as diazabicyclo (5,4,0) undecene-7, benzyldimethylamine, 2-methylimidazole and the like, a tertiary amine, and further a nitrogen atom-containing compound such as the amidine and the quaternary salt of the amine. These can be used alone or in combination of two or more.
Among these, phosphorus atom-containing compounds are preferable from the viewpoints of curability, adhesion and the like. Furthermore, from the viewpoints of solder resistance, flowability, etc., an adduct of a phosphobetaine compound or a phosphine compound and a quinone compound is particularly preferable, and tetra-substituted from the viewpoint that the contamination of the mold in continuous molding is mild. Particularly preferred are phosphorus atom-containing compounds such as phosphonium compounds and adducts of phosphonium compounds and silane compounds.

(有機ホスフィン)
有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィン等を挙げることができる。
(Organic phosphine)
Examples of organic phosphines include: primary phosphines such as ethyl phosphine and phenyl phosphine; secondary phosphines such as dimethyl phosphine and diphenyl phosphine; tertiary phosphines such as trimethyl phosphine, triethyl phosphine, tributyl phosphine and triphenyl phosphine it can.

(テトラ置換ホスホニウム化合物)
テトラ置換ホスホニウム化合物としては、例えば下記式(6)で表される化合物等を挙げることができる。
(Tetra substituted phosphonium compound)
As a tetra substituted phosphonium compound, the compound etc. which are represented by following formula (6) can be mentioned, for example.

Figure 0006507506
Figure 0006507506

式(6)中、Pはリン原子である。R、R、R10及びR11は、芳香族基又はアルキル基である。[A]はヒドロキシ基、カルボキシ基及びチオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンである。AHはヒドロキシ基、カルボキシ基及びチオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸である。x、yは1〜3の数、zは0〜3の数であり、かつx=yである。 In formula (6), P is a phosphorus atom. R 8 , R 9 , R 10 and R 11 are an aromatic group or an alkyl group. [A] - is the anion of a hydroxy group, having at least one aromatic organic acid or a functional group selected from carboxyl group and a thiol group on the aromatic ring. AH is an aromatic organic acid having at least one functional group selected from a hydroxy group, a carboxy group and a thiol group in an aromatic ring. x and y are a number of 1 to 3, z is a number of 0 to 3 and x = y.

式(6)で表される化合物は、例えば以下のようにして得られるがこれに限定されるものではない。まず、テトラ置換ホスホニウムハライドと芳香族有機酸と塩基を有機溶媒に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで水を加えると、式(6)で表される化合物を沈殿させることができる。   The compound represented by Formula (6) is obtained, for example, as follows, but is not limited thereto. First, a tetrasubstituted phosphonium halide, an aromatic organic acid and a base are mixed with an organic solvent and uniformly mixed, and an aromatic organic acid anion is generated in the solution system. Water can then be added to precipitate the compound of formula (6).

式(6)で表される化合物において、リン原子に結合するR、R、R10及びR11がフェニル基であり、AHがヒドロキシ基を芳香環に有する化合物、すなわちフェノール類であり、かつ[A]が該フェノール類のアニオンであることが好ましい。フェノール類としては、フェノール、クレゾール、レゾルシン、カテコール等の単環式フェノール類、ナフトール、ジヒドロキシナフタレン、アントラキノール等の縮合多環式フェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール類、フェニルフェノール、ビフェノール等の多環式フェノール類などを挙げることができる。 In the compound represented by the formula (6), R 8 , R 9 , R 10 and R 11 bonded to a phosphorus atom are phenyl groups, and AH is a compound having a hydroxy group in an aromatic ring, that is, phenols, and [a] - it is preferred that the anion of the phenol. The phenols include monocyclic phenols such as phenol, cresol, resorcinol and catechol, condensed polycyclic phenols such as naphthol, dihydroxynaphthalene and anthraquinol, bisphenols such as bisphenol A, bisphenol F and bisphenol S, phenyl Polycyclic phenols, such as phenol and biphenol, etc. can be mentioned.

(ホスホベタイン化合物)
ホスホベタイン化合物としては、例えば、下記式(7)で表される化合物等を挙げることができる。
(Phosphobetaine compound)
As a phosphobetaine compound, the compound etc. which are represented by following formula (7) can be mentioned, for example.

Figure 0006507506
Figure 0006507506

式(7)中、Pはリン原子である。R12は炭素数1〜3のアルキル基である。R13はヒドロキシ基である。kは0〜5の整数である。mは0〜3の整数である。 In formula (7), P is a phosphorus atom. R 12 is an alkyl group having 1 to 3 carbon atoms. R 13 is a hydroxy group. k is an integer of 0 to 5; m is an integer of 0 to 3;

式(7)で表される化合物は、例えば以下のようにして得られる。第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、トリ芳香族置換ホスフィンとジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。しかしこれに限定されるものではない。   The compound represented by Formula (7) is obtained as follows, for example. It is obtained through the process of contacting the triaromatic substituted phosphine, which is a tertiary phosphine, with a diazonium salt, and replacing the triaromatic substituted phosphine with the diazonium group possessed by the diazonium salt. However, it is not limited to this.

(ホスフィン化合物とキノン化合物との付加物)
ホスフィン化合物とキノン化合物との付加物としては、例えば、下記式(8)で表される化合物等を挙げることができる。
(Adduct of phosphine compound and quinone compound)
As an adduct of a phosphine compound and a quinone compound, the compound etc. which are represented by following formula (8) can be mentioned, for example.

Figure 0006507506
Figure 0006507506

式(8)中、Pはリン原子である。R14、R15及びR16は、それぞれ独立して炭素数1〜12のアルキル基又は炭素数6〜12のアリール基である。R17、R18及びR19は、それぞれ独立して水素原子又は炭素数1〜12の炭化水素基であり、R18とR19とが結合して環状構造となっていてもよい。 In formula (8), P is a phosphorus atom. R <14> , R <15> and R < 16 > are respectively independently a C1-C12 alkyl group or a C6-C12 aryl group. R 17 , R 18 and R 19 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms, and R 18 and R 19 may be bonded to form a cyclic structure.

ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、例えばトリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換又はアルキル基、アルコキシル基等の置換基が存在するものが好ましい。アルキル基、アルコキシル基等の置換基としては、1〜6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。   As a phosphine compound used for the adduct of a phosphine compound and a quinone compound, for example, no aromatic ring such as triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, tris (benzyl) phosphine etc. Those in which a substituent or a substituent such as an alkyl group or an alkoxyl group is present are preferable. Examples of the substituent such as an alkyl group and an alkoxyl group include those having 1 to 6 carbon atoms. Triphenyl phosphine is preferred from the viewpoint of availability.

ホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、例えばベンゾキノン、アントラキノン類等が挙げられ、これらの中でもp−ベンゾキノンが保存安定性の点から好ましい。   As a quinone compound used for the adduct of a phosphine compound and a quinone compound, benzoquinone, anthraquinones etc. are mentioned, for example, Among these, p-benzoquinone is preferable from the point of storage stability.

ホスフィン化合物とキノン化合物との付加物の製造方法としては、例えば、有機第三ホスフィンとベンゾキノン類との両者が溶解することができる溶媒中でこれらを接触、混合させることにより付加物を得ることができる。溶媒としては、アセトンやメチルエチルケトン等のケトン類で、付加物への溶解性が低いものがよい。しかし、これに限定されるものではない。   As a method for producing an adduct of a phosphine compound and a quinone compound, for example, an adduct may be obtained by contacting and mixing these in a solvent in which both organic tertiary phosphine and benzoquinones can be dissolved. it can. As the solvent, ketones such as acetone and methyl ethyl ketone having a low solubility in the adduct are preferable. However, it is not limited to this.

