JP2013162617A - Rotor of rotary electric machine - Google Patents

Rotor of rotary electric machine Download PDF

Info

Publication number
JP2013162617A
JP2013162617A JP2012022103A JP2012022103A JP2013162617A JP 2013162617 A JP2013162617 A JP 2013162617A JP 2012022103 A JP2012022103 A JP 2012022103A JP 2012022103 A JP2012022103 A JP 2012022103A JP 2013162617 A JP2013162617 A JP 2013162617A
Authority
JP
Japan
Prior art keywords
rotor
bending point
diameter side
magnet
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012022103A
Other languages
Japanese (ja)
Inventor
Shigenori Yoneda
繁則 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012022103A priority Critical patent/JP2013162617A/en
Priority to DE201310100837 priority patent/DE102013100837A1/en
Publication of JP2013162617A publication Critical patent/JP2013162617A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide a rotor of a rotary electric machine that can reduce the demagnetizing field at a corner of a permanent magnet buried in a rotor core.SOLUTION: A rotor 30 comprises: a toric rotor core 31 including a plurality of magnet holding holes 32 arranged in a circumferential direction spaced a prescribed distance apart; and a plurality of permanent magnets 33 which form a plurality of magnetic poles buried in the magnet holding holes 32 such that polarity changes alternately in the circumferential direction. Each of the magnet holding holes 32 includes a non-magnetic material part 34a at a circumferential direction opposite side to the magnetic pole center line L1 of a permanent magnet 33 buried in its magnet holding hole 32. The rotor core 31 includes a projection part 35 which projects from an outer diameter side wall surface 32a of the magnet holding hole 32 to the non-magnetic material part 34a, defined by a line passing through at least three points including a first bending point P1, a second bending point P2, and a third bending point P3.

Description

本発明は、ハイブリッド車両や電気自動車等の車両等に搭載されて電動機や発電機として用いられる回転電機のロータに関する。   The present invention relates to a rotor of a rotating electrical machine that is mounted on a vehicle such as a hybrid vehicle or an electric vehicle and used as an electric motor or a generator.

従来、円環状のロータコアに複数の永久磁石が埋め込まれたロータを有する回転電機として、特許文献1に開示された回転電機が知られている。この種の回転電機は、円環状の複数の鋼板を軸方向に積層して形成され回転軸の外周に嵌合固定されたロータコアと、該ロータコアの外周部に周方向に所定距離を隔てて埋め込まれて極性が周方向に交互に異なるように複数の磁極を形成する複数の永久磁石とを有してなるロータを備えている。   Conventionally, a rotating electrical machine disclosed in Patent Document 1 is known as a rotating electrical machine having a rotor in which a plurality of permanent magnets are embedded in an annular rotor core. This type of rotating electrical machine is a rotor core formed by laminating a plurality of annular steel plates in the axial direction and fitted and fixed to the outer periphery of the rotating shaft, and embedded in the outer peripheral portion of the rotor core at a predetermined distance in the circumferential direction. And a rotor having a plurality of permanent magnets that form a plurality of magnetic poles so that the polarities are alternately different in the circumferential direction.

ロータコアの外周部には、軸方向に貫通し周方向に所定距離を隔てて配列された複数の磁石保持孔が設けられており、各磁石保持孔にそれぞれ永久磁石が埋め込まれている。各磁石保持孔に埋め込まれた永久磁石は、各磁石保持孔内に充填される接着剤や樹脂によってロータコアに固定される。   A plurality of magnet holding holes penetrating in the axial direction and arranged at a predetermined distance in the circumferential direction are provided on the outer peripheral portion of the rotor core, and permanent magnets are embedded in the respective magnet holding holes. The permanent magnet embedded in each magnet holding hole is fixed to the rotor core by an adhesive or resin filled in each magnet holding hole.

このように永久磁石をロータコアに埋め込むことによって、ロータコアの磁気抵抗の異方性によるリラクタンストルクを活用することができる。換言すれば、ステータの回転磁界による極とロータの突極との吸引力のみにより生じるリラクタンストルクを活用することができる。   By embedding the permanent magnet in the rotor core in this way, reluctance torque due to the anisotropy of the magnetic resistance of the rotor core can be utilized. In other words, the reluctance torque generated only by the attractive force between the pole due to the rotating magnetic field of the stator and the salient pole of the rotor can be utilized.

特開2007−236020号公報JP 2007-236020 A

ところで、磁石には磁力を維持しておくための保磁力がある。しかし、外部からの磁界により磁石に反磁界が与えられ、磁石の保磁力を超えると減磁が起こり、磁石の磁束密度が低下し、磁石の性能低下を招くこととなる。なお、反磁界は、通常、ロータ外周面と永久磁石の近い部位ほど高くなる。   By the way, the magnet has a coercive force for maintaining the magnetic force. However, when a demagnetizing field is applied to the magnet by an external magnetic field and the coercive force of the magnet is exceeded, demagnetization occurs, the magnetic flux density of the magnet decreases, and the performance of the magnet decreases. Note that the demagnetizing field is usually higher in a portion closer to the outer peripheral surface of the rotor and the permanent magnet.

本発明は、上記事情に鑑みてなされたものであり、ロータコアに埋設された永久磁石の角部の反磁界を低減し得るようにした回転電機のロータを提供することを解決すべき課題とする。   This invention is made | formed in view of the said situation, and makes it the subject which should be solved to provide the rotor of the rotary electric machine which can reduce the demagnetizing field of the corner | angular part of the permanent magnet embedded at the rotor core. .

上記課題を解決するためになされた本発明は、周方向に所定距離を隔てて配列された複数の磁石保持孔(32)を有する円環状のロータコア(31)と、前記磁石保持孔(32)に埋め込まれて極性が周方向に交互に異なるように複数の磁極を形成する複数の永久磁石(33)と、を備えた回転電機(10)のロータ(30,30A〜30D)において、前記磁石保持孔(32)は、当該磁石保持孔(32)に埋め込まれた前記永久磁石(33)の磁極中心線(L1)と周方向反対側に非磁性材部(34a)を有し、前記ロータコア(31)は、前記磁極中心線(L1)から周方向に遠ざかるにつれて外径側に延びる前記磁石保持孔(32)の外径側壁面(32a)と前記永久磁石(33)の最外径側角部(33a)及びロータ回転中心(O)を通過する直線(L2)とが交わる交点上に位置する第1屈曲点(P1)と、前記永久磁石(33)の最外径側角部(33a)を通過する前記ロータ回転中心(O)の同心円(S1)よりも内径側に位置する第2屈曲点(P2)と、前記第2屈曲点(P2)を通過する前記ロータ回転中心(O)の同心円(S2)よりも外径側に位置する第3屈曲点(P3)とを含む少なくとも3点を通過する線により規定され、前記磁石保持孔(32)の外径側壁面(32a)から前記非磁性材部(34a)に突出する突起部(35,35A,35B)を有することを特徴とする。   The present invention, which has been made to solve the above problems, includes an annular rotor core (31) having a plurality of magnet holding holes (32) arranged at a predetermined distance in the circumferential direction, and the magnet holding holes (32). In the rotor (30, 30A to 30D) of the rotating electrical machine (10), including a plurality of permanent magnets (33) that are embedded in a magnetic pole and form a plurality of magnetic poles so that the polarities are alternately different in the circumferential direction, The holding hole (32) has a nonmagnetic material portion (34a) on the opposite side in the circumferential direction from the magnetic pole center line (L1) of the permanent magnet (33) embedded in the magnet holding hole (32), and the rotor core (31) is an outer-diameter side wall surface (32a) of the magnet holding hole (32) that extends toward the outer-diameter side as it goes away from the magnetic pole center line (L1) in the circumferential direction, and the outermost-diameter side of the permanent magnet (33). Corner (33a) and rotor rotation center (O The first bending point (P1) located on the intersection where the straight line (L2) passing through the rotor intersects, and the rotor rotation center (O) passing through the outermost diameter side corner (33a) of the permanent magnet (33). The second bending point (P2) located on the inner diameter side of the concentric circle (S1) and the outer diameter side of the concentric circle (S2) of the rotor rotation center (O) passing through the second bending point (P2). It is defined by a line passing through at least three points including the third bending point (P3) positioned, and protrudes from the outer diameter side wall surface (32a) of the magnet holding hole (32) to the nonmagnetic material portion (34a). It has a projection (35, 35A, 35B).

