JP6499389B2 - Waste water treatment apparatus and waste water treatment method - Google Patents

Waste water treatment apparatus and waste water treatment method Download PDF

Info

Publication number
JP6499389B2
JP6499389B2 JP2013187963A JP2013187963A JP6499389B2 JP 6499389 B2 JP6499389 B2 JP 6499389B2 JP 2013187963 A JP2013187963 A JP 2013187963A JP 2013187963 A JP2013187963 A JP 2013187963A JP 6499389 B2 JP6499389 B2 JP 6499389B2
Authority
JP
Japan
Prior art keywords
nitric acid
nitrogen
containing water
reaction
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013187963A
Other languages
Japanese (ja)
Other versions
JP2015054270A (en
Inventor
重浩 鈴木
重浩 鈴木
勇治 古屋
勇治 古屋
伸貴 坪井
伸貴 坪井
高橋 宏幸
宏幸 高橋
智亮 稲垣
智亮 稲垣
和田 努
努 和田
前田 誠
誠 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2013187963A priority Critical patent/JP6499389B2/en
Publication of JP2015054270A publication Critical patent/JP2015054270A/en
Application granted granted Critical
Publication of JP6499389B2 publication Critical patent/JP6499389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、好気槽における曝気風量を制御する窒素含有水の処理装置、窒素含有水の処理方法、および窒素含有水の処理システム、並びに制御装置、制御方法、およびプログラムに関する。
背景技術
The present invention relates to an apparatus for treating nitrogen-containing water, a method for treating nitrogen-containing water, a system for treating nitrogen-containing water, a control apparatus, a control method, and a program, which control aeration air volume in an aerobic tank.
Background art

従来、生活窒素含有水または工場窒素含有水等の下水を処理する下水処理システムとして、標準活性汚泥法によるものや散水ろ床法によるものなど、様々な下水処理システムが実用化されている。   Heretofore, various sewage treatment systems have been put to practical use as sewage treatment systems for treating sewage such as living nitrogen-containing water or factory nitrogen-containing water, such as those according to the standard activated sludge method or those according to the water filtration filter method.

標準活性汚泥法による下水処理システムにおいては、反応槽内に処理対象の下水を流入させつつ、この反応槽内に存在する多種類の好気性微生物に対して酸素を供給する曝気処理を行う。これによって、反応槽内の下水中に含まれる有機物は、好気性微生物の作用によって分解され、安定した処理水質が得られる。   In a sewage treatment system based on the standard activated sludge method, aeration treatment is performed to supply oxygen to various types of aerobic microorganisms present in the reaction tank while allowing sewage to be treated to flow into the reaction tank. By this, the organic substance contained in the sewage in a reaction tank is decomposed | disassembled by the effect | action of an aerobic microbe, and the stable treated water quality is obtained.

反応槽内での曝気処理においては、曝気を行う散気装置に対して、流入水比例制御や、DO(溶存酸素)制御またはアンモニア制御(特許文献1参照)が行われる。流入水比例制御は、反応槽の流入側に設置された流量計を用いて、反応槽に流入する流入水量に比例した量の空気を散気装置に供給する制御である。DO制御は、反応槽の流出側の末端に設置した溶存酸素計(DO計)を用いて溶存酸素濃度を計測し、この溶存酸素濃度を所定の濃度に維持するように散気装置に空気を供給する制御である。アンモニア制御は、反応槽の流出側の末端に設置したアンモニア計を用いて、反応槽の末端におけるアンモニア性窒素(NH−N)を所定の濃度に維持するように散気装置に空気を供給する制御である。 In the aeration process in the reaction tank, inflow water proportional control, DO (dissolved oxygen) control or ammonia control (see Patent Document 1) is performed on the aeration device that performs aeration. Inflow water proportional control is control which supplies air of the quantity proportional to the amount of inflowing water which flows into a reaction tank to a diffuser using the flowmeter installed in the inflow side of a reaction tank. The DO control measures the dissolved oxygen concentration using a dissolved oxygen meter (DO meter) installed at the end of the outflow side of the reaction tank, and air is supplied to the diffuser so as to maintain the dissolved oxygen concentration at a predetermined concentration. It is control to supply. Ammonia control supplies air to the diffuser so as to maintain ammonia nitrogen (NH 4 -N) at the end of the reaction vessel at a predetermined concentration using an ammonia meter installed at the end of the reaction vessel on the outflow side Control.