式(8)で表される化合物において、リン原子に結合するR14、R15及びR16がフェニル基であり、かつR17、R18及びR19が水素原子である化合物、すなわち1,4−ベンゾキノンとトリフェニルホスフィンとを付加させた化合物が樹脂組成物の硬化物の熱時弾性率を低下させる点等で好ましい。 In the compound represented by the formula (8), a compound wherein R 14 , R 15 and R 16 bonded to a phosphorus atom is a phenyl group, and R 17 , R 18 and R 19 are a hydrogen atom, ie, 1,4 The compound in which-benzoquinone and triphenyl phosphine are added is preferable at the point to which the thermal elasticity modulus of the hardened | cured material of a resin composition is reduced.

(ホスホニウム化合物とシラン化合物との付加物)
ホスホニウム化合物とシラン化合物との付加物としては、例えば下記式(9)で表される化合物等を挙げることができる。
(Adduct of phosphonium compound and silane compound)
As an adduct of a phosphonium compound and a silane compound, the compound etc. which are represented by following formula (9) can be mentioned, for example.

Figure 0006507506
Figure 0006507506

式(9)中、Pはリン原子であり、Siは珪素原子である。R20、R21、R22及びR23は、それぞれ独立して、芳香環若しくは複素環を有する有機基、又は脂肪族基である。R24は、基Y及びYと結合する有機基である。R25は、基Y及びYと結合する有機基である。Y及びYは、プロトン供与性基がプロトンを放出してなる基であり、同一分子内の基Y及びYが珪素原子と結合してキレート構造を形成するものである。Y及びYはプロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基Y及びYが珪素原子と結合してキレート構造を形成するものである。R24及びR25は互いに同一であっても異なっていてもよく、Y、Y、Y及びYは互いに同一であっても異なっていてもよい。Zは芳香環若しくは複素環を有する有機基、又は脂肪族基である。 In Formula (9), P is a phosphorus atom and Si is a silicon atom. R 20 , R 21 , R 22 and R 23 are each independently an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group. R 24 is an organic group bonded to the groups Y 2 and Y 3 . R 25 is an organic group bonded to the groups Y 4 and Y 5 . Y 2 and Y 3 are groups in which a proton donating group releases a proton, and groups Y 2 and Y 3 in the same molecule are bonded to a silicon atom to form a chelate structure. Y 4 and Y 5 each represent a group in which a proton donating group releases a proton, and groups Y 4 and Y 5 in the same molecule are bonded to a silicon atom to form a chelate structure. R 24 and R 25 may be the same as or different from each other, and Y 2 , Y 3 , Y 4 and Y 5 may be the same as or different from each other. Z 1 is an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group.

20、R21、R22及びR23としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n−ブチル基、n−オクチル基、シクロヘキシル基等を挙げることができる。これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基等のアルキル基、アルコキシ基、ヒドロキシ基等の置換基を有する芳香族基又は無置換の芳香族基が好ましい。 As R 20 , R 21 , R 22 and R 23 , for example, phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group, methyl group, ethyl group, n-butyl Groups, n-octyl group, cyclohexyl group and the like can be mentioned. Among these, alkyl groups such as phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group and hydroxynaphthyl group, and aromatic groups or unsubstituted aromatic groups having a substituent such as alkoxy group and hydroxy group are preferable. .

式(9)中の−Y−R24−Y−、及びY−R25−Y−で表される基は、プロトン供与体が、プロトンを2個放出してなる基で構成されるものである。プロトン供与体としては、分子内にカルボキシ基又はヒドロキシ基を少なくとも2個有する有機酸が好ましい。さらには、一つの芳香環を構成する隣接する炭素にそれぞれ接続するカルボキシ基又はヒドロキシ基を少なくとも2個有する芳香族化合物が好ましく、一つの芳香環を構成する隣接する炭素にそれぞれ接続するヒドロキシ基を少なくとも2個有する芳香族化合物がより好ましい。このようなプロトン供与体としては、例えば、カテコール、ピロガロール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,2'−ビフェノール、1,1'−ビ−2−ナフトール、サリチル酸、1−ヒドロキシ−2−ナフトエ酸、3−ヒドロキシ−2−ナフトエ酸、クロラニル酸、タンニン酸、2−ヒドロキシベンジルアルコール、1,2−シクロヘキサンジオール、1,2−プロパンジオール、グリセリン等が挙げられる。これらの中でも、カテコール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレンがより好ましい。 The group represented by -Y 2 -R 24 -Y 3- and Y 4 -R 25 -Y 5- in the formula (9) is a group in which a proton donor releases two protons. It is The proton donor is preferably an organic acid having at least two carboxy groups or hydroxy groups in the molecule. Furthermore, an aromatic compound having at least two carboxy groups or hydroxy groups respectively connected to adjacent carbons constituting one aromatic ring is preferable, and hydroxy groups respectively connected to adjacent carbons constituting one aromatic ring More preferred are aromatic compounds having at least two. As such a proton donor, for example, catechol, pyrogallol, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,2'-biphenol, 1,1'-bi-2-naphthol, salicylic acid, 1 -Hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, chloranilic acid, tannic acid, 2-hydroxybenzyl alcohol, 1,2-cyclohexanediol, 1,2-propanediol, glycerin and the like. Among these, catechol, 1,2-dihydroxynaphthalene and 2,3-dihydroxynaphthalene are more preferable.

式(9)中のZで表される芳香環若しくは複素環を有する有機基、又は脂肪族基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基等の脂肪族炭化水素基、フェニル基、ベンジル基、ナフチル基、ビフェニル基等の芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基等のグリシジルオキシ基、メルカプト基、アミノ基を有するアルキル基、ビニル基等の反応性置換基等が挙げられる。これらの中でも、メチル基、エチル基、フェニル基、ナフチル基及びビフェニル基が熱安定性等の面から好ましい。 The organic group having an aromatic ring or heterocycle represented by Z 1 in Formula (9) or an aliphatic group is, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, etc. Aliphatic hydrocarbon group, aromatic hydrocarbon group such as phenyl group, benzyl group, naphthyl group and biphenyl group, glycidyloxy group such as glycidyl oxypropyl group, mercaptopropyl group and aminopropyl group, mercapto group and amino group Reactive substituents, such as an alkyl group and a vinyl group, etc. are mentioned. Among these, a methyl group, an ethyl group, a phenyl group, a naphthyl group and a biphenyl group are preferable in terms of heat stability and the like.

ホスホニウム化合物とシラン化合物との付加物の製造方法としては、例えば以下の方法が挙げられる。まず、メタノールを入れたフラスコに、フェニルトリメトキシシラン等のシラン化合物、2,3−ジヒドロキシナフタレン等のプロトン供与体を加えて溶かし、次に室温攪拌下ナトリウムメトキシド−メタノール溶液を滴下する。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイド等のテトラ置換ホスホニウムハライドのメタノール溶液を室温攪拌下滴下すると結晶が析出する。析出した結晶を濾過、水洗、真空乾燥すると、ホスホニウム化合物とシラン化合物との付加物が得られる。しかし、これに限定されるものではない。   Examples of the method for producing the adduct of the phosphonium compound and the silane compound include the following methods. First, a silane compound such as phenyltrimethoxysilane and a proton donor such as 2,3-dihydroxynaphthalene are added to a flask containing methanol for dissolution, and then a sodium methoxide-methanol solution is dropped under stirring at room temperature. Furthermore, when a methanol solution of tetra-substituted phosphonium halide such as tetraphenylphosphonium bromide prepared in advance is added dropwise with stirring at room temperature, crystals are precipitated. The precipitated crystals are filtered, washed with water and vacuum dried to obtain an adduct of a phosphonium compound and a silane compound. However, it is not limited to this.

