JP5393207B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5393207B2
JP5393207B2 JP2009057388A JP2009057388A JP5393207B2 JP 5393207 B2 JP5393207 B2 JP 5393207B2 JP 2009057388 A JP2009057388 A JP 2009057388A JP 2009057388 A JP2009057388 A JP 2009057388A JP 5393207 B2 JP5393207 B2 JP 5393207B2
Authority
JP
Japan
Prior art keywords
group
epoxy resin
general formula
semiconductor device
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009057388A
Other languages
Japanese (ja)
Other versions
JP2010114408A (en
Inventor
伸一 前佛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2009057388A priority Critical patent/JP5393207B2/en
Publication of JP2010114408A publication Critical patent/JP2010114408A/en
Application granted granted Critical
Publication of JP5393207B2 publication Critical patent/JP5393207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01009Fluorine [F]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01043Technetium [Tc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Description

本発明は、半導体装置に関するものである。特に、回路基板と、回路基板に搭載された半導体素子と、回路基板と半導体素子とを電気的に接続する銅製ワイヤと、半導体素子と銅製ワイヤを封止する封止材とを備えた半導体装置に関するものである。   The present invention relates to a semiconductor device. In particular, a semiconductor device comprising a circuit board, a semiconductor element mounted on the circuit board, a copper wire that electrically connects the circuit board and the semiconductor element, and a sealing material that seals the semiconductor element and the copper wire It is about.

従来からダイオード、トランジスタ、集積回路等の電子部品は、主にエポキシ樹脂組成物の硬化物により封止されている。特に集積回路では、エポキシ樹脂、フェノール樹脂系硬化剤、及び溶融シリカ、結晶シリカ等の無機充填材を配合した、耐熱性、耐湿性に優れたエポキシ樹脂組成物が用いられている。ところが近年、電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、また半導体装置の表面実装化が促進されるなかで、半導体素子の封止で用いられているエポキシ樹脂組成物への要求は益々厳しいものとなってきている。さらに半導体装置に対するコストダウンの要求も激しく従来の金線接続ではコストが高いため、アルミ、銅合金、銅などの金属による接合も一部採用されている。しかしながら、特に自動車用途においては、コストに加え、150℃を超えるような高温環境下での高温保管特性、高温動作特性、60℃、相対湿度60%を超えるような高温・高湿環境下での耐湿信頼性といった電気的信頼性も要求され、非金ワイヤではマイグレーション、腐食、電気抵抗値の増大といった問題があり必ずしも満足できるものではなかった。   Conventionally, electronic components such as diodes, transistors, and integrated circuits are mainly sealed with a cured product of an epoxy resin composition. Particularly in an integrated circuit, an epoxy resin composition excellent in heat resistance and moisture resistance, which contains an epoxy resin, a phenol resin-based curing agent, and an inorganic filler such as fused silica or crystalline silica, is used. However, in recent years, with the trend toward smaller, lighter, and higher performance electronic devices, higher integration of semiconductor elements has been progressing year by year, and surface mounting of semiconductor devices has been promoted. The demands on the epoxy resin compositions used are becoming increasingly severe. In addition, there is a strong demand for cost reduction of semiconductor devices, and the cost of conventional gold wire connection is high. Therefore, a part of metal, such as aluminum, copper alloy, or copper, is also used. However, especially in automotive applications, in addition to cost, high-temperature storage characteristics in high-temperature environments exceeding 150 ° C, high-temperature operating characteristics, high-temperature and high-humidity environments exceeding 60% relative humidity 60% Electrical reliability such as moisture resistance reliability is also required, and non-gold wires are not always satisfactory due to problems such as migration, corrosion, and increased electrical resistance.

特に銅製ワイヤを用いた半導体装置においては、耐湿信頼性試験において銅が腐食し易すく信頼性にかけるといった問題から、ディスクリート用パワーデバイスといった線径の太いものでは使用実績があるものの、ワイヤ線径25μm以下のIC用途、特に回路基板起因の不純物の影響をも受ける片面封止パッケージへの適用は難しいのが現状である。   Especially in semiconductor devices using copper wires, copper wire is easily corroded in the moisture resistance reliability test and is subject to reliability. At present, it is difficult to apply to an IC application of 25 μm or less, in particular, a single-side sealed package that is also affected by impurities caused by a circuit board.

銅製ワイヤ自身の加工性を改善することで接合部の信頼性を向上させようとした提案(例えば、特許文献1参照。)、銅線に導電性金属を被覆することことで酸化防止による接合信頼性の向上に対して改良をする提案(例えば、特許文献2参照。)など銅製ワイヤ単体での取り組みはあるものの、樹脂で封止されたパッケージすなわち半導体装置としての腐食、耐湿信頼性といった電気的信頼性については考慮されておらず、必ずしも満足できるものではなかった。   Proposal for improving the reliability of the joint by improving the workability of the copper wire itself (see, for example, Patent Document 1), and joining reliability by oxidation prevention by covering the copper wire with a conductive metal Although there is an approach with a single copper wire, such as a proposal for improving the improvement of the performance (for example, see Patent Document 2), the package is sealed with a resin, that is, the electrical resistance such as corrosion as a semiconductor device and moisture resistance reliability Reliability was not considered and was not always satisfactory.

特公平06−017554号公報Japanese Patent Publication No. 06-017554 特開2007−12776号公報JP 2007-12776 A

本発明は、回路基板と半導体素子の各電極パッドとを電気的に接続する銅製ワイヤが腐食し難く、耐半田性、高温保管特性、高温動作特性、耐マイグレーション性、耐湿信頼性のバランスに優れた半導体装置を提供するものである。   In the present invention, the copper wire that electrically connects the circuit board and each electrode pad of the semiconductor element is hardly corroded, and has an excellent balance of solder resistance, high temperature storage characteristics, high temperature operation characteristics, migration resistance, and moisture resistance reliability. A semiconductor device is provided.

本発明の半導体装置は、回路基板と、前記回路基板に搭載された半導体素子と、前記回路基板と前記半導体素子とを電気的に接続する銅製ワイヤと、前記半導体素子と前記銅製ワイヤを封止する封止材とを備え、
前記銅製ワイヤが線径25μm以下の銅製ワイヤであり、
前記銅製ワイヤがその表面にパラジウムを含む金属材料で構成された被覆層を有しており、
前記封止材が(A)エポキシ樹脂、(B)硬化剤、(C)充填材、(D)硫黄原子含有化合物を含むエポキシ樹脂組成物の硬化物で構成されていることを特徴とする。
The semiconductor device of the present invention includes a circuit board, a semiconductor element mounted on the circuit board, a copper wire that electrically connects the circuit board and the semiconductor element, and the semiconductor element and the copper wire are sealed. And a sealing material
The copper wire is a copper wire having a wire diameter of 25 μm or less,
The copper wire has a coating layer made of a metal material containing palladium on its surface,
The sealing material is composed of a cured product of an epoxy resin composition containing (A) an epoxy resin, (B) a curing agent, (C) a filler, and (D) a sulfur atom-containing compound.

本発明の半導体装置は、前記封止材を構成するエポキシ樹脂組成物の硬化物を125℃、相対湿度100%RH、20時間の条件で抽出した抽出水中の塩素イオン濃度が10ppm以下であるものとすることができる。   The semiconductor device of the present invention has a chlorine ion concentration of 10 ppm or less in extracted water obtained by extracting a cured product of the epoxy resin composition constituting the sealing material under the conditions of 125 ° C., relative humidity 100% RH, and 20 hours. It can be.

本発明の半導体装置は、前記銅製ワイヤの芯線における銅純度が99.99質量%以上であるものとすることができる。   In the semiconductor device of the present invention, the copper purity in the core wire of the copper wire may be 99.99% by mass or more.

本発明の半導体装置は、前記パラジウムを含む金属材料から構成された被覆層の厚みが0.001〜0.02μmであるものとすることができる。   In the semiconductor device of the present invention, the coating layer made of the metal material containing palladium may have a thickness of 0.001 to 0.02 μm.

本発明の半導体装置は、前記(D)硫黄原子含有化合物が、メルカプト基、スルホン酸基、スルフィド結合、から選ばれた少なくとも一つの原子団を有する硫黄原子含有化合物であるものとすることができる。   In the semiconductor device of the present invention, the (D) sulfur atom-containing compound may be a sulfur atom-containing compound having at least one atomic group selected from a mercapto group, a sulfonic acid group, and a sulfide bond. .

本発明の半導体装置は、前記(D)硫黄原子含有化合物が、アミノ基、水酸基、カルボキシル基、メルカプト基、含窒素複素環、から選ばれた、エポキシ樹脂マトリックスとの親和性に優れた少なくとも一つの原子団と、メルカプト基、スルホン酸基、スルフィド結合、から選ばれた、パラジウムを含む金属材料との親和性に優れた少なくとも一つの原子団と、を有する硫黄原子含有化合物であるものとすることができる。   In the semiconductor device of the present invention, the (D) sulfur atom-containing compound is at least one excellent in affinity with an epoxy resin matrix selected from an amino group, a hydroxyl group, a carboxyl group, a mercapto group, and a nitrogen-containing heterocyclic ring. A sulfur atom-containing compound having two atomic groups and at least one atomic group selected from a mercapto group, a sulfonic acid group, and a sulfide bond and having excellent affinity with a metal material containing palladium. be able to.

本発明の半導体装置は、前記(D)硫黄原子含有化合物が、トリアゾール系化合物、チアゾリン系化合物、ジチアン系化合物から選ばれた少なくとも1つの硫黄原子含有化合物であるものとすることができる。   In the semiconductor device of the present invention, the (D) sulfur atom-containing compound may be at least one sulfur atom-containing compound selected from a triazole compound, a thiazoline compound, and a dithian compound.

本発明の半導体装置は、前記(D)硫黄原子含有化合物が1,2,4−トリアゾール環を有する化合物であるものとすることができる。   In the semiconductor device of the present invention, the (D) sulfur atom-containing compound may be a compound having a 1,2,4-triazole ring.

本発明の半導体装置は、前記(D)硫黄原子含有化合物が下記一般式(1)で表される化合物

Figure 0005393207
(ただし、上記一般式(1)において、R1は水素原子、又はメルカプト基、アミノ基、水酸基、もしくはそれらの官能基を有する炭化水素基である。)
であるものとすることができる。 In the semiconductor device of the present invention, the compound (D) in which the sulfur atom-containing compound is represented by the following general formula (1)
Figure 0005393207
(However, in the above general formula (1), R1 is a hydrogen atom, a mercapto group, an amino group, a hydroxyl group, or a hydrocarbon group having a functional group thereof.)
It can be assumed that

本発明の半導体装置は、前記(D)硫黄原子含有化合物が下記一般式(2)で表される
化合物

Figure 0005393207
(ただし、上記一般式(2)において、R2、R3は水素原子、又はメルカプト基、アミノ基、水酸基、もしくはそれらの官能基を有する炭化水素基である。)
であるものとすることができる。 In the semiconductor device of the present invention, the compound (D) in which the sulfur atom-containing compound is represented by the following general formula (2)
Figure 0005393207
(However, in the above general formula (2), R2 and R3 are a hydrogen atom, a mercapto group, an amino group, a hydroxyl group, or a hydrocarbon group having a functional group thereof.)
It can be assumed that

本発明の半導体装置は、前記(A)エポキシ樹脂が、
下記一般式(3)で表されるエポキシ樹脂

Figure 0005393207
(ただし、上記一般式(3)において、R4は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。n3の平均値は0又は5以下の正数である。)、
下記一般式(4)で表されるエポキシ樹脂
Figure 0005393207
(ただし、上記一般式(4)において、R5は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。R6は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。n4の平均値は0又は5以下の正数である。)、
下記一般式(5)で表されるエポキシ樹脂
Figure 0005393207
(ただし、上記一般式(5)において、−R7−はフェニレン基又はナフチレン基であり、−R7−がナフチレン基である場合、グリシジルエーテル基の結合位置はα位であってもβ位であってもよい。−R8−はフェニレン基、ビフェニレン基又はナフチレン基である。R9、R10は、それぞれR7、R8に導入される基で、炭素数1〜10の炭化水素基であり、それらは互いに同じであっても異なっていてもよい。aは0〜5の整数、bは0〜8の整数である。n5の平均値は1以上、3以下の正数である。)
及び下記一般式(6)で表されるエポキシ樹脂
Figure 0005393207
(ただし、上記一般式(6)において、R11は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。R12は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。c、dは0又は1であり、互いに同じであっても異なっていてもよい。eは0〜6の整数である。)
から選ばれた少なくとも一つであるエポキシ樹脂を含むものとすることができる。 In the semiconductor device of the present invention, the (A) epoxy resin is
Epoxy resin represented by the following general formula (3)
Figure 0005393207
(However, in the general formula (3), R4 is hydrogen or a hydrocarbon group having 4 or less carbon atoms, and they may be the same or different. The average value of n3 is a positive value of 0 or 5 or less. Number.),
Epoxy resin represented by the following general formula (4)
Figure 0005393207
(However, in the general formula (4), R5 is hydrogen or a hydrocarbon group having 4 or less carbon atoms, and they may be the same or different. R6 is hydrogen or a hydrocarbon having 4 or less carbon atoms. Group, they may be the same or different from each other, and the average value of n4 is 0 or a positive number of 5 or less).
Epoxy resin represented by the following general formula (5)
Figure 0005393207
(However, in the general formula (5), when -R7- is a phenylene group or a naphthylene group, and -R7- is a naphthylene group, the bonding position of the glycidyl ether group is the β-position even if it is the α-position. -R8- is a phenylene group, a biphenylene group or a naphthylene group, R9 and R10 are groups introduced into R7 and R8, respectively, which are hydrocarbon groups having 1 to 10 carbon atoms, A may be the same or different, a is an integer of 0 to 5, b is an integer of 0 to 8. The average value of n5 is a positive number of 1 or more and 3 or less.
And an epoxy resin represented by the following general formula (6)
Figure 0005393207
(However, in the general formula (6), R11 is hydrogen or a hydrocarbon group having 4 or less carbon atoms, and they may be the same or different. R12 is hydrogen or a hydrocarbon having 4 or less carbon atoms. And they may be the same or different from each other, c and d may be 0 or 1, and may be the same or different from each other, e is an integer of 0 to 6.)
An epoxy resin which is at least one selected from the above can be included.

本発明の半導体装置は、前記(B)硬化剤が、
ノボラック型フェノール樹脂、
下記一般式(7)で表されるフェノール樹脂

Figure 0005393207
(ただし、上記一般式(7)において、−R13−はフェニレン基又はナフチレン基であり、−R13−がナフチレン基である場合、水酸基の結合位置はα位であってもβ位であってもよい。−R14−はフェニレン基、ビフェニレン基又はナフチレン基である。R15、R16は、それぞれR13、R14に導入される基で、炭素数1〜10の炭化水素基であり、それらは互いに同じであっても異なっていてもよい。fは0〜5の整数、gは0〜8の整数である。n7の平均値は1以上、3以下の正数である。)
から選ばれた少なくとも一つである硬化剤
を含むものとすることができる。 In the semiconductor device of the present invention, the (B) curing agent is
Novolac type phenolic resin,
Phenol resin represented by the following general formula (7)
Figure 0005393207
(However, in the general formula (7), when -R13- is a phenylene group or a naphthylene group and -R13- is a naphthylene group, the bonding position of the hydroxyl group may be the α-position or the β-position. -R14- is a phenylene group, a biphenylene group or a naphthylene group, R15 and R16 are groups introduced into R13 and R14, respectively, which are hydrocarbon groups having 1 to 10 carbon atoms, and they are the same as each other. F may be an integer of 0 to 5, g may be an integer of 0 to 8. The average value of n7 is a positive number of 1 or more and 3 or less.)
It may contain a curing agent that is at least one selected from.

本発明の半導体装置は、前記(C)充填材が、モード径が30μm以上、50μm以下であり、かつ55μm以上の粗大粒子の含有割合が0.2質量%以下である溶融球状シリカを含むものとすることができる。   In the semiconductor device of the present invention, the filler (C) includes fused spherical silica having a mode diameter of 30 μm or more and 50 μm or less, and a content ratio of coarse particles of 55 μm or more is 0.2% by mass or less. be able to.