しかしながら、上述した各種制御においては、次のような問題があった。
すなわち、流入水比例制御においては、窒素を含有する流入水の有機物負荷やアンモニア負荷が変わって水質が変動するため、流入水量に比例させて空気量を制御すると、空気量の過不足が生じてしまう。また、DO制御においては、窒素を含有する流入水の有機物負荷やアンモニア負荷が変化し、これらの負荷が低下した時には空気量が過剰になりやすく、反対に、負荷が上昇した時には空気量が不足しやすくなる。さらに、アンモニア制御においては、窒素を含有する流入水のアンモニア負荷に応じて適切な量の空気を散気装置に供給できる反面、アンモニア制御を行う前段階での脱窒処理の制御を行うことが困難であった。
However, the various controls described above have the following problems.
That is, in the inflow water proportional control, since the organic substance load and the ammonia load of the inflow water containing nitrogen are changed and the water quality fluctuates, if the air amount is controlled in proportion to the inflow water amount, the air amount will be excessive I will. Moreover, in DO control, the organic substance load and ammonia load of influent water containing nitrogen change, and when these loads decrease, the amount of air tends to be excessive, and conversely, the amount of air is insufficient when the load increases It becomes easy to do. Furthermore, in the ammonia control, while an appropriate amount of air can be supplied to the aeration device according to the ammonia load of the inflowing water containing nitrogen, the denitrification treatment may be performed in a stage before the ammonia control. It was difficult.

本発明者らは、上記課題を解決するために、反応槽内において窒素含有水の流れに従って窒素含有水が含有するアンモニアが硝酸に硝化され、窒素含有水の流れ方向に沿った各位置で硝酸の各所望割合が脱窒されるように窒素含有水に対して流れ方向の略全域に亘って気体を供給する散気手段と、窒素含有水の流れ方向における第1の所定位置に設けられ、第1の所定位置で生じた硝酸の所望割合が脱窒されているか否かを確認する脱窒確認手段と、窒素含有水の流れ方向に沿った脱窒確認手段の下流側の第2の所定位置に設けられ、アンモニアの所望割合が硝化されているか否かを確認する硝化確認手段と、脱窒確認手段により確認された第1の所定位置で硝化されて生じた硝酸の割合に応じて、硝酸の所望割合が脱窒されるように、窒素含有水の流れ方向に沿って脱窒確認手段より少なくとも上流側における散気手段による気体の供給量を制御するとともに、硝化確認手段により確認された第2の所定位置におけるアンモニアの割合に応じて、アンモニアの所望割合が硝化されるように、窒素含有水の流れ方向に沿って硝化確認手段より少なくとも上流側における散気手段からの気体の供給量を制御する気体供給量制御手段と、を備える窒素含有水の処理装置及び処理方法を提案した(特許文献2,3)。   In order to solve the above problems, the inventors of the present invention nitrify ammonia contained in nitrogen-containing water to nitric acid according to the flow of nitrogen-containing water in a reaction tank, and nitric acid at each position along the flow direction of nitrogen-containing water A diffuser for supplying a gas over substantially the entire flow direction to the nitrogen-containing water so that each desired ratio of the nitrogen oxides is denitrified, and a first predetermined position in the flow direction of the nitrogen-containing water, Denitrification confirmation means for confirming whether or not the desired ratio of nitric acid generated at the first predetermined position is denitrified, and second predetermined on the downstream side of the denitrification confirmation means along the flow direction of the nitrogen-containing water Nitrification confirmation means provided at the position for confirming whether or not the desired proportion of ammonia is nitrified, and the proportion of nitric acid generated by nitrification at the first predetermined position confirmed by the denitrification confirmation means, Nitrogen so that the desired proportion of nitric acid is denitrified According to the proportion of ammonia at the second predetermined position confirmed by the nitrification confirmation means, while controlling the amount of gas supplied by the aeration means at least upstream of the denitrification confirmation means along the flow direction of the water, Nitrogen supply control means for controlling the supply amount of gas from the aeration means at least upstream of the nitrification confirmation means along the flow direction of the nitrogen-containing water so that the desired proportion of ammonia is nitrified The treatment apparatus and treatment method of contained water were proposed (patent documents 2, 3).

