JP6506649B2 - Permanent magnet synchronous machine and apparatus using the same - Google Patents

Permanent magnet synchronous machine and apparatus using the same Download PDF

Info

Publication number
JP6506649B2
JP6506649B2 JP2015147325A JP2015147325A JP6506649B2 JP 6506649 B2 JP6506649 B2 JP 6506649B2 JP 2015147325 A JP2015147325 A JP 2015147325A JP 2015147325 A JP2015147325 A JP 2015147325A JP 6506649 B2 JP6506649 B2 JP 6506649B2
Authority
JP
Japan
Prior art keywords
permanent magnet
pole
rotor
magnet
diameter side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015147325A
Other languages
Japanese (ja)
Other versions
JP2017028921A (en
JP6506649B6 (en
Inventor
恵理 丸山
恵理 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2015147325A priority Critical patent/JP6506649B6/en
Priority to CN201610453825.8A priority patent/CN106411002A/en
Publication of JP2017028921A publication Critical patent/JP2017028921A/en
Publication of JP6506649B2 publication Critical patent/JP6506649B2/en
Application granted granted Critical
Publication of JP6506649B6 publication Critical patent/JP6506649B6/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、永久磁石同期機及びそれを用いた機器に関する。   The present invention relates to a permanent magnet synchronous machine and an apparatus using the same.

特許文献1は、V字状に配した2つの磁石それぞれの一面が、磁性鋼板から成るブリッジ部45を介して対向する構造を開示している(0049、図4)。   Patent Document 1 discloses a structure in which one surface of each of two magnets arranged in a V-shape is opposed via a bridge portion 45 made of a magnetic steel plate (0049, FIG. 4).

特許文献2は、V字状に配した2つの磁石の内端(V字の底部分)側に、内周端空隙32cを、外端側に外周端空隙32bを設けた構造を開示している(0035、図4,5)。   Patent Document 2 discloses a structure in which an inner peripheral end space 32c is provided on the inner end (bottom portion of V shape) side of two magnets arranged in a V shape, and an outer peripheral end space 32b is provided on the outer end side. (0035, FIGS. 4 and 5).

特開2001−314052号公報JP 2001-314052 A 特開2013−192294号公報JP, 2013-192294, A

特許文献1の構成では、磁性鋼板で形成されているブリッジ部45を磁束が通過し易く、磁石の一面に形成されるN極から発せられる磁束が、この磁石の他面に形成されるS極に循環する短絡磁束が生じやすい。短絡磁束は、モータの駆動に対して殆ど寄与しないため、モータ効率が低下するおそれがある。   In the configuration of Patent Document 1, the magnetic flux easily passes through the bridge portion 45 formed of a magnetic steel plate, and the magnetic flux emitted from the N pole formed on one surface of the magnet is formed on the other surface of the magnet It is easy to generate short circuit magnetic flux circulating in the Since the short circuit magnetic flux hardly contributes to the drive of the motor, the motor efficiency may be reduced.

特許文献2の構成では、モータが急加速等して磁石に慣性力が働いた場合等には、磁石が空隙32b,32cに向かって運動して、磁石が挿入されている領域の端面や他部材に衝突し、磁石が破損等するおそれがある。また、磁石の長手方向が径方向を向いて配され、かつ空隙32b,32cが磁石に対して径方向側に配されていることから、回転子の回転に伴う遠心力が加わると、磁石が運動し易い。   In the configuration of Patent Document 2, when the motor accelerates rapidly and inertial force acts on the magnet, the magnet moves toward the air gaps 32b and 32c, and the end face of the region where the magnet is inserted or the like It collides with a member and there is a possibility that a magnet may be damaged. In addition, since the longitudinal direction of the magnet is directed in the radial direction, and the air gaps 32b and 32c are disposed on the radial side with respect to the magnet, when the centrifugal force accompanying the rotation of the rotor is applied, the magnet It is easy to exercise.

上記事情に鑑みてなされた本発明は、回転子と、該回転子の中央に配したシャフトと、該回転子に設けられた磁石挿入孔にV字状に配した2つの永久磁石と、を備え、2つの前記永久磁石の間の距離は、内径側から外径側に向かうにつれて大きくなる永久磁石同期機であって、2つの前記永久磁石はそれぞれ前記V字形状の外側の面であってS極又はN極に磁化した第一磁極面と、前記V字形状の内側の面であってN極又はS極に磁化した第二磁極面と、前記磁石挿入孔の領域の一部であるブリッジを介して他方の前記永久磁石に対向する対向面と、対向面及び前記第一磁極面の間に位置するシャフト対向面と、を有し、磁化配向方向について、前記対向面に交わる内径側部分の寸法を、前記第一磁極面及び前記第二磁極面に交わる外径側部分の寸法より短くして、2つの永久磁石の前記対向面を互いに略平行に延在させたことを特徴とする。 The present invention made in view of the above circumstances includes a rotor, a shaft disposed at the center of the rotor, and two permanent magnets disposed in a V-shape in a magnet insertion hole provided in the rotor. with the distance between the two said permanent magnets, a larger permanent magnet synchronous machine as the inner diameter side towards the outer diameter side, the two said permanent magnets, respectively, at the outer surface of the V-shaped A first magnetic pole surface magnetized in the S pole or N pole, a second magnetic pole surface in the V-shaped inner surface magnetized in the N pole or S pole, and a part of the area of the magnet insertion hole and the opposing surface via the bridge facing the other of the permanent magnet is, possess a shaft facing surface positioned between said facing surfaces and said first pole face, and the magnetization orientation direction, the opposing surface The dimension of the intersecting inner diameter portion is the outer diameter intersecting the first pole face and the second pole face And shorter than the dimension of the portion, characterized in that substantially brought parallel to extend each other the opposed surfaces of the two permanent magnets.