本発明によれば、ロータコアは、第1屈曲点と第2屈曲点と第3屈曲点とを含む少なくとも3点を通過する線により規定され、磁石保持孔の外径側壁面から、永久磁石の磁極中心線と周方向反対側に設けられた非磁性材部に突出する突起部を有する。そのため、ステータ側から永久磁石の最外径側角部に向かう反磁界を突起部の方向に逃がすことができるので、永久磁石の最外径側角部の反磁界を低減することができる。これにより、反磁界の増大による永久磁石の磁束密度の低下を回避することができるので、性能低下を抑制することができる。   According to the present invention, the rotor core is defined by a line passing through at least three points including the first bending point, the second bending point, and the third bending point, and from the outer diameter side wall surface of the magnet holding hole, It has a protrusion that protrudes from a nonmagnetic material provided on the opposite side of the magnetic pole center line in the circumferential direction. Therefore, the demagnetizing field from the stator side toward the outermost diameter side corner portion of the permanent magnet can be released in the direction of the protrusion, so that the demagnetizing field at the outermost diameter side corner portion of the permanent magnet can be reduced. Thereby, since the fall of the magnetic flux density of the permanent magnet by the increase in a demagnetizing field can be avoided, a performance fall can be suppressed.

本発明において用いられる永久磁石は、ロータ回転軸と直角な方向の断面形状において、互いに対向する2辺を2組有するものを好適に採用することができる。具体的には、長方形など矩形であるが、角部に円弧状面取りや平面状面取りが施されたものであっても、施されていないものであってもよい。また、本発明における非磁性材部の非磁性材としては、例えば空気や樹脂とすることができる。   As the permanent magnet used in the present invention, a permanent magnet having two sets of two sides facing each other in a cross-sectional shape perpendicular to the rotor rotation axis can be suitably used. Specifically, it is a rectangle such as a rectangle, but the corner may be an arc-shaped chamfer or a planar chamfer, or may not be. Moreover, as a nonmagnetic material of the nonmagnetic material part in this invention, it can be set as air or resin, for example.

なお、本発明の好適な態様として、永久磁石として拡散磁石を採用することができる。ここでの拡散磁石とは、保磁力を増加させる重希土類(Dy(ジスプロシウム),Tb(テルビウム))を磁石表面から添加した磁石であって、磁石の中心から放射方向に保磁力が分布(表面ほど保磁力が高い)した磁石のことである。この拡散磁石は、角部が欠損すると保磁力の弱い部位が表面に露出する。磁石の角部が欠損した場合でも、上記の突起部が設けられていることによって、永久磁石の最外径側角部の反磁界を低減することができるので、永久磁石の磁束密度の低下や性能低下を効果的に抑制することができる。   As a preferred embodiment of the present invention, a diffusion magnet can be adopted as the permanent magnet. The diffusion magnet here is a magnet to which heavy rare earth (Dy (dysprosium), Tb (terbium)) that increases the coercive force is added from the magnet surface, and the coercive force is distributed in the radial direction from the center of the magnet (surface A magnet with a higher coercivity. In this diffusion magnet, when the corner portion is lost, a portion having a weak coercive force is exposed on the surface. Even when the corner portion of the magnet is missing, the provision of the above-mentioned projection portion can reduce the demagnetizing field at the outermost diameter side corner portion of the permanent magnet. The performance degradation can be effectively suppressed.

本発明の実施形態1に係るロータを有する回転電機の軸方向の断面図である。It is sectional drawing of the axial direction of the rotary electric machine which has a rotor which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るロータの1磁極部分を示す部分平面図である。It is a fragmentary top view which shows 1 magnetic pole part of the rotor which concerns on Embodiment 1 of this invention. 図2に示すロータの右側半分の一部を拡大して示す拡大図である。FIG. 3 is an enlarged view showing a part of a right half of the rotor shown in FIG. 2 in an enlarged manner. 本発明の実施形態1に係るロータにおける磁石位置と反磁界強度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the magnet position and demagnetizing field strength in the rotor which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るロータにおける磁束ベクトルを示す説明図である。It is explanatory drawing which shows the magnetic flux vector in the rotor which concerns on Embodiment 1 of this invention. 比較例1に係るロータにおける磁石位置と反磁界強度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the magnet position in the rotor which concerns on the comparative example 1, and a demagnetizing field intensity. 比較例1に係るロータにおける磁束ベクトルを示す説明図である。6 is an explanatory diagram showing magnetic flux vectors in a rotor according to Comparative Example 1. FIG. 本発明の実施形態2に係るロータの要部を拡大して示す拡大図である。It is an enlarged view which expands and shows the principal part of the rotor which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係るロータの要部を拡大して示す拡大図である。It is an enlarged view which expands and shows the principal part of the rotor which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係るロータの要部を拡大して示す拡大図である。It is an enlarged view which expands and shows the principal part of the rotor which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係るロータの要部を拡大して示す拡大図である。It is an enlarged view which expands and shows the principal part of the rotor which concerns on Embodiment 5 of this invention.

以下、本発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

〔実施形態1〕
本実施形態に係る回転電機のロータについて図1〜図5を参照して説明する。本実施形態に係るロータ30は、例えば車両用モータとして使用される図1に示す回転電機10に搭載されるものである。この回転電機10は、電機子として働くステータ20と、界磁として働くロータ30と、ステータ20及びロータ30を収容し、締結ボルト(図示せず)によって連結、固定されたフロントハウジング11a及びリアハウジング11b等を含んで構成されている。
Embodiment 1
A rotor of a rotating electrical machine according to the present embodiment will be described with reference to FIGS. The rotor 30 according to the present embodiment is mounted on the rotating electrical machine 10 shown in FIG. 1 used as a vehicle motor, for example. The rotating electrical machine 10 includes a stator 20 that serves as an armature, a rotor 30 that serves as a field, a stator 20 and the rotor 30, and is connected and fixed by fastening bolts (not shown) and a rear housing 11a and a rear housing. 11b and the like.