上記の窒素含有水の処理装置及び処理方法によれば、曝気を行う反応槽に流入する窒素含有水の負荷に応じて気体供給量(曝気量)を適切に制御することによって、反応槽に適正量の酸素を供給することができるとともに、脱窒処理および硝化処理を適切に制御することができ、窒素除去率を向上させて処理水質を改善させることができる。   According to the above-described apparatus and method for treating nitrogen-containing water, the reaction vessel is properly controlled by appropriately controlling the gas supply amount (aeration amount) according to the load of nitrogen-containing water flowing into the reaction vessel where aeration is performed. While being able to supply a quantity of oxygen, denitrification treatment and nitrification treatment can be appropriately controlled, nitrogen removal rate can be improved, and treated water quality can be improved.

しかしながら、種々の事情で窒素を含有する下水の処理施設では、同一形式の複数の反応槽を並列に接続して使用することが多く、このような施設において、上記の処理を実施する場合、各反応槽に散気手段とともに、脱窒確認手段及び硝化確認手段を設ける必要があった。ここで、脱窒確認手段及び硝化確認手段として使用されるアンモニア検出器や硝酸検出器は高価なので、設備の初期投資やメンテナンスがコスト高となってしまうという問題があった。   However, due to various reasons, nitrogen-containing sewage treatment facilities often use a plurality of reaction vessels of the same type connected in parallel, and when the above treatment is carried out in such facilities, It was necessary to provide denitrification confirmation means and nitrification confirmation means in the reaction tank together with the diffusion means. Here, since the ammonia detector and the nitric acid detector used as the denitrification confirmation means and the nitrification confirmation means are expensive, there is a problem that the initial investment and maintenance of the equipment become expensive.

そこで、高価なアンモニア検出器や硝酸検出器の代わりに、比較的安価な溶存酸素計(DO計)を使用することが考えられるが、溶存酸素計では、直接アンモニアや硝酸を検出するわけではないので、高精度で、爆気手段を制御することができず、過爆気が生じたり、所望の水質を高い信頼性で達成することが困難という問題があった。   Therefore, it is possible to use a relatively inexpensive dissolved oxygen meter (DO meter) instead of the expensive ammonia detector or nitric acid detector, but the dissolved oxygen meter does not detect ammonia or nitric acid directly. Therefore, there has been a problem that it is difficult to control the detonating means with high accuracy, to cause overexplosion, or to achieve desired water quality with high reliability.

特開2005−199116号公報JP 2005-199116 A 特願2012−053782号Japanese Patent Application No. 2012-053782 特願2012−053784号Japanese Patent Application No. 2012-053784

本発明者は、アンモニア検出器や硝酸検出器を使用して、適切な脱窒及び硝化が行われるよう爆気手段を制御した場合、当該反応槽内の溶存酸素量は特定の分布となることに注目し、本発明に至ったものである。   When the present inventor controls the detonation means so that appropriate denitrification and nitrification can be performed using an ammonia detector or a nitric acid detector, the amount of dissolved oxygen in the reaction tank has a specific distribution. The present invention has been accomplished.