(F)硬化促進剤としては、前記式(6)〜(9)で表される化合物が例示されるが、これらの中でも、高温下における密着性等の観点から、テトラ置換ホスホニウム化合物(例えば式(6)で表される化合物)やホスフィン化合物とキノン化合物との付加物(例えば式(8)で表される化合物)が好ましく、ホスフィン化合物とキノン化合物との付加物がより好ましい。   Examples of the curing accelerator (F) include compounds represented by the above formulas (6) to (9), among which tetra-substituted phosphonium compounds (for example, formulas The compound represented by (6) or an adduct of a phosphine compound and a quinone compound (for example, a compound represented by the formula (8)) is preferable, and an adduct of a phosphine compound and a quinone compound is more preferable.

(F)硬化促進剤の封止用樹脂組成物の固形分全体における含有量としては特に限定されないが、下限値としては、0.1質量%以上が好ましく、0.2質量%以上がより好ましい。(F)硬化促進剤の含有量を前記下限値以上とすることで、十分な硬化性等を得ることができる。(F)硬化促進剤の含有量の上限値としては、1質量%以下が好ましく、0.5質量%以下がより好ましい。(F)硬化促進剤の含有量を前記上限値以下とすることで、十分な流動性等を得ることができる。   Although it does not specifically limit as content in the whole solid part of the resin composition for sealing of (F) hardening accelerator, As a lower limit, 0.1 mass% or more is preferable, 0.2 mass% or more is more preferable . (F) By setting the content of the curing accelerator to the above lower limit value or the like, sufficient curability and the like can be obtained. As an upper limit of content of a (F) hardening accelerator, 1 mass% or less is preferable, and 0.5 mass% or less is more preferable. (F) By setting the content of the curing accelerator to the upper limit value or less, sufficient flowability and the like can be obtained.

[他の成分]
封止用樹脂組成物は、さらに必要に応じて他の成分を含有していてもよい。他の成分としては、着色剤、イオン捕捉剤、離型剤、低応力成分、難燃剤等を挙げることができる。
着色剤としては、カーボンブラック、ベンガラ等を挙げることができる。
イオン捕捉剤としては、ハイドロタルサイト等を挙げることができる。イオン捕捉剤は中和剤として用いられる場合もある。
離型剤としては、カルナバワックス等の天然ワックス、合成ワックス、ステアリン酸亜鉛等の高級脂肪酸及びその金属塩、パラフィンなどを挙げることができる。
低応力成分としては、シリコーンオイル、シリコーンゴムなどを挙げることができる。
難燃剤としては、水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、モリブデン酸亜鉛、ホスファゼン等を挙げることができる。
[Other ingredients]
The sealing resin composition may further contain other components as necessary. As another component, a coloring agent, an ion trapping agent, a mold release agent, a low stress component, a flame retardant etc. can be mentioned.
Examples of colorants include carbon black and bengala.
As an ion trapping agent, hydrotalcite etc. can be mentioned. Ion scavengers may also be used as neutralizing agents.
Examples of mold release agents include natural waxes such as carnauba wax, synthetic waxes, higher fatty acids such as zinc stearate and metal salts thereof, and paraffins.
Examples of the low stress component include silicone oil and silicone rubber.
Examples of the flame retardant include aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene and the like.

本実施形態の封止用樹脂組成物は、例えば、以下の方法により調製することができる。
まず、前述の各成分を、ミキサー等を用いて常温で均一に混合し、その後、必要に応じて、加熱ロール、ニーダー、押出機等の混練機を用いて溶融混練する。続いて、必要に応じて、得られた混練物を冷却、粉砕し、所望の分散度や流動性等に調整して、封止用樹脂組成物を得ることができる。本実施形態の封止用樹脂組成物は、粉末状として使用する他、有機溶媒を用いたワニスや、液状エポキシ樹脂を使用した液状組成物として使用することもできる。なお、溶媒を含む場合、各成分の含有量は固形分換算とする。
The sealing resin composition of the present embodiment can be prepared, for example, by the following method.
First, the above-described components are uniformly mixed at normal temperature using a mixer or the like, and then, as necessary, melt kneading is performed using a kneader such as a heating roll, a kneader, or an extruder. Subsequently, if necessary, the obtained kneaded product is cooled, pulverized, and adjusted to a desired degree of dispersion, fluidity, etc., to obtain a sealing resin composition. The sealing resin composition of the present embodiment can be used as a powder, and can also be used as a varnish using an organic solvent or a liquid composition using a liquid epoxy resin. In addition, when a solvent is included, content of each component is made into solid content conversion.

[半導体装置]
次に、本実施形態に係る封止用樹脂組成物を適用した半導体装置について説明する。
図1は本実施形態に係る半導体装置100を示す断面図である。
本実施形態の半導体装置100は、半導体素子20と、半導体素子20に接続されるボンディングワイヤ40と、封止樹脂50と、を備えるものであり、当該封止樹脂50は、前述の封止用樹脂組成物の硬化物により構成される。
より具体的には、半導体素子20は、基材30上にダイアタッチ材10を介して固定されており、半導体装置100は、半導体素子20上に設けられた電極パッド22からボンディングワイヤ40を介して接続されるアウターリード34を有する。
[Semiconductor device]
Next, a semiconductor device to which the sealing resin composition according to the present embodiment is applied will be described.
FIG. 1 is a cross-sectional view showing a semiconductor device 100 according to the present embodiment.
The semiconductor device 100 of the present embodiment includes the semiconductor element 20, the bonding wire 40 connected to the semiconductor element 20, and the sealing resin 50, and the sealing resin 50 is used for the above-described sealing. It consists of a cured product of the resin composition.
More specifically, the semiconductor element 20 is fixed on the base 30 through the die attach material 10, and the semiconductor device 100 is connected to the electrode pad 22 provided on the semiconductor element 20 through the bonding wire 40. And the outer lead 34 connected.

封止される半導体素子20は、例えば、電力の入力に対して出力が行われる部品(素子)であり、具体的には、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体現像素子、その他の素子を挙げることができる。
ボンディングワイヤ40は用いられる半導体素子20等を勘案しながら設定することができるが、たとえば銅ボンディングワイヤを用いることができる。
The semiconductor element 20 to be sealed is, for example, a component (element) to which output is performed with respect to input of power, and specifically, an integrated circuit, a large scale integrated circuit, a transistor, a thyristor, a diode, a solid development element And other elements can be mentioned.
The bonding wire 40 can be set in consideration of the semiconductor element 20 and the like to be used, but for example, a copper bonding wire can be used.

半導体装置100の形態としては、例えば、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリヤ(PLCC)、クワッド・フラット・パッケージ(QFP)、ロー・プロファイル・クワッド・フラット・パッケージ(LQFP)、スモール・アウトライン・パッケージ(SOP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)等を挙げることができるが、これらに限定されない。   The form of the semiconductor device 100 is, for example, dual in-line package (DIP), plastic leaded chip carrier (PLCC), quad flat package (QFP), low profile quad flat package (LQFP) Small outline package (SOP), small outline J lead package (SOJ), thin small outline package (TSOP), thin quad flat package (TQFP), tape carrier package (TCP) , Ball grid array (BGA), chip size package (CSP), etc., but is not limited thereto.