本発明の半導体装置は、自動車のエンジンルーム内で用いられる電子部品、パソコン用電源ユニット周辺の電子部品、家電用電源ユニット周辺の電子部品、及びLAN装置内の電子部品などの、60℃、相対湿度60%以上の高温高湿環境下での動作保証が要求される電子部品に使用されるものとすることができる。   The semiconductor device of the present invention is an electronic component used in an engine room of an automobile, an electronic component around a power supply unit for a personal computer, an electronic component around a power supply unit for home appliances, an electronic component in a LAN device, and the like. It can be used for electronic components that require operation guarantee in a high-temperature and high-humidity environment with a humidity of 60% or more.

本発明に従うと、回路基板と半導体素子の各電極パッドとを電気的に接続する銅製ワイヤが腐食を起こし難く、耐半田性、高温保管特性、高温動作特性、耐マイグレーション性、耐湿信頼性のバランスに優れた半導体装置を得ることができる。   According to the present invention, the copper wire that electrically connects the circuit board and each electrode pad of the semiconductor element is less susceptible to corrosion, and the balance of solder resistance, high temperature storage characteristics, high temperature operation characteristics, migration resistance, and moisture resistance reliability. It is possible to obtain an excellent semiconductor device.

本発明に係る半導体装置の一例について、断面構造を示した図である。It is the figure which showed the cross-sectional structure about an example of the semiconductor device which concerns on this invention.

以下、本発明の半導体装置について詳細に説明する。本発明の半導体装置は、回路基板と、回路基板に搭載された半導体素子と、回路基板と半導体素子とを電気的に接続する銅製ワイヤと、半導体素子と銅製ワイヤを封止する封止材とを備え、銅製ワイヤが線径25μm以下の銅製ワイヤであり、銅製ワイヤがその表面にパラジウムを含む金属材料で構成された被覆層を有しており、封止材が(A)エポキシ樹脂、(B)硬化剤、(C)充填材、(D)硫黄原子含有化合物を含むエポキシ樹脂組成物の硬化物で構成されていることを特徴とする。これらにより、回路基板と半導体素子の各電極パッドとを電気的に接続する銅製ワイヤが腐食を起こし難く、高温保管特性、高温動作特性、耐湿信頼性のバランスに優れた半導体装置を得ることができるものである。以下、各構成について詳細に説明する。   Hereinafter, the semiconductor device of the present invention will be described in detail. A semiconductor device of the present invention includes a circuit board, a semiconductor element mounted on the circuit board, a copper wire that electrically connects the circuit board and the semiconductor element, and a sealing material that seals the semiconductor element and the copper wire. The copper wire is a copper wire having a wire diameter of 25 μm or less, the copper wire has a coating layer made of a metal material containing palladium on its surface, and the sealing material is (A) an epoxy resin, ( It is comprised by the hardened | cured material of the epoxy resin composition containing B) hardening | curing agent, (C) filler, and (D) sulfur atom containing compound. As a result, the copper wire that electrically connects the circuit board and each electrode pad of the semiconductor element is less susceptible to corrosion, and a semiconductor device having an excellent balance of high-temperature storage characteristics, high-temperature operating characteristics, and moisture-resistant reliability can be obtained. Is. Hereinafter, each configuration will be described in detail.

先ず、本発明の半導体装置で用いられる銅製ワイヤについて説明を行う。回路基板と、回路基板に搭載された半導体素子と、回路基板と半導体素子とを電気的に接続するワイヤと、半導体素子とワイヤを封止する封止材とを備えた片面封止型の半導体装置においては、集積度の向上のため狭パッドピッチ、小ワイヤ径が要求され、具体的には、25μm以下、さらに好ましくは23μm以下のワイヤ径が求められている。ワイヤとして銅製ワイヤを用いた場合における銅製ワイヤ自身の加工性に起因する接続信頼性を向上させるため、ワイヤ径を大きくすることで接合面積を増大し、接合不足起因の耐湿信頼性の低下を改善するという考え方もあるが、このようにワイヤ径を太くすることによる改善手法では集積度の向上を図ることはできず、片面封止型となる本発明の半導体装置として満足できるものが得られない。   First, the copper wire used in the semiconductor device of the present invention will be described. A single-side sealed semiconductor comprising a circuit board, a semiconductor element mounted on the circuit board, a wire for electrically connecting the circuit board and the semiconductor element, and a sealing material for sealing the semiconductor element and the wire In the apparatus, a narrow pad pitch and a small wire diameter are required to improve the degree of integration. Specifically, a wire diameter of 25 μm or less, more preferably 23 μm or less is required. In order to improve the connection reliability due to the workability of the copper wire itself when using a copper wire as the wire, the bonding area is increased by increasing the wire diameter, and the decrease in moisture resistance reliability due to insufficient bonding is improved. However, the improvement method by increasing the wire diameter in this way cannot increase the degree of integration, and a satisfactory semiconductor device of the present invention that is a single-side sealed type cannot be obtained. .

本発明の半導体装置で用いられる銅製ワイヤは、その表面にパラジウムを含む金属材料
で構成された被覆層を有していることが好ましい。これにより、銅製ワイヤ先端のボール形状が安定し、接合部分の接続信頼性を向上させることができる。また、芯線である銅の酸化劣化を防止する効果も得られ、接合部分の高温保管特性を向上させることができる。
The copper wire used in the semiconductor device of the present invention preferably has a coating layer made of a metal material containing palladium on the surface thereof. Thereby, the ball shape at the tip of the copper wire is stabilized, and the connection reliability of the joint portion can be improved. Moreover, the effect which prevents the oxidation deterioration of copper which is a core wire is also acquired, and the high temperature storage characteristic of a junction part can be improved.

本発明の半導体装置で用いられるパラジウムを含む金属材料で構成された被覆層を有する銅製ワイヤは、芯線における銅純度が99.99質量%以上であることが好ましく、99.999質量%以上であることがより好ましい。一般に銅に対して各種元素(ドーパント)を添加することで接合時における銅製ワイヤ先端のボール側形状の安定化を図ることができるが、0.01質量%より多い大量のドーパントを添加すると、銅製ワイヤが硬くなることで接合時に半導体素子の電極パッド側にダメージを与え、接合不足起因の耐湿信頼性の低下、高温保管特性の低下、電気抵抗値の増大といった不具合を生じる。これに対し、銅純度99.99質量%以上の銅製ワイヤであれば、銅製ワイヤは充分な柔軟性を有しているため、接合時にパッド側にダメージを与える恐れがない。尚、本発明の半導体装置で用いられるパラジウムを含む金属材料で構成された被覆層を有する銅製ワイヤは、芯線である銅にBa、Ca、Sr、Be、Alまたは希土類金属を0.001〜0.003質量%ドープすることでさらにボール形状と接合強度が改善される。   The copper wire having a coating layer made of a metal material containing palladium used in the semiconductor device of the present invention preferably has a copper purity of 99.99% by mass or more and 99.999% by mass or more in the core wire. It is more preferable. Generally, by adding various elements (dopants) to copper, the ball-side shape at the tip of the copper wire at the time of bonding can be stabilized. However, if a large amount of dopant greater than 0.01% by mass is added, When the wire becomes hard, damage is caused to the electrode pad side of the semiconductor element at the time of bonding, resulting in problems such as a decrease in moisture resistance reliability due to insufficient bonding, a decrease in high-temperature storage characteristics, and an increase in electric resistance value. On the other hand, if the copper wire has a copper purity of 99.99% by mass or more, the copper wire has sufficient flexibility, and there is no fear of damaging the pad side during bonding. In addition, the copper wire which has the coating layer comprised with the metal material containing palladium used with the semiconductor device of this invention is 0.001-0 with Ba, Ca, Sr, Be, Al, or a rare earth metal to copper which is a core wire. Ball shape and bonding strength are further improved by doping 0.003 mass%.

本発明の半導体装置で用いられる銅製ワイヤにおけるパラジウムを含む金属材料から構成された被覆層の厚みとしては、0.001〜0.02μmであることが好ましく、0.005〜0.015μmであることがより好ましい。上記上限値を超えると、ワイヤーボンド時に芯線である銅と被覆材のパラジウムを含む金属材料とが十分に溶けずボール形状が不安定になり、接合部分の耐湿性、高温保管特性が低下する恐れがある。また、上記下限値を下回ると、芯線の銅の酸化劣化を十分に防止できず、同様に接合部分の耐湿性、高温保管特性が低下する恐れがある。   As thickness of the coating layer comprised from the metal material containing palladium in the copper wire used with the semiconductor device of this invention, it is preferable that it is 0.001-0.02 micrometer, and it is 0.005-0.015 micrometer. Is more preferable. If the above upper limit is exceeded, copper as the core wire and the metal material containing palladium as the covering material will not be sufficiently melted at the time of wire bonding, and the ball shape will become unstable, and the moisture resistance and high-temperature storage characteristics of the joint may be reduced. There is. On the other hand, if the value is below the lower limit value, the oxidation deterioration of copper in the core wire cannot be sufficiently prevented, and the moisture resistance and high-temperature storage characteristics of the joint portion may be similarly lowered.

本発明の半導体装置で用いられる銅製ワイヤは、銅合金を溶解炉で鋳造し、その鋳塊をロール圧延し、さらにダイスを用いて伸線加工を行い、連続的にワイヤを掃引しながら加熱する後熱処理を施して得ることができる。また、本発明の半導体装置で用いられる銅製ワイヤにおけるパラジウムを含む金属材料から構成された被覆層は、予め狙いのワイヤ径の線を準備し、これをパラジウムを含む電解溶液又は無電解溶液に浸漬し、連続的に掃引してメッキすることで被覆層を形成することができる。この場合、被覆の厚さは掃引速度で調整することができる。また、狙いよりも太い線を準備して、これを電解溶液又は無電解溶液に浸漬し連続的に掃引して被覆層を形成し、さらに所定の径になるまで伸線する手法も取れる。   The copper wire used in the semiconductor device of the present invention is obtained by casting a copper alloy in a melting furnace, rolling the ingot, performing wire drawing using a die, and continuously heating the wire while sweeping the wire. It can be obtained by post-heat treatment. Moreover, the coating layer comprised from the metal material containing palladium in the copper wire used with the semiconductor device of this invention prepares the wire of the target wire diameter beforehand, and immerses this in the electrolytic solution or electroless solution containing palladium. The coating layer can be formed by continuously sweeping and plating. In this case, the thickness of the coating can be adjusted by the sweep rate. Further, a method of preparing a wire thicker than intended, immersing it in an electrolytic solution or an electroless solution, continuously sweeping it to form a coating layer, and drawing the wire to a predetermined diameter can be taken.

次に、本発明の半導体装置で用いられる封止材について説明を行う。本発明の半導体装置で用いられる封止材は、(A)エポキシ樹脂、(B)硬化剤、(C)充填材、(D)硫黄原子含有化合物を含むエポキシ樹脂組成物の硬化物で構成されていることが好ましい。以下、本発明の半導体装置で用いられる封止材のもととなるエポキシ樹脂組成物の各構成成分について説明を行う。   Next, the sealing material used in the semiconductor device of the present invention will be described. The sealing material used in the semiconductor device of the present invention is composed of a cured product of an epoxy resin composition containing (A) an epoxy resin, (B) a curing agent, (C) a filler, and (D) a sulfur atom-containing compound. It is preferable. Hereinafter, each component of the epoxy resin composition that is the basis of the sealing material used in the semiconductor device of the present invention will be described.

本発明の半導体装置で用いられる封止材用のエポキシ樹脂組成物には、(A)エポキシ樹脂を用いることができる。(A)エポキシ樹脂は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂等の結晶性エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;
ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。封止材としての耐湿信頼性を考慮すると、イオン性不純物であるCl(塩素イオン)が極力少ない方が好ましく、より具体的には、(A)エポキシ樹脂全体に対するCl(塩素イオン)等のイオン性不純物の含有割合が10ppm以下であることが好ましく、5ppm以下であることがより好ましい。また、封止材用のエポキシ樹脂組成物としての硬化性を考慮すると、エポキシ当量としては100g/eq以上500g/eq以下であるものが好ましい。これらのエポキシ樹脂のなかでも、後述する一般式(3)で表されるエポキシ樹脂、一般式(4)で表されるエポキシ樹脂、一般式(5)で表されるエポキシ樹脂及び一般式(6)で表されるエポキシ樹脂から選ばれた少なくとも一つであるエポキシ樹脂を含むことが特に好ましい。
(A) An epoxy resin can be used for the epoxy resin composition for sealing materials used with the semiconductor device of this invention. (A) Epoxy resins are monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and their molecular weight and molecular structure are not particularly limited. For example, biphenyl type epoxy resin, bisphenol type Crystalline epoxy resins such as epoxy resins and stilbene type epoxy resins; Novolak type epoxy resins such as phenol novolak type epoxy resins and cresol novolak type epoxy resins; Triphenolmethane type epoxy resins and alkyl-modified triphenolmethane type epoxy resins Functional epoxy resins; aralkyl epoxy resins such as phenol aralkyl epoxy resins having a phenylene skeleton and phenol aralkyl epoxy resins having a biphenylene skeleton;
Dihydroxynaphthalene-type epoxy resins, naphthol-type epoxy resins such as epoxy resins obtained by glycidyl etherification of dihydroxynaphthalene dimers; triazine nucleus-containing epoxy resins such as triglycidyl isocyanurate and monoallyl diglycidyl isocyanurate; dicyclopentadiene Examples include bridged cyclic hydrocarbon compound-modified phenol type epoxy resins such as modified phenol type epoxy resins, and these may be used alone or in combination of two or more. In consideration of moisture resistance reliability as a sealing material, it is preferable that Cl (chlorine ion), which is an ionic impurity, be as small as possible. More specifically, (A) Cl (chlorine ion) or the like with respect to the entire epoxy resin The content ratio of the ionic impurities is preferably 10 ppm or less, and more preferably 5 ppm or less. In consideration of curability as an epoxy resin composition for a sealing material, an epoxy equivalent of 100 g / eq or more and 500 g / eq or less is preferable. Among these epoxy resins, the epoxy resin represented by the general formula (3), the epoxy resin represented by the general formula (4), the epoxy resin represented by the general formula (5), and the general formula (6) It is particularly preferable to include an epoxy resin that is at least one selected from epoxy resins represented by

尚、エポキシ樹脂全体に対するCl(塩素イオン)の含有割合は、以下のようにして測定することができる。先ず、エポキシ樹脂等の試料5gと蒸留水50gとをテフロン(登録商標)製耐圧容器に密閉し、125℃、相対湿度100%RH、20時間の処理(プレッシャークッカー処理)を行う。室温まで冷却した後、抽出水を遠心分離、20μmフィルターにてろ過し、キャピラリー電気泳動装置(例えば、大塚電子株式会社製CAPI―3300)を用いて塩素イオン濃度を測定する。ここで得られる塩素イオン濃度(単位ppm)は試料5g中から抽出された塩素イオンを10倍に希釈した数値であるため、下記式により樹脂組成物単位質量あたりの塩素イオン量に換算する。単位はppm。
試料単位質量あたりの塩素イオン濃度=(キャピラリー電気泳動装置で求めた塩素イオン濃度)×50÷5
尚、後述する硬化剤中に含有される塩素イオンについても、同様の方法で測定することができる。
In addition, the content rate of Cl < - > (chlorine ion) with respect to the whole epoxy resin can be measured as follows. First, 5 g of a sample such as an epoxy resin and 50 g of distilled water are sealed in a Teflon (registered trademark) pressure vessel and subjected to treatment (pressure cooker treatment) at 125 ° C. and a relative humidity of 100% RH for 20 hours. After cooling to room temperature, the extracted water is centrifuged and filtered through a 20 μm filter, and the chloride ion concentration is measured using a capillary electrophoresis apparatus (for example, CAPI-3300 manufactured by Otsuka Electronics Co., Ltd.). Since the chlorine ion concentration (unit ppm) obtained here is a numerical value obtained by diluting the chlorine ion extracted from 5 g of the sample 10 times, it is converted into the chlorine ion amount per unit mass of the resin composition by the following formula. The unit is ppm.
Chlorine ion concentration per unit mass of the sample = (chlorine ion concentration determined by capillary electrophoresis apparatus) × 50 ÷ 5
In addition, it can measure by the same method also about the chlorine ion contained in the hardening | curing agent mentioned later.