実施例1の永久磁石同期機の軸方向断面図Axial direction sectional view of permanent magnet synchronous machine of Example 1 実施例1の磁石挿入孔に配された2つの永久磁石を示す図The figure which shows two permanent magnets distribute | arranged to the magnet insertion hole of Example 1. 実施例1の回転子の1極を拡大した軸方向断面図Axial sectional view which expanded 1 pole of the rotor of Example 1 実施例1の回転子の1極を拡大した軸方向断面図Axial sectional view which expanded 1 pole of the rotor of Example 1 実施例2の回転子の1極を拡大した軸方向断面図Axial direction sectional view which expanded 1 pole of the rotor of Example 2 磁石表面積とR2/Rの関係を示す図であり、磁石挿入孔を(a)4つ備える場合の関係、(b)6つ備える場合の関係It is a figure which shows the relationship between magnet surface area and R2 / R, and is a relationship in the case of providing (a) four magnet insertion holes, and a relationship in the case of providing (b) six. θ1とR2/Rの関係を示す図であり、磁石挿入孔を(a)4つ備える場合の関係、(b)6つ備える場合の関係It is a figure which shows the relationship of (theta) 1 and R2 / R, The relationship in the case of providing four (a) magnet insertion holes, The relationship in the case of providing six (b) 実施例3の永久磁石の軸方向断面図Axial sectional view of permanent magnet of Example 3 実施例3の回転子の1極を拡大した軸方向断面図Axial direction sectional drawing which expanded 1 pole of the rotor of Example 3 実施例4の回転子の1極を拡大した軸方向断面図Axial direction sectional drawing which expanded 1 pole of the rotor of Example 4 実施例5の回転子の1極を拡大した軸方向断面図Axial direction sectional drawing which expanded 1 pole of the rotor of Example 5 実施例6の回転子の1極を拡大した軸方向断面図Axial direction sectional drawing which expanded 1 pole of the rotor of Example 6 永久磁石同期機を搭載した機器の一例である冷蔵庫の断面図Sectional view of a refrigerator as an example of a device equipped with a permanent magnet synchronous machine

以下、本発明の実施例を、添付の図面を参照しつつ詳細に説明する。同様の構成要度には同様の符号を付し、また、同一の説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. The same reference numerals are given to the same configuration requirements, and the same description will not be repeated.

図1は本実施例の永久磁石同期機1の軸方向断面図、図2は磁石挿入孔4に配された永久磁石5a,5bを示す図である。本実施例の永久磁石同期機1は、6極9スロットであるが、極数及びスロット数は特に制限されない。   FIG. 1 is an axial sectional view of a permanent magnet synchronous machine 1 according to this embodiment, and FIG. 2 is a view showing permanent magnets 5 a and 5 b disposed in a magnet insertion hole 4. Although the permanent magnet synchronous machine 1 of this embodiment is 6 poles and 9 slots, the number of poles and the number of slots are not particularly limited.

永久磁石同期機1は、略円筒形状の回転子2と、回転子2の径方向外側に位置し、空隙を介して回転子2に対向する固定子3と、回転子2の回転軸であり、回転子2の中央に圧入されているシャフト6と、を備えている。回転子2は、軸方向視で略円形状である。
回転子2は、V字形状の磁石挿入孔4を6つ有しており、それぞれの磁石挿入孔4には2つの永久磁石5a,5bを配している。磁石挿入孔4は、シャフト6側(内径側)に向かってV字形状が閉じるように設けられている。すなわち、内径側がV字形状の「底」になるように設けられており、永久磁石5a,5bは、それぞれ内径側から外径側に向かうにつれて、互いの距離が大きくなるように配されている。2つの永久磁石5の成す角度は、後述する開度θ1の略2倍である。以下、それぞれの磁石挿入孔4又はその近傍に着目するとき、V字形状の底側を内周側、底側から離れる側を外周側と呼ぶ(例えば、後述する図5参照。ブリッジ4cの中央を通り対向面50に沿った直線を基準にできる)。
The permanent magnet synchronous machine 1 has a substantially cylindrical rotor 2, a stator 3 which is located radially outside of the rotor 2 and is opposed to the rotor 2 via an air gap, and is a rotation shaft of the rotor 2 , And a shaft 6 pressed into the center of the rotor 2. The rotor 2 is substantially circular in axial direction.
The rotor 2 has six V-shaped magnet insertion holes 4, and two permanent magnets 5 a and 5 b are disposed in each of the magnet insertion holes 4. The magnet insertion hole 4 is provided so that the V-shape is closed toward the shaft 6 side (inner diameter side). That is, the inner diameter side is provided so as to be the “bottom” of the V shape, and the permanent magnets 5a and 5b are arranged such that the distance from each other increases from the inner diameter side toward the outer diameter side. . The angle formed by the two permanent magnets 5 is approximately twice the opening degree θ1 described later. Hereinafter, when focusing on the respective magnet insertion holes 4 or in the vicinity thereof, the bottom side of the V shape is referred to as the inner circumferential side, and the side away from the bottom side is referred to as the outer circumferential side (see, for example, FIG. Through the facing surface 50).

永久磁石5の種類は特に制限されないが、例えば一般に低Brとされるフェライト磁石、SmFeN系のボンド磁石、NdFeB系のボンド磁石、アルニコ磁石を採用できる。永久磁石5は回転子2の周方向に着磁されている。   The type of permanent magnet 5 is not particularly limited. For example, a ferrite magnet generally designated as low Br, a SmFeN-based bonded magnet, an NdFeB-based bonded magnet, or an alnico magnet can be employed. The permanent magnet 5 is magnetized in the circumferential direction of the rotor 2.

[磁石挿入孔4に配された2つの永久磁石5]
永久磁石5は、同一の磁石挿入孔4に配された別の永久磁石5に対して、磁石挿入孔4の領域の一部であるブリッジ4cを介して対向する対向面50と、V字形状の外側の面(外周側の面)であってS極又はN極として磁化している第一磁極面52と、V字形状の内側の面(内周側の面)であって第一磁極面52の極性に対して反対の極性(N極又はS極)として磁化している第二磁極面53と、対向面50及び第一磁極面52の間に位置し、シャフト6側を向いたシャフト対向面51と、を備える。本実施例のシャフト対向面51は、対向面50及び第一磁極面52を繋ぐ面であり、第一磁極面52側から第二磁極面53側に向かうにつれて内径側に向かう面である。また、永久磁石5は、第一磁極面52の外径側に面取り54を有し、同様に第二磁極面53の外径側に面取り55を有している。ブリッジ4cは、磁石挿入孔4の内径側に位置しており、磁石挿入孔4の領域のうち、2つの対向面50の間に位置する領域である。
[Two permanent magnets 5 arranged in the magnet insertion hole 4]
The permanent magnet 5 has a V-shaped facing surface 50 which faces the other permanent magnet 5 disposed in the same magnet insertion hole 4 via the bridge 4 c which is a part of the area of the magnet insertion hole 4. Of the first magnetic pole surface 52 that is magnetized as an S pole or an N pole, and an inner surface of the V shape (an inner circumferential surface) that is a first magnetic pole It is located between the second pole surface 53 magnetized as the opposite polarity (N pole or S pole) to the polarity of the surface 52, the facing surface 50 and the first pole surface 52, and is directed to the shaft 6 side. And a shaft facing surface 51. The shaft facing surface 51 in the present embodiment is a surface connecting the facing surface 50 and the first magnetic pole surface 52, and is a surface that is directed toward the inner diameter side from the first magnetic pole surface 52 side toward the second magnetic pole surface 53 side. The permanent magnet 5 has a chamfer 54 on the outer diameter side of the first magnetic pole surface 52 and a chamfer 55 on the outer diameter side of the second magnetic pole surface 53 as well. The bridge 4 c is located on the inner diameter side of the magnet insertion hole 4, and is a region of the region of the magnet insertion hole 4 located between two opposing surfaces 50.