半導体装置100は、例えば、ダイアタッチ材10を用いてダイパッド32(基板30)上に半導体素子20を固定し、ボンディングワイヤ40によりリードフレームであるダイパッド32(基材30)を接続した後、これらの構造体(被封止物)を、封止用樹脂組成物を用いて封止することにより製造される。この封止は、例えば、金型キャビティ内に半導体素子20等からなる被封止物を設置した後、封止用樹脂組成物をトランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形、硬化させることにより行うことができる。半導体素子20が封止された半導体装置100は、必要に応じて、80℃から200℃程度の温度で10分から10時間程度の時間をかけて封止用樹脂組成物を硬化させた後、電子機器等に搭載される。   In the semiconductor device 100, for example, after fixing the semiconductor element 20 on the die pad 32 (substrate 30) using the die attach material 10 and connecting the die pad 32 (base material 30) which is a lead frame with the bonding wire 40, The structure (object to be sealed) is sealed by using the sealing resin composition. In this sealing, for example, after an object to be sealed including the semiconductor element 20 and the like is placed in a mold cavity, the sealing resin composition is molded and cured by a molding method such as transfer molding, compression molding or injection molding. It can be done by The semiconductor device 100 in which the semiconductor element 20 is sealed cures the sealing resin composition at a temperature of about 80 ° C. to about 200 ° C. for about 10 minutes to 10 hours, if necessary, and It is mounted on equipment etc.

半導体装置100は、前述の封止用樹脂組成物を封止樹脂50として用いており、封止樹脂50と半導体素子20、ボンディングワイヤ40、電極パッド22等との間の密着性が十分であり、高温保管特性にも優れる。特に、ボンディングワイヤ40に銅ワイヤを用いた場合であっても、十分な高温保管特性等を発揮することができる。   The semiconductor device 100 uses the above-described sealing resin composition as the sealing resin 50, and the adhesion between the sealing resin 50 and the semiconductor element 20, the bonding wire 40, the electrode pad 22 and the like is sufficient. Also excellent in high temperature storage characteristics. In particular, even when a copper wire is used as the bonding wire 40, sufficient high temperature storage characteristics and the like can be exhibited.

以上、実施形態に基づき、本発明を説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を変更しない範囲でその構成を変更することもできる。
以下、参考形態の例を付記する。
1. 半導体素子をモールドする封止用樹脂組成物であって、以下の成分を含む封止用樹脂組成物。
(A)エポキシ樹脂
(B)硬化剤
(C)無機充填材
(D)下記一般式(1)で示されるジアミノトリアジン化合物

Figure 0006507506
(式中、Rは一価の有機基である。)。
2. 半導体素子と、前記半導体素子に接続される、銅ボンディングワイヤと、を封止するために用いられる、1.に記載の封止用樹脂組成物。
3. 前記一般式(1)で示されるジアミノトリアジン化合物が、R置換基内にアルコール性水酸基、フェノール性水酸基及びカルボキシル基から選ばれる活性水素原子を有する基1つ以上を有する、1.または2.に記載の封止用樹脂組成物。
4. 前記硬化剤がフェノール樹脂系硬化剤である、1.ないし3.のいずれかに記載の封止用樹脂組成物。
5. 前記封止用樹脂組成物全体に対する前記無機充填材の含有量が、35質量%以上95質量%以下である、1.ないし4.のいずれかに記載の封止用樹脂組成物。
6. 半導体素子と、
前記半導体素子に接続されるボンディングワイヤと、
1.ないし5.のいずれかに記載の封止用樹脂組成物の硬化物により構成され、かつ前記半導体素子と前記ボンディングワイヤを封止する封止樹脂と、
を備える半導体装置。 As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to the said embodiment, The structure can also be changed in the range which does not change the summary of this invention.
Hereinafter, an example of a reference form is added.
1. It is a resin composition for sealing which molds a semiconductor element, Comprising: The resin composition for sealing containing the following components.
(A) Epoxy resin
(B) Hardening agent
(C) Inorganic filler
(D) Diaminotriazine compound represented by the following general formula (1)
Figure 0006507506
(Wherein, R is a monovalent organic group).
2. Used for sealing a semiconductor element and a copper bonding wire connected to the semiconductor element The resin composition for sealing as described in-.
3. The diaminotriazine compound represented by the general formula (1) has one or more groups having an active hydrogen atom selected from an alcoholic hydroxyl group, a phenolic hydroxyl group and a carboxyl group in an R substituent. Or 2. The resin composition for sealing as described in-.
4. The curing agent is a phenol resin curing agent, Or 3. The sealing resin composition according to any one of the above.
5. Content of the said inorganic filler with respect to the said whole resin composition for sealing is 35 mass% or more and 95 mass% or less. Or 4. The sealing resin composition according to any one of the above.
6. A semiconductor element,
A bonding wire connected to the semiconductor element;
1. To 5. And a sealing resin that is formed of a cured product of the sealing resin composition according to any one of the above, and seals the semiconductor element and the bonding wire.
Semiconductor device provided with

以下、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例の記載に何ら限定されるものではない。   Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to the description of these examples.

実施例1〜19、比較例1〜3で用いた成分について、以下に示す。
(A)エポキシ樹脂
・エポキシ樹脂1:ビフェニル型エポキシ樹脂(三菱化学社製商品名YX4000K)
・エポキシ樹脂2:ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製商品名NC−3000)
・エポキシ樹脂3:フェノールアラルキル型エポキシ樹脂(日本化薬株式会社製商品名NC−2000)
About the component used by Examples 1-19 and Comparative Examples 1-3, it shows below.
(A) Epoxy resin / Epoxy resin 1: Biphenyl type epoxy resin (Mitsubishi Chemical Co., Ltd. trade name YX4000K)
Epoxy resin 2: Biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd. trade name NC-3000)
Epoxy resin 3: Phenolic aralkyl type epoxy resin (Nippon Kayaku Co., Ltd. trade name NC-2000)

(B)硬化剤
・フェノール樹脂系硬化剤1:水酸基当量198g/eq、軟化点64.5℃のビフェニレン骨格を有するフェノールアラルキル樹脂(日本化薬(株)社製、商品名「GPH−65」)。下記一般式(10)において、R47が4,4'−ジメチレンビフェニルである構造を有するものである。
・フェノール樹脂系硬化剤2:水酸基当量97g/eq、軟化点110℃のトリスフェノールメタン骨格を有するフェノール樹脂(明和化成(株)社製、商品名「MEH−7500」)。下記一般式(10)において、R47がヒドロキシフェニルメチレンである構造を有するものである。
(B) Curing agent / phenol resin curing agent 1: Phenolic aralkyl resin having a biphenylene skeleton having a hydroxyl equivalent of 198 g / eq and a softening point of 64.5 ° C. (manufactured by Nippon Kayaku Co., Ltd., trade name “GPH-65” ). In the following general formula (10), R 47 has a structure of 4,4′-dimethylenebiphenyl.
-Phenolic resin-based curing agent 2: A phenolic resin having a trisphenolmethane skeleton having a hydroxyl equivalent of 97 g / eq and a softening point of 110 ° C (manufactured by Meiwa Kasei Co., Ltd., trade name "MEH-7500"). In the following general formula (10), it has a structure in which R 47 is hydroxyphenylmethylene.

Figure 0006507506
Figure 0006507506

・フェノール樹脂系硬化剤3:フェノールノボラック樹脂(住友ベークライト社製商品名PR−HF−3) -Phenolic resin-based curing agent 3: Phenolic novolac resin (trade name PR-HF-3 manufactured by Sumitomo Bakelite Co., Ltd.)