下記一般式(3)で表されるエポキシ樹脂及び下記一般式(4)で表されるエポキシ樹脂は、いずれも結晶性エポキシ樹脂であり、常温時には固体で取り扱い性に優れ、かつ成形時の溶融粘度が非常に低い特長を有する。これらのエポキシ樹脂は溶融粘度が低いことにより、エポキシ樹脂組成物の高流動化を得ることができ、無機質充填材を高充填化することができる。これにより、半導体装置における耐半田性、耐湿信頼性を向上する効果を得ることができる。   The epoxy resin represented by the following general formula (3) and the epoxy resin represented by the following general formula (4) are both crystalline epoxy resins, solid at room temperature, excellent in handleability, and melted during molding. Has a very low viscosity. Since these epoxy resins have a low melt viscosity, a high fluidity of the epoxy resin composition can be obtained, and the inorganic filler can be highly filled. Thereby, the effect of improving the solder resistance and moisture resistance reliability in the semiconductor device can be obtained.

Figure 0005393207
(ただし、上記一般式(3)において、R4は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。n3の平均値は0又は5以下の正数である。)
Figure 0005393207
(However, in the general formula (3), R4 is hydrogen or a hydrocarbon group having 4 or less carbon atoms, and they may be the same or different. The average value of n3 is a positive value of 0 or 5 or less. Number.)

Figure 0005393207
(ただし、上記一般式(4)において、R5は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。R6は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。n4の平均値は0又は5以下の正数である。)
Figure 0005393207
(However, in the general formula (4), R5 is hydrogen or a hydrocarbon group having 4 or less carbon atoms, and they may be the same or different. R6 is hydrogen or a hydrocarbon having 4 or less carbon atoms. And they may be the same or different from each other, and the average value of n4 is 0 or a positive number of 5 or less.)

上記一般式(3)で表されるエポキシ樹脂及び上記一般式(4)で表されるエポキシ樹脂の配合割合としては、(A)エポキシ樹脂全体に対して、15質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが特に好ましい。配合割合が上記範囲内であると、エポキシ樹脂組成物の流動性を向上させる効果を得ることができる。   The blending ratio of the epoxy resin represented by the general formula (3) and the epoxy resin represented by the general formula (4) is preferably 15% by mass or more with respect to the whole (A) epoxy resin. 30% by mass or more is more preferable, and 50% by mass or more is particularly preferable. The effect which improves the fluidity | liquidity of an epoxy resin composition can be acquired as a compounding ratio exists in the said range.

また、下記一般式(5)で表されるエポキシ樹脂は、グリシジルエーテル基が結合したフェニレン基又はナフチレン基(−R7−)の間に疎水性のフェニレン骨格、ビフェニレン骨格又はナフチレン骨格を含むアラルキル基(−CH−R8−CH−)を有することから、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等と比べて、架橋点間距離が長くなる。そのため、これらを用いたエポキシ樹脂組成物の硬化物は吸湿率が低く、かつ高温下において低弾性率化するため、半導体装置の耐半田性向上に寄与することができる。また、これらを用いたエポキシ樹脂組成物の硬化物は、耐燃性に優れ、架橋密度が低い割には耐熱性が高いという特徴も有する。さらにナフチレン骨格を含むアラルキル基を含有する化合物においては、ナフタレン環に起因する剛直性によるTgの上昇やその平面構造に起因する分子間相互作用による線膨張係数の低下により、エリア表面実装型といった片面封止の半導体装置における低反り性を向上させることができる。 The epoxy resin represented by the following general formula (5) is an aralkyl group containing a hydrophobic phenylene skeleton, biphenylene skeleton or naphthylene skeleton between a phenylene group or a naphthylene group (-R7-) to which a glycidyl ether group is bonded. (-CH 2 -R8-CH 2 - ) because they have, in comparison with the phenol novolak type epoxy resin and cresol novolac type epoxy resin or the like, the distance between crosslinking points becomes long. Therefore, a cured product of the epoxy resin composition using these has a low moisture absorption rate and a low elastic modulus at a high temperature, which can contribute to an improvement in solder resistance of the semiconductor device. Moreover, the cured | curing material of the epoxy resin composition using these has the characteristics that it is excellent in flame resistance, and heat resistance is high although a crosslinking density is low. Furthermore, in compounds containing an aralkyl group containing a naphthylene skeleton, an area surface-mount type single-sided surface-mounting type due to an increase in Tg due to rigidity due to the naphthalene ring and a decrease in linear expansion coefficient due to intermolecular interaction due to its planar structure Low warpage in a sealed semiconductor device can be improved.

Figure 0005393207
(ただし、上記一般式(5)において、−R7−はフェニレン基又はナフチレン基であり、−R7−がナフチレン基である場合、グリシジルエーテル基の結合位置はα位であってもβ位であってもよい。−R8−はフェニレン基、ビフェニレン基又はナフチレン基である。R9、R10は、それぞれR7、R8に導入される基で、炭素数1〜10の炭化水素基であり、それらは互いに同じであっても異なっていてもよい。aは0〜5の整数、bは
0〜8の整数である。n5の平均値は1以上、3以下の正数である。)
Figure 0005393207
(However, in the general formula (5), when -R7- is a phenylene group or a naphthylene group, and -R7- is a naphthylene group, the bonding position of the glycidyl ether group is the β-position even if it is the α-position. -R8- is a phenylene group, a biphenylene group or a naphthylene group, R9 and R10 are groups introduced into R7 and R8, respectively, which are hydrocarbon groups having 1 to 10 carbon atoms, A may be the same or different, a is an integer of 0 to 5, b is an integer of 0 to 8. The average value of n5 is a positive number of 1 or more and 3 or less.

また、一般式(5)で表されるエポキシ樹脂において、グリシジルエーテル基が結合した−R7−は、フェニレン基又はナフチレン基であり、−R8−がナフチレン基の場合、グリシジルエーテル基の結合位置はα位であってもβ位であってもよいが、特にナフチレン基である場合は前述のナフチレン骨格を含むアラルキル基を含有する化合物と同様に、Tgの上昇や線膨張係数の低下により、エリア表面実装型半導体パッケージにおける低反り性を向上させる効果が得られ、さらに芳香族炭素を多く有することから耐熱性の向上も実現することができる。   In the epoxy resin represented by the general formula (5), -R7- to which a glycidyl ether group is bonded is a phenylene group or a naphthylene group. When -R8- is a naphthylene group, the bonding position of the glycidyl ether group is Although it may be in the α-position or β-position, particularly in the case of a naphthylene group, as in the case of the compound containing an aralkyl group containing the naphthylene skeleton, the area is increased by an increase in Tg or a decrease in linear expansion coefficient. The effect of improving the low warpage in the surface mount semiconductor package can be obtained, and the heat resistance can also be improved because of the large amount of aromatic carbon.

一般式(5)で表されるエポキシ樹脂としては、例えば、フェニレン骨格を含有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を含有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格を含有するナフトールアラルキル型エポキシ樹脂が挙げられるが、一般式(5)の構造であれば特に限定するものではない。   Examples of the epoxy resin represented by the general formula (5) include a phenol aralkyl type epoxy resin containing a phenylene skeleton, a phenol aralkyl type epoxy resin containing a biphenylene skeleton, and a naphthol aralkyl type epoxy resin containing a phenylene skeleton. However, there is no particular limitation as long as it is a structure of the general formula (5).

一般式(5)で表されるエポキシ樹脂の軟化点としては、40℃以上、110℃以下が好ましく、より好ましくは50℃以上、90℃以下である。また、一般式(5)で表されるエポキシ樹脂のエポキシ当量としては、200以上、300以下が好ましい。   The softening point of the epoxy resin represented by the general formula (5) is preferably 40 ° C. or higher and 110 ° C. or lower, more preferably 50 ° C. or higher and 90 ° C. or lower. Moreover, as an epoxy equivalent of the epoxy resin represented by General formula (5), 200 or more and 300 or less are preferable.

一般式(5)で表されるエポキシ樹脂の配合割合としては、(A)エポキシ樹脂全体に対して、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが特に好ましい。配合割合が上記範囲内であると、半導体装置の耐半田性、耐燃性等を向上させる効果を得ることができる。   As a compounding ratio of the epoxy resin represented by General formula (5), it is preferable that it is 30 mass% or more with respect to the whole (A) epoxy resin, It is more preferable that it is 50 mass% or more, 70 mass % Or more is particularly preferable. When the blending ratio is within the above range, it is possible to obtain an effect of improving the solder resistance, flame resistance, etc. of the semiconductor device.

また、下記一般式(6)で表されるエポキシ樹脂は、分子内にナフタレン骨格を有するため、嵩高く、剛直性が高いことから、これを用いたエポキシ樹脂組成物の硬化物の硬化収縮率が小さくなり、低反り性に優れるエリア表面実装型半導体装置が得られる効果も有する。   Moreover, since the epoxy resin represented by the following general formula (6) has a naphthalene skeleton in the molecule, it is bulky and has high rigidity. Therefore, the curing shrinkage of the cured product of the epoxy resin composition using the epoxy resin is high. Is small, and there is an effect that an area surface mount semiconductor device having excellent low warpage can be obtained.

Figure 0005393207
(ただし、上記一般式(6)において、R11は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。R12は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。c、dは0又は1であり、互いに同じであっても異なっていてもよい。eは0〜6の整数である。)
Figure 0005393207
(However, in the general formula (6), R11 is hydrogen or a hydrocarbon group having 4 or less carbon atoms, and they may be the same or different. R12 is hydrogen or a hydrocarbon having 4 or less carbon atoms. And they may be the same or different from each other, c and d may be 0 or 1, and may be the same or different from each other, e is an integer of 0 to 6.)

一般式(6)で表されるエポキシ樹脂の配合割合としては、(A)エポキシ樹脂全体に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが特に好ましい。配合割合が上記範囲内であると、半導体
装置の低反り性を向上させる効果を得ることができる。
As a compounding ratio of the epoxy resin represented by General formula (6), it is preferable that it is 20 mass% or more with respect to the whole (A) epoxy resin, It is more preferable that it is 30 mass% or more, 50 mass % Or more is particularly preferable. The effect which improves the low curvature property of a semiconductor device can be acquired as a compounding ratio exists in the said range.

(A)エポキシ樹脂全体の配合割合の下限値としては特に限定されないが、エポキシ樹脂組成物全体に対して、3質量%以上であることが好ましく、5質量%以上であることがより好ましい。(A)エポキシ樹脂全体の配合割合が上記範囲内であると、耐半田性の低下等を引き起こす恐れが少ない。また、(A)エポキシ樹脂全体の配合割合の上限値としては特に限定されないが、エポキシ樹脂組成物全体に対して、15質量%以下であることが好ましく、13質量%以下であることがより好ましい。エポキシ樹脂全体の配合割合の上限値が上記範囲内であると、耐半田性の低下、流動性の低下等を引き起こす恐れが少ない。   (A) Although it does not specifically limit as a lower limit of the compounding ratio of the whole epoxy resin, It is preferable that it is 3 mass% or more with respect to the whole epoxy resin composition, and it is more preferable that it is 5 mass% or more. (A) When the blending ratio of the entire epoxy resin is within the above range, there is little possibility of causing a decrease in solder resistance. In addition, the upper limit value of the blending ratio of the entire epoxy resin (A) is not particularly limited, but is preferably 15% by mass or less, and more preferably 13% by mass or less with respect to the entire epoxy resin composition. . When the upper limit of the blending ratio of the entire epoxy resin is within the above range, there is little possibility of causing a decrease in solder resistance, a decrease in fluidity, and the like.

本発明の半導体装置で用いられる封止材用のエポキシ樹脂組成物には、(B)硬化剤を用いることができる。(B)硬化剤としては、例えば重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤の3タイプに大別することができる。   In the epoxy resin composition for a sealing material used in the semiconductor device of the present invention, (B) a curing agent can be used. (B) As a hardening | curing agent, it can divide roughly into three types, for example, a polyaddition type hardening | curing agent, a catalyst type hardening | curing agent, and a condensation type hardening | curing agent.

重付加型の硬化剤としては、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m−フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、フェノールポリマーなどのポリフェノール化合物;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。   Examples of polyaddition type curing agents include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylene diamine (MXDA), diaminodiphenylmethane (DDM), and m-phenylenediamine (MPDA). In addition to aromatic polyamines such as diaminodiphenylsulfone (DDS), polyamine compounds including dicyandiamide (DICY), organic acid dihydrazide, etc .; alicyclics such as hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA) Acid anhydrides, including acid anhydrides, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), aromatic anhydrides such as benzophenone tetracarboxylic acid (BTDA), etc .; novolac-type phenolic resin, phenol Polyphenol compounds such as Rimmer; polysulfide, thioester, polymercaptan compounds such as thioethers; isocyanate prepolymer, isocyanate compounds such as blocked isocyanate; and organic acids such as carboxylic acid-containing polyester resins.

触媒型の硬化剤としては、例えば、ベンジルジメチルアミン(BDMA)、2,4,6−トリスジメチルアミノメチルフェノール(DMP−30)などの3級アミン化合物;2−メチルイミダゾール、2−エチル−4−メチルイミダゾール(EMI24)などのイミダゾール化合物;BF3錯体などのルイス酸などが挙げられる。   Examples of the catalyst-type curing agent include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4 -Imidazole compounds such as methylimidazole (EMI24); Lewis acids such as BF3 complexes.

縮合型の硬化剤としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等のフェノール樹脂系硬化剤;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。   Examples of the condensation type curing agent include phenolic resin-based curing agents such as novolak type phenolic resin and resol type phenolic resin; urea resin such as methylol group-containing urea resin; melamine resin such as methylol group-containing melamine resin; Can be mentioned.

これらの中でも、耐燃性、耐湿性、電気特性、硬化性、保存安定性等のバランスの点からフェノール樹脂系硬化剤が好ましい。フェノール樹脂系硬化剤は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂等のノボラック型樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。封止材としての耐湿信頼性を考慮すると、イオン性不純物であるClイオンが極力少ない方が好ましく、より具体的には、(B)硬化剤全体に対するCl(塩素イオン)等のイオン性不純物の含有割合が10ppm以下であることが好ましく、5ppm以下
であることがより好ましい。エポキシ樹脂組成物の硬化性を考慮すると、水酸基当量は90g/eq以上、250g/eq以下のものが好ましい。これらのなかでも、後述するノボラック型フェノール樹脂及び一般式(7)で表されるフェノール樹脂から選ばれた少なくとも一つである硬化剤を含むことが特に好ましい。尚、硬化剤全体に対するCl(塩素イオン)の含有割合の測定は、前述のエポキシ樹脂の場合と同様にして測定することができる。
Among these, a phenol resin-based curing agent is preferable from the viewpoint of balance of flame resistance, moisture resistance, electrical characteristics, curability, storage stability, and the like. The phenol resin-based curing agent is a monomer, oligomer, or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, cresol novolak Novolak resins such as resins; polyfunctional phenol resins such as triphenolmethane phenol resins; modified phenol resins such as terpene-modified phenol resins and dicyclopentadiene-modified phenol resins; phenol aralkyl resins having a phenylene skeleton and / or a biphenylene skeleton Aralkyl-type resins such as naphthol aralkyl resins having a phenylene and / or biphenylene skeleton; bisphenol compounds such as bisphenol A and bisphenol F, and the like. It may be used in combination or more. In consideration of moisture resistance reliability as a sealing material, it is preferable that Cl ions, which are ionic impurities, be as small as possible. More specifically, (B) ionic properties such as Cl (chlorine ions) with respect to the entire curing agent The content ratio of impurities is preferably 10 ppm or less, and more preferably 5 ppm or less. Considering the curability of the epoxy resin composition, the hydroxyl equivalent is preferably 90 g / eq or more and 250 g / eq or less. Among these, it is particularly preferable to include a curing agent that is at least one selected from a novolak-type phenol resin described later and a phenol resin represented by the general formula (7). In addition, the measurement of the content rate of Cl < - > (chlorine ion) with respect to the whole hardening | curing agent can be measured similarly to the case of the above-mentioned epoxy resin.