2つの対向面50の間に、空気層であるブリッジ4cを設けることで、永久磁石5の第一磁極面52及び第二磁極面53を循環する短絡磁束を抑制できるので、永久磁石同期機1の効率を改善できる。ブリッジ4cは、2つの永久磁石5の間で、2つの永久磁石5に対して周方向内側に位置しているため、永久磁石5に遠心力が加えられた場合でも、永久磁石5が運動することを抑制できるので、永久磁石5の破損等が抑制される。   By providing the bridge 4c, which is an air layer, between the two opposing surfaces 50, the short circuit magnetic flux circulating in the first magnetic pole surface 52 and the second magnetic pole surface 53 of the permanent magnet 5 can be suppressed. Can improve the efficiency of Since the bridge 4 c is positioned inward in the circumferential direction with respect to the two permanent magnets 5 between the two permanent magnets 5, the permanent magnet 5 moves even when a centrifugal force is applied to the permanent magnet 5. Of the permanent magnet 5 can be suppressed.

また、永久磁石5が対向面50を備えることで、磁束を発する永久磁石5の表面積を増加させて磁束量を増加させることができるので、永久磁石5の使用量を削減できる。また、永久磁石5の内径側の一部の厚み(磁化配向方向の寸法)を減少させるようにして対向面50やシャフト対向面51を設けている。具体的には、永久磁石5の厚み寸法を測定すると、対向面50又はシャフト対向面51が始点又は終点となる領域の厚み寸法は、第一磁極面52及び第二磁極面53が始点及び終点となる領域の厚み寸法より短い。このため、後述するように、比較的着磁が容易ではない径方向内側の永久磁石5の厚みを抑制して、永久磁石5全体の着磁をしやすくできる。   Moreover, since the surface area of the permanent magnet 5 which emits magnetic flux can be made to increase and the amount of magnetic flux can be made to increase by providing the opposing surface 50, the usage-amount of the permanent magnet 5 can be reduced. Further, the opposing surface 50 and the shaft opposing surface 51 are provided so as to reduce the thickness (the dimension in the magnetization orientation direction) of a part of the permanent magnet 5 on the inner diameter side. Specifically, when the thickness dimension of the permanent magnet 5 is measured, the thickness dimension of the area where the opposing surface 50 or the shaft opposing surface 51 is the start point or the end point is the first pole face 52 and the second pole face 53 the start point and the end point It is shorter than the thickness dimension of the area where For this reason, as described later, it is possible to easily magnetize the entire permanent magnet 5 by suppressing the thickness of the radially inner permanent magnet 5 which is relatively difficult to magnetize.

[永久磁石5の磁石挿入孔4に対するクリアランス]
図3は、回転子2の1極を拡大した軸方向断面図である。シャフト対向面51の第一磁極面52側の部分は、磁石挿入孔4に略接しており、第二磁極面53側の部分は、磁石挿入孔4から比較的離間している。このように、シャフト対向面51の内周側及び外周側の一方を磁石挿入孔4に略接するようにし、他方を離間するようにすることで、永久磁石5に遠心力が加わった場合でも、永久磁石5は径方向への運動が抑制しつつ、摩擦の発生を抑制して永久磁石5の磁石挿入孔4への取付及び取り外しを容易にできる。
[Clearance of permanent magnet 5 to magnet insertion hole 4]
FIG. 3 is an enlarged axial sectional view of one pole of the rotor 2. The portion on the first magnetic pole surface 52 side of the shaft opposing surface 51 is substantially in contact with the magnet insertion hole 4, and the portion on the second magnetic pole surface 53 side is relatively separated from the magnet insertion hole 4. As described above, even if centrifugal force is applied to the permanent magnet 5 by making one of the inner peripheral side and the outer peripheral side of the shaft opposing surface 51 substantially contact the magnet insertion hole 4 and separating the other. While suppressing the movement in the radial direction, the permanent magnet 5 can suppress the occurrence of friction and facilitate the attachment and detachment of the permanent magnet 5 to the magnet insertion hole 4.

なお、永久磁石5の外径側、すなわち磁石挿入孔4の外径側端面4aとの間に空間を設けている。   A space is provided between the outer diameter side of the permanent magnet 5, that is, the outer diameter side end face 4 a of the magnet insertion hole 4.

図4は回転子2の1極を拡大した軸方向断面図である。但し、説明の便利のため、ブリッジ4cの寸法を強調している。永久磁石5の対向面50に略垂直な方向をX軸方向と呼ぶことにする。
ブリッジ4cは、永久磁石5a,5bそれぞれの対向面50の内周側に、X軸方向の幅がG2Xの空隙として設けられている。また、永久磁石5の第二磁極面53及び磁石挿入孔4の第二磁極面53に対向する端面の間にある空隙の幅C1について、このX軸方向の幅をG1Xとすると、G1X<G2Xの関係を満たす。より好ましくは、2×G1X<G2Xの関係を満たす。
FIG. 4 is an enlarged axial sectional view of one pole of the rotor 2. However, the dimensions of the bridge 4c are emphasized for the convenience of description. The direction substantially perpendicular to the facing surface 50 of the permanent magnet 5 will be referred to as the X-axis direction.
The bridge 4c is provided on the inner peripheral side of the facing surface 50 of each of the permanent magnets 5a and 5b as a gap having a width in the X-axis direction of G2X. Further, regarding the width C1 of the air gap between the second magnetic pole surface 53 of the permanent magnet 5 and the end face of the magnet insertion hole 4 facing the second magnetic pole surface 53, assuming that the width in the X-axis direction is G1X, G1X <G2X Meet the relationship. More preferably, the relationship of 2 × G1X <G2X is satisfied.