(C)無機充填材
・無機充填材1:平均粒径30μm、比表面積1.7m/gの球状溶融シリカ
・無機充填材2:平均粒径0.5μm、比表面積5.9m/gの球状溶融シリカ
(C) Inorganic filler / inorganic filler 1: Spherical fused silica / inorganic filler 2 having an average particle diameter of 30 μm and a specific surface area of 1.7 m 2 / g 2: an average particle diameter of 0.5 μm, a specific surface area of 5.9 m 2 / g Spherical fused silica

(D)ジアミノトリアジン化合物
・化合物1:下記式(1a)で表されるジアミノトリアジン化合物(2,4−ジアミノ−6−(4,5−ジヒドロキシペンチル)−1,3,5−トリアジン)
(D) Diaminotriazine Compound Compound 1: Diaminotriazine Compound Represented by the Following Formula (1a) (2,4-Diamino-6- (4,5-dihydroxypentyl) -1,3,5-triazine)

Figure 0006507506
(化合物1の合成)
冷却管及び撹拌装置付きのセパラブルフラスコに2,4−ジアミノ−6−ビニル−s−トリアジン13.7g(0.1mol)、酢酸パラジウム0.224g(0.001mol)、トリフェニルホスフィン0.52g(0.002mol)を仕込み、フラスコ内部をアルゴン置換した。さらにフラスコ内に3−クロロ‐1,2−プロパンジオール11g(0.1mol)、トリエチルアミン20.2g(0.2mol)、テトラヒドロフラン200mlを仕込み、60℃で24時間加熱した。反応用液を濃縮後、酢酸エチル200mlに溶解し、水洗した。反応物の酢酸エチル溶液をフラスコに移し、パラジウム炭素1gを添加した。反応系内を水素で置換し、水素を充てんした風船からフラスコ内部へ水素を供給しながら12時間撹拌した。反応用液をろ過濃縮し、ヘキサン/酢酸エチル混合溶媒で再結晶した。析出した結晶をろ過、減圧乾燥することで、化合物1を得た。
Figure 0006507506
(Synthesis of Compound 1)
In a separable flask equipped with a condenser and a stirrer, 13.7 g (0.1 mol) of 2,4-diamino-6-vinyl-s-triazine, 0.224 g (0.001 mol) of palladium acetate, 0.52 g of triphenylphosphine (0.002 mol) was charged, and the inside of the flask was purged with argon. Further, 11 g (0.1 mol) of 3-chloro-1,2-propanediol, 20.2 g (0.2 mol) of triethylamine and 200 ml of tetrahydrofuran were charged in a flask and heated at 60 ° C. for 24 hours. The reaction solution was concentrated, dissolved in 200 ml of ethyl acetate, and washed with water. The ethyl acetate solution of the reaction was transferred to a flask and 1 g of palladium on carbon was added. The inside of the reaction system was replaced with hydrogen and stirred for 12 hours while supplying hydrogen to the inside of the flask from a balloon filled with hydrogen. The reaction solution was filtered and concentrated, and recrystallized with a hexane / ethyl acetate mixed solvent. The precipitated crystals were filtered and dried under reduced pressure to obtain compound 1.

・化合物2:下記式(1b)で表されるジアミノトリアジン化合物(N−(3,5−ジアミノ−2,4,6−トリアジニル)−2,3−ジヒドロキシプロパンアミド)

Figure 0006507506
(化合物2の合成)
撹拌装置付きのセパラブルフラスコに2,4,6−トリアミノ−1,3,5−トリアジン12.6g(0.1mol)、DL−グリセリン酸10.6g(0.1mol)、4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロリド27.6g(0.1mol)、N−メチルモルホリン10.1g(0.1mol)、テトラヒドロフラン200mlを仕込み、12時間撹拌した。白色沈殿を濾去し、反応溶液を濃縮した。ヘキサン/酢酸エチル混合溶媒で再結晶した。析出した結晶をろ過、減圧乾燥することで、化合物2を得た。 Compound 2: Diaminotriazine compound (N- (3,5-diamino-2,4,6-triazinyl) -2,3-dihydroxypropanamide) represented by the following formula (1b)
Figure 0006507506
(Synthesis of Compound 2)
In a separable flask equipped with a stirrer, 12.6 g (0.1 mol) of 2,4,6-triamino-1,3,5-triazine, 10.6 g (0.1 mol) of DL-glyceric acid, 4- (4, 27.6 g (0.1 mol) of 6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride, 10.1 g (0.1 mol) of N-methylmorpholine, and 200 ml of tetrahydrofuran Stir for 12 hours. The white precipitate was filtered off and the reaction solution was concentrated. Recrystallization was performed with a hexane / ethyl acetate mixed solvent. The precipitated crystals were filtered and dried under reduced pressure to obtain compound 2.

・化合物3:下記式(1c)で表されるジアミノトリアジン化合物(2,4−ジアミノ−6−[2−(3,4−ジヒドロキシフェニル)エチル]−1,3,5−トリアジン)

Figure 0006507506
(化合物3の合成)
冷却管及び撹拌装置付きのセパラブルフラスコに4−ブロモカテコール18.9g(0.1mol)、2,4−ジアミノ−6−ビニル−s−トリアジン13.7g(0.1mol)、酢酸パラジウム0.224g(0.001mol)、トリフェニルホスフィン0.52g(0.002mol)を仕込み、フラスコ内部をアルゴン置換した。さらにフラスコ内にトリエチルアミン20.2g(0.2mol)、テトラヒドロフラン200mlを仕込み、60℃で24時間加熱した。反応用液を濃縮後、酢酸エチル200mlに溶解し、水洗した。反応物の酢酸エチル溶液をフラスコに移し、パラジウム炭素1gを添加した。反応系内を水素で置換し、水素を充てんした風船からフラスコ内部へ水素を供給しながら12時間撹拌した。反応用液をろ過濃縮し、ヘキサン/酢酸エチル混合溶媒で再結晶し、析出した結晶をろ過、減圧乾燥することで、化合物3を得た。 Compound 3: Diaminotriazine compound represented by the following formula (1c) (2,4-diamino-6- [2- (3,4-dihydroxyphenyl) ethyl] -1,3,5-triazine)
Figure 0006507506
(Synthesis of Compound 3)
In a separable flask equipped with a condenser and a stirrer, 18.9 g (0.1 mol) of 4-bromocatechol, 13.7 g (0.1 mol) of 2,4-diamino-6-vinyl-s-triazine, 0.1. 224 g (0.001 mol) and 0.52 g (0.002 mol) of triphenylphosphine were charged, and the inside of the flask was purged with argon. Further, 20.2 g (0.2 mol) of triethylamine and 200 ml of tetrahydrofuran were charged into the flask and heated at 60 ° C. for 24 hours. The reaction solution was concentrated, dissolved in 200 ml of ethyl acetate, and washed with water. The ethyl acetate solution of the reaction was transferred to a flask and 1 g of palladium on carbon was added. The inside of the reaction system was replaced with hydrogen and stirred for 12 hours while supplying hydrogen to the inside of the flask from a balloon filled with hydrogen. The reaction solution was concentrated by filtration, recrystallized with a mixed solvent of hexane / ethyl acetate, and the precipitated crystals were filtered and dried under reduced pressure to obtain compound 3.