ノボラック型フェノール樹脂は、フェノール類とホルマリンを酸性触媒下で重合させたもので、特に制限は無いが、より低粘度のものが望ましく具体的には軟化点が90℃以下のものが好ましく、55℃以下のものがより好ましい。このようなノボラック型フェノール樹脂は、低粘度であることで樹脂組成物の流動性を損なうことがなく、かつ硬化性にも優れる特徴があり、得られた成形品の高温保管特性を向上させることができるという利点がある。これらは1種類を単独で用いても2種類以上を併用してもよい。   The novolak-type phenol resin is obtained by polymerizing phenols and formalin in the presence of an acidic catalyst, and is not particularly limited. However, those having a lower viscosity are desirable, and those having a softening point of 90 ° C. or less are preferable. Those having a temperature of ℃ or less are more preferable. Such a novolac type phenolic resin has the characteristics that it does not impair the fluidity of the resin composition due to its low viscosity and has excellent curability, and improves the high-temperature storage characteristics of the obtained molded product There is an advantage that can be. These may be used alone or in combination of two or more.

ノボラック型フェノール樹脂の配合割合としては、(B)硬化剤全体に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが特に好ましい。配合割合が上記範囲内であると、高温保管特性を向上させる効果を得ることができる。   The blending ratio of the novolac type phenol resin is preferably 20% by mass or more, more preferably 30% by mass or more, and particularly preferably 50% by mass or more, based on the entire (B) curing agent. preferable. The effect which improves a high temperature storage characteristic can be acquired as a compounding ratio exists in the said range.

下記一般式(7)で表されるフェノール樹脂は、フェノール性水酸基間に疎水性のフェニレン骨格、ビフェニレン骨格又はナフチレン骨格を含むアラルキル基(−CH−R14−CH−)を有することから、フェノールノボラック樹脂、クレゾールノボラック樹脂等と比べて、架橋点間距離が長くなる。そのため、これらを用いたエポキシ樹脂組成物の硬化物は吸湿率が低く、かつ高温下において低弾性率化するため、半導体装置の耐半田性向上に寄与することができる。また、これらを用いたエポキシ樹脂組成物の硬化物は、耐燃性に優れ、架橋密度が低い割には耐熱性が高いという特徴も有する。さらにナフチレン骨格を含むアラルキル基を含有する化合物においては、ナフタレン環に起因する剛直性によるTgの上昇やその平面構造に起因する分子間相互作用による線膨張係数の低下により、エリア表面実装型といった片面封止の半導体装置における低反り性を向上させることができる。 The phenol resin represented by the following general formula (7) has an aralkyl group (—CH 2 —R 14 —CH 2 —) containing a hydrophobic phenylene skeleton, biphenylene skeleton or naphthylene skeleton between phenolic hydroxyl groups, Compared with phenol novolac resin, cresol novolac resin, etc., the distance between the cross-linking points becomes longer. Therefore, a cured product of the epoxy resin composition using these has a low moisture absorption rate and a low elastic modulus at a high temperature, which can contribute to an improvement in solder resistance of the semiconductor device. Moreover, the cured | curing material of the epoxy resin composition using these has the characteristics that it is excellent in flame resistance, and heat resistance is high although a crosslinking density is low. Furthermore, in compounds containing an aralkyl group containing a naphthylene skeleton, an area surface-mount type single-sided surface-mounting type due to an increase in Tg due to rigidity due to the naphthalene ring and a decrease in linear expansion coefficient due to intermolecular interaction due to its planar structure Low warpage in a sealed semiconductor device can be improved.

Figure 0005393207
(ただし、上記一般式(7)において、−R13−はフェニレン基又はナフチレン基であり、−R13−がナフチレン基である場合、水酸基の結合位置はα位であってもβ位であってもよい。−R14−はフェニレン基、ビフェニレン基又はナフチレン基である。R15、R16は、それぞれR13、R14に導入される基で、炭素数1〜10の炭化水素基であり、それらは互いに同じであっても異なっていてもよい。fは0〜5の整数、gは0〜8の整数である。n7の平均値は1以上、3以下の正数である。)
Figure 0005393207
(However, in the general formula (7), when -R13- is a phenylene group or a naphthylene group and -R13- is a naphthylene group, the bonding position of the hydroxyl group may be the α-position or the β-position. -R14- is a phenylene group, a biphenylene group or a naphthylene group, R15 and R16 are groups introduced into R13 and R14, respectively, which are hydrocarbon groups having 1 to 10 carbon atoms, and they are the same as each other. F may be an integer of 0 to 5, g may be an integer of 0 to 8. The average value of n7 is a positive number of 1 or more and 3 or less.)

また、一般式(7)で表されるフェノール樹脂において、フェノール性水酸基が結合した−R13−は、フェニレン基又はナフチレン基であり、−R13−がナフチレン基の場
合、フェノール性水酸基の結合位置はα位であってもβ位であってもよいが、特にナフチレン基である場合は前述のナフチレン骨格を含むアラルキル基を含有する化合物と同様に、Tgの上昇や線膨張係数の低下により、成形収縮率を小さくすることができ、エリア表面実装型半導体パッケージにおける低反り性を向上させる効果が得られる。さらに芳香族炭素を多く有することから耐熱性の向上も実現することができる。
In the phenol resin represented by the general formula (7), -R13- to which a phenolic hydroxyl group is bonded is a phenylene group or a naphthylene group. When -R13- is a naphthylene group, the bonding position of the phenolic hydroxyl group is The α-position or the β-position may be used, but in particular, in the case of a naphthylene group, as in the case of the compound containing an aralkyl group containing a naphthylene skeleton, the molding is caused by an increase in Tg or a decrease in linear expansion coefficient. The shrinkage rate can be reduced, and the effect of improving the low warpage in the area surface mount semiconductor package can be obtained. Furthermore, since it has a lot of aromatic carbon, an improvement in heat resistance can also be realized.

一般式(7)で表わされるフェノール樹脂としては、例えば、フェニレン骨格を含有するフェノールアラルキル樹脂、ビフェニレン骨格を含有するフェノールアラルキル樹脂、フェニレン骨格を含有するナフトールアラルキル樹脂が挙げられるが、下記一般式(7)の構造であれば特に限定するものではない。   Examples of the phenol resin represented by the general formula (7) include a phenol aralkyl resin containing a phenylene skeleton, a phenol aralkyl resin containing a biphenylene skeleton, and a naphthol aralkyl resin containing a phenylene skeleton. If it is the structure of 7), it will not specifically limit.

一般式(7)で表されるフェノール樹脂の配合割合としては、(B)硬化剤全体に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが特に好ましい。配合割合が上記範囲内であると、耐半田性、耐燃性等を向上させる効果を得ることができる。   The blending ratio of the phenol resin represented by the general formula (7) is preferably 20% by mass or more, more preferably 30% by mass or more, and 50% by mass with respect to the entire (B) curing agent. % Or more is particularly preferable. The effect which improves solder resistance, flame resistance, etc. can be acquired as a mixture ratio is in the said range.

(B)硬化剤全体の配合割合の下限値については、特に限定されないが、全エポキシ樹脂組成物中に、0.8質量%以上であることが好ましく1.5質量%以上であることがより好ましい。配合割合の下限値が上記範囲内であると、充分な流動性を得ることができる。また、硬化剤(B)全体の配合割合の上限値についても、特に限定されないが、全エポキシ樹脂組成物中に、10質量%以下であることが好ましく、8質量%以下であることがより好ましい。配合割合の上限値が上記範囲内であると、良好な耐半田性を得ることができる。   (B) Although it does not specifically limit about the lower limit of the compounding ratio of the whole hardening | curing agent, It is preferable that it is 0.8 mass% or more in all the epoxy resin compositions, and it is more preferably 1.5 mass% or more. preferable. When the lower limit value of the blending ratio is within the above range, sufficient fluidity can be obtained. Further, the upper limit of the blending ratio of the entire curing agent (B) is not particularly limited, but is preferably 10% by mass or less and more preferably 8% by mass or less in the total epoxy resin composition. . When the upper limit of the blending ratio is within the above range, good solder resistance can be obtained.

また、硬化剤(B)としてフェノール樹脂系硬化剤を用いる場合におけるエポキシ樹脂とフェノール樹脂系硬化剤との配合比率としては、全エポキシ樹脂のエポキシ基数(EP)と全フェノール樹脂系硬化剤のフェノール性水酸基数(OH)との当量比(EP)/(OH)が0.8以上、1.3以下であることが好ましい。当量比がこの範囲であると、半導体封止用エポキシ樹脂組成物の硬化性の低下、又は樹脂硬化物の物性の低下等を引き起こす恐れが少ない。   Moreover, as a compounding ratio of the epoxy resin and the phenol resin-based curing agent in the case of using a phenol resin-based curing agent as the curing agent (B), the number of epoxy groups (EP) of all epoxy resins and the phenol of all phenol resin-based curing agents It is preferable that the equivalent ratio (EP) / (OH) to the number of functional hydroxyl groups (OH) is 0.8 or more and 1.3 or less. When the equivalent ratio is within this range, there is little risk of causing a decrease in the curability of the epoxy resin composition for semiconductor encapsulation or a decrease in the physical properties of the resin cured product.

本発明の半導体装置で用いられる封止材用のエポキシ樹脂組成物には、(C)充填材を用いることができる。(C)充填材としては、一般に封止材用のエポキシ樹脂組成物に使用されているものを用いることができる。例えば、溶融球状シリカ、溶融破砕シリカ、結晶シリカ、タルク、アルミナ、チタンホワイト、窒化珪素等が挙げられ、最も好適に使用されるものとしては、球状溶融シリカが挙げられる。これらの充填材は、単独でも混合して用いても差し支えない。またこれらがカップリング剤により表面処理されていてもかまわない。充填材の形状としては、流動性改善のために、できるだけ真球状であり、かつ粒度分布がブロードであることが好ましい。   The filler (C) can be used for the epoxy resin composition for a sealing material used in the semiconductor device of the present invention. (C) As a filler, what is generally used for the epoxy resin composition for sealing materials can be used. For example, fused spherical silica, fused crushed silica, crystalline silica, talc, alumina, titanium white, silicon nitride and the like can be mentioned, and spherical fused silica is most preferably used. These fillers may be used alone or in combination. These may be surface-treated with a coupling agent. The shape of the filler is preferably as spherical as possible and has a broad particle size distribution in order to improve fluidity.

本発明では、充填材が、モード径30μm以上、50μm以下であることが好ましく、35μm以上、45μm以下であることがより好ましい。この範囲のものを用いることでワイヤ−ピッチの狭い片面封止型の半導体装置にも適用することができることとなる。さらに、55μm以上の粗大粒子の含有量が0.2質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。この範囲にすることで、粗大粒子がワイヤ間に挟まり押し倒すワイヤ流れを抑制することができるものである。このような特定の粒度分布を有する充填材は、市販されている充填材をそのまま、或いは、それらの複数を混合したり、篩分したりすること等により、調整して得ることができる。また、本発明で用いる溶融球状シリカのモード径は、市販のレーザー式粒度分布計(例えば、(株)島津製作所製、SALD−7000等)など用いて測定することができる。   In the present invention, the filler preferably has a mode diameter of 30 μm or more and 50 μm or less, and more preferably 35 μm or more and 45 μm or less. By using a device in this range, it can be applied to a single-side sealed semiconductor device having a narrow wire-pitch. Furthermore, the content of coarse particles of 55 μm or more is preferably 0.2% by mass or less, and more preferably 0.1% by mass or less. By making it into this range, the wire flow in which coarse particles are sandwiched between wires and pushed down can be suppressed. The filler having such a specific particle size distribution can be obtained by adjusting a commercially available filler as it is or by mixing a plurality of them or sieving them. The mode diameter of the fused spherical silica used in the present invention can be measured using a commercially available laser particle size distribution meter (for example, SALD-7000 manufactured by Shimadzu Corporation).

(C)充填材の含有割合の下限値は、信頼性を考慮すると、エポキシ樹脂組成物全体に対して、84質量%以上であることが好ましく、87質量%以上であることがよりに好ましい。上記下限値を下回わらない範囲であれば、低吸湿性、低熱膨張性が得られるため、耐半田性が不十分となる恐れが少ない。また、(C)充填材の含有割合の上限値は、成形性を考慮すると、エポキシ樹脂組成物全体に対して、92質量%以下であることが好ましく、89質量%以下であることがより好ましい。上記上限値を超えない範囲であれば、流動性が低下し成形時に充填不良等が生じたり、高粘度化による半導体装置内のワイヤ流れ等の不都合が生じたりする恐れが少ない。   (C) The lower limit of the content ratio of the filler is preferably 84% by mass or more and more preferably 87% by mass or more with respect to the entire epoxy resin composition in consideration of reliability. If it is in a range that does not fall below the lower limit, low hygroscopicity and low thermal expansion can be obtained, so that there is little possibility of insufficient solder resistance. In addition, the upper limit of the content ratio of the filler (C) is preferably 92% by mass or less, more preferably 89% by mass or less, with respect to the entire epoxy resin composition, in view of moldability. . If it is in the range not exceeding the above upper limit value, there is little possibility that fluidity will be lowered and defective filling will occur during molding, or inconvenience such as wire flow in the semiconductor device due to high viscosity will occur.

本発明の半導体装置で用いられる封止材用のエポキシ樹脂組成物には、(D)硫黄原子含有化合物を用いることができる。これにより、金属との親和性が向上する効果が得られる。(D)硫黄原子含有化合物における硫黄原子の結合形態については、特に限定されるものではないが、(D)硫黄原子含有化合物が、メルカプト基、スルホン酸基、スルフィド結合から選ばれた、パラジウムを含む金属材料との親和性に優れた少なくとも一つの原子団を有する硫黄原子含有化合物であることがより好ましい。また、(D)硫黄原子含有化合物は、アミノ基、水酸基、カルボキシル基、メルカプト基、含窒素複素環から選ばれた、エポキシ樹脂マトリックスとの親和性に優れた少なくとも一つの原子団を有する硫黄原子含有化合物であることがさらに好ましい。これにより、エポキシ樹脂組成物の硬化物で構成されている封止材の表面と銅製ワイヤの表面に被覆されているパラジウムを含む金属材料との親和性を向上させ、界面での剥離を抑える効果が得られ、半導体装置の耐半田性、耐湿信頼性を向上させる役割を果たすことができる。このような化合物としては、特に限定するものではないが、含窒素複素環式芳香族化合物又は含硫黄複素環式化合物が好ましい。   In the epoxy resin composition for a sealing material used in the semiconductor device of the present invention, (D) a sulfur atom-containing compound can be used. Thereby, the effect that affinity with a metal improves is acquired. (D) The sulfur atom bonding form in the sulfur atom-containing compound is not particularly limited, but (D) the sulfur atom-containing compound is selected from a mercapto group, a sulfonic acid group, and a sulfide bond. The sulfur atom-containing compound having at least one atomic group excellent in affinity with the metal material to be contained is more preferable. Further, (D) the sulfur atom-containing compound is a sulfur atom having at least one atomic group excellent in affinity with the epoxy resin matrix, selected from an amino group, a hydroxyl group, a carboxyl group, a mercapto group, and a nitrogen-containing heterocyclic ring. More preferably, it is a containing compound. This improves the affinity between the surface of the encapsulant composed of a cured product of the epoxy resin composition and the metal material containing palladium coated on the surface of the copper wire, and suppresses peeling at the interface And can play a role of improving the solder resistance and moisture resistance reliability of the semiconductor device. Such a compound is not particularly limited, but is preferably a nitrogen-containing heterocyclic aromatic compound or a sulfur-containing heterocyclic compound.

含窒素複素環式芳香族化合物としてはトリアゾール系化合物、チアゾリン系化合物、チアゾール系化合物、チアジアゾール系化合物、トリアジン系化合物、ピリミジン系化合物等がより好ましい。これらの化合物の中では、トリアゾール系化合物が特に好ましく、トリアゾール系化合物のなかでは、1,2,4−トリアゾール環を有する化合物であることがより好ましく、下記一般式(1)で表される化合物であることがさらに好ましい。(D)硫黄原子含有化合物として下記一般式(1)で表される化合物を用いると、銅製ワイヤの表面に被覆されているパラジウムを含む金属材料との親和性がより高くなるため、半導体装置の信頼性をより向上させることができる。   As the nitrogen-containing heterocyclic aromatic compound, triazole compounds, thiazoline compounds, thiazole compounds, thiadiazole compounds, triazine compounds, pyrimidine compounds, and the like are more preferable. Among these compounds, triazole compounds are particularly preferable, and among the triazole compounds, a compound having a 1,2,4-triazole ring is more preferable, and a compound represented by the following general formula (1) More preferably. (D) When a compound represented by the following general formula (1) is used as the sulfur atom-containing compound, the affinity for the metal material containing palladium coated on the surface of the copper wire is further increased. Reliability can be further improved.