上述の通りブリッジ4cは空気層等の空間であるから、第一磁極面52及び第二磁極面53を通過する短絡磁束を抑制でき、また、永久磁石5の取付や取り外しを容易にできる。しかしこの場合、永久磁石5は永久磁石収容孔4内部で運動しやすい。特に、永久磁石5がフェライト磁石やボンド磁石などの低Br磁石であるとき、回転子鉄心2との間で働く磁気吸引力は弱く、永久磁石収容孔4内部で運動しやすい。このため、遠心力又は慣性力が永久磁石5に付加されると、永久磁石5の破損又は材料特性の劣化を招くおそれがある。   As described above, since the bridge 4c is a space such as an air layer, it is possible to suppress the short-circuited magnetic flux passing through the first magnetic pole surface 52 and the second magnetic pole surface 53 and to facilitate attachment or detachment of the permanent magnet 5. However, in this case, the permanent magnet 5 easily moves inside the permanent magnet receiving hole 4. In particular, when the permanent magnet 5 is a low Br magnet such as a ferrite magnet or a bond magnet, the magnetic attraction force acting with the rotor core 2 is weak and tends to move inside the permanent magnet housing hole 4. For this reason, when a centrifugal force or an inertial force is applied to the permanent magnet 5, the permanent magnet 5 may be damaged or the material properties may be deteriorated.

G2X>G1Xとすることで、回転子2の急停止や急加速などにより生じる周方向の慣性力が永久磁石5に加わった場合、永久磁石5は、長手方向に沿った面側に設けられたクリアランスC1を運動して磁石挿入孔4の端面に接する。この際、対向面50は、G1Xより大きいG2Xだけ他の永久磁石5の対向面50に対して離間しているから、永久磁石5の対向面50同士の衝突が抑制される。また、永久磁石5が接する端面53の面積が比較的大きいため、接触の際の衝撃も抑制できる。したがって、永久磁石5の破損を効果的に抑制できる。
なお、G1Xは、C1及び後述する磁石の開度θ1を用いて、
G1X=C1/cos(θ1)
と与えられる。
By setting G2X> G1X, the permanent magnet 5 is provided on the surface side along the longitudinal direction when an inertial force in the circumferential direction generated due to a sudden stop or rapid acceleration of the rotor 2 is applied to the permanent magnet 5 The clearance C 1 is moved to contact the end face of the magnet insertion hole 4. At this time, since the opposing surface 50 is separated from the opposing surface 50 of the other permanent magnet 5 by G2X larger than G1X, the collision of the opposing surfaces 50 of the permanent magnet 5 is suppressed. Moreover, since the area of the end surface 53 which the permanent magnet 5 contacts is comparatively large, the impact at the time of a contact can also be suppressed. Therefore, breakage of the permanent magnet 5 can be effectively suppressed.
G1X uses C1 and the opening degree θ1 of a magnet described later,
G1X = C1 / cos (θ1)
It is given.

実施例2は、下記の点を除き実施例1と同様の構成にできる。
[磁石挿入孔4の回転軸からの距離R2の設定]
図5は回転子2の1極部分を拡大した軸方向断面図である。回転子2の半径R及び永久磁石5の最内径位置を通る円の半径R2の関係について説明する。永久磁石同期機1の極数をP、回転子2の軸長をL、とした場合、永久磁石5を回転子2の最外径部分に円弧形(不図示)に配したときの永久磁石5の表面積X1(比較例)と、永久磁石5をV字形に配したときの永久磁石5の表面積X2とは、それぞれ下式で与えられる。
X1=2πRL/P
X2=2L×√((Rcos(π/P)−R2)+(Rsin(π/P))
The second embodiment can be configured the same as the first embodiment except for the following points.
[Setting of the distance R2 from the rotation axis of the magnet insertion hole 4]
FIG. 5 is an axial cross-sectional view in which the one-pole portion of the rotor 2 is enlarged. The relationship between the radius R of the rotor 2 and the radius R2 of the circle passing through the innermost position of the permanent magnet 5 will be described. Assuming that the number of poles of the permanent magnet synchronous machine 1 is P and the axial length of the rotor 2 is L, the permanent magnet 5 is arranged in an arc shape (not shown) at the outermost diameter portion of the rotor 2 The surface area X1 of the magnet 5 (comparative example) and the surface area X2 of the permanent magnet 5 when the permanent magnet 5 is arranged in a V shape are respectively given by the following formulas.
X1 = 2πRL / P
X2 = 2 L × (((R cos (π / P)-R2) 2 + (R sin (π / P)) 2 )

図6は永久磁石5の表面積X1,X2とR2/Rとの関係(図6a:4極機、図6b:6極機)を示す図である。R2のRに対する比を横軸、永久磁石5の表面積X1とX2とを縦軸に設定しており、X1を実線で、X2を破線で示してある。永久磁石同期機1が4極の場合ではR:R2=1:0.36以下の場合、6極の場合ではR:R2=1:0.70以下の場合、永久磁石5を円弧形状に配するよりもV字形状に配する方が、大きな表面積を確保できる(X2>X1)とわかる。従って、永久磁石同期機1が4極の場合は、R2/Rが0.36以下であることが好ましく、0.25以下であることがさらに好ましい。また、6極の場合は、R2/Rが0.70以下であることが好ましく、0.50以下であることがさらに好ましい。   FIG. 6 is a diagram showing the relationship between the surface areas X1 and X2 of the permanent magnet 5 and R2 / R (FIG. 6a: four-pole machine, FIG. 6b: six-pole machine). The ratio of R2 to R is set on the horizontal axis, and the surface areas X1 and X2 of the permanent magnet 5 are set on the vertical axis, and X1 is indicated by a solid line and X2 is indicated by a broken line. When the permanent magnet synchronous machine 1 has 4 poles, the permanent magnet 5 is arranged in an arc when R: R2 = 1: 0.36 or less, and when 6 poles, R: R2 = 1: 0.70 or less. It can be understood that a larger surface area can be secured (X2> X1) by arranging in a V-shape rather than by doing. Therefore, when the permanent magnet synchronous machine 1 has four poles, R2 / R is preferably 0.36 or less, more preferably 0.25 or less. In the case of six poles, R2 / R is preferably 0.70 or less, more preferably 0.50 or less.