・化合物4:下記式(1d)で表されるジアミノトリアジン化合物(四国化成社製 製品名VD−3(式中のRはジオール部位とトリアジン環部位とを連結する連結基である。))

Figure 0006507506
Compound 4: Diaminotriazine compound represented by the following formula (1 d) (product name VD-3 (in the formula, R is a linking group linking a diol moiety and a triazine ring moiety) manufactured by Shikoku Kasei Co., Ltd.)
Figure 0006507506

(d)化合物
・化合物5:下記式(11)で表される3−アミノ−5−メルカプト−1,2,4−トリアゾール

Figure 0006507506
(D) Compound · Compound 5: 3-amino-5-mercapto-1,2,4-triazole represented by the following formula (11)
Figure 0006507506

(E)カップリング剤
・カップリング剤1:γ−メルカプトプロピルトリメトキシシラン
・カップリング剤2:N−フェニル−γ−アミノプロピルトリメトキシシラン
(E) Coupling agent / coupling agent 1: γ-mercaptopropyltrimethoxysilane coupling agent 2: N-phenyl-γ-aminopropyltrimethoxysilane

(F)硬化促進剤
・硬化促進剤1:以下の方法にて合成した、下記式(12)で表されるトリフェニルホスフィン−1,4−ベンゾキノン付加物

Figure 0006507506
(F) Hardening accelerator / hardening accelerator 1: Triphenylphosphine-1,4-benzoquinone adduct represented by the following formula (12) synthesized by the following method
Figure 0006507506

(硬化促進剤1の合成)
冷却管及び攪拌装置付きのセパラブルフラスコにベンゾキノン6.49g(0.060mol)、トリフェニルホスフィン17.3g(0.066mol)及びアセトン40mlを仕込み、攪拌下、室温で反応した。析出した結晶をアセトンで洗浄後、ろ過、乾燥し暗緑色結晶の硬化促進剤1を得た。
(Synthesis of curing accelerator 1)
In a separable flask equipped with a condenser and a stirrer, 6.49 g (0.060 mol) of benzoquinone, 17.3 g (0.066 mol) of triphenylphosphine and 40 ml of acetone were charged and reacted at room temperature with stirring. The precipitated crystals were washed with acetone, filtered, and dried to obtain a dark green crystalline hardening accelerator 1.

・硬化促進剤2:以下の方法にて合成した、下記式(13)で表されるテトラ置換ホスホニウム化合物

Figure 0006507506
Curing accelerator 2: a tetra-substituted phosphonium compound represented by the following formula (13) synthesized by the following method
Figure 0006507506

(硬化促進剤2の合成)
冷却管及び攪拌装置付きのセパラブルフラスコにビス(4‐ヒドロキシフェニル)スルホン15.00g(0.060mol)、テトラフェニルホスホニウムブロミド16.77g(0.040mol)及びメタノール100mlを仕込み攪拌し、均一に溶解させた。予め水酸化ナトリウム1.60g(0.04ml)を10mlのメタノールに溶解した水酸化ナトリウム溶液をフラスコ内に徐々に滴下すると結晶が析出した。析出した結晶をろ過、水洗、真空乾燥し、硬化促進剤2を得た。
(Synthesis of curing accelerator 2)
In a separable flask equipped with a condenser and a stirrer, 15.00 g (0.060 mol) of bis (4-hydroxyphenyl) sulfone, 16.77 g (0.040 mol) of tetraphenylphosphonium bromide and 100 ml of methanol are charged and stirred uniformly. It was dissolved. A sodium hydroxide solution prepared by previously dissolving 1.60 g (0.04 ml) of sodium hydroxide in 10 ml of methanol was gradually dropped into the flask to precipitate crystals. The precipitated crystals were filtered, washed with water and vacuum dried to obtain a hardening accelerator 2.

・硬化促進剤3:以下の方法にて合成した、下記式(14)で表されるテトラ置換ホスホニウム化合物

Figure 0006507506
(硬化促進剤3の合成)
冷却管及び攪拌装置付きのセパラブルフラスコに2,3−ジヒドロキシナフタレン12.81g(0.080mol)、テトラフェニルホスホニウムブロミド16.77g(0.040mol)及びメタノール100mlを仕込み攪拌し、均一に溶解させた。予め水酸化ナトリウム1.60g(0.04ml)を10mlのメタノールに溶解した水酸化ナトリウム溶液をフラスコ内に徐々に滴下すると結晶が析出した。析出した結晶をろ過、水洗、真空乾燥し、硬化促進剤3を得た。
・硬化促進剤4:以下の方法にて合成した、下記式(15)で表されるテトラ置換ホスホニウム化合物
Figure 0006507506
(硬化促進剤4の合成)
冷却管及び攪拌装置付きのセパラブルフラスコに2,3−ジヒドロキシナフタレン12.81g(0.080mol)、トリメトキシフェニルシラン7.92g(0.04mol)、テトラフェニルホスホニウムブロミド16.77g(0.040mol)及びメタノール100mlを仕込み攪拌し、均一に溶解させた。予め水酸化ナトリウム1.60g(0.04ml)を10mlのメタノールに溶解した水酸化ナトリウム溶液をフラスコ内に徐々に滴下すると結晶が析出した。析出した結晶をろ過、水洗、真空乾燥し、硬化促進剤4を得た。
・硬化促進剤5:トリフェニルホスフィン Curing accelerator 3: a tetra-substituted phosphonium compound represented by the following formula (14) synthesized by the following method
Figure 0006507506
(Synthesis of curing accelerator 3)
In a separable flask equipped with a condenser and a stirrer, 12.81 g (0.080 mol) of 2,3-dihydroxynaphthalene, 16.77 g (0.040 mol) of tetraphenylphosphonium bromide and 100 ml of methanol are charged and uniformly dissolved. The A sodium hydroxide solution prepared by previously dissolving 1.60 g (0.04 ml) of sodium hydroxide in 10 ml of methanol was gradually dropped into the flask to precipitate crystals. The precipitated crystals were filtered, washed with water and vacuum dried to obtain a hardening accelerator 3.
Curing accelerator 4: a tetra-substituted phosphonium compound represented by the following formula (15) synthesized by the following method
Figure 0006507506
(Synthesis of curing accelerator 4)
In a separable flask equipped with a condenser and a stirrer, 12.81 g (0.080 mol) of 2,3-dihydroxynaphthalene, 7.92 g (0.04 mol) of trimethoxyphenylsilane, 16.77 g (0.040 mol) of tetraphenylphosphonium bromide. ) And 100 ml of methanol were charged and uniformly dissolved. A sodium hydroxide solution prepared by previously dissolving 1.60 g (0.04 ml) of sodium hydroxide in 10 ml of methanol was gradually dropped into the flask to precipitate crystals. The precipitated crystals were filtered, washed with water and vacuum dried to obtain a hardening accelerator 4.
-Hardening accelerator 5: triphenyl phosphine

その他の成分
・着色剤:カーボンブラック
・イオン捕捉剤:ハイドロタルサイト(協和化学社製DHT−4H)
・離型剤:カルナバワックス(日興ファインプロダクツ社製ニッコウカルナバ)
Other ingredients and coloring agents: carbon black and ion capturing agent: hydrotalcite (DHT-4H manufactured by Kyowa Chemical Co., Ltd.)
Releasing agent: Carnauba wax (Nikko Carnauba manufactured by Nikko Fine Products Co., Ltd.)

[実施例1]
エポキシ樹脂1(5.80質量部)、フェノール樹脂系硬化剤1(5.50質量部)、無機充填材1(77.50質量部)、無機充填材2(10.00質量部)、化合物1(0.05質量部)、カップリング剤2(0.20質量部)、硬化促進剤1(0.25質量部)、着色剤(0.40質量部)、イオン捕捉剤(0.10質量部)及び離型剤(0.20質量部)を常温でミキサーを用いて混合し、次に70〜100℃でロール混練した。次いで、冷却後、粉砕して実施例1の封止用樹脂組成物を得た。
Example 1
Epoxy resin 1 (5.80 parts by mass), phenolic resin-based curing agent 1 (5.50 parts by mass), inorganic filler 1 (77.50 parts by mass), inorganic filler 2 (10.00 parts by mass), compounds 1 (0.05 parts by mass), coupling agent 2 (0.20 parts by mass), curing accelerator 1 (0.25 parts by mass), colorant (0.40 parts by mass), ion scavenger (0.10) Parts by mass) and the releasing agent (0.20 parts by mass) were mixed at normal temperature using a mixer, and then roll-kneaded at 70 to 100 ° C. Then, after cooling, the resultant was pulverized to obtain a sealing resin composition of Example 1.