Figure 0005393207
(ただし、上記一般式(1)において、R1は水素原子、又はメルカプト基、アミノ基、水酸基、もしくはそれらの官能基を有する炭化水素基である。)
Figure 0005393207
(However, in the above general formula (1), R1 is a hydrogen atom, a mercapto group, an amino group, a hydroxyl group, or a hydrocarbon group having a functional group thereof.)

含硫黄複素環式化合物としては、ジチアン系化合物が挙げられ、下記一般式(2)で表される化合物であることがさらに好ましく、その中でも水酸基を持つものが特に好ましい。(D)硫黄原子含有化合物として一般式(2)で表される化合物を用いると、銅製ワイ
ヤの表面に被覆されているパラジウムを含む金属材料との親和性がより高くなるため、半導体装置の信頼性をより向上させることができる。
Examples of the sulfur-containing heterocyclic compound include dithian compounds, more preferably a compound represented by the following general formula (2), and among them, a compound having a hydroxyl group is particularly preferable. (D) When the compound represented by the general formula (2) is used as the sulfur atom-containing compound, the affinity with the metal material containing palladium coated on the surface of the copper wire is further increased. The sex can be further improved.

Figure 0005393207
(ただし、上記一般式(2)において、R2、R3は水素原子、又はメルカプト基、アミノ基、水酸基、もしくはそれらの官能基を有する炭化水素基である。)
Figure 0005393207
(However, in the above general formula (2), R2 and R3 are a hydrogen atom, a mercapto group, an amino group, a hydroxyl group, or a hydrocarbon group having a functional group thereof.)

(D)硫黄原子含有化合物全体の配合割合の下限値については、全エポキシ樹脂組成物中に、0.01質量%以上であることが好ましく、0.02質量%以上であることがより好ましく、0.03質量%以上であることが特に好ましい。配合割合の下限値が上記範囲内であると、パラジウムを含む金属材料との親和性を向上させる効果を得ることができる。また、(D)硫黄原子含有化合物全体の配合割合の上限値については、全エポキシ樹脂組成物中に、0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましく、0.2質量%以下であることが特に好ましい。配合割合の上限値が上記範囲内であると、エポキシ樹脂組成物の流動性が低下する恐れが少ない。   (D) About the lower limit of the blending ratio of the entire sulfur atom-containing compound, the total epoxy resin composition is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, It is especially preferable that it is 0.03 mass% or more. The effect which improves the affinity with the metal material containing palladium as the lower limit of a mixture ratio is in the said range can be acquired. Moreover, about the upper limit of the compounding ratio of the whole (D) sulfur atom containing compound, it is preferable that it is 0.5 mass% or less in all the epoxy resin compositions, and it is more preferable that it is 0.3 mass% or less. It is preferably 0.2% by mass or less. There exists little possibility that the fluidity | liquidity of an epoxy resin composition falls that the upper limit of a mixture ratio exists in the said range.

本発明の半導体装置で用いられる封止材用のエポキシ樹脂組成物には、硬化促進剤をさらに用いることができる。硬化促進剤は、エポキシ樹脂のエポキシ基と硬化剤(たとえば、フェノール樹脂系硬化剤のフェノール性水酸基)との架橋反応を促進させるものであればよく、一般に封止材用のエポキシ樹脂組成物に使用するものを用いることができる。例えば、1、8−ジアザビシクロ(5、4、0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体;トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類;2−メチルイミダゾール等のイミダゾール化合物;テトラフェニルホスホニウム・テトラフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート;ホスフィン化合物とキノン化合物との付加物等が挙げられ、これらは1種類を単独で用いても2種以上を併用しても差し支えない。   A curing accelerator can be further used in the epoxy resin composition for a sealing material used in the semiconductor device of the present invention. The curing accelerator is not particularly limited as long as it promotes the crosslinking reaction between the epoxy group of the epoxy resin and the curing agent (for example, the phenolic hydroxyl group of the phenol resin-based curing agent), and is generally used as an epoxy resin composition for a sealing material. What is used can be used. For example, diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof; organic phosphines such as triphenylphosphine and methyldiphenylphosphine; imidazole compounds such as 2-methylimidazole; tetra Examples include tetra-substituted phosphonium and tetra-substituted borates such as phenylphosphonium and tetraphenylborate; adducts of phosphine compounds and quinone compounds, and these may be used alone or in combination of two or more. .

硬化促進剤の配合割合の下限値としては特に限定されないが、エポキシ樹脂組成物全体に対して、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。硬化促進剤の配合割合の下限値が上記範囲内であると、硬化性の低下を引き起こす恐れが少ない。また、硬化促進剤の配合割合の上限値としては特に限定されないが、エポキシ樹脂組成物全体に対して、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。硬化促進剤の配合割合の上限値が上記範囲内であると、流動性の低下を引き起こす恐れが少ない。   Although it does not specifically limit as a lower limit of the mixture ratio of a hardening accelerator, It is preferable that it is 0.05 mass% or more with respect to the whole epoxy resin composition, and it is more preferable that it is 0.1 mass% or more. When the lower limit of the blending ratio of the curing accelerator is within the above range, there is little possibility of causing a decrease in curability. Moreover, although it does not specifically limit as an upper limit of the mixture ratio of a hardening accelerator, It is preferable that it is 1 mass% or less with respect to the whole epoxy resin composition, and it is more preferable that it is 0.5 mass% or less. When the upper limit value of the blending ratio of the curing accelerator is within the above range, there is little possibility of causing a decrease in fluidity.

硬化促進剤のうちでは、流動性の観点で、ホスフィン化合物とキノン化合物との付加物がより好ましい。ホスフィン化合物とキノン化合物との付加物で用いられるホスフィン化合物としては、例えば、トリフェニルホスフィン、トリ−p−トリルホスフィン、ジフェニルシクロヘキシルホスフィン、トリシクロヘキシルホスフィン、トリブチルホスフィンなどが挙げられる。また、ホスフィン化合物とキノン化合物との付加物で用いられるキノン化合物としては、例えば、1,4−ベンゾキノン、メチル−1,4−ベンゾキノン、メトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン、1,4−ナフトキノンなどが挙げられる。これらホスフィン化合物とキノン化合物との付加物のうち、トリフ
ェニルホスフィンと1,4−ベンゾキノンとの付加物がより好ましい。ホスフィン化合物とキノン化合物との付加物の製造方法としては特に制限はないが、例えば、原料として用いられるホスフィン化合物とキノン化合物とを両者が溶解する有機溶媒中で付加反応させて単離すればよい。
Among the curing accelerators, an adduct of a phosphine compound and a quinone compound is more preferable from the viewpoint of fluidity. Examples of the phosphine compound used in the adduct of the phosphine compound and the quinone compound include triphenylphosphine, tri-p-tolylphosphine, diphenylcyclohexylphosphine, tricyclohexylphosphine, and tributylphosphine. Examples of the quinone compound used in the adduct of a phosphine compound and a quinone compound include 1,4-benzoquinone, methyl-1,4-benzoquinone, methoxy-1,4-benzoquinone, and phenyl-1,4-benzoquinone. 1,4-naphthoquinone and the like. Of these adducts of phosphine compounds and quinone compounds, an adduct of triphenylphosphine and 1,4-benzoquinone is more preferred. Although there is no restriction | limiting in particular as a manufacturing method of the adduct of a phosphine compound and a quinone compound, For example, what is necessary is just to isolate by making an addition reaction in the organic solvent in which both the phosphine compound and quinone compound which are used as a raw material melt | dissolve. .

本発明の半導体装置で用いられる封止材用のエポキシ樹脂組成物には、さらに必要に応じて、水酸化ジルコニウム等のアルミニウム腐食防止剤;酸化ビスマス水和物等の無機イオン交換体;γ−グリシドキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン等のカップリング剤;カーボンブラック、ベンガラ等の着色剤;シリコーンゴム等の低応力成分;カルナバワックス等の天然ワックス、合成ワックス、ステアリン酸亜鉛等の高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤;酸化防止剤等の各種添加剤を適宜配合してもよい。さらに、必要に応じて無機充填材をエポキシ樹脂又はフェノール樹脂で予め処理して用いてもよく、処理の方法としては、溶媒を用いて混合した後に溶媒を除去する方法や、直接無機充填材に添加し、混合機を用いて混合処理する方法等がある。   The epoxy resin composition for a sealing material used in the semiconductor device of the present invention may further include an aluminum corrosion inhibitor such as zirconium hydroxide; an inorganic ion exchanger such as bismuth oxide hydrate; Coupling agents such as glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-aminopropyltrimethoxysilane; colorants such as carbon black and bengara; low stress components such as silicone rubber; carnauba wax and the like Natural waxes, synthetic waxes, higher fatty acids such as zinc stearate and metal salts thereof or mold release agents such as paraffin; various additives such as antioxidants may be appropriately blended. Further, if necessary, the inorganic filler may be used after being pre-treated with an epoxy resin or a phenol resin, and as a treatment method, a method of removing the solvent after mixing with a solvent or a direct inorganic filler may be used. There is a method of adding and mixing using a mixer.

本発明の半導体装置で用いられる封止材用のエポキシ樹脂組成物は、エポキシ樹脂組成物の硬化物全体に対するCl(塩素イオン)の含有割合が10ppm以下であることが好ましく、5ppm以下であることがより好ましく、3ppm以下であることがさらに好ましい。これにより、より優れた耐湿信頼性と、高温動作特性を得ることができる。尚、エポキシ樹脂組成物の硬化物全体に対するCl(塩素イオン)の含有割合は、以下のようにして測定することができる。先ず、半導体装置の封止材を構成するエポキシ樹脂組成物の硬化物を粉砕ミルによって3分間粉砕し、200メッシュの篩で篩分して通過した粉を試料とする。得られた試料5gと蒸留水50gとをテフロン(登録商標)製耐圧容器に密閉し、125℃、相対湿度100%RH、20時間の処理(プレッシャークッカー処理)を行う。室温まで冷却した後、抽出水を遠心分離、20μmフィルターにてろ過し、キャピラリー電気泳動装置(例えば、大塚電子株式会社製CAPI―3300)を用いて塩素イオン濃度を測定する。ここで得られる塩素イオン濃度(単位ppm)は試料5g中から抽出された塩素イオンを10倍に希釈した数値であるため、下記式により樹脂組成物単位質量あたりの塩素イオン量に換算する。単位はppm。
試料単位質量あたりの塩素イオン濃度=(キャピラリー電気泳動装置で求めた塩素イオン濃度)×50÷5
In the epoxy resin composition for a sealing material used in the semiconductor device of the present invention, the content ratio of Cl (chlorine ion) to the entire cured product of the epoxy resin composition is preferably 10 ppm or less, and is preferably 5 ppm or less. More preferred is 3 ppm or less. Thereby, more excellent moisture resistance reliability and high temperature operation characteristics can be obtained. In addition, the content rate of Cl < - > (chlorine ion) with respect to the whole hardened | cured material of an epoxy resin composition can be measured as follows. First, a cured product of an epoxy resin composition that constitutes a sealing material for a semiconductor device is pulverized for 3 minutes by a pulverizing mill, sieved with a 200 mesh sieve and used as a sample. 5 g of the obtained sample and 50 g of distilled water are sealed in a Teflon (registered trademark) pressure vessel and subjected to a treatment (pressure cooker treatment) at 125 ° C. and a relative humidity of 100% RH for 20 hours. After cooling to room temperature, the extracted water is centrifuged and filtered through a 20 μm filter, and the chloride ion concentration is measured using a capillary electrophoresis apparatus (for example, CAPI-3300 manufactured by Otsuka Electronics Co., Ltd.). Since the chlorine ion concentration (unit ppm) obtained here is a numerical value obtained by diluting the chlorine ion extracted from 5 g of the sample 10 times, it is converted into the chlorine ion amount per unit mass of the resin composition by the following formula. The unit is ppm.
Chlorine ion concentration per unit mass of the sample = (chlorine ion concentration determined by capillary electrophoresis apparatus) × 50 ÷ 5

本発明の半導体装置で用いられる封止材用のエポキシ樹脂組成物は、前述の各成分を、例えば、ミキサー等を用いて常温混合したもの、さらにその後、ロール、ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕したものなど、必要に応じて適宜分散度や流動性等を調整したものを用いることができる。   The epoxy resin composition for a sealing material used in the semiconductor device of the present invention is obtained by mixing the above-described components at room temperature using, for example, a mixer, and then kneading machines such as rolls, kneaders, and extruders. A material whose dispersion degree, fluidity and the like are appropriately adjusted can be used as required, such as those obtained by melt-kneading and then pulverizing after cooling.

次に本発明の半導体装置について説明する。本発明の半導体装置は封止材用のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形して得られる。   Next, the semiconductor device of the present invention will be described. The semiconductor device of the present invention uses an epoxy resin composition for a sealing material to seal an electronic component such as a semiconductor element, and is cured and molded by a conventional molding method such as transfer molding, compression molding, or injection molding. can get.

本発明で封止を行う半導体素子としては、特に限定されるものではなく、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子等が挙げられる。   The semiconductor element that performs sealing in the present invention is not particularly limited, and examples thereof include an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.

本発明の半導体装置の形態としては、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)、クワッド・フラット・ノンリード(QFN)等が挙げられる。上記トランスファーモールドなどの成形方法で封止された半導体装置は、そのまま
、或いは80℃〜200℃程度の温度で、10分〜10時間程度の時間をかけて完全硬化させた後、電子機器等に搭載される。
Examples of the semiconductor device according to the present invention include a ball grid array (BGA), a chip size package (CSP), and a quad flat non-lead (QFN). The semiconductor device encapsulated by the molding method such as the transfer mold is completely cured as it is or at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 10 hours, and then applied to an electronic device or the like. Installed.

図1は、本発明に係る片面封止型の半導体装置の一例について、断面構造を示した図である。回路基板6上に、ダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドと回路基板6上の電極パッドとの間は銅製ワイヤ3によって接続されている。エポキシ樹脂組成物の硬化物により構成された封止材4によって、回路基板6の半導体素子1が搭載された片面側のみが封止されている。回路基板6上の電極パッドは回路基板6上の非封止面側の半田ボール7と内部で接合されている。   FIG. 1 is a diagram showing a cross-sectional structure of an example of a single-side sealed semiconductor device according to the present invention. The semiconductor element 1 is fixed on the circuit board 6 via the die bond material cured body 2. The electrode pads of the semiconductor element 1 and the electrode pads on the circuit board 6 are connected by a copper wire 3. Only one side of the circuit board 6 on which the semiconductor element 1 is mounted is sealed with a sealing material 4 made of a cured product of the epoxy resin composition. The electrode pads on the circuit board 6 are joined to the solder balls 7 on the non-sealing surface side on the circuit board 6 inside.

以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。配合割合は質量部とする。実施例、比較例で用いた封止材用のエポキシ樹脂組成物の各成分について、以下に示す。   Examples of the present invention are shown below, but the present invention is not limited thereto. The blending ratio is part by mass. It shows below about each component of the epoxy resin composition for sealing materials used by the Example and the comparative example.