本件発明の窒素含有水の処理装置は、以下のとおりである。
(1)並列に接続された同一形式の複数の反応槽と、
各反応槽に流入する窒素含有水の流量が同一となるよう制御する流量制御手段と、
各反応槽内において窒素含有水の流れに従って前記窒素含有水が含有するアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置で硝酸の各所望割合が脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気手段と、
前記複数の反応槽のいずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った、最低限必要な脱窒窒素量を得るための上流側脱窒区間と、前記上流側脱窒区間の下流側に接続する最終的に必要な硝化水質を得るための下流側硝化区間との間である、途中位置に設けられ、前記途中位置において前記硝酸の所望割合が脱窒されているか否かという脱窒状態を確認する脱窒確認手段と、
前記脱窒確認手段により確認された前記脱窒状態に基づいて、前記途中位置において前記硝酸の所望割合が脱窒されるように、前記窒素含有水の流れ方向に沿った、前記脱窒確認手段より少なくとも上流側を含む、前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第1の気体供給量制御手段と、
各反応槽内であって、前記散気手段による散気効果が発現するまでの区間を除く前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記途中位置と同じ位置又は異なる位置である前記途中位置に対応する所定位置に設けられ、前記窒素含有水の溶存酸素量を測定する手段と、
前記脱窒確認手段が設けられた反応槽の前記所定位置に設けられた溶存酸素測定手段により測定された溶存酸素量に基づいて、前記脱窒確認手段が設けられた反応槽以外の各反応槽の前記所定位置における溶存酸素目標濃度を設定する手段と、
前記脱窒確認手段が設けられた反応槽以外の他の反応槽の前記所定位置における溶存酸素の測定値が前記目標濃度と一致するよう、当該反応槽の前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第2の気体供給制御手段と、
を備えることを特徴とする。
The apparatus for treating nitrogen-containing water of the present invention is as follows.
(1) a plurality of reaction vessels of the same type connected in parallel;
Flow control means for controlling the flow of nitrogen-containing water flowing into each reaction tank to be the same;
Ammonia contained in the nitrogen-containing water is nitrated to nitric acid according to the flow of nitrogen-containing water in each reaction tank so that each desired ratio of nitric acid is denitrified at each position along the flow direction of the nitrogen-containing water A diffuser for supplying a gas to the nitrogen-containing water over substantially the entire flow direction;
In any one reaction vessel of the plurality of reaction vessels, an upstream denitrifying section for obtaining a minimum necessary denitrifying nitrogen amount along the flow direction of the nitrogen-containing water, and the upstream denitrifying section Whether or not the desired proportion of nitric acid is denitrified at an intermediate position between the downstream side nitrification zone for obtaining the final required nitrification water quality to be connected downstream of Denitrification confirmation means to confirm the state of denitrification;
The denitrification confirming means along the flow direction of the nitrogen-containing water so that the desired proportion of the nitric acid is denitrified at the halfway position based on the denitrification state confirmed by the denitrification confirming means First gas supply amount control means for controlling the supply amount of gas by the aeration means in a section where the control of the aeration means caused by the denitrification confirmation means, including at least the upstream side, is performed;
The same position or different position in the middle of each reaction tank, in the section where the control of the aeration means caused by the denitrification confirmation means is performed excluding the section until the aeration effect by the aspiration means appears A means for measuring the dissolved oxygen amount of the nitrogen-containing water provided at a predetermined position corresponding to the halfway position which is the position;
Each reaction vessel other than the reaction vessel provided with the denitrification confirming means based on the dissolved oxygen amount measured by the dissolved oxygen measuring means provided at the predetermined position of the reaction vessel provided with the denitrification confirming means Means for setting a dissolved oxygen target concentration at the predetermined position of
Aeration due to the denitrification confirming means of the reaction vessel such that the measured value of the dissolved oxygen at the predetermined position of the reaction vessel other than the reaction vessel provided with the denitrification confirming means matches the target concentration Second gas supply control means for controlling the supply amount of gas by the aeration means in a section where control of the means is performed;
And the like.