[磁石挿入孔4の開度θ1の設定]
永久磁石5が配される磁石挿入孔4の形状について説明する。図7はθ1とR2/Rの関係(図7a:4極機、図7b:6極機)を示す図である。
永久磁石同期機1の断面図において、磁石挿入孔4のブリッジ4cに沿った直線と、永久磁石5の第二磁極面53に沿った直線とがなす角度を、永久磁石5の開度θ1とする。永久磁石同期機1が4極の場合では、θ1が65°以下が好ましく、55°以下がより好ましい。また、永久磁石同期機1が6極の場合では、θ1が73°以下であることが好ましく、55°以下であることがより好ましい。
[Setting of opening degree θ1 of magnet insertion hole 4]
The shape of the magnet insertion hole 4 in which the permanent magnet 5 is disposed will be described. FIG. 7 is a diagram showing the relationship between θ1 and R2 / R (FIG. 7a: four-pole machine, FIG. 7b: six-pole machine).
In the cross-sectional view of the permanent magnet synchronous machine 1, an angle formed by a straight line along the bridge 4c of the magnet insertion hole 4 and a straight line along the second magnetic pole surface 53 of the permanent magnet 5 is an opening degree θ1 of the permanent magnet 5 Do. When the permanent magnet synchronous machine 1 has four poles, θ1 is preferably 65 ° or less, more preferably 55 ° or less. When the permanent magnet synchronous machine 1 has six poles, θ1 is preferably 73 ° or less, more preferably 55 ° or less.

なお、本実施例の永久磁石同期機1は、2:3系列の集中巻6極9スロットとして説明したが、その他、分布巻機や分数スロット、8極又は10極スロットの場合でも、下式を満たすθ1を採用すれば、同様の効果を得ることができる。
180/P<θ1<Sin-1(sin(180/P)/(X1/2))/π×180
Although the permanent magnet synchronous machine 1 of the present embodiment has been described as a 2: 3 series concentrated winding 6 pole 9 slot, in the case of a distributed winding machine or a fractional slot, 8 pole or 10 pole slot, The same effect can be obtained by adopting θ1 satisfying
180 / P <θ1 <Sin −1 (sin (180 / P) / (X1 / 2)) / π × 180

180/Pは永久磁石5が極間にある状態を示し、R2が小さい場合を指し、θ1の最小値を与える。この値より小さい場合、永久磁石はV字形状とならない。
またSin-1(sin(180/P)/(X1/2))/π×180はθ1の最大値を与える。この値より大きい場合、磁石表面積X2がX1より小さくなる。
180 / P indicates a state in which the permanent magnet 5 is between the poles, and indicates a case where R2 is small, which gives a minimum value of θ1. If the value is smaller than this value, the permanent magnet does not have a V shape.
Also, Sin -1 (sin (180 / P) / (X1 / 2)) / π × 180 gives the maximum value of θ1. When it is larger than this value, the magnet surface area X2 is smaller than X1.

なお、本実施例の磁石挿入孔4の内径側(V字の底の部分)の端面4bは、シャフト対向面51に沿っている。こうすると、永久磁石5に加わる遠心力が変化した際の運動をより効果的に抑制できる。   The end face 4 b on the inner diameter side (portion at the bottom of the V-shape) of the magnet insertion hole 4 of the present embodiment is along the shaft facing surface 51. In this way, it is possible to more effectively suppress the movement when the centrifugal force applied to the permanent magnet 5 changes.

実施例3は、以下の点を除き実施例1又は実施例2の構成と同様にできる。
図8は永久磁石5の形状を示す図、図9は回転子2の1極を拡大した軸方向断面図である。永久磁石5は磁化配向方向に対し、略対称形状となっている。永久磁石5の径方向外側の形状は、厚みが減少するようにされており、径方向外側に、永久磁石5の厚みを減少させるテーパ部500と、テーパ部500及び第一磁極面52を繋ぐ面である傾斜部510が設けられている。
フェライト磁石の製造工程では、粉末状のフェライト磁石を圧縮成型した後、焼結させる。圧縮成型時には金型に入れた状態で粉末状のフェライト磁石をプレスすることから、例えば形が左右非対称である場合、うねりや公差が大きくなり永久磁石同期機1の性能がばらつくおそれがある。また、うねりの大きい永久磁石5は、磁石挿入孔4内で運動すると破損し易い。本実施例のような略対称形状にすることで、永久磁石5の製造が容易になる。
The third embodiment can be the same as the first embodiment or the second embodiment except for the following points.
FIG. 8 is a view showing the shape of the permanent magnet 5, and FIG. 9 is an axial sectional view in which one pole of the rotor 2 is enlarged. The permanent magnet 5 has a substantially symmetrical shape with respect to the magnetization orientation direction. The shape of the radially outer side of the permanent magnet 5 is such that the thickness is reduced, and the tapered portion 500 for decreasing the thickness of the permanent magnet 5, the tapered portion 500 and the first magnetic pole surface 52 are connected radially outward. An inclined portion 510 which is a surface is provided.
In the manufacturing process of the ferrite magnet, the powder ferrite magnet is compression molded and then sintered. Since the powdery ferrite magnet is pressed in a state of being put into a mold at the time of compression molding, for example, when the shape is asymmetrical, the waviness and the tolerance become large and the performance of the permanent magnet synchronous machine 1 may vary. Further, the permanent magnet 5 having a large undulation tends to be broken when it moves in the magnet insertion hole 4. The substantially symmetrical shape as in this embodiment facilitates the manufacture of the permanent magnet 5.

しかし、本実施例のような略対称形状にした場合、シャフト対向面50側は減磁しやすくなる。また、外径側に位置する傾斜部510側は、シャフト対向面50側に比べ固定子3が作る磁束が鎖交するため、減磁しやすい。減磁を抑制する為には、例えば永久磁石51面側の磁化方向厚みを増すなどして磁気抵抗を高めることが有効である。本実施例では、図9に例示するように、外径側の磁石挿入孔4の空隙を大きく設けることで、磁化方向厚みの磁気抵抗を増加させている。これにより磁石使用量を減らしつつ、減磁耐力を維持できる。   However, in the case of the substantially symmetrical shape as in this embodiment, the shaft facing surface 50 side is easily demagnetized. In addition, since the magnetic flux generated by the stator 3 is linked to the inclined portion 510 located on the outer diameter side as compared with the shaft facing surface 50 side, demagnetization is likely to occur. In order to suppress the demagnetization, it is effective to increase the magnetic resistance by, for example, increasing the thickness in the magnetization direction on the side of the permanent magnet 51. In the present embodiment, as illustrated in FIG. 9, the magnetic resistance in the magnetization direction thickness is increased by providing a large air gap in the magnet insertion hole 4 on the outer diameter side. Thereby, the demagnetization resistance can be maintained while reducing the amount of magnets used.