封止材用のエポキシ樹脂の各成分:
(エポキシ樹脂)
E−1:ビフェニル型エポキシ樹脂(一般式(3)において、3位、5位のR4がメチル基、2位、6位のR4が水素原子であるエポキシ樹脂。ジャパンエポキシレジン(株)製、YX−4000H、融点105℃、エポキシ当量190、塩素イオン量5.0ppm。)
E−2:ビスフェノールA型エポキシ樹脂(一般式(4)において、R5が水素原子、R6がメチル基であるエポキシ樹脂。ジャパンエポキシレジン(株)製、YL−6810、融点45℃、エポキシ当量172、塩素イオン量2.5ppm。)
E−3:ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(一般式(5)において、−R7−がフェニレン基、−R8−がビフェニレン基、aが0、bが0であるエポキシ樹脂。日本化薬(株)製、NC3000、軟化点58℃、エポキシ当量274、塩素イオン量9.8ppm。)
E−4:フェニレン骨格を有するナフトールアラルキル型エポキシ樹脂(一般式(5)において、−R7−がナフチレン基、−R8−がフェニレン基、aが0、bが0であるエポキシ樹脂。東都化成(株)製、ESN−175、軟化点65℃、エポキシ当量254、塩素イオン量8.5ppm。)
E−5:一般式(6)で表わされるエポキシ樹脂(一般式(6)において、R12が水素原子であり、cが0、dが0、eが0である成分50質量%、R12が水素原子であり、cが1、dが0、eが0である成分40質量%、R12が水素原子であり、cが1、dが1、eが0である成分10質量%の混合物であるエポキシ樹脂。大日本インキ工業(株)製HP4770、軟化点72℃、エポキシ当量205、塩素イオン量2.0ppm。)
E−6:オルソクレゾールノボラック型エポキシ樹脂(日本化薬(株)製、EOCN1020、軟化点55℃、エポキシ当量196、塩素イオン量5.0ppm。)
E−7:ビフェニル型エポキシ樹脂(一般式(3)において、3位、5位のR4がメチル基、2位、6位のR4が水素原子であるエポキシ樹脂。ジャパンエポキシレジン(株)製、YX−4000H、融点105℃、エポキシ当量190、塩素イオン量12.0ppm。)
E−8:ビスフェノールA型エポキシ樹脂(一般式(4)において、R5が水素原子、R6がメチル基であるエポキシ樹脂。ジャパンエポキシレジン(株)製、1001、融点45℃、エポキシ当量460、塩素イオン量25ppm。)
Each component of epoxy resin for sealing material:
(Epoxy resin)
E-1: Biphenyl type epoxy resin (in the general formula (3), the epoxy resin in which R4 at the 3rd and 5th positions is a methyl group, and R4 at the 6th and 6th positions is a hydrogen atom. Manufactured by Japan Epoxy Resins Co., Ltd. YX-4000H, melting point 105 ° C., epoxy equivalent 190, chloride ion amount 5.0 ppm.)
E-2: Bisphenol A type epoxy resin (in general formula (4), R5 is a hydrogen atom and R6 is a methyl group. Japan Epoxy Resin Co., Ltd., YL-6810, melting point 45 ° C., epoxy equivalent 172) , Chlorine ion amount 2.5ppm.)
E-3: A phenol aralkyl type epoxy resin having a biphenylene skeleton (in the general formula (5), -R7- is a phenylene group, -R8- is a biphenylene group, a is 0, and b is 0. Nippon Kayaku) (Corporation), NC3000, softening point 58 ° C., epoxy equivalent 274, chloride ion content 9.8 ppm.)
E-4: A naphthol aralkyl type epoxy resin having a phenylene skeleton (in general formula (5), -R7- is a naphthylene group, -R8- is a phenylene group, a is 0, and b is 0. Co., Ltd., ESN-175, softening point 65 ° C., epoxy equivalent 254, chlorine ion amount 8.5 ppm.)
E-5: Epoxy resin represented by general formula (6) (in general formula (6), R12 is a hydrogen atom, c is 0, d is 0, and e is 0, 50% by mass, R12 is hydrogen) 40% by mass of a component that is an atom, c is 1, d is 0, and e is 0, and R12 is a hydrogen atom, and is a mixture of 10% by mass of a component that is c, 1, d, and e is 0 (Epoxy resin. HP4770, manufactured by Dainippon Ink Industries, Ltd., softening point 72 ° C., epoxy equivalent 205, chloride ion amount 2.0 ppm.)
E-6: Orthocresol novolak type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EOCN1020, softening point 55 ° C., epoxy equivalent 196, chloride ion amount 5.0 ppm)
E-7: Biphenyl type epoxy resin (in general formula (3), the epoxy resin in which R4 at the 3rd and 5th positions is a methyl group, and R4 at the 6th and 6th positions is a hydrogen atom. Manufactured by Japan Epoxy Resins Co., Ltd. YX-4000H, melting point 105 ° C., epoxy equivalent 190, chloride ion amount 12.0 ppm.)
E-8: Bisphenol A type epoxy resin (in general formula (4), R5 is a hydrogen atom and R6 is a methyl group. Japan Epoxy Resin Co., Ltd., 1001, melting point 45 ° C., epoxy equivalent 460, chlorine Ion content 25ppm.)

Figure 0005393207
Figure 0005393207

Figure 0005393207
Figure 0005393207

Figure 0005393207
Figure 0005393207

Figure 0005393207
Figure 0005393207

(硬化剤)
H−1:フェノールノボラック樹脂(住友ベークライト(株)製、PR−HF−3軟化点80℃、水酸基当量104、塩素イオン量1.0ppm。)
H−2:フェニレン骨格を有するフェノールアラルキル樹脂(一般式(7)において、−R13−がフェニレン基、−R14−がフェニレン基、fが0、gが0である化合物。
三井化学(株)製、XLC−4L、軟化点62℃、水酸基当量168、塩素イオン量2.5ppm。)
H−3:ビフェニレン骨格を有するフェノールアラルキル樹脂(一般式(7)において、−R13−がフェニレン基、−R14−がビフェニレン基、fが0、gが0である化合物。明和化成(株)製、MEH−7851SS、軟化点65℃、水酸基当量203、塩素イオン量1.0ppm。)
H−4:フェニレン骨格を有するナフトールアラルキル樹脂(一般式(7)において、−R13−がナフチレン基、−R14−がフェニレン基、fが0、gが0である化合物。東都化成(株)製、SN−485、軟化点87℃、水酸基当量210、塩素イオン量1.5ppm。)
H−5:フェニレン骨格を有するナフトールアラルキル樹脂(一般式(7)において、−R13−がナフチレン基、−R14−がフェニレン基、fが0、gが0である化合物。東都化成(株)製、SN−170L、軟化点69℃、水酸基当量182、塩素イオン量15.0ppm。)
(Curing agent)
H-1: Phenol novolak resin (manufactured by Sumitomo Bakelite Co., Ltd., PR-HF-3 softening point 80 ° C., hydroxyl group equivalent 104, chlorine ion content 1.0 ppm)
H-2: A phenol aralkyl resin having a phenylene skeleton (in the general formula (7), a compound in which -R13- is a phenylene group, -R14- is a phenylene group, f is 0, and g is 0).
Made by Mitsui Chemicals, Inc., XLC-4L, softening point 62 ° C., hydroxyl group equivalent 168, chloride ion amount 2.5 ppm. )
H-3: A phenol aralkyl resin having a biphenylene skeleton (in the general formula (7), -R13- is a phenylene group, -R14- is a biphenylene group, f is 0, and g is 0. manufactured by Meiwa Kasei Co., Ltd.) , MEH-7851SS, softening point 65 ° C., hydroxyl group equivalent 203, chloride ion amount 1.0 ppm.)
H-4: A naphthol aralkyl resin having a phenylene skeleton (in the general formula (7), -R13- is a naphthylene group, -R14- is a phenylene group, f is 0, and g is 0. manufactured by Tohto Kasei Co., Ltd.) SN-485, softening point 87 ° C., hydroxyl equivalent 210, chlorine ion content 1.5 ppm.)
H-5: A naphthol aralkyl resin having a phenylene skeleton (in the general formula (7), -R13- is a naphthylene group, -R14- is a phenylene group, f is 0, and g is 0. Toto Kasei Co., Ltd.) SN-170L, softening point 69 ° C., hydroxyl group equivalent 182, chlorine ion content 15.0 ppm.)

Figure 0005393207
Figure 0005393207

(充填材)
溶融球状シリカ1:モード径30μm、比表面積3.7m/g、55μm以上の粗大粒子の含有量0.01質量部((株)マイクロン製、HS−203。)
溶融球状シリカ2:モード径37μm、比表面積2.8m/g、55μm以上の粗大粒子の含有量0.1質量部((株)マイクロン製、HS−105を300メッシュの篩を用いて粗大粒子を除去することにより得た。)
溶融球状シリカ3:モード径45μm、比表面積2.2m/g、55μm以上の粗大粒子の含有量0.1質量部(電気化学工業(株)製、FB−820を300メッシュの篩を用いて粗大粒子を除去することにより得た。)
溶融球状シリカ4:モード径50μm、比表面積1.4m/g、55μm以上の粗大粒子の含有量0.03質量部(電気化学工業(株)製、FB−950を300メッシュの篩を用いて粗大粒子を除去することにより得た。)
溶融球状シリカ5:モード径55μm、比表面積1.5m/g、55μm以上の粗大粒子の含有量0.1質量部(電気化学工業(株)製 FB−74を300メッシュの篩を用いて粗大粒子を除去することにより得た。)
溶融球状シリカ6:モード径50μm、比表面積3.0m/g、55μm以上の粗大粒子の含有量15.0質量部(電気化学工業(株)製、FB−820。)
溶融球状シリカ7:モード径50μm、比表面積1.5m/g、55μm以上の粗大粒子の含有量6.0質量部(電気化学工業(株)製、FB−950。)
(Filler)
Fused spherical silica 1: Mode diameter 30 μm, specific surface area 3.7 m 2 / g, content of coarse particles of 55 μm or more 0.01 parts by mass (manufactured by Micron Corporation, HS-203)
Fused spherical silica 2: Mode diameter 37 μm, specific surface area 2.8 m 2 / g, content of coarse particles of 55 μm or more 0.1 parts by mass (manufactured by Micron Corporation, HS-105 is coarse using 300 mesh sieve Obtained by removing the particles.)
Fused spherical silica 3: Mode diameter 45 μm, specific surface area 2.2 m 2 / g, content of coarse particles of 55 μm or more 0.1 parts by mass (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-820 using 300 mesh sieve) And obtained by removing coarse particles.)
Fused spherical silica 4: Mode diameter 50 μm, specific surface area 1.4 m 2 / g, content of coarse particles of 55 μm or more 0.03 parts by mass (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-950 using a 300 mesh sieve) And obtained by removing coarse particles.)
Fused spherical silica 5: mode diameter 55 μm, specific surface area 1.5 m 2 / g, content of coarse particles of 55 μm or more 0.1 parts by mass (by using a 300 mesh sieve made by Denki Kagaku Kogyo FB-74) Obtained by removing coarse particles.)
Fused spherical silica 6: mode diameter 50 μm, specific surface area 3.0 m 2 / g, content of coarse particles of 55 μm or more 15.0 parts by mass (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-820.)
Fused spherical silica 7: mode diameter 50 μm, specific surface area 1.5 m 2 / g, content of coarse particles of 55 μm or more 6.0 parts by mass (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-950)

(硫黄原子含有化合物)
硫黄原子含有化合物1:下記式(8)で表される3−アミノ−5−メルカプト−1,2,4−トリアゾール(試薬)

Figure 0005393207
(Sulfur atom-containing compound)
Sulfur atom-containing compound 1: 3-amino-5-mercapto-1,2,4-triazole (reagent) represented by the following formula (8)
Figure 0005393207

硫黄原子含有化合物2:下記式(9)で表される3,5−ジメルカプト−1,2,4−トリアゾール(試薬)

Figure 0005393207
Sulfur atom-containing compound 2: 3,5-dimercapto-1,2,4-triazole represented by the following formula (9) (reagent)
Figure 0005393207

硫黄原子含有化合物3:下記式(10)で表される3−ヒドロキシ−5−メルカプト−1,2,4−トリアゾール(試薬)

Figure 0005393207
Sulfur atom-containing compound 3: 3-hydroxy-5-mercapto-1,2,4-triazole (reagent) represented by the following formula (10)
Figure 0005393207

硫黄原子含有化合物4:下記式(11)で表されるトランス−4,5−ジヒドロキシ−1,2−ジチアン(シグマ−アルドリッチ社製、分子量:152.24)

Figure 0005393207
Sulfur atom-containing compound 4: trans-4,5-dihydroxy-1,2-dithiane represented by the following formula (11) (manufactured by Sigma-Aldrich, molecular weight: 152.24)
Figure 0005393207

硫黄原子含有化合物5:γ−メルカプトプロピルトリメトキシシラン Sulfur atom-containing compound 5: γ-mercaptopropyltrimethoxysilane

(硬化促進剤)
トリフェニルホスフィン(TPP)
(Curing accelerator)
Triphenylphosphine (TPP)

(カップリング剤)
エポキシシラン:γ−グリシドキシプロピルトリメトキシシラン
(Coupling agent)
Epoxy silane: γ-glycidoxypropyltrimethoxysilane

(着色剤)
カーボンブラック
(Coloring agent)
Carbon black

(離型剤)
カルナバワックス
(Release agent)
Carnauba wax

封止材用のエポキシ樹脂組成物の製造
(実施例1)
E−3 8質量部
H−3 6質量部
溶融球状シリカ2 85質量部
硫黄原子含有化合物1 0.05質量部
トリフェニルホスフィン 0.3質量部
エポキシシラン 0.2質量部
カーボンブラック 0.25質量部
カルナバワックス 0.2質量部
を常温でミキサーを用いて混合し、次に70〜100℃でロール混練し、冷却後粉砕して封止材用のエポキシ樹脂組成物を得た。
Production of epoxy resin composition for sealing material (Example 1)
E-3 8 parts by mass H-3 6 parts by mass Fused spherical silica 2 85 parts by mass Sulfur atom-containing compound 1 0.05 part by mass Triphenylphosphine 0.3 part by mass Epoxysilane 0.2 part by mass Carbon black 0.25 part by mass Part Carnauba wax 0.2 parts by mass was mixed at room temperature using a mixer, then roll kneaded at 70 to 100 ° C., cooled and pulverized to obtain an epoxy resin composition for a sealing material.

(実施例2〜32、比較例1〜12)
表1〜7に記載の封止材用エポキシ樹脂組成物の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得た。
(Examples 2-32 and Comparative Examples 1-12)
An epoxy resin composition was obtained in the same manner as in Example 1 in accordance with the composition of the epoxy resin composition for a sealing material described in Tables 1 to 7.

実施例、比較例で用いた銅製ワイヤの内容について、以下に示す。
銅製ワイヤ1:表1〜7に記載の各線径である銅純度99.99質量%の芯線に表1〜7に記載の各厚さでパラジウム被覆を施したもの((株)日鉄マイクロメタル製、EX)
銅製ワイヤ2:表1、5、6に記載の各線径である銅純度99.999質量%、銀0.001質量%ドープの芯線(タツタ電線(株)製、TC−A)に表1〜6に記載の各厚さでパラジウム被覆を施したもの
銅製ワイヤ3:表1、2、4、7に記載の各線径である銅純度99.99質量%の銅製ワイヤ(タツタ電線(株)製、TC−E)
The contents of the copper wire used in the examples and comparative examples are shown below.
Copper wire 1: A core wire having a copper purity of 99.99% by mass as described in Tables 1 to 7 and coated with palladium at each thickness described in Tables 1 to 7 (Nittetsu Micro Metal Co., Ltd.) Manufactured, EX)
Copper wire 2: Copper purity 99.999 mass% and silver 0.001 mass% doped core wire (TC-A, manufactured by Tatsuta Electric Co., Ltd.), which is each wire diameter described in Tables 1, 5, and 6 6 coated with palladium at each thickness described in 6 Copper wire 3: Copper wire having a copper purity of 99.99% by mass as described in Tables 1, 2, 4, and 7 (manufactured by Tatsuta Electric Co., Ltd.) , TC-E)

各実施例及び各比較例で得られた封止材用のエポキシ樹脂組成物について、以下の評価を行った。得られた結果を表1〜7に示す。   The following evaluation was performed about the epoxy resin composition for sealing materials obtained by each Example and each comparative example. The obtained results are shown in Tables 1-7.