(2)並列に接続された複数の同一形式の反応槽と、
各反応槽に流入する窒素含有水の流量が同一となるよう制御する流量制御手段と、
各反応槽内において窒素含有水の流れに従って前記窒素含有水が含有するアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置で硝酸の各所望割合が脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気手段と、
前記複数の反応槽のいずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った、最低限必要な脱窒窒素量を得るための上流側脱窒区間と、前記上流側脱窒区間の下流側に後続する最終的に必要な硝化水質を得るための下流側硝化区間との間にいずれか1つは位置する、第1〜n(nは2以上の自然数)の所定位置に設けられ、前記第1〜nの所定位置において前記硝酸の所望割合が脱窒されているか否かという脱窒状態をそれぞれ確認する脱窒確認手段と、
前記第1〜nの所定位置の脱窒確認手段により確認された各脱窒状態に基づいて、前記第1〜nの所定位置において前記硝酸が各所望割合で脱窒されるように、前記窒素含有水の流れ方向に沿った、前記第1〜nのそれぞれの所定位置より少なくとも上流側を含む、第1〜nの所定位置の前記脱窒確認手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第1の気体供給量制御手段と、
各応槽内であって、前記散気手段による散気効果が発現するまでの区間を除く前記第1〜nの各所定位置の前記脱窒確認手段に起因する散気手段の制御が行われる各区間における前記第1〜nの所定位置とそれぞれ同じ位置か又は異なる位置である前記第1〜nの所定位置に対応する第1a〜naの各所定位置に設けられ、前記第1a〜naの各所定位置において前記窒素含有水の溶存酸素量をそれぞれ測定する手段と、
前記脱窒確認手段が設けられた反応槽の前記第1a〜naの各所定位置において測定された溶存酸素量に基づいて、脱窒確認手段が設けられた反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素目標濃度をそれぞれ設定する手段と、
前記脱窒確認手段が設けられた反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素の測定値が前記目標濃度と一致するよう、当該反応槽の前記第1〜nの所定位置の脱窒確認手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第2の気体供給量制御手段と、
を備えることを特徴とする。
(2) a plurality of reaction vessels of the same type connected in parallel;
Flow control means for controlling the flow of nitrogen-containing water flowing into each reaction tank to be the same;
Ammonia contained in the nitrogen-containing water is nitrated to nitric acid according to the flow of nitrogen-containing water in each reaction tank so that each desired ratio of nitric acid is denitrified at each position along the flow direction of the nitrogen-containing water A diffuser for supplying a gas to the nitrogen-containing water over substantially the entire flow direction;
In any one reaction vessel of the plurality of reaction vessels, an upstream denitrifying section for obtaining a minimum necessary denitrifying nitrogen amount along the flow direction of the nitrogen-containing water, and the upstream denitrifying section Provided on the first to n (n is a natural number of 2 or more) at a predetermined position between the downstream side and the downstream side nitrification section to obtain the final necessary nitrification water quality. Denitrification confirmation means for respectively confirming the denitrification state as to whether or not the desired proportion of the nitric acid is denitrified at the first to nth predetermined positions;
The nitrogen so that the nitric acid is denitrified at each desired ratio at the first to n-th predetermined positions based on the denitrification states confirmed by the first to n-th predetermined positions of the denitrification confirmation means. Control of the aeration means caused by the denitrifying confirmation means at the first to n predetermined positions including at least the upstream side of each of the first to n predetermined positions along the flow direction of the contained water is performed First gas supply amount control means for controlling the supply amount of gas by the aeration means in each section;
Control of the aeration means caused by the denitrification confirmation means at each of the first to n-th predetermined positions except for the section until the aeration effect of the aeration means appears in each reaction tank is performed Provided at each predetermined position of the 1a to na corresponding to the first to n predetermined positions which are the same position as or different from the first to n predetermined positions in each section, respectively; A means for respectively measuring the dissolved oxygen amount of the nitrogen-containing water at each predetermined position;
Based on the amount of dissolved oxygen measured at each predetermined position of the first to the first reaction vessels provided with the denitrification confirmation means, the reaction vessels other than the reaction vessels provided with the denitrification confirmation means A means for individually setting a dissolved oxygen target concentration at each predetermined position of the first to na;
The first to the first of the reaction vessels such that the measured value of the dissolved oxygen at each predetermined position of the first to na of the reaction vessels other than the reaction vessel provided with the denitrification confirmation means matches the target concentration. second gas supply amount control means for controlling the supply amount of gas by the aeration means in each section where control of the aeration means due to the denitrification confirmation means at the predetermined position of n is performed;
And the like.