ステータ20は、円環状に形成されて周方向に配列された複数のスロット(図示せず)を有するステータコア21と、ステータコア21のスロットに巻装され電力変換用のインバータ(図示せず)に接続された三相のステータコイル25とを有する。このステータ20は、フロントハウジング11a及びリアハウジング11b間で挟持されることにより固定されており、ロータ30の外径側に所定の隙間を介して同軸状に配置されている。   The stator 20 is formed in an annular shape and has a plurality of slots (not shown) arranged in the circumferential direction, and is connected to an inverter (not shown) for power conversion wound around the slots of the stator core 21. Three-phase stator coil 25. The stator 20 is fixed by being sandwiched between the front housing 11a and the rear housing 11b, and is arranged coaxially on the outer diameter side of the rotor 30 with a predetermined gap.

ロータ30は、フロントハウジング11a及びリアハウジング11bに軸受け12を介して回転自在に支承された回転軸13と一体になって回転するもので、円環状の複数の鋼板を軸方向に積層して形成されたロータコア31を有する。このロータコア31の、ステータ20の内径側と向き合う外径側には、軸方向に貫通する複数の磁石保持孔32が周方向に所定距離を隔てて設けられている。各磁石保持孔32には、回転軸13と直角な方向の断面形状が矩形の永久磁石33がそれぞれ埋め込まれている。本実施形態の場合、V字状に配置された一対の永久磁石33により1つの磁極が形成されており、複数対の永久磁石33によって極性が周方向に交互に異なる複数の磁極(本実施形態では8極(N極:4、S極:4))が形成されている。   The rotor 30 rotates integrally with the rotary shaft 13 rotatably supported by the front housing 11a and the rear housing 11b via the bearing 12, and is formed by laminating a plurality of annular steel plates in the axial direction. The rotor core 31 is provided. A plurality of magnet holding holes 32 penetrating in the axial direction are provided at a predetermined distance in the circumferential direction on the outer diameter side of the rotor core 31 facing the inner diameter side of the stator 20. In each magnet holding hole 32, a permanent magnet 33 having a rectangular cross-sectional shape in a direction perpendicular to the rotation shaft 13 is embedded. In the case of the present embodiment, one magnetic pole is formed by a pair of permanent magnets 33 arranged in a V shape, and a plurality of magnetic poles whose polarities are alternately different in the circumferential direction by the plurality of pairs of permanent magnets 33 (the present embodiment). Then, 8 poles (N pole: 4, S pole: 4)) are formed.

なお、図2に示すように、1つの磁極を形成する一対の永久磁石33は、磁極中心及びロータ回転中心Oを通過し径方向に延びる磁極中心線L1に対し所定角度傾斜して線対称となるようにV字状に配設されている。また、本実施形態では、永久磁石33として、磁石の中心から放射方向に保磁力が分布(表面ほど保磁力が高い)した拡散磁石が採用されており、これにより、高い保磁力を確保しつつ低コスト化が図られている。なお、永久磁石33の角部には、面取り加工は施されていないが、微小な円弧面が不可避的に形成されている。   As shown in FIG. 2, the pair of permanent magnets 33 forming one magnetic pole is symmetrical with respect to the magnetic pole center line L1 passing through the magnetic pole center and the rotor rotation center O and extending in the radial direction by a predetermined angle. It arrange | positions in V shape so that it may become. In the present embodiment, a diffusion magnet having a coercive force distributed in the radial direction from the center of the magnet (the coercive force is higher toward the surface) is employed as the permanent magnet 33, thereby ensuring a high coercive force. Cost reduction is achieved. In addition, although the chamfering process is not given to the corner | angular part of the permanent magnet 33, a fine circular arc surface is inevitably formed.

磁石保持孔32は、図2及び図3に示すように、当該磁石保持孔32に埋め込まれた永久磁石33の周方向両側に非磁性材部34a,34bを有する。この非磁性材部34a,34bは、磁石保持孔32の空間部に充填された樹脂38により形成されている。永久磁石33の磁極中心線L1と周方向反対側(図2及び図3の右側)に設けられた非磁性材部34aには、磁石保持孔32の外径側壁面32aから非磁性材部34aに突出する突起部35が設けられている。この突起部35は、回転軸13と直角な方向の断面において、第1屈曲点P1と第2屈曲点P2と第3屈曲点P3とを結ぶ直線で形成された三角形により規定されている。   As shown in FIGS. 2 and 3, the magnet holding hole 32 has nonmagnetic material portions 34 a and 34 b on both sides in the circumferential direction of the permanent magnet 33 embedded in the magnet holding hole 32. The nonmagnetic material portions 34 a and 34 b are formed of a resin 38 filled in the space portion of the magnet holding hole 32. The nonmagnetic material portion 34a provided on the side opposite to the magnetic pole center line L1 of the permanent magnet 33 (on the right side in FIGS. 2 and 3) includes a nonmagnetic material portion 34a from the outer diameter side wall surface 32a of the magnet holding hole 32. A projecting portion 35 is provided so as to project. The protrusion 35 is defined by a triangle formed by a straight line connecting the first bending point P1, the second bending point P2, and the third bending point P3 in a cross section in a direction perpendicular to the rotation shaft 13.

ここで、第1屈曲点P1は、磁極中心線L1から周方向に遠ざかるにつれて外径側に延びる磁第石保持孔32の外径側壁面32aと、永久磁石33の最外径側角部33aを通過し径方向に延びる直線L2とが交わる交点上に位置する点である。第2屈曲点P2は、永久磁石33の最外径側角部33aを通過するロータ回転中心Oの同心円S1よりも内径側に位置する点である。この第2屈曲点P2は、永久磁石33の中心軸線L3を超えない範囲、即ち、中心軸線L3よりも外径側の位置に設定されている。また、第2屈曲点P2の位置は、第1屈曲点P1と第2屈曲点P2とを結ぶ直線が、永久磁石33の非磁性材部34a側の辺と平行になるように設定されている。第3屈曲点P3は、第2屈曲点P2を通過するロータ回転中心Oの同心円S2よりも外径側に位置する点である。   Here, the first bending point P1 includes the outer-diameter side wall surface 32a of the magnetite holding hole 32 that extends toward the outer diameter side as it goes away from the magnetic pole center line L1 and the outermost-diameter side corner portion 33a of the permanent magnet 33. It is a point located on the intersection where the straight line L2 which passes through and extends in the radial direction intersects. The second bending point P2 is a point located on the inner diameter side of the concentric circle S1 of the rotor rotation center O passing through the outermost diameter side corner portion 33a of the permanent magnet 33. The second bending point P2 is set in a range not exceeding the central axis L3 of the permanent magnet 33, that is, a position on the outer diameter side of the central axis L3. The position of the second bending point P2 is set so that the straight line connecting the first bending point P1 and the second bending point P2 is parallel to the side of the permanent magnet 33 on the nonmagnetic material portion 34a side. . The third bending point P3 is a point located on the outer diameter side of the concentric circle S2 of the rotor rotation center O that passes through the second bending point P2.