評価方法
スパイラルフロー:低圧トランスファー成形機(コータキ精機(株)製、KTS−15)を用いて、EMMI−1−66に準じたスパイラルフロー測定用の金型に、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件でエポキシ樹脂組成物を注入し
、流動長を測定した。単位はcm。80cm以下であるとパッケージ未充填などの成形不良が生じる場合がある。
Evaluation method Spiral flow: Using a low-pressure transfer molding machine (KTS-15, manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement according to EMMI-1-66, mold temperature 175 ° C., injection pressure The epoxy resin composition was injected under conditions of 6.9 MPa and a curing time of 120 seconds, and the flow length was measured. The unit is cm. If it is 80 cm or less, molding defects such as unfilled packages may occur.

吸湿率:低圧トランスファー成形機(コータキ精機(株)製、KTS−30)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件でエポキシ樹脂組
成物を注入、成形して、直径50mm、厚さ3mmの円盤状試験片を作製したのち、後硬化として175℃で8時間加熱処理した。試験片の吸湿処理前の重量と、85℃、相対湿度60%の環境下で168時間加湿処理した後の重量を測定し、試験片の吸湿率を百分率で示した。単位は質量%。
Moisture absorption: An epoxy resin composition is injected and molded under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds using a low-pressure transfer molding machine (KTS-30, manufactured by Kotaki Seiki Co., Ltd.). Then, after preparing a disk-shaped test piece having a diameter of 50 mm and a thickness of 3 mm, heat treatment was performed at 175 ° C. for 8 hours as post-curing. The weight before moisture absorption treatment of the test piece and the weight after humidification treatment for 168 hours in an environment of 85 ° C. and 60% relative humidity were measured, and the moisture absorption rate of the test piece was shown as a percentage. The unit is mass%.

収縮率:低圧トランスファー成形機(藤和精機(株)製、TEP−50−30)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件下で、エポキシ樹脂組成物を注入成形して、直径100mm、厚さ3mmの試験片を作製した。作製した成形品を、175℃、8時間で後硬化した後、175℃での金型キャビティの内径寸法と、室温(25℃)での試験片の外径寸法とを測定し、下記式により収縮率を算出した。
収縮率(%)={(175℃での金型キャビティの内径寸法)−(後硬化後の25℃での試験片の外径寸法)}/(175℃での金型キャビティの内径寸法)×100(%)
Shrinkage: Epoxy resin composition using a low-pressure transfer molding machine (manufactured by Towa Seiki Co., Ltd., TEP-50-30) under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds. A test piece having a diameter of 100 mm and a thickness of 3 mm was produced. The prepared molded article was post-cured at 175 ° C. for 8 hours, and then the inner diameter dimension of the mold cavity at 175 ° C. and the outer diameter dimension of the test piece at room temperature (25 ° C.) were measured. Shrinkage was calculated.
Shrinkage (%) = {(inner diameter dimension of mold cavity at 175 ° C.) − (Outer diameter dimension of test piece at 25 ° C. after post-curing)} / (inner diameter dimension of mold cavity at 175 ° C.) × 100 (%)

ワイヤ流れ率:アルミニウムパッドを形成したTEGチップ(3.5mm×3.5mm、パッドピッチは80μm)を352ピンBGA(基板は厚さ0.56mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは30×30mm、厚さ1.17mm)のダイパッド部に接着し、TEGチップのアルミニウムパッドと基板側端子とを、表1〜6に記載の各銅製ワイヤを用いてワイヤピッチ80μmでワイヤボンディングした。これを、低圧トランスファー成形機(TOWA製、Yシリーズ)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分の条件でエポキシ樹脂組成物により封止成形して、352ピンBGAパッケージを作製し、175℃、4時間の条件で後硬化した。室温まで冷却後、軟X線透視装置(ソフテックス(株)製、PRO−TEST100)で観察し、ワイヤの流れ率を(流れ量)/(ワイヤ長)の比率で表し、この値が最も大きくなるワイヤ部の値を記した。単位は%。この値が5%を超えると、隣接するワイヤ同士が接触する可能性が高い。   Wire flow rate: TEG chip (3.5mm x 3.5mm, pad pitch is 80μm) with 352 pin BGA (thickness is 0.56mm, bismaleimide / triazine resin / glass cloth substrate, package size) Is bonded to a die pad portion having a thickness of 30 × 30 mm and a thickness of 1.17 mm, and the aluminum pad of the TEG chip and the substrate side terminal were wire-bonded at a wire pitch of 80 μm using each copper wire described in Tables 1-6. . This was sealed with an epoxy resin composition using a low-pressure transfer molding machine (TOWA, Y series) under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes, and 352 pins A BGA package was prepared and post-cured at 175 ° C. for 4 hours. After cooling to room temperature, it was observed with a soft X-ray fluoroscope (PRO-TEST100, manufactured by Softex Corporation), and the wire flow rate was expressed as a ratio of (flow rate) / (wire length). The value of the wire part is described. Units%. When this value exceeds 5%, there is a high possibility that adjacent wires come into contact with each other.

封止材中の塩素イオン濃度:ワイヤ流れ率の測定で用いた、後硬化後の352ピンBGAパッケージから封止材のみを切り出し後、粉砕ミルによって3分間粉砕し、200メッシュの篩で篩分して通過した粉を試料とした。得られた試料5gと蒸留水50gとをテフロン(登録商標)製耐圧容器に密閉し、125℃、相対湿度100%RH、20時間の処理(プレッシャークッカー処理)を行った。室温まで冷却した後、抽出水を遠心分離、20μmフィルターにてろ過し、キャピラリー電気泳動装置(大塚電子株式会社製CAPI―3300)を用いて塩素イオン濃度を測定した。ここで得られる塩素イオン濃度(単位ppm)は試料5g中から抽出された塩素イオンを10倍に希釈した数値であるため、下記式により封止材単位質量あたりの塩素イオン量に換算した。単位はppm。
試料単位質量あたりの塩素イオン濃度=(キャピラリー電気泳動装置で求めた塩素イオン濃度)×50÷5
尚、封止材中の塩素イオン濃度の測定は、封止材を構成する複数の類似樹脂組成物を代表して、実施例1、4、10、22〜30のみで行った。
Chlorine ion concentration in the sealing material: After cutting out only the sealing material from the post-cured 352-pin BGA package used in the measurement of the wire flow rate, it was pulverized for 3 minutes by a pulverizing mill, and sieved with a 200 mesh sieve. The powder that passed through was used as a sample. 5 g of the obtained sample and 50 g of distilled water were sealed in a Teflon (registered trademark) pressure vessel and subjected to a treatment (pressure cooker treatment) at 125 ° C. and a relative humidity of 100% RH for 20 hours. After cooling to room temperature, the extracted water was centrifuged and filtered through a 20 μm filter, and the chloride ion concentration was measured using a capillary electrophoresis apparatus (CAPI-3300 manufactured by Otsuka Electronics Co., Ltd.). Since the chlorine ion concentration (unit ppm) obtained here is a numerical value obtained by diluting the chlorine ion extracted from 5 g of the sample 10 times, it was converted to the chlorine ion amount per unit mass of the sealing material by the following formula. The unit is ppm.
Chlorine ion concentration per unit mass of the sample = (chlorine ion concentration determined by capillary electrophoresis apparatus) × 50 ÷ 5
In addition, the measurement of the chlorine ion density | concentration in a sealing material was performed only in Example 1, 4, 10, 22-30 on behalf of the some similar resin composition which comprises a sealing material.

耐半田性:アルミニウムパッドを形成したチップ(3.5mm×3.5mm、SiN皮膜付き)を352ピンBGA(基板は厚さ0.56mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは30×30mm、厚さ1.17mm)のダイパッド部に接着し、チップのアルミニウムパッドと基板側端子を、表1〜6に記載の銅製ワイヤを用いてワイヤピッチ80μmでワイヤボンディングした。これを、低圧トランスファー成形機(TOWA製、Yシリーズ)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分の条件でエポキシ樹脂組成物により封止成形して、352ピンBGAパッケージを作製し、175℃、4時間の条件で後硬化した。得られたパッケージ10個を60℃、相対湿度60%で168時間加湿処理した後、IRリフロー処理(最大温度260℃)を三回行った。処理後のパッケージ内部の剥離、及びクラックの有無を超音波
傷機(日立建機ファインテック株式会社製、mi−scope hyper II)で観察し、剥離又はクラックのいずれか一方でも発生したものを不良とした。単位は不良パッケージの個数。
Solder resistance: chip (3.5 mm x 3.5 mm, with SiN film) on which aluminum pads are formed, 352-pin BGA (substrate thickness: 0.56 mm, bismaleimide / triazine resin / glass cloth substrate, package size: 30 The aluminum pad of the chip and the substrate side terminal were wire-bonded at a wire pitch of 80 μm using the copper wires described in Tables 1-6. This was sealed with an epoxy resin composition using a low-pressure transfer molding machine (TOWA, Y series) under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes, and 352 pins A BGA package was prepared and post-cured at 175 ° C. for 4 hours. Ten packages obtained were humidified at 60 ° C. and 60% relative humidity for 168 hours, and then IR reflow treatment (maximum temperature 260 ° C.) was performed three times. The inside of the package after processing and the presence or absence of cracks were observed with an ultrasonic scratcher (manufactured by Hitachi Construction Machinery Finetech Co., Ltd., mi-scope hyper II). It was. The unit is the number of defective packages.

高温保管特性:アルミニウム電極パッドを形成したTEG(TEST ELEMENT
GROUP)チップ(3.5mm×3.5mm)を352ピンBGA(基板は厚さ0.56mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは30×30mm、厚さ1.17mm)のダイパッド部に接着し、TEGチップのアルミニウム電極パッドと基板側端子とをデージーチェーンになるように、表1〜6に記載の銅製ワイヤを用いてワイヤピッチ80μmでワイヤボンディングした。これを、低圧トランスファー成形機(TOWA製、Yシリーズ)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分の条件でエポキシ樹脂組成物により封止成形して、352ピンBGAパッケージを作製した。作製したパッケージを、175℃、8時間で後硬化した後、高温保管試験(200℃)を行った。24時間毎に配線間の電気抵抗値の測定を行い、その値が初期値に対し20%増加したパッケージを不良と判定し、不良になるまでの時間を測定した。不良時間はn=5ヶの測定で、1ケでも不良が発生した時間で示した。単位は時間。全てのパッケージで192Hrまで不良発生のなかったものは192<とした。
High temperature storage characteristics: TEG (TEST ELEMENT with aluminum electrode pad)
GROUP) die pad (3.5mm x 3.5mm) with 352 pin BGA (substrate thickness 0.56mm, bismaleimide / triazine resin / glass cloth substrate, package size 30x30mm, thickness 1.17mm) The aluminum electrode pad of the TEG chip and the substrate side terminal were bonded to each other at a wire pitch of 80 μm using the copper wires shown in Tables 1 to 6 so as to form a daisy chain. This was sealed with an epoxy resin composition using a low-pressure transfer molding machine (TOWA, Y series) under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes, and 352 pins A BGA package was produced. The prepared package was post-cured at 175 ° C. for 8 hours, and then subjected to a high-temperature storage test (200 ° C.). The electrical resistance value between the wirings was measured every 24 hours, a package whose value increased by 20% with respect to the initial value was determined to be defective, and the time until it became defective was measured. The failure time is n = 5 measurements, and is shown as the time at which a failure occurred even at one point. The unit is time. In all the packages, 192 <was defined as the case where no defect occurred until 192Hr.

高温動作特性:アルミニウム電極パッドを形成したTEG(TEST ELEMENT
GROUP)チップ(3.5mm×3.5mm)を352ピンBGA(基板は厚さ0.56mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは30×30mm、厚さ1.17mm)のダイパッド部に接着し、TEGチップのアルミニウム電極パッドと基板側端子とをデージーチェーンになるように、表1〜6に記載の銅製ワイヤを用いてワイヤピッチ80μmでワイヤボンディングした。これを、低圧トランスファー成形機(TOWA製、Yシリーズ)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分の条件でエポキシ樹脂組成物により封止成形して、352ピンBGAパッケージを作製した。作製したパッケージを175℃、8時間で後硬化した後、デージーチェーンにつないだ両端に0.5Aの直流電流を流す。この状態で185℃での高温保管を行い、12時間毎に配線間の電気抵抗値が初期値に対し20%増加したパッケージを不良と判定し、不良になるまでの時間を測定した。不良時間はn=4ヶの測定で、1ケでも不良が発生した時間で示した。単位は時間。
High temperature operation characteristics: TEG (TEST ELEMENT with aluminum electrode pad)
GROUP) die pad (3.5mm x 3.5mm) with 352 pin BGA (substrate thickness 0.56mm, bismaleimide / triazine resin / glass cloth substrate, package size 30x30mm, thickness 1.17mm) The aluminum electrode pad of the TEG chip and the substrate side terminal were bonded to each other at a wire pitch of 80 μm using the copper wires shown in Tables 1 to 6 so as to form a daisy chain. This was sealed with an epoxy resin composition using a low-pressure transfer molding machine (TOWA, Y series) under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes, and 352 pins A BGA package was produced. After the prepared package is post-cured at 175 ° C. for 8 hours, a direct current of 0.5 A is applied to both ends connected to the daisy chain. In this state, high-temperature storage at 185 ° C. was performed, and a package in which the electrical resistance value between the wirings increased by 20% with respect to the initial value every 12 hours was determined to be defective, and the time until failure was measured. The failure time is n = 4 measurements, and is shown as the time at which even one failure occurred. The unit is time.

耐マイグレーション性:アルミニウム電極パッドを形成したTEGチップ(3.5mm×3.5mmアルミニウム回路は保護膜なしの剥き出し)を352ピンBGA(基板は厚さ0.56mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは30×30mm、厚さ1.17mm)のダイパッド部に接着し、TEGチップのアルミニウム電極パッドとリードフレームの各リードとを、表1〜6に記載の銅製ワイヤを用いてワイヤピッチ80μmでワイヤボンディングした。これを、低圧トランスファー成形機(TOWA製、Yシリーズ)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分の条件でエポキシ樹脂組成物により封止成形して、352ピンBGAパッケージを作製した。作製したパッケージを、175℃、8時間で後硬化した後、導通していない隣同士の端子間に85℃/85%RH中で20Vの直流バイアス電圧を168Hr掛けて、端子間の抵抗値変化をみた。n=5で試験を行い、初期値の1/10に抵抗値が低下したものをマイグレーション発生と判定した。不良時間はn=5ヶの平均値。全てのパッケージで168時間まで初期値の1/10までの抵抗値低下がなかったものは168<とした。   Migration resistance: TEG chip with an aluminum electrode pad (3.5mm x 3.5mm aluminum circuit exposed without protective film) 352 pin BGA (substrate thickness 0.56mm, bismaleimide / triazine resin / glass cloth) The substrate and package size are bonded to a die pad portion of 30 × 30 mm and thickness 1.17 mm), and the aluminum electrode pad of the TEG chip and each lead of the lead frame are wired using the copper wires described in Tables 1-6. Wire bonding was performed at a pitch of 80 μm. This was sealed with an epoxy resin composition using a low-pressure transfer molding machine (TOWA, Y series) under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes, and 352 pins A BGA package was produced. After the prepared package is post-cured at 175 ° C. for 8 hours, a 20V DC bias voltage is applied at 168 Hr in 85 ° C./85% RH between adjacent terminals that are not conducting, and the resistance value change between the terminals. I saw. The test was performed with n = 5, and the case where the resistance value decreased to 1/10 of the initial value was determined as migration. The defective time is an average value of n = 5 pieces. In all packages, 168 <was defined that the resistance value did not decrease to 1/10 of the initial value until 168 hours.