実施例4は、以下の点を除き実施例1乃至実施例3の構成と同様にできる。
図10は、回転子2の1極を拡大した軸方向断面図である。但し、永久磁石5は図示していない。本実施例の磁石挿入孔4の内径側(V字の底の部分)の端面4bの形状は、永久磁石5のシャフト対向面51に沿った形状となっている。すなわち、磁石挿入孔4のうち、シャフト対向面51に対向する部分は、対向面50に向かうにつれて径方向外側に向かう形状となっている。これにより、永久磁石5の近傍まで回転子2のコア、すなわち金属を配することができる。
The fourth embodiment can be the same as the first to third embodiments except for the following points.
FIG. 10 is an axial sectional view in which one pole of the rotor 2 is enlarged. However, the permanent magnet 5 is not shown. The shape of the end face 4 b on the inner diameter side (portion of the bottom of the V-shape) of the magnet insertion hole 4 of the present embodiment is a shape along the shaft facing surface 51 of the permanent magnet 5. That is, in the magnet insertion hole 4, the portion facing the shaft facing surface 51 has a shape directed radially outward toward the facing surface 50. Thereby, the core of the rotor 2, that is, the metal can be disposed to the vicinity of the permanent magnet 5.

また、磁石挿入孔4のうち、永久磁石5が配されてブリッジ4cとなる部分の径方向寸法L1は、永久磁石5の厚みの略最大値L2に対して、L1<L2の関係を満たす。   The radial dimension L1 of the portion of the magnet insertion hole 4 where the permanent magnet 5 is disposed and becomes the bridge 4c satisfies the relationship of L1 <L2 with respect to the substantially maximum value L2 of the thickness of the permanent magnet 5.

ここで、磁石挿入孔4に配された永久磁石5を着磁する方法を説明する。永久磁石5は、着磁装置(不図示)が発する磁束によって着磁される。しかし、着磁装置から発する磁束は有限であるため、着磁装置から遠方に位置する永久磁石5の磁化は困難になる。例えば、回転子2の外端に着磁装置を設けるとすると、磁束は略同心円状に広がるため、着磁装置を中心に持つ或る円内の領域(着磁容易領域)の外側に位置する永久磁石5は、着磁率が不足する。着磁装置の性能や回転子2の寸法によっては、図10に例示するように、永久磁石5の内径側の一部が着磁容易領域の外側に位置するおそれがある。   Here, a method of magnetizing the permanent magnet 5 disposed in the magnet insertion hole 4 will be described. The permanent magnet 5 is magnetized by the magnetic flux emitted by a magnetizing device (not shown). However, since the magnetic flux emitted from the magnetizing device is limited, it is difficult to magnetize the permanent magnet 5 located far from the magnetizing device. For example, if a magnetizing device is provided at the outer end of the rotor 2, the magnetic flux spreads in a substantially concentric manner, so that it is located outside a region (magnetizable region) in a circle centered on the magnetizing device. The permanent magnet 5 lacks in the magnetization rate. Depending on the performance of the magnetizing device and the dimensions of the rotor 2, as illustrated in FIG. 10, there is a possibility that a part on the inner diameter side of the permanent magnet 5 may be located outside the magnetically easy region.

着磁容易領域の外側に位置する永久磁石5の一部の着磁率を上げるためには、磁石挿入孔4より内径側のコアに磁束を流すとよい。永久磁石や磁石挿入孔4(すなわち、空気層)に比べ、例えば鉄の透磁率は約1000倍以上であることから、永久磁石5より内径側に位置する空気層領域を減少させると好ましい。
このため、上記のように、磁石挿入孔4の内径側端面4bの形状をV字の中心に向かうにつれて外径側に向かう形状にすることで、永久磁石5の広範囲に磁束が到達し易くできる。
In order to increase the magnetization of part of the permanent magnet 5 located outside the easy-to-magnetize area, it is preferable to flow a magnetic flux to the core on the inner diameter side of the magnet insertion hole 4. For example, since the permeability of iron is about 1000 times or more as compared with the permanent magnet and the magnet insertion hole 4 (i.e., the air layer), it is preferable to reduce the air layer region located inside the permanent magnet 5.
For this reason, as described above, the magnetic flux can easily reach the wide area of the permanent magnet 5 by making the shape of the inner end face 4b of the magnet insertion hole 4 a shape toward the outer diameter side toward the center of the V shape. .

また、L1<L2とすることで、着磁装置から発せられる磁束について、径方向L1の磁気抵抗を低減し、より内径側にまで磁束を到達させることが可能となる。   Further, by setting L1 <L2, it is possible to reduce the magnetic resistance in the radial direction L1 of the magnetic flux emitted from the magnetizing device, and allow the magnetic flux to reach the inner diameter side more.

実施例5は、以下の点を除き実施例1乃至実施例4の構成と同様にできる。
図11は、回転子2の1極を拡大した軸方向断面図である。本実施例では、ブリッジ4cに向かって回転子2のコアの一部が突出したブリッジ突出部20として、ブリッジ4cの内径側から外径側に向かって突出した内径側ブリッジ突出部20aと、ブリッジ4cの外径側から内径側に向かって突出した外径側ブリッジ突出部20bとを配している。これにより、磁石挿入孔4のブリッジ4cの径方向寸法L1(例えば、図10参照。)は、永久磁石5の対向面50の径方向寸法L3より小さくなっている。このようにすることで、急停止や急加速などの慣性力による永久磁石5の破損をさらに抑制できる。ブリッジ突出部20は、内径側ブリッジ突出部20a又は外径側ブリッジ突出部20bの一方のみを設けても良い。
The fifth embodiment can be the same as the first to fourth embodiments except for the following points.
FIG. 11 is an axial sectional view in which one pole of the rotor 2 is enlarged. In this embodiment, as the bridge projection 20 in which a part of the core of the rotor 2 protrudes toward the bridge 4c, the inner side bridge projection 20a protrudes from the inner diameter side of the bridge 4c toward the outer diameter, An outer diameter side bridge protruding portion 20b is provided which protrudes from the outer diameter side to the inner diameter side of 4c. Thus, the radial dimension L1 (see, eg, FIG. 10) of the bridge 4c of the magnet insertion hole 4 is smaller than the radial dimension L3 of the facing surface 50 of the permanent magnet 5. By doing this, it is possible to further suppress damage to the permanent magnet 5 due to inertial force such as sudden stop or rapid acceleration. The bridge protrusion 20 may be provided with only one of the inner diameter side bridge protrusion 20 a or the outer diameter side bridge protrusion 20 b.