非磁性材部34aの外径側には、ロータコア31を周方向に連結するブリッジ部36が形成されている。周方向に延びるブリッジ部36は、周方向両端部を除く大部分の径方向幅が略一定にされている。即ち、非磁性材部34aの外径側を規定するブリッジ部36の内径側壁面36aは、ロータ回転中心Oの同心円S3上に位置しており、ブリッジ部36の外周面36bは、ロータ回転中心Oの同心円上に位置するロータコア31の外周面と一致している。本実施形態では、突起部35を規定する第3屈曲点P3が、ブリッジ部36の内径側壁面36a上に位置している。なお、ブリッジ部36の内径側壁面36aは円弧面で形成されているが、その円弧面を形成する曲率半径がある程度大きい場合には、その円弧上の2点を結ぶ直線を含む平面で形成されていてもよい。   A bridge portion 36 that connects the rotor core 31 in the circumferential direction is formed on the outer diameter side of the nonmagnetic material portion 34a. The bridge portion 36 extending in the circumferential direction has a substantially constant radial width except for both ends in the circumferential direction. That is, the inner diameter side wall surface 36a of the bridge portion 36 that defines the outer diameter side of the nonmagnetic material portion 34a is located on the concentric circle S3 of the rotor rotation center O, and the outer peripheral surface 36b of the bridge portion 36 is the rotor rotation center. It coincides with the outer peripheral surface of the rotor core 31 located on a concentric circle of O. In the present embodiment, the third bending point P3 that defines the protruding portion 35 is located on the inner diameter side wall surface 36 a of the bridge portion 36. The inner diameter side wall surface 36a of the bridge portion 36 is formed as a circular arc surface, but when the radius of curvature forming the circular arc surface is somewhat large, it is formed as a plane including a straight line connecting two points on the circular arc. It may be.

ロータコア31の磁石保持孔32には、内径側壁面32bから非磁性材部34aに突出し、永久磁石33の周方向最外側角部33bを支持する支持部37が設けられている。この支持部37は、ロータ30の回転時に遠心力が作用する永久磁石33に対して、最外径側角部33aを支持する突起部35と共に永久磁石33の周方向最外側角部33bを支持するようにされている。これにより、永久磁石33に作用する遠心力が突起部35と支持部37に分散されるので、永久磁石33の欠け発生が防止される。なお、各磁石保持孔32内に永久磁石33が挿入された後、磁石保持孔32の壁面と永久磁石33との間及び非磁性材部34a,34bに樹脂38が充填されている。これにより、各磁石保持孔32に埋め込まれた永久磁石33は、ロータコア30に強固に固定されている。   The magnet holding hole 32 of the rotor core 31 is provided with a support portion 37 that protrudes from the inner diameter side wall surface 32 b to the nonmagnetic material portion 34 a and supports the circumferential outermost corner portion 33 b of the permanent magnet 33. The support portion 37 supports the outermost corner portion 33b in the circumferential direction of the permanent magnet 33 together with the projection portion 35 that supports the outermost diameter side corner portion 33a with respect to the permanent magnet 33 on which centrifugal force acts when the rotor 30 rotates. Have been to. Thereby, the centrifugal force acting on the permanent magnet 33 is distributed to the protrusion 35 and the support portion 37, so that the permanent magnet 33 is prevented from being chipped. In addition, after the permanent magnet 33 is inserted into each magnet holding hole 32, the resin 38 is filled between the wall surface of the magnet holding hole 32 and the permanent magnet 33 and the nonmagnetic material portions 34 a and 34 b. Thereby, the permanent magnet 33 embedded in each magnet holding hole 32 is firmly fixed to the rotor core 30.

以上のように構成された本実施形態のロータ30によれば、ロータコア31は、第1屈曲点P1と第2屈曲点P2と第3屈曲点P3とを3点を通過する直線により規定され、磁石保持孔32の外径側壁面32aから、永久磁石32の磁極中心線L1と周方向反対側に設けられた非磁性材部34aに突出する突起部35を有する。そのため、図5に磁束ベクトルを示すように、ステータ20側から永久磁石33の最外径側角部33aに向かう磁束を突起部35の方向に逃がすことができる。これにより、図4に示すように、永久磁石33の最外径側角部33aにおいて反磁界を低減することができるので、最外径側角部33aの磁束量の低下を軽減することができる。   According to the rotor 30 of the present embodiment configured as described above, the rotor core 31 is defined by a straight line passing through the first bending point P1, the second bending point P2, and the third bending point P3, From the outer diameter side wall surface 32a of the magnet holding hole 32, there is a protrusion 35 that protrudes from a magnetic pole center line L1 of the permanent magnet 32 to a nonmagnetic material portion 34a provided on the opposite side in the circumferential direction. Therefore, as shown in FIG. 5, the magnetic flux from the stator 20 side toward the outermost diameter side corner portion 33 a of the permanent magnet 33 can be released in the direction of the protruding portion 35. As a result, as shown in FIG. 4, the demagnetizing field can be reduced at the outermost diameter side corner portion 33 a of the permanent magnet 33, so that the decrease in the amount of magnetic flux at the outermost diameter side corner portion 33 a can be reduced. .

なお、図6及び図7に示す比較例1の場合には、本発明に係る突起部35に相当するものがないので、図7に示すように、磁束が永久磁石33の最外径側角部33aに当たってしまう。そのため、図6に示すように、永久磁石33の最外径側角部33aにおいて反磁界を低減することができないので、最外径側角部33aの磁束量が大幅に低下することとなる。   In the case of Comparative Example 1 shown in FIGS. 6 and 7, there is nothing corresponding to the protrusion 35 according to the present invention, so that the magnetic flux is at the outermost diameter side angle of the permanent magnet 33 as shown in FIG. It will hit the part 33a. Therefore, as shown in FIG. 6, since the demagnetizing field cannot be reduced at the outermost diameter side corner portion 33a of the permanent magnet 33, the amount of magnetic flux at the outermost diameter side corner portion 33a is greatly reduced.

また、本実施形態では、第3屈曲点P3は、非磁性材部34aの外径側を規定するブリッジ部36の内径側壁面36a上に位置しているため、突起部35を良好な大きさや形状に設定することができ、反磁界の低減を有利に行うことが可能となる。   In the present embodiment, the third bending point P3 is located on the inner diameter side wall surface 36a of the bridge portion 36 that defines the outer diameter side of the nonmagnetic material portion 34a. The shape can be set, and the demagnetizing field can be advantageously reduced.