[実施例2〜19、比較例1〜3]
各成分の使用量(配合量)を表1に示す通りにしたこと以外は実施例1と同様にして、実施例2〜19、比較例1〜3の各封止用樹脂組成物を得た。
[Examples 2 to 19, Comparative Examples 1 to 3]
The sealing resin compositions of Examples 2 to 19 and Comparative Examples 1 to 3 were obtained in the same manner as Example 1 except that the amounts used (blended amounts) of the respective components were as shown in Table 1. .

半導体装置(電子部品装置)の製造
TEG(Test Element Group)チップ(3.5mm×3.5mm)を352ピンBGA(基板は、厚さ0.56mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは、30mm×30mm、厚さ1.17mm)上に搭載した。次いで、銅ワイヤ(銅純度99.99質量%、径25μm)を用いて電極パッドにワイヤピッチ80μmでワイヤボンディングした。
これにより得られた構造体を、低圧トランスファー成形機(TOWA製「Yシリーズ」)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分の条件で、得られた各実施例及び比較例の封止用樹脂組成物を用いて封止成形し、352ピンBGAパッケージを作製した。その後、得られたBGAパッケージを175℃、4時間の条件で後硬化して半導体装置(電子部品装置)を得た。
Manufacturing of semiconductor devices (electronic component devices) 352-pin BGA with TEG (Test Element Group) chip (3.5 mm x 3.5 mm) (substrate is 0.56 mm thick, bismaleimide triazine resin / glass cloth substrate, package The size was mounted on 30 mm × 30 mm, thickness 1.17 mm). Next, wire bonding was performed to the electrode pad at a wire pitch of 80 μm using a copper wire (copper purity 99.99% by mass, diameter 25 μm).
Each of the obtained structures was obtained using a low pressure transfer molding machine ("Y series" manufactured by TOWA) under conditions of a mold temperature of 175 ° C, an injection pressure of 6.9 MPa, and a curing time of 2 minutes. It seal-molded using the resin composition for sealing of an Example and a comparative example, and produced the 352 pin BGA package. Thereafter, the obtained BGA package was post-cured at 175 ° C. for 4 hours to obtain a semiconductor device (electronic component device).

[評価]
得られた各実施例及び比較例の封止用樹脂組成物及び半導体装置について、以下の方法にて評価を行った。評価結果は表1に示す。
[Evaluation]
The sealing resin compositions and semiconductor devices of the respective Examples and Comparative Examples obtained were evaluated by the following methods. The evaluation results are shown in Table 1.

[密着性]
各金属(Ag、Cu、PPF(プリ・プレーティング・フレーム)、Ni)に対する密着性を以下の方法で評価した。前記各金属からなる基板上に、得られた封止用樹脂組成物を175℃、6.9MPa、2分間の条件で一体成形し175℃4時間ポストキュアーを行った。その後各基板との剪断接着力を260℃の条件下で測定した。
なお、密着性の評価は比較例1を「1.0」とした相対値にて行っている。
[Adhesiveness]
The adhesion to each metal (Ag, Cu, PPF (pre-plating frame), Ni) was evaluated by the following method. The obtained resin composition for sealing was integrally molded under the conditions of 175 ° C. and 6.9 MPa for 2 minutes and post-cured at 175 ° C. for 4 hours on the substrate made of each metal. Thereafter, the shear adhesion to each substrate was measured under the condition of 260 ° C.
In addition, evaluation of adhesiveness is performed by the relative value which made Comparative example 1 "1.0".

[高温保管特性]
得られた半導体装置について、以下の方法によるHTSL(高温保管試験)を行った。各半導体装置を、温度200℃、1000時間の条件下に保管した。保管後の半導体装置について、ワイヤと電極パッドとの間における電気抵抗値を測定した。各半導体装置の平均値が初期の抵抗値の平均値に対し110%未満の電気抵抗値を示すものを◎、110%以上120%以下の電気抵抗値を示すものを○、120%よりも大きい電気抵抗値を示すものを×とした。
[High temperature storage characteristics]
The obtained semiconductor device was subjected to HTSL (high temperature storage test) according to the following method. Each semiconductor device was stored under conditions of a temperature of 200 ° C. for 1000 hours. The electrical resistance value between the wire and the electrode pad was measured for the semiconductor device after storage. The average value of each semiconductor device shows an electrical resistance value of less than 110% with respect to the average value of the initial resistance value ◎, and the one showing an electrical resistance value of 110% or more and 120% or less ○ greater than 120% The thing which shows an electrical resistance value was made into x.

Figure 0006507506
Figure 0006507506

表1に示されるように、実施例の各封止用樹脂組成物は十分な密着性を有し、得られた電子部品装置(半導体装置)の高温保管特性も優れていることがわかる。一方、ジアミノトリアジン化合物を含有していない比較例1−3は、密着性及び高温保管特性の両立が困難であった。
具体的には、ジアミノトリアジン化合物の代わりに3−アミノ−5―メルカプト―1,2,4−トリアゾールを用いた比較例1では、高温保管性に劣る結果となった。また、比較例2−3では高温保管性は比較的優れるものの、金属に対する密着性には劣る結果となった。
As shown in Table 1, it can be seen that the sealing resin compositions of the examples have sufficient adhesion and the high-temperature storage characteristics of the obtained electronic component device (semiconductor device) are also excellent. On the other hand, in Comparative Example 1-3 in which the diaminotriazine compound was not contained, it was difficult to achieve both the adhesion and the high-temperature storage characteristics.
Specifically, in Comparative Example 1 in which 3-amino-5-mercapto-1,2,4-triazole was used instead of the diaminotriazine compound, the result of inferior high-temperature storage property was obtained. Moreover, in the comparative example 2-3, although the high temperature storage property was comparatively excellent, it resulted in it being inferior to the adhesiveness with respect to a metal.

100 半導体装置
10 ダイアタッチ材
20 半導体素子
22 電極パッド
30 基材
32 ダイパッド
34 アウターリード
40 ボンディングワイヤ
50 封止樹脂
100 Semiconductor Device 10 Die Attach Material 20 Semiconductor Element 22 Electrode Pad 30 Base Material 32 Die Pad 34 Outer Lead 40 Bonding Wire 50 Sealing Resin

Claims (5)