実施例6は、以下の点を除き実施例1乃至実施例5の構成と同様にできる。
図12は、回転子2の1極を拡大した軸方向断面図である。回転子2は、磁石挿入孔4の径方向外側に突出した凸部21を有している。永久磁石5の径方向外側の形状は、厚みが減少するようにされており、例えば、実施例3のような対称形状となって、径方向外側に、永久磁石5の厚みを減少させるテーパ部500と、テーパ部500及び第一磁極面52を繋ぐ面である傾斜部510が設けられている。凸部21は対向面50に対向している。本実施例の凸部21及びテーパ部500は、磁石挿入孔4のV字形状の周方向内側に設けられているが、周方向外側に設けても良い。回転子2が略円筒形状であることから、凸部21を周方向内側に設ける方が永久磁石5の外径側のコアの範囲を小さくし易いため、ここを通過する短絡磁束の発生を抑制し易い。
The sixth embodiment can be the same as the first to fifth embodiments except for the following points.
FIG. 12 is an enlarged axial sectional view of one pole of the rotor 2. The rotor 2 has a convex portion 21 protruding outward in the radial direction of the magnet insertion hole 4. The shape of the radially outer side of the permanent magnet 5 is such that the thickness is reduced. For example, the tapered portion which has a symmetrical shape as in Example 3 and which reduces the thickness of the permanent magnet 5 radially outward. An inclined portion 510 which is a surface connecting the tapered portion 500 and the first magnetic pole surface 52 is provided. The convex portion 21 faces the facing surface 50. Although the convex part 21 and the taper part 500 of a present Example are provided in the circumferential direction inner side of V shape of the magnet insertion hole 4, you may provide in the circumferential direction outer side. Since the rotor 2 has a substantially cylindrical shape, it is easy to reduce the range of the core on the outer diameter side of the permanent magnet 5 if the convex portion 21 is provided on the inner side in the circumferential direction, so generation of short circuit magnetic flux passing therethrough is suppressed Easy to do.

実施例1乃至6の永久磁石同期機1を搭載した機器の一例である冷蔵庫200を説明する。
図13は、永久磁石同期機1を搭載した圧縮機1000を備える冷蔵庫200の縦断面図である。冷蔵庫200は断熱箱体210を有している。密閉型圧縮機1000は断熱箱体210と仕切部211が囲む領域に配されており、密閉型圧縮機1000、放熱パイプ、キャピラリーチューブ、冷却器260を繋ぐことで、R600a等の冷媒を用いた冷凍サイクルが形成されている。
The refrigerator 200 which is an example of the apparatus carrying the permanent magnet synchronous machine 1 of Examples 1-6 is demonstrated.
FIG. 13 is a longitudinal sectional view of a refrigerator 200 provided with a compressor 1000 on which the permanent magnet synchronous machine 1 is mounted. The refrigerator 200 has a heat insulation box 210. The hermetic compressor 1000 is disposed in a region surrounded by the heat insulation box 210 and the partition part 211, and by connecting the hermetic compressor 1000, a heat radiation pipe, a capillary tube, and a cooler 260, a refrigerant such as R600a is used. A refrigeration cycle is formed.

冷蔵庫200は、貯蔵室の一例として冷蔵室220、上段冷凍室230、下段冷凍室240、野菜室250を有しており、これら庫内空間は密閉型圧縮機1000の駆動により冷凍サイクル(図示せず)が動作することで冷却される。   The refrigerator 200 includes a refrigerator compartment 220, an upper freezer compartment 230, a lower freezer compartment 240, and a vegetable compartment 250 as an example of a storage compartment, and the interior space of these refrigerators is operated by the closed compressor 1000 to operate the refrigeration cycle (shown in FIG. It is cooled by operating.

なお、密閉型圧縮機1000の配置場所は特に制限されず、断熱箱体210の任意の近傍領域に設けることができる。例えば、何れかの貯蔵室の後方又は近傍でも良い。   In addition, the arrangement | positioning place in particular of the closed type compressor 1000 is not restrict | limited, It can provide in the arbitrary vicinity area | regions of the heat insulation box 210. FIG. For example, it may be behind or near any storage room.

[その他の機器]
永久磁石同期機1を搭載する機器は特に限られず、圧縮機や冷蔵庫の他、電動ポンプなどに適用できる。
[Other equipment]
The apparatus in which the permanent magnet synchronous machine 1 is mounted is not particularly limited, and the present invention can be applied to a compressor, a refrigerator, an electric pump, and the like.

1…永久磁石同期機
2…回転子
20…ブリッジ突出部
21…凸部
3…固定子
4…磁石挿入孔
4a…外径側端面
4b…内径側端面
4c…ブリッジ
5…永久磁石
50…対向面
51…シャフト対向面
52…第一磁極面
53…第二磁極面
54…第一磁極面側の面取り
55…第二磁極面側の面取り
500…テーパ部
510…傾斜部
6…シャフト
200…冷蔵庫
1000…圧縮機
DESCRIPTION OF SYMBOLS 1 Permanent magnet synchronous machine 2. Rotor 20 ... Bridge projection part 21 ... Convex part 3 ... Stator 4 ... Magnet insertion hole 4a ... Outer diameter side end face 4b ... Inner diameter side end face 4c ... Bridge 5 ... Permanent magnet 50 ... Opposing surface 51: shaft facing surface 52: first magnetic pole surface 53: second magnetic pole surface 54: chamfering on the first magnetic pole surface side 55: chamfering on the second magnetic pole surface 500: taper portion 510: inclined portion 6: shaft 200: refrigerator 1000 ... compressor

Claims (4)