また、本実施形態では、永久磁石33として拡散磁石を採用しているため、突起部35が設けられていることによって、永久磁石33の最外径側角部33aの反磁界の低減がなされているため、磁石保持孔32に永久磁石33を挿入する時にロータコア31に磁石角部があたり、最外径側角部33aが欠損したり、ロータ30の回転時に遠心力の影響で最外径側角部33aが欠けた場合でも、永久磁石33の磁束密度の低下を回避して、性能低下を効果的に抑制することができる。この拡散磁石は、磁石全体で保磁力が略均一化されている一般的な永久磁石に比べて安価であるが、磁石内部の保磁力が弱い為、磁石の欠損に対しての許容値を小さくした設計が必要となるが、本発明によればロバスト性を向上した設計ができる。   Further, in the present embodiment, since a diffusion magnet is employed as the permanent magnet 33, the provision of the projection 35 reduces the demagnetizing field of the outermost diameter side corner 33a of the permanent magnet 33. Therefore, when the permanent magnet 33 is inserted into the magnet holding hole 32, the magnet core hits the rotor core 31, and the outermost diameter side corner 33 a is lost, or when the rotor 30 rotates, the outermost diameter side is affected by the centrifugal force. Even when the corner 33a is missing, it is possible to avoid a decrease in magnetic flux density of the permanent magnet 33 and to effectively suppress a decrease in performance. This diffusion magnet is less expensive than a general permanent magnet whose coercive force is substantially uniform throughout the magnet, but the coercive force inside the magnet is weak, so the tolerance for magnet defects is reduced. However, according to the present invention, it is possible to design with improved robustness.

また、本実施形態では、磁石保持孔32に埋め込まれた永久磁石33と磁石保持孔32の壁面との間及び非磁性材部34a,34bに樹脂38が充填されているため、永久磁石33を樹脂38でロータコア30に強固に固定することができる。   In the present embodiment, since the resin 38 is filled between the permanent magnet 33 embedded in the magnet holding hole 32 and the wall surface of the magnet holding hole 32 and the non-magnetic material portions 34a and 34b, the permanent magnet 33 is The resin 38 can be firmly fixed to the rotor core 30.

また、本実施形態では、ロータコア31の磁石保持孔32には、内径側壁面32bから非磁性材部34aに突出し、永久磁石33の周方向最外側角部33bを支持する支持部37が設けられている。これにより、ロータ30の回転時に永久磁石33に作用する遠心力を、永久磁石33の最外径側角部33aを支持する突起部35と周方向最外側角部33bを支持する支持部37に分散させることができるので、永久磁石33の欠け発生を防止することができる。   In this embodiment, the magnet holding hole 32 of the rotor core 31 is provided with a support portion 37 that protrudes from the inner diameter side wall surface 32 b to the nonmagnetic material portion 34 a and supports the outermost circumferential corner portion 33 b of the permanent magnet 33. ing. As a result, the centrifugal force acting on the permanent magnet 33 when the rotor 30 rotates is applied to the protrusion 35 that supports the outermost diameter side corner 33a of the permanent magnet 33 and the support 37 that supports the outermost corner 33b in the circumferential direction. Since they can be dispersed, the occurrence of chipping of the permanent magnet 33 can be prevented.

〔実施形態2〕
実施形態2に係るロータ30Aは、ロータコア31に設けられる突起部35Aの構成のみが実施形態1と異なる。よって、実施形態1と共通する部材や構成についての詳しい説明は省略し、異なる点を説明する。なお、実施形態1と共通する部材については、同じ符号を用いる。
[Embodiment 2]
The rotor 30A according to the second embodiment is different from the first embodiment only in the configuration of the protrusion 35A provided on the rotor core 31. Therefore, detailed description of members and configurations common to the first embodiment will be omitted, and different points will be described. In addition, about the member which is common in Embodiment 1, the same code | symbol is used.

実施形態2の突起部35Aは、図8に示すように、第2屈曲点P2と第3屈曲点P3間にある第4屈曲点P4を通過して形成される台形により規定されている。なお、第1〜第3屈曲点P1〜P3は、実施形態1と同じ位置に設定されている。   As shown in FIG. 8, the protrusion 35A of the second embodiment is defined by a trapezoid formed by passing through a fourth bending point P4 between the second bending point P2 and the third bending point P3. The first to third bending points P1 to P3 are set at the same positions as in the first embodiment.

実施形態2に係るロータ30Aは、実施形態1と同様の作用及び効果を奏する。さらに、実施形態2の台形により規定された突起部35Aは、実施形態1のように三角形により規定された突起部35に比べて軸直角方向の断面積を大きくすることができるので、応力集中を抑制することができる。   The rotor 30A according to the second embodiment has the same operations and effects as the first embodiment. Further, the protrusion 35A defined by the trapezoid of the second embodiment can increase the cross-sectional area in the direction perpendicular to the axis as compared with the protrusion 35 defined by the triangle as in the first embodiment. Can be suppressed.

〔実施形態3〕
実施形態3に係るロータ30Bは、ロータコア31に設けられる突起部35Bの構成のみが実施形態1と異なる。よって、実施形態1と共通する部材や構成についての詳しい説明は省略し、異なる点を説明する。なお、実施形態1と共通する部材については、同じ符号を用いる。
[Embodiment 3]
The rotor 30B according to the third embodiment is different from the first embodiment only in the configuration of the protrusion 35B provided on the rotor core 31. Therefore, detailed description of members and configurations common to the first embodiment will be omitted, and different points will be described. In addition, about the member which is common in Embodiment 1, the same code | symbol is used.

実施形態3の突起部35Bは、図9に示すように、第2屈曲点P2の角部が円弧状曲線で形成される三角形により規定されている。この場合、第1及び第3屈曲点P1,P3は、実施形態1と同じ位置に設定されている。   As shown in FIG. 9, the protrusion 35B of the third embodiment is defined by a triangle in which the corner of the second bending point P2 is formed by an arcuate curve. In this case, the first and third bending points P1 and P3 are set at the same positions as in the first embodiment.

実施形態3に係るロータ30Bは、実施形態1と同様の作用及び効果を奏する。さらに、実施形態3の突起部35Bは、実施形態1のような三角形により規定された突起部35に比べて、第2屈曲点P2の角部における応力集中を抑制することができる。   The rotor 30B according to the third embodiment has the same operations and effects as the first embodiment. Furthermore, the protrusion 35B of the third embodiment can suppress stress concentration at the corner of the second bending point P2 as compared to the protrusion 35 defined by the triangle as in the first embodiment.

〔実施形態4〕
実施形態4に係るロータ30Cについて図10を参照して説明する。実施形態4に係るロータ30Cは、磁石保持孔32に埋め込まれた永久磁石33Aに面取り加工が施されている点でのみ実施形態1と異なる。よって、実施形態1と共通する部材や構成についての詳しい説明は省略し、異なる点を説明する。なお、実施形態1と共通する部材については、同じ符号を用いる。
[Embodiment 4]
A rotor 30C according to the fourth embodiment will be described with reference to FIG. The rotor 30C according to the fourth embodiment is different from that of the first embodiment only in that the permanent magnet 33A embedded in the magnet holding hole 32 is chamfered. Therefore, detailed description of members and configurations common to the first embodiment will be omitted, and different points will be described. In addition, about the member which is common in Embodiment 1, the same code | symbol is used.