耐湿信頼性:アルミニウム回路を形成したTEGチップ(3.5mm×3.5mm、アルミニウム回路は保護膜なしの剥き出し)を352ピンBGA(基板は厚さ0.56mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは30×30
mm、厚さ1.17mm)のダイパッド部に接着し、アルミニウムパッドと基板側端子を、表1〜6に記載の銅製ワイヤを用いてワイヤピッチ80μmでワイヤボンディングした。これを、低圧トランスファー成形機(TOWA製、Yシリーズ)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分の条件でエポキシ樹脂組成物により封止成形して、352ピンBGAパッケージを作製した。作製したパッケージを、175℃、8時間で後硬化した後、IEC68−2−66に準拠しHAST(Highly Accelerated temperature and humidity Stress Test)試験を行った。試験条件は130℃、85%RH、20V印加、168時間処理をして回路のオープン不良有無を測定した。1パッケージあたり4端子を持ち5パッケージで計20回路を評価で用いた。単位は不良回路の個数。
Moisture resistance reliability: TEG chip (3.5mm x 3.5mm, aluminum circuit is exposed without protective film) with 352-pin BGA (substrate thickness 0.56mm, bismaleimide / triazine resin / glass cloth) Substrate, package size is 30x30
The aluminum pad and the substrate side terminal were wire-bonded at a wire pitch of 80 μm using the copper wires described in Tables 1-6. This was sealed with an epoxy resin composition using a low-pressure transfer molding machine (TOWA, Y series) under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes, and 352 pins A BGA package was produced. The prepared package was post-cured at 175 ° C. for 8 hours and then subjected to a HAST (Highly Accelerated Temperature and Humidity Stress Test) test in accordance with IEC68-2-66. Test conditions were 130 ° C., 85% RH, 20 V application, 168 hours of treatment, and the presence / absence of open circuit in the circuit was measured. A total of 20 circuits were used in the evaluation with 4 terminals per package and 5 packages. The unit is the number of defective circuits.

Figure 0005393207
Figure 0005393207

Figure 0005393207
Figure 0005393207

Figure 0005393207
Figure 0005393207

Figure 0005393207
Figure 0005393207

Figure 0005393207
Figure 0005393207

Figure 0005393207
Figure 0005393207

Figure 0005393207
Figure 0005393207

表1〜7から明らかなように、実施例1〜7、10〜17、19、20、22〜30は、ワイヤ流れ率、耐半田性、高温保管特性、高温動作特性、耐マイグレーション性、耐湿信頼性に優れていた。また、実施例31、32は、パラジウムを含む金属材料で構成され
た被覆層を有していない同一線径の銅製ワイヤを用いた比較例11、12と比較すると、高温保管性、高温動作特性、耐湿信頼性に優れていた。
As is clear from Tables 1 to 7, Examples 1 to 7, 10 to 17, 19, 20, 22 to 30 are wire flow rate, solder resistance, high temperature storage characteristics, high temperature operation characteristics, migration resistance, moisture resistance. Excellent reliability. Moreover, compared with Comparative Examples 11 and 12 in which Examples 31 and 32 used copper wires having the same wire diameter that did not have a coating layer made of a metal material containing palladium, high-temperature storage characteristics and high-temperature operating characteristics. Excellent moisture resistance and reliability.

本発明により得られる半導体装置は、回路基板と半導体素子の各電極パッドとを電気的に接続する銅製ワイヤがマイグレーションを起こし難く、耐湿信頼性、高温保管特性に優れたものであるため、工業的な樹脂封止型半導体装置、特に片面封止からなる表面実装用の樹脂封止型半導体装置の製造に好適で用いることができる。   In the semiconductor device obtained by the present invention, the copper wire that electrically connects the circuit board and each electrode pad of the semiconductor element is less prone to migration, and is excellent in moisture resistance reliability and high temperature storage characteristics. It can be suitably used for manufacturing a resin-sealed semiconductor device, particularly a surface-mounted resin-sealed semiconductor device comprising single-side sealing.

1 半導体素子
2 ダイボンド材硬化体
3 銅製ワイヤ
4 封止材
5 ソルダーレジスト
6 回路基板
7 半田ボール
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Die-bonding material hardening body 3 Copper wire 4 Sealing material 5 Solder resist 6 Circuit board 7 Solder ball

Claims (8)

回路基板と、前記回路基板に搭載された半導体素子と、前記回路基板と前記半導体素子とを電気的に接続する銅製ワイヤと、前記半導体素子と前記銅製ワイヤを封止する封止材とを備え、
前記回路基板の前記半導体素子が搭載された片側面のみが封止された片面封止型の半導体装置において、
前記回路基板がビスマレイミド・トリアジン樹脂とガラスクロスから構成される基板であり、
前記銅製ワイヤの線径が18μm以上23μm以下であり、前記銅製ワイヤがその表面にパラジウムからなる金属材料で構成された被覆層を有しており、前記銅製ワイヤの芯線における銅純度が99.99質量%以上であり、前記パラジウムからなる金属材料から構成された被覆層の厚みが0.001〜0.02μmであり、
前記封止材が(A)エポキシ樹脂、(B)硬化剤、(C)充填材、(D)硫黄原子含有化合物を含むエポキシ樹脂組成物の硬化物で構成され、
前記(D)硫黄原子含有化合物が、メルカプト基を有するトリアゾール系化合物であることを特徴とする半導体装置。
A circuit board; a semiconductor element mounted on the circuit board; a copper wire that electrically connects the circuit board and the semiconductor element; and a sealing material that seals the semiconductor element and the copper wire. ,
In a single-side sealed semiconductor device in which only one side surface on which the semiconductor element of the circuit board is mounted is sealed,
The circuit board is a board composed of bismaleimide / triazine resin and glass cloth,
The copper wire has a wire diameter of 18 μm or more and 23 μm or less, the copper wire has a coating layer made of a metal material made of palladium on its surface, and the copper purity of the core wire of the copper wire is 99.99. The thickness of the coating layer made of the metal material made of palladium is 0.001 to 0.02 μm,
The sealing material is composed of a cured product of an epoxy resin composition containing (A) an epoxy resin, (B) a curing agent, (C) a filler, and (D) a sulfur atom-containing compound,
The (D) sulfur atom-containing compound is a triazole compound having a mercapto group.
前記封止材を構成するエポキシ樹脂組成物の硬化物を125℃、相対湿度100%RH、20時間の条件で抽出した抽出水中の塩素イオン濃度が10ppm以下であることを特徴とする請求項1に記載の半導体装置。   The chlorine ion concentration in the extracted water obtained by extracting the cured product of the epoxy resin composition constituting the sealing material under the conditions of 125 ° C, relative humidity 100% RH, and 20 hours is 10 ppm or less. A semiconductor device according to 1. 前記(D)硫黄原子含有化合物が1,2,4−トリアゾール環を有する化合物であることを特徴とする請求項1又は請求項2に記載の半導体装置。   3. The semiconductor device according to claim 1, wherein the (D) sulfur atom-containing compound is a compound having a 1,2,4-triazole ring. 前記(D)硫黄原子含有化合物が下記一般式(1)で表される化合物
Figure 0005393207
(ただし、上記一般式(1)において、R1は水素原子、又はメルカプト基、アミノ基、水酸基、もしくはそれらの官能基を有する炭化水素基である。)
であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の半導体装置。
The compound in which the (D) sulfur atom-containing compound is represented by the following general formula (1)
Figure 0005393207
(However, in the above general formula (1), R1 is a hydrogen atom, a mercapto group, an amino group, a hydroxyl group, or a hydrocarbon group having a functional group thereof.)
The semiconductor device according to claim 1, wherein the semiconductor device is a semiconductor device.
前記(A)エポキシ樹脂が、
下記一般式(3)で表されるエポキシ樹脂
Figure 0005393207
(ただし、上記一般式(3)において、R4は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。n3の平均値は0又は5以下の正数である。)、
下記一般式(4)で表されるエポキシ樹脂
Figure 0005393207
(ただし、上記一般式(4)において、R5は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。R6は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。n4の平均値は0又は5以下の正数である。)、
下記一般式(5)で表されるエポキシ樹脂
Figure 0005393207
(ただし、上記一般式(5)において、−R7−はフェニレン基又はナフチレン基であり、−R7−がナフチレン基である場合、グリシジルエーテル基の結合位置はα位であってもβ位であってもよい。−R8−はフェニレン基、ビフェニレン基又はナフチレン基である。R9、R10は、それぞれR7、R8に導入される基で、炭素数1〜10の炭化水素基であり、それらは互いに同じであっても異なっていてもよい。aは0〜5の整数、bは0〜8の整数である。n5の平均値は1以上、3以下の正数である。)
及び下記一般式(6)で表されるエポキシ樹脂
Figure 0005393207
(ただし、上記一般式(6)において、R11は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。R12は水素又は炭素数4以下の炭化水素基で、それらは互いに同じであっても異なっていてもよい。c、dは0又は1であり、互いに同じであっても異なっていてもよい。eは0〜6の整数である。)
から選ばれた少なくとも一つであるエポキシ樹脂を含むことを特徴とする請求項1ないし請求項4のいずれか1項に記載の半導体装置。
The (A) epoxy resin is
Epoxy resin represented by the following general formula (3)
Figure 0005393207
(However, in the general formula (3), R4 is hydrogen or a hydrocarbon group having 4 or less carbon atoms, and they may be the same or different. The average value of n3 is a positive value of 0 or 5 or less. Number.),
Epoxy resin represented by the following general formula (4)
Figure 0005393207
(However, in the general formula (4), R5 is hydrogen or a hydrocarbon group having 4 or less carbon atoms, and they may be the same or different. R6 is hydrogen or a hydrocarbon having 4 or less carbon atoms. Group, they may be the same or different from each other, and the average value of n4 is 0 or a positive number of 5 or less).
Epoxy resin represented by the following general formula (5)
Figure 0005393207
(However, in the general formula (5), when -R7- is a phenylene group or a naphthylene group, and -R7- is a naphthylene group, the bonding position of the glycidyl ether group is the β-position even if it is the α-position. -R8- is a phenylene group, a biphenylene group or a naphthylene group, R9 and R10 are groups introduced into R7 and R8, respectively, which are hydrocarbon groups having 1 to 10 carbon atoms, A may be the same or different, a is an integer of 0 to 5, b is an integer of 0 to 8. The average value of n5 is a positive number of 1 or more and 3 or less.
And an epoxy resin represented by the following general formula (6)
Figure 0005393207
(However, in the general formula (6), R11 is hydrogen or a hydrocarbon group having 4 or less carbon atoms, and they may be the same or different. R12 is hydrogen or a hydrocarbon having 4 or less carbon atoms. And they may be the same or different from each other, c and d may be 0 or 1, and may be the same or different from each other, e is an integer of 0 to 6.)
5. The semiconductor device according to claim 1, comprising at least one epoxy resin selected from the group consisting of:
前記(B)硬化剤が、
ノボラック型フェノール樹脂、
下記一般式(7)で表されるフェノール樹脂
Figure 0005393207
(ただし、上記一般式(7)において、−R13−はフェニレン基又はナフチレン基であり、−R13−がナフチレン基である場合、水酸基の結合位置はα位であってもβ位であってもよい。−R14−はフェニレン基、ビフェニレン基又はナフチレン基である。R1
5、R16は、それぞれR13、R14に導入される基で、炭素数1〜10の炭化水素基であり、それらは互いに同じであっても異なっていてもよい。fは0〜5の整数、gは0〜8の整数である。n7の平均値は1以上、3以下の正数である。)
から選ばれた少なくとも一つである硬化剤
を含むこと特徴とする請求項1ないし請求項5のいずれか1項に記載の半導体装置。
The (B) curing agent is
Novolac type phenolic resin,
Phenol resin represented by the following general formula (7)
Figure 0005393207
(However, in the general formula (7), when -R13- is a phenylene group or a naphthylene group and -R13- is a naphthylene group, the bonding position of the hydroxyl group may be the α-position or the β-position. -R14- is a phenylene group, a biphenylene group or a naphthylene group.
5, R16 are groups introduced into R13 and R14, respectively, which are hydrocarbon groups having 1 to 10 carbon atoms, which may be the same or different from each other. f is an integer of 0 to 5, and g is an integer of 0 to 8. The average value of n7 is a positive number of 1 or more and 3 or less. )
6. The semiconductor device according to claim 1, further comprising at least one curing agent selected from the group consisting of:
前記(C)充填材が、モード径が30μm以上、50μm以下であり、かつ55μm以上の粗大粒子の含有割合が0.2質量%以下である溶融球状シリカを含むこと特徴とする請求項1ないし請求項6のいずれか1項に記載の半導体装置。   The filler (C) includes fused spherical silica having a mode diameter of 30 μm or more and 50 μm or less and a content ratio of coarse particles of 55 μm or more of 0.2% by mass or less. The semiconductor device according to claim 6. 自動車のエンジンルーム内で用いられる電子部品、パソコン用電源ユニット周辺の電子部品、家電用電源ユニット周辺の電子部品、又はLAN装置内の電子部品で、60℃、相対湿度60%以上の高温高湿環境下での動作保証が要求される電子部品に使用されるものである請求項1ないし請求項7のいずれかに記載の半導体装置。   Electronic components used in the engine room of automobiles, electronic components around personal computer power supply units, electronic components around home appliance power supply units, or electronic components in LAN devices. 8. The semiconductor device according to claim 1, wherein the semiconductor device is used for an electronic component that requires operation under an environment.
JP2009057388A 2008-10-10 2009-03-11 Semiconductor device Active JP5393207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057388A JP5393207B2 (en) 2008-10-10 2009-03-11 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008263917 2008-10-10
JP2008263917 2008-10-10
JP2009057388A JP5393207B2 (en) 2008-10-10 2009-03-11 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2010114408A JP2010114408A (en) 2010-05-20
JP5393207B2 true JP5393207B2 (en) 2014-01-22

Family

ID=42302715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057388A Active JP5393207B2 (en) 2008-10-10 2009-03-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5393207B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666724B (en) * 2009-12-07 2015-10-14 住友电木株式会社 Epoxy resin composition for encapsulating semiconductor, its cured body and semiconductor device
US20130243715A1 (en) * 2010-11-24 2013-09-19 L'oreal S.A. Compositions containing acrylic thickener and oil
JP2013067694A (en) * 2011-09-21 2013-04-18 Panasonic Corp Epoxy resin composition for sealing semiconductor, and semiconductor device
JP6175781B2 (en) * 2013-01-29 2017-08-09 東レ株式会社 Molding materials and fiber reinforced composite materials
WO2014203777A1 (en) * 2013-06-20 2014-12-24 住友ベークライト株式会社 Semiconductor device
JP6658508B2 (en) * 2014-03-25 2020-03-04 住友ベークライト株式会社 Epoxy resin composition and capacitance type fingerprint sensor
JP6605190B2 (en) * 2014-05-28 2019-11-13 住友ベークライト株式会社 Resin composition for sealing, and semiconductor device
JP6507506B2 (en) * 2014-07-16 2019-05-08 住友ベークライト株式会社 Resin composition for sealing and semiconductor device
JP2017179185A (en) * 2016-03-31 2017-10-05 住友ベークライト株式会社 Epoxy resin composition for sealing semiconductor, and semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253092A (en) * 2002-03-01 2003-09-10 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device using the same
JP2005281584A (en) * 2004-03-30 2005-10-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP4158928B2 (en) * 2004-09-02 2008-10-01 古河電気工業株式会社 Bonding wire and manufacturing method thereof
JP4687074B2 (en) * 2004-11-02 2011-05-25 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP2007012776A (en) * 2005-06-29 2007-01-18 Nippon Steel Materials Co Ltd Bonding wire for semiconductor device
JP4747584B2 (en) * 2005-01-18 2011-08-17 住友ベークライト株式会社 Liquid encapsulating resin composition for semiconductor and semiconductor device encapsulated using the same
JP2008166314A (en) * 2006-12-26 2008-07-17 Sumitomo Bakelite Co Ltd Semiconductor device and epoxy resin composition for sealing

Also Published As

Publication number Publication date
JP2010114408A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5532258B2 (en) Semiconductor device
JP5393207B2 (en) Semiconductor device
WO2011070739A1 (en) Epoxy resin composition for semiconductor encapsulation, cured product thereof, and semiconductor device using epoxy resin composition
US9082708B2 (en) Semiconductor device
WO2011093038A1 (en) Semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP5470806B2 (en) Semiconductor device, sealing epoxy resin composition and manufacturing method thereof
JP5119798B2 (en) Epoxy resin composition and semiconductor device
JP6330658B2 (en) Semiconductor device
JP2013209450A (en) Epoxy resin composition for sealing semiconductor
JP6094573B2 (en) Semiconductor device
JP2008166314A (en) Semiconductor device and epoxy resin composition for sealing
JP6341203B2 (en) Semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
US8766420B2 (en) Semiconductor device
WO2013145609A1 (en) Epoxy resin composition for semiconductor sealing, cured body thereof, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130306

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150