回転子と、
該回転子の中央に配したシャフトと、
該回転子に設けられた磁石挿入孔にV字状に配した2つの永久磁石と、を備え、
2つの前記永久磁石の間の距離は、内径側から外径側に向かうにつれて大きくなる永久磁石同期機であって、
2つの前記永久磁石はそれぞれ
前記V字形状の外側の面であってS極又はN極に磁化した第一磁極面と、
前記V字形状の内側の面であってN極又はS極に磁化した第二磁極面と、
前記磁石挿入孔の領域の一部であるブリッジを介して他方の前記永久磁石に対向する対向面と、
対向面及び前記第一磁極面の間に位置するシャフト対向面と、を有し、
磁化配向方向について、前記対向面に交わる内径側部分の寸法を、前記第一磁極面及び前記第二磁極面に交わる外径側部分の寸法より短くして、2つの永久磁石の前記対向面を互いに略平行に延在させたことを特徴とする永久磁石同期機。
With the rotor,
A shaft disposed at the center of the rotor,
And two permanent magnets disposed in a V shape in a magnet insertion hole provided in the rotor,
A permanent magnet synchronous machine, wherein the distance between the two permanent magnets increases from the inner diameter side toward the outer diameter side,
Each of the two said permanent magnets is
A first pole face magnetized in the south pole or the north pole, which is an outer face of the V-shape;
A second magnetic pole surface, which is an inner surface of the V-shape and is magnetized to an N pole or an S pole;
An opposing surface facing the other permanent magnet via a bridge which is a part of the area of the magnet insertion hole;
A shaft facing surface positioned between said facing surfaces and said first pole face, and possess,
In the magnetization orientation direction, the dimension of the inner diameter side portion intersecting the opposing surface is shorter than the dimension of the outer diameter side portion intersecting the first magnetic pole surface and the second magnetic pole surface, and the opposing surfaces of the two permanent magnets are made A permanent magnet synchronous machine characterized in that they extend substantially parallel to each other .
磁化配向方向について、前記対向面及び前記シャフト対向面に交わる最内径側部分の寸法は、前記内径側部分の寸法より短いことを特徴とする請求項1に記載の永久磁石同期機。 The permanent magnet synchronous machine according to claim 1 , wherein the dimension of the innermost diameter side portion intersecting with the facing surface and the shaft facing surface in the magnetization orientation direction is shorter than the dimension of the inner diameter side portion . 前記回転子は、前記ブリッジの径方向寸法を前記対向面の径方向寸法より短くするよう突出したブリッジ突出部を有することを特徴とする請求項1又は2に記載の永久磁石同期機。 The permanent magnet synchronous machine according to claim 1 or 2, wherein the rotor has a bridge protrusion which protrudes so as to make the radial dimension of the bridge shorter than the radial dimension of the facing surface . 請求項1乃至何れか一項に記載の永久磁石同期機を備えた機器。 An apparatus comprising the permanent magnet synchronous machine according to any one of claims 1 to 3 .
JP2015147325A 2015-07-27 2015-07-27 Permanent magnet synchronous machine and apparatus using the same Active JP6506649B6 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015147325A JP6506649B6 (en) 2015-07-27 2015-07-27 Permanent magnet synchronous machine and apparatus using the same
CN201610453825.8A CN106411002A (en) 2015-07-27 2016-06-21 Permanent magnet synchronous machine and device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015147325A JP6506649B6 (en) 2015-07-27 2015-07-27 Permanent magnet synchronous machine and apparatus using the same

Publications (3)

Publication Number Publication Date
JP2017028921A JP2017028921A (en) 2017-02-02
JP6506649B2 true JP6506649B2 (en) 2019-04-24
JP6506649B6 JP6506649B6 (en) 2019-06-05

Family

ID=57950646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015147325A Active JP6506649B6 (en) 2015-07-27 2015-07-27 Permanent magnet synchronous machine and apparatus using the same

Country Status (2)

Country Link
JP (1) JP6506649B6 (en)
CN (1) CN106411002A (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133479A (en) * 1992-09-02 1994-05-13 Toshiba Corp Permanent magnet rotor and manufacture thereof
JPH09298852A (en) * 1996-04-30 1997-11-18 Aichi Emerson Electric Co Ltd Brushless dc motor
US6340857B2 (en) * 1998-12-25 2002-01-22 Matsushita Electric Industrial Co., Ltd. Motor having a rotor with interior split-permanent-magnet
JP3704010B2 (en) * 1999-12-07 2005-10-05 本田技研工業株式会社 Permanent magnet type motor and permanent magnet fixing method
JP2001314052A (en) * 2000-02-25 2001-11-09 Nissan Motor Co Ltd Rotor structure of synchronous motor
JP2001268873A (en) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd Compressor motor and its application
JP3913205B2 (en) * 2003-09-10 2007-05-09 アイチエレック株式会社 Permanent magnet rotating machine
WO2007146251A2 (en) * 2006-06-12 2007-12-21 Remy International, Inc. Electric machine with interior permanent magnets
JP5380900B2 (en) * 2008-05-08 2014-01-08 ダイキン工業株式会社 Field element
CN102355071A (en) * 2011-09-28 2012-02-15 苏州和鑫电气股份有限公司 Built-in permanent-magnetic motor rotor and motor comprising same
JP2013162617A (en) * 2012-02-03 2013-08-19 Denso Corp Rotor of rotary electric machine
JP2013187943A (en) * 2012-03-06 2013-09-19 Toyota Motor Corp Permanent magnet type motor and rotor thereof
JP6003113B2 (en) * 2012-03-12 2016-10-05 ダイキン工業株式会社 Rotating electrical machine
JP5901436B2 (en) * 2012-06-08 2016-04-13 日立アプライアンス株式会社 Permanent magnet synchronous machine
CN104600939A (en) * 2015-02-04 2015-05-06 广东美芝制冷设备有限公司 Permanent-magnet synchronous motor and compressor with same

Also Published As

Publication number Publication date
JP2017028921A (en) 2017-02-02
JP6506649B6 (en) 2019-06-05
CN106411002A (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP4884418B2 (en) Manufacturing method of split stator core
US10063115B2 (en) Rotor including specific magnet structure and motor provided with same
JP6055189B2 (en) Permanent magnet rotating electric machine
US9577483B2 (en) Rotor for a permanent-magnet embedded motor having permanent magnets fitted into a plurality of magnet insertion holes formed in a circumferential direction
US20140354103A1 (en) Motor
US9899897B2 (en) Permanent magnet buried type electric motor and compressor
JPWO2015083274A1 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
US9490669B2 (en) Rotor and motor
WO2019215865A1 (en) Rotor, motor, compressor, and air conditioning device
KR20140002508A (en) Permanent magnet motor
JP7019033B2 (en) Motors, compressors and air conditioners
JP2010183800A (en) Rotor of electric motor, electric motor, air blower and compressor
JP6625216B2 (en) Rotor, electric motor, blower, compressor and air conditioner
KR20170062889A (en) Surface permanent magnet synchronous motor
JP5258944B2 (en) Electric motor and method of manufacturing split stator core
US6741008B2 (en) Stator for reciprocating motor
JP6506649B2 (en) Permanent magnet synchronous machine and apparatus using the same
AU2015225336B2 (en) Rotor
JP5929147B2 (en) Rotor structure of rotating electrical machine
CN104113177A (en) Synchronous induction motor
JP2011244687A (en) Manufacturing method of electric motor and split stator iron core
JP2011244688A (en) Manufacturing method of electric motor and split stator iron core
US9576715B2 (en) Device for magnetizing ring-shaped magnet for BLDC motor
JP2012223068A (en) Rotary electric machine
KR101892136B1 (en) The rotor of the axial magnetic flux motor and axial magnetic flux motor having same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190329

R150 Certificate of patent or registration of utility model

Ref document number: 6506649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150