実施形態4の永久磁石33Aは、最外径側角部33aに曲率半径Rの円弧状面取りが施されている。この場合、突起部35の形状を規定する第1屈曲点P1と第2屈曲点P2間の距離Dは、円弧状面取り面の曲率半径Rよりも長くなるように設定されている。なお、永久磁石33Aの他の3箇所の角部にも最外径側角部33aと同様に曲率半径Rの円弧状面取りが施されている。   In the permanent magnet 33A of the fourth embodiment, an arcuate chamfer with a radius of curvature R is applied to the outermost diameter side corner portion 33a. In this case, the distance D between the first bending point P1 and the second bending point P2 that defines the shape of the protrusion 35 is set to be longer than the curvature radius R of the arc-shaped chamfered surface. The other three corners of the permanent magnet 33A are also arc-shaped chamfered with a radius of curvature R in the same manner as the outermost diameter corner 33a.

実施形態4に係るロータ30Cは、実施形態1と同様の作用及び効果を奏する。さらに、実施形態4によれば、第1屈曲点P1と第2屈曲点P2間の距離Dが曲率半径Rよりも長くなるように設定され、永久磁石33Aの最外径側角部33aがロータ30C外周に近づかないようにされているので、増加した反磁界により磁束密度が減少し出力が低下するのを抑制することができる。   The rotor 30C according to the fourth embodiment has the same operations and effects as those of the first embodiment. Furthermore, according to the fourth embodiment, the distance D between the first bending point P1 and the second bending point P2 is set to be longer than the radius of curvature R, and the outermost diameter side corner portion 33a of the permanent magnet 33A is the rotor. Since it is made so that it may not approach the 30C outer periphery, it can suppress that magnetic flux density reduces and output falls by the increased demagnetizing field.

〔実施形態5〕
実施形態5に係るロータ30Dについて図11を参照して説明する。実施形態5に係るロータ30Dは、磁石保持孔32に埋め込まれた永久磁石33Bに面取り加工が施されている点でのみ実施形態1と異なる。よって、実施形態1と共通する部材や構成についての詳しい説明は省略し、異なる点を説明する。なお、実施形態1と共通する部材については、同じ符号を用いる。
[Embodiment 5]
A rotor 30D according to the fifth embodiment will be described with reference to FIG. The rotor 30D according to the fifth embodiment is different from the first embodiment only in that the permanent magnet 33B embedded in the magnet holding hole 32 is chamfered. Therefore, detailed description of members and configurations common to the first embodiment will be omitted, and different points will be described. In addition, about the member which is common in Embodiment 1, the same code | symbol is used.

実施形態5の永久磁石33Bは、最外径側角部33aに高さ距離Cの平面状面取りが施されている。この場合、突起部35の形状を規定する第1屈曲点P1と第2屈曲点P2間の距離Dは、平面状面取り面の高さ距離Cよりも長くなるように設定されている。ここで平面状面取り面の高さ距離Cは、平面状面取り面を1辺に含む直角二等辺三角形の直角角部から対向する辺までの長さ(高さ)のことである。なお、永久磁石33Bの他の3箇所の角部にも最外径側角部33aと同様に高さ距離Cの平面状面取りが施されている。   In the permanent magnet 33B according to the fifth embodiment, a planar chamfer having a height distance C is applied to the outermost diameter side corner portion 33a. In this case, the distance D between the first bending point P1 and the second bending point P2 that defines the shape of the protrusion 35 is set to be longer than the height distance C of the planar chamfered surface. Here, the height distance C of the planar chamfered surface is a length (height) from a right angle portion of a right-angled isosceles triangle including the planar chamfered surface to one side. The other three corners of the permanent magnet 33B are also chamfered at a height distance C in the same manner as the outermost diameter corner 33a.

実施形態5に係るロータ30Dは、実施形態1と同様の作用及び効果を奏する。さらに、実施形態5によれば、第1屈曲点P1と第2屈曲点P2間の距離Dが高さ距離Cよりも長くなるように設定され、永久磁石33Bの最外径側角部33aがロータ30D外周に近づかないようにされているので、増加した反磁界により磁束密度が減少し出力が低下するのを抑制することができる。   The rotor 30D according to the fifth embodiment has the same operations and effects as those of the first embodiment. Further, according to the fifth embodiment, the distance D between the first bending point P1 and the second bending point P2 is set to be longer than the height distance C, and the outermost diameter side corner portion 33a of the permanent magnet 33B is set. Since the rotor 30D is kept away from the outer periphery, it is possible to prevent the magnetic flux density from being reduced and the output from being lowered due to the increased demagnetizing field.

〔他の実施形態〕
なお、本発明は、上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更することが可能である。
[Other Embodiments]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記の実施形態では、ロータコア31に、1極当り一対の永久磁石33を配設していたが、1極当たり1つの永久磁石33を配設するようにしてもよい。   For example, in the above embodiment, a pair of permanent magnets 33 is disposed per pole on the rotor core 31, but one permanent magnet 33 may be disposed per pole.

また、上記の実施形態では、本発明に係る回転電機のロータを車両用モータのロータに適用した例を説明したが、本発明は、車両に搭載される回転電機として、発電機、あるいは電動機、さらには両者を選択的に使用し得る回転電機のロータにも利用することができる。   Further, in the above-described embodiment, the example in which the rotor of the rotating electrical machine according to the present invention is applied to the rotor of the vehicle motor has been described, but the present invention can be used as a rotating electrical machine mounted on the vehicle as a generator, an electric motor, Furthermore, it can also be used for a rotor of a rotating electrical machine that can selectively use both.

10…回転電機、 30,30A,30B,30C,30D…ロータ、 31…ロータコア、 32…磁石保持孔、 32a…外径側壁面、 32b…内径側壁面、 33,33A,33B…永久磁石、 33a…最外径側角部、 33b…周方向最外側角部、 34a,34b…非磁性材部、 35,35A,35B…突起部、 36…ブリッジ部、 36a…内径側壁面、 37…支持部、 38…樹脂、 L1…磁極中心線、 L2…永久磁石の最外径側角部及びロータ回転中心を通過する直線、 L3…永久磁石の中心軸線、 O…ロータ回転中心、 P1…第1屈曲点、 P2…第2屈曲点、 P3…第3屈曲点、 P4…第4屈曲点、 S1,S2…同心円、 D…第1屈曲点と第2屈曲点間の距離、 R…円弧状面取り面の曲率半径、 C…平面状面取り面の高さ距離。   DESCRIPTION OF SYMBOLS 10 ... Rotating electrical machine 30, 30A, 30B, 30C, 30D ... Rotor, 31 ... Rotor core, 32 ... Magnet holding hole, 32a ... Outer diameter side wall surface, 32b ... Inner diameter side wall surface, 33, 33A, 33B ... Permanent magnet, 33a ... outermost diameter side corner part, 33b ... circumferential outermost side corner part, 34a, 34b ... nonmagnetic material part, 35, 35A, 35B ... projection part, 36 ... bridge part, 36a ... inner diameter side wall surface, 37 ... support part 38: resin, L1: magnetic pole center line, L2: straight line passing through the outermost diameter corner of the permanent magnet and the rotor rotation center, L3: center axis of the permanent magnet, O: rotor rotation center, P1: first bending Point, P2: Second bending point, P3: Third bending point, P4: Fourth bending point, S1, S2: Concentric circles, D: Distance between first bending point and second bending point, R: Arc-shaped chamfer Radius of curvature, C ... plane The height distance of the chamfered surface.