半導体素子をモールドする封止用樹脂組成物であって、以下の成分を含む封止用樹脂組成物。
(A)エポキシ樹脂
(B)硬化剤
(C)無機充填材
(D)下記式(1a)〜(1d)から選択される少なくとも1種のジアミノトリアジン化合物
Figure 0006507506
Figure 0006507506
Figure 0006507506
Figure 0006507506
(式(1d)中、Rはジオール部位とトリアジン環部位とを連結する連結基である。)。
It is a resin composition for sealing which molds a semiconductor element, Comprising: The resin composition for sealing containing the following components.
(A) Epoxy resin (B) Curing agent (C) Inorganic filler (D) At least one diaminotriazine compound selected from the following formulas (1a) to (1d)
Figure 0006507506
Figure 0006507506
Figure 0006507506
Figure 0006507506
(In formula (1d), R is a linking group linking a diol moiety and a triazine ring moiety.)
半導体素子と、前記半導体素子に接続される、銅ボンディングワイヤと、を封止するために用いられる、請求項1に記載の封止用樹脂組成物。   The sealing resin composition according to claim 1, which is used to seal a semiconductor element and a copper bonding wire connected to the semiconductor element. 前記硬化剤がフェノール樹脂系硬化剤である、請求項1または2に記載の封止用樹脂組成物。 Wherein the curing agent is a phenolic resin-based curing agent, according to claim 1 or encapsulating resin composition according to 2. 前記封止用樹脂組成物全体に対する前記無機充填材の含有量が、35質量%以上95質量%以下である、請求項1ないしのいずれか一項に記載の封止用樹脂組成物。 The sealing resin composition according to any one of claims 1 to 3 , wherein a content of the inorganic filler with respect to the entire sealing resin composition is 35% by mass or more and 95% by mass or less. 半導体素子と、
前記半導体素子に接続されるボンディングワイヤと、
請求項1ないしのいずれか一項に記載の封止用樹脂組成物の硬化物により構成され、かつ前記半導体素子と前記ボンディングワイヤを封止する封止樹脂と、
を備える半導体装置。
A semiconductor element,
A bonding wire connected to the semiconductor element;
A sealing resin comprising a cured product of the sealing resin composition according to any one of claims 1 to 4 , and sealing the semiconductor element and the bonding wire.
Semiconductor device provided with
JP2014145613A 2014-07-16 2014-07-16 Resin composition for sealing and semiconductor device Active JP6507506B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014145613A JP6507506B2 (en) 2014-07-16 2014-07-16 Resin composition for sealing and semiconductor device
KR1020177003859A KR102166100B1 (en) 2014-07-16 2015-06-01 Resin composition for encapsulation and semiconductor device
CN201580038820.2A CN106536591B (en) 2014-07-16 2015-06-01 Resin composition for encapsulating and semiconductor device
PCT/JP2015/065723 WO2016009730A1 (en) 2014-07-16 2015-06-01 Resin composition for sealing and semiconductor device
TW104118103A TWI657128B (en) 2014-07-16 2015-06-04 Resin composition for encapsulation and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014145613A JP6507506B2 (en) 2014-07-16 2014-07-16 Resin composition for sealing and semiconductor device

Publications (2)

Publication Number Publication Date
JP2016020464A JP2016020464A (en) 2016-02-04
JP6507506B2 true JP6507506B2 (en) 2019-05-08

Family

ID=55078233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014145613A Active JP6507506B2 (en) 2014-07-16 2014-07-16 Resin composition for sealing and semiconductor device

Country Status (5)

Country Link
JP (1) JP6507506B2 (en)
KR (1) KR102166100B1 (en)
CN (1) CN106536591B (en)
TW (1) TWI657128B (en)
WO (1) WO2016009730A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107200995A (en) * 2016-03-16 2017-09-26 住友电木株式会社 Composition epoxy resin and semiconductor device
CN109563352B (en) * 2016-08-30 2021-10-22 琳得科株式会社 Resin composition, resin sheet, and semiconductor device
JP7139598B2 (en) * 2017-06-23 2022-09-21 住友ベークライト株式会社 Method for producing encapsulating resin composition and method for producing electronic device
WO2019035430A1 (en) * 2017-08-14 2019-02-21 日立化成株式会社 Sealing resin composition, semiconductor device, and method for producing semiconductor device
JP7329320B2 (en) * 2018-11-01 2023-08-18 株式会社ダイセル Curable epoxy resin composition
JP7341828B2 (en) * 2019-09-30 2023-09-11 太陽ホールディングス株式会社 Curable resin compositions, dry films, copper foils with resin, cured products, and electronic components
CN115461406A (en) * 2020-04-30 2022-12-09 昭和电工材料株式会社 Epoxy resin composition for sealing, electronic component device, and method for producing same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225118A (en) * 1985-07-25 1987-02-03 Toshiba Chem Corp Sealing resin composition
JPS62207320A (en) * 1986-03-07 1987-09-11 Hitachi Ltd Theromosetting resin composition and semiconductor device coated or sealed therewith
JPH06322076A (en) * 1993-05-10 1994-11-22 Mitsui Toatsu Chem Inc Epoxy resin composition for semiconductor sealing
JP2001055488A (en) * 1999-06-10 2001-02-27 Shin Etsu Chem Co Ltd Encapsulant for flip chip type semiconductor device and flip chip type semiconductor device
JP2002128861A (en) * 2000-10-23 2002-05-09 Japan Epoxy Resin Kk Epoxy resin composition and method for producing the same
JP2003268200A (en) * 2002-03-15 2003-09-25 Nitto Denko Corp Transparent epoxy resin composition for sealing of photosemiconductor, and photosemiconductor device using it
KR101250033B1 (en) * 2005-01-20 2013-04-02 스미토모 베이클리트 컴퍼니 리미티드 Epoxy resin composition, method of rendering the same latent, and semiconductor device
TWI475038B (en) * 2005-11-30 2015-03-01 Dainippon Ink & Chemicals Phenol resin composition, cured article, resin composition for copper-clad laminate, copper-clad laminate, and novel phenol resin
JP5400267B2 (en) * 2005-12-13 2014-01-29 日立化成株式会社 Epoxy resin composition for sealing and electronic component device
JP2008201873A (en) * 2007-02-19 2008-09-04 Nitto Denko Corp Resin composition for sealing semiconductor and semiconductor device by using the same
JP2009209318A (en) * 2008-03-06 2009-09-17 Dic Corp Epoxy resin composition and cured product thereof
JP2009209317A (en) * 2008-03-06 2009-09-17 Dic Corp Epoxy resin composition and cured product thereof
JP5393207B2 (en) * 2008-10-10 2014-01-22 住友ベークライト株式会社 Semiconductor device
US20120205822A1 (en) * 2009-10-26 2012-08-16 Yusuke Tanaka Resin composition for encapsulating semiconductor and semiconductor device using the resin composition
KR101362887B1 (en) * 2011-05-23 2014-02-14 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
KR102073402B1 (en) * 2012-07-05 2020-02-05 히타치가세이가부시끼가이샤 Phenolic resin composition
JP6066812B2 (en) * 2013-04-19 2017-01-25 四国化成工業株式会社 Triazine compound

Also Published As

Publication number Publication date
TWI657128B (en) 2019-04-21
KR20170031198A (en) 2017-03-20
CN106536591B (en) 2019-07-19
TW201610120A (en) 2016-03-16
WO2016009730A1 (en) 2016-01-21
KR102166100B1 (en) 2020-10-15
CN106536591A (en) 2017-03-22
JP2016020464A (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP6507506B2 (en) Resin composition for sealing and semiconductor device
JP6102913B2 (en) Sealing resin composition and electronic device using the same
JP5692070B2 (en) Semiconductor sealing resin composition and semiconductor device
WO2012070529A1 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP6766360B2 (en) Resin composition
JPWO2011114687A1 (en) Semiconductor sealing resin composition and semiconductor device using the same
JP6436107B2 (en) Resin composition for sealing, method for producing electronic component, and electronic component
KR101827667B1 (en) Resin composition for encapsulation and semiconductor device
JP7126186B2 (en) Resin composition for encapsulation, cured product thereof, and semiconductor device
JP6322966B2 (en) Resin composition for sealing and electronic component device
JPWO2019131379A1 (en) Electronic device manufacturing method
JP2012007086A (en) Resin composition for sealing and electronic part device
KR102322072B1 (en) Resin composition for sealing and electronic component device
TWI685535B (en) Resin composition for encapsulation and electronic component device
JP6489263B2 (en) Resin composition for sealing and electronic component device
JP7501117B2 (en) Flame-retardant resin composition and structure
JP6750659B2 (en) Sealing resin composition and semiconductor device
JP2013064076A (en) Sealing resin composition and electronic component device
JP7241311B2 (en) Encapsulating resin composition and semiconductor package
JP6605190B2 (en) Resin composition for sealing, and semiconductor device
JP2015183173A (en) Resin composition for sealing, semiconductor device, and structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R150 Certificate of patent or registration of utility model

Ref document number: 6507506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150