本発明において、「上流側脱窒区間」とは、(1)反応槽内では上流側から下流側に向かって窒素含有水に含まれる溶存酸素量が徐々にリッチになっていく環境状態になっており、このような環境状態を前提条件とすれば、窒素含有水の流れ方向における途中位置で硝酸の所望割合が脱窒されていることを確認できれば、当該途中位置より上流側では硝酸の所望割合が脱窒されている区間が連続的に確保できていると推定できること、(2)当該途中位置より上流側における、硝酸の所望割合が脱窒されている連続区間の長さが長くなるに追従して当該途中位置までに脱窒されることとなる脱窒窒素量が増大する関係にあること、(3)及び、一度硝酸の所望割合が脱窒されることにより大気中に放散されることとなった窒素分子は再度窒素含有水中に戻ることはないことに鑑みて定められる、窒素含有水の流れ方向に沿った、反応槽における区間であって、当該区間の直後位置に設置した脱窒確認手段によって確認された脱窒状態に基づいて当該設置位置よりも上流側における所望の脱窒状態が維持されるよう散気手段による気体の供給量を制御した場合に、最低限必要な脱窒窒素量が得られることとなる、区間(図1Aにおける81)をいう。以上説明したように「上流側脱窒区間」とは、脱窒確認手段により脱窒状態を確認する区間のことであり、この区間でも硝化反応は生じている。   In the present invention, the “upstream denitrification zone” is (1) an environmental state in which the amount of dissolved oxygen contained in the nitrogen-containing water gradually becomes rich from the upstream side to the downstream side in the reaction tank If it is possible to confirm that the desired proportion of nitric acid is denitrified at an intermediate position in the flow direction of the nitrogen-containing water, assuming that such an environmental condition is a precondition, the desired position of nitric acid upstream from the intermediate position is confirmed. It can be estimated that the section in which the ratio is denitrified can be secured continuously, and (2) the length of the continuous section in which the desired ratio of nitric acid is denitrified on the upstream side from the intermediate position becomes long The amount of denitrifying nitrogen which is to be denitrified by the intermediate position following the relationship is increased, (3) and is dissipated into the atmosphere by denitrifying the desired proportion of nitric acid once The nitrogen molecule that was A section in a reaction tank along a flow direction of nitrogen-containing water, which is determined in view of never returning to the presence of water, denitrification confirmed by denitrification confirmation means installed at a position immediately after the section If the amount of gas supplied by the aeration means is controlled so that the desired denitrification state on the upstream side of the installation position is maintained based on the state, the minimum denitrifying nitrogen amount can be obtained , Section (81 in FIG. 1A). As described above, the “upstream denitrification section” is a section in which the denitrification state is confirmed by the denitrification confirmation means, and the nitrification reaction occurs also in this section.

また、「下流側硝化区間」とは、窒素含有水の流れ方向に沿った、反応槽における区間であって、当該区間の直前位置に設置した脱窒確認手段によって確認された脱窒状態に基づいて当該設置位置よりも上流側における所望の脱窒状態が維持されるよう散気手段による気体の供給量を制御した場合に、上流側から下流側に向かって窒素含有水に含まれる溶存酸素量が徐々にリッチになっていく反応槽内における環境状態と相俟って、最終的に必要な硝化水質が得られることが見込まれることとなる、区間(図1Aにおける82)をいう。以上説明したように「下流側硝化区間」とは、硝化確認手段により硝化状態を確認する区間のことであり、この区間でも脱窒反応は生じている。   The “downstream nitrification section” is a section in the reaction tank along the flow direction of the nitrogen-containing water, and is based on the denitrification state confirmed by the denitrification confirmation means installed immediately before the section. The amount of dissolved oxygen contained in the nitrogen-containing water from the upstream side to the downstream side when the gas supply amount by the aeration means is controlled so that the desired denitrification state on the upstream side of the installation position is maintained Together with the environmental conditions in the reaction tank gradually becoming rich, the section (82