Claims (7)

周方向に所定距離を隔てて配列された複数の磁石保持孔(32)を有する円環状のロータコア(31)と、前記磁石保持孔(32)に埋め込まれて極性が周方向に交互に異なるように複数の磁極を形成する複数の永久磁石(33)と、を備えた回転電機(10)のロータ(30,30A〜30D)において、
前記磁石保持孔(32)は、当該磁石保持孔(32)に埋め込まれた前記永久磁石(33)の磁極中心線(L1)と周方向反対側に非磁性材部(34a)を有し、
前記ロータコア(31)は、前記磁極中心線(L1)から周方向に遠ざかるにつれて外径側に延びる前記磁石保持孔(32)の外径側壁面(32a)と前記永久磁石(33)の最外径側角部(33a)及びロータ回転中心(O)を通過する直線(L2)とが交わる交点上に位置する第1屈曲点(P1)と、前記永久磁石(33)の最外径側角部(33a)を通過する前記ロータ回転中心(O)の同心円(S1)よりも内径側に位置する第2屈曲点(P2)と、前記第2屈曲点(P2)を通過する前記ロータ回転中心(O)の同心円(S2)よりも外径側に位置する第3屈曲点(P3)とを含む少なくとも3点を通過する線により規定され、前記磁石保持孔(32)の外径側壁面(32a)から前記非磁性材部(34a)に突出する突起部(35,35A,35B)を有することを特徴とする回転電機(10)のロータ(30,30A〜30D)。
An annular rotor core (31) having a plurality of magnet holding holes (32) arranged at a predetermined distance in the circumferential direction, and embedded in the magnet holding holes (32) so that the polarities are alternately different in the circumferential direction. In the rotor (30, 30A-30D) of the rotating electrical machine (10) provided with a plurality of permanent magnets (33) that form a plurality of magnetic poles
The magnet holding hole (32) has a nonmagnetic material portion (34a) on the opposite side in the circumferential direction from the magnetic pole center line (L1) of the permanent magnet (33) embedded in the magnet holding hole (32).
The rotor core (31) includes an outer-diameter side wall surface (32a) of the magnet holding hole (32) that extends toward the outer-diameter side as it moves away from the magnetic pole center line (L1) in the circumferential direction and the outermost side of the permanent magnet (33). The first bending point (P1) located on the intersection where the radial corner (33a) and the straight line (L2) passing through the rotor rotation center (O) intersect, and the outermost radial angle of the permanent magnet (33) A second bending point (P2) located on the inner diameter side of the concentric circle (S1) of the rotor rotation center (O) passing through the portion (33a) and the rotor rotation center passing through the second bending point (P2) (O) is defined by a line passing through at least three points including the third bending point (P3) located on the outer diameter side from the concentric circle (S2), and the outer diameter side wall surface of the magnet holding hole (32) ( 32a) projecting part (3) projecting from the non-magnetic material part (34a) The rotor of the rotating electric machine (10) characterized by having 35A, the 35B) (30,30A~30D).
前記永久磁石(33)として拡散磁石が採用されていることを特徴とする請求項1に記載の回転電機(10)のロータ(30,30A〜30D)。   The rotor (30, 30A to 30D) of the rotating electrical machine (10) according to claim 1, wherein a diffusion magnet is adopted as the permanent magnet (33). 前記ロータコア(31)は、前記非磁性材部(34a)の外径側で前記ロータコア(31)を周方向に連結するブリッジ部(36)を有し、前記第3屈曲点(P3)は、前記非磁性材部(34a)の外径側を規定する前記ブリッジ部(36)の内径側壁面(36a)上に位置していることを特徴とする請求項1又は2に記載の回転電機(10)のロータ(30,30A〜30D)。   The rotor core (31) has a bridge portion (36) for connecting the rotor core (31) in the circumferential direction on the outer diameter side of the nonmagnetic material portion (34a), and the third bending point (P3) is 3. The rotating electrical machine according to claim 1, wherein the rotating electrical machine is located on an inner diameter side wall surface (36 a) of the bridge portion (36) that defines an outer diameter side of the non-magnetic material portion (34 a). 10) Rotor (30, 30A-30D). 前記突起部(35A,35B)は、前記第2屈曲点(P2)と前記第3屈曲点(P3)間にある第4屈曲点(P4)を通過して形成される台形、又は前記第2屈曲点(P2)の角部が円弧状曲線で形成される三角形により規定されていることを特徴とする請求項1〜3のいずれか一項に記載の回転電機(10)のロータ(30A,30B)。   The protrusions (35A, 35B) are trapezoids formed by passing through a fourth bending point (P4) between the second bending point (P2) and the third bending point (P3), or the second 4. The rotor (30 </ b> A, 30 </ b> A) of the rotating electrical machine (10) according to claim 1, wherein a corner of the bending point (P <b> 2) is defined by a triangle formed by an arcuate curve. 30B). 前記磁石保持孔(32)の壁面と当該磁石保持孔(32)に埋め込まれた前記永久磁石(33)との間に樹脂(38)が充填されていることを特徴とする請求項1〜4のいずれか一項に記載の回転電機(10)のロータ(30,30A〜30D)。   The resin (38) is filled between the wall surface of the magnet holding hole (32) and the permanent magnet (33) embedded in the magnet holding hole (32). The rotor (30, 30A to 30D) of the rotating electrical machine (10) according to any one of the above. 前記第1屈曲点(P1)と前記第2屈曲点(P2)間の距離(D)は、前記永久磁石(33)の最外径側角部(33a)に施される円弧状面取り面の曲率半径(R)、又は平面状面取り面の高さ距離(C)よりも長くされていることを特徴とする請求項1〜5のいずれか一項に記載の回転電機(10)のロータ(30C,30D)。   The distance (D) between the first bending point (P1) and the second bending point (P2) is an arc-shaped chamfered surface applied to the outermost-diameter side corner (33a) of the permanent magnet (33). The rotor of the rotating electrical machine (10) according to any one of claims 1 to 5, wherein the rotor (10) is longer than a radius of curvature (R) or a height distance (C) of the planar chamfered surface. 30C, 30D). 前記ロータコア(31)は、前記磁石保持孔(32)の内径側壁面(32b)から前記非磁性材部(34a)に突出し、前記永久磁石(33)の周方向最外側角部(33b)を支持する支持部(37)を有することを特徴とする請求項1〜6のいずれか一項に記載の回転電機(10)のロータ(30,30A〜30D)。   The rotor core (31) protrudes from the inner diameter side wall surface (32b) of the magnet holding hole (32) to the nonmagnetic material portion (34a), and the circumferential outermost corner portion (33b) of the permanent magnet (33). The rotor (30, 30A to 30D) of the rotating electrical machine (10) according to any one of claims 1 to 6, further comprising a support portion (37) for supporting.
JP2012022103A 2012-02-03 2012-02-03 Rotor of rotary electric machine Pending JP2013162617A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012022103A JP2013162617A (en) 2012-02-03 2012-02-03 Rotor of rotary electric machine
DE201310100837 DE102013100837A1 (en) 2012-02-03 2013-01-29 Rotor for e.g. electric motor in hybrid electric car, has magnets inserted in receiving holes, and rotor core comprising projection portions, where concentric circle extending into outermost corner edge portion of magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022103A JP2013162617A (en) 2012-02-03 2012-02-03 Rotor of rotary electric machine

Publications (1)

Publication Number Publication Date
JP2013162617A true JP2013162617A (en) 2013-08-19

Family

ID=48794738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022103A Pending JP2013162617A (en) 2012-02-03 2012-02-03 Rotor of rotary electric machine

Country Status (2)

Country Link
JP (1) JP2013162617A (en)
DE (1) DE102013100837A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028921A (en) * 2015-07-27 2017-02-02 日立アプライアンス株式会社 Permanent magnet synchronous machine and apparatus using the same
CN108711977A (en) * 2018-06-25 2018-10-26 苏州汇川联合动力系统有限公司 Rotor and magneto
CN108736606A (en) * 2017-04-25 2018-11-02 大众汽车有限公司 Motor including stator and rotor and the rotor for motor
JP2019068574A (en) * 2017-09-29 2019-04-25 アイシン・エィ・ダブリュ株式会社 permanent magnet
CN109787384A (en) * 2017-11-15 2019-05-21 发那科株式会社 Rotor and rotating electric machine
WO2019181958A1 (en) * 2018-03-23 2019-09-26 アイシン・エィ・ダブリュ株式会社 Rotor for rotary electric machine
CN113904474A (en) * 2021-10-11 2022-01-07 安徽明腾永磁机电设备有限公司 Industrial high-power permanent magnet motor punching sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180287439A1 (en) * 2017-03-29 2018-10-04 Ford Global Technologies, Llc Permanent magnet electric machine
JP6503016B2 (en) * 2017-06-21 2019-04-17 ファナック株式会社 Rotor and rotating electric machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254396A (en) * 2003-02-19 2004-09-09 Toshiba Tec Corp Permanent magnet embedded motor and electric cleaner
JP2007236020A (en) * 2006-02-27 2007-09-13 Toyota Motor Corp Rotor and electric vehicle
JP2008148391A (en) * 2006-12-06 2008-06-26 Toyota Industries Corp Rotor for rotary electric machine, and the rotary electric machine
US20080224558A1 (en) * 2007-03-15 2008-09-18 A. O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
JP2010063209A (en) * 2008-09-01 2010-03-18 Daikin Ind Ltd Core for rotor
JP2011078268A (en) * 2009-10-01 2011-04-14 Shin-Etsu Chemical Co Ltd Method of assembling rotor for ipm-type permanent magnet rotary machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254396A (en) * 2003-02-19 2004-09-09 Toshiba Tec Corp Permanent magnet embedded motor and electric cleaner
JP2007236020A (en) * 2006-02-27 2007-09-13 Toyota Motor Corp Rotor and electric vehicle
JP2008148391A (en) * 2006-12-06 2008-06-26 Toyota Industries Corp Rotor for rotary electric machine, and the rotary electric machine
US20080224558A1 (en) * 2007-03-15 2008-09-18 A. O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
JP2010063209A (en) * 2008-09-01 2010-03-18 Daikin Ind Ltd Core for rotor
JP2011078268A (en) * 2009-10-01 2011-04-14 Shin-Etsu Chemical Co Ltd Method of assembling rotor for ipm-type permanent magnet rotary machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028921A (en) * 2015-07-27 2017-02-02 日立アプライアンス株式会社 Permanent magnet synchronous machine and apparatus using the same
CN108736606A (en) * 2017-04-25 2018-11-02 大众汽车有限公司 Motor including stator and rotor and the rotor for motor
CN108736606B (en) * 2017-04-25 2021-12-10 大众汽车有限公司 Electric machine comprising a stator and a rotor, and rotor for an electric machine
JP2019068574A (en) * 2017-09-29 2019-04-25 アイシン・エィ・ダブリュ株式会社 permanent magnet
CN109787384A (en) * 2017-11-15 2019-05-21 发那科株式会社 Rotor and rotating electric machine
US10714994B2 (en) 2017-11-15 2020-07-14 Fanuc Corporation Rotor and rotary electric machine
WO2019181958A1 (en) * 2018-03-23 2019-09-26 アイシン・エィ・ダブリュ株式会社 Rotor for rotary electric machine
JPWO2019181958A1 (en) * 2018-03-23 2020-12-03 アイシン・エィ・ダブリュ株式会社 Rotor for rotary electric machine
JP7024856B2 (en) 2018-03-23 2022-02-24 株式会社アイシン Rotor for rotary electric machine
US11482898B2 (en) 2018-03-23 2022-10-25 Aisin Corporation Rotor for rotary electric machine
CN108711977A (en) * 2018-06-25 2018-10-26 苏州汇川联合动力系统有限公司 Rotor and magneto
CN113904474A (en) * 2021-10-11 2022-01-07 安徽明腾永磁机电设备有限公司 Industrial high-power permanent magnet motor punching sheet

Also Published As

Publication number Publication date
DE102013100837A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP2013162617A (en) Rotor of rotary electric machine
JP5935615B2 (en) Rotating electrical machine rotor
JP5849890B2 (en) Double stator type motor
JP5709907B2 (en) Permanent magnet embedded rotary electric machine for vehicles
JP5332082B2 (en) motor
JP5889340B2 (en) Rotor of embedded permanent magnet electric motor, electric motor provided with the rotor, compressor provided with the electric motor, and air conditioner provided with the compressor
WO2017085814A1 (en) Electric motor and air conditioner
JP2004328992A (en) Rotor body for motor and motor
WO2013098912A1 (en) Rotor
WO2014188628A1 (en) Rotor and motor
JP5347588B2 (en) Embedded magnet motor
JP2014100048A (en) Permanent magnet type rotary electric machine
JP5857799B2 (en) Hybrid excitation type rotating electric machine
JP6429992B2 (en) Permanent magnet embedded electric motor, blower and refrigeration air conditioner
JP2016010176A (en) Motor
JP2013207943A (en) Permanent magnet synchronous machine
JP6748852B2 (en) Brushless motor
JP2015130724A (en) Core for motor and motor
JP2010279185A (en) Rotor for axial gap type rotary electric machine
JP2013132124A (en) Core for field element
JP2015208184A (en) Rotor for rotary electric machine
JP2018198534A (en) Rotary electric machine
JP2009247041A (en) Rotating machine
JP2005039909A (en) Permanent magnet embedded type motor
JP2008187802A (en) Rotor for rotary electrical machine, and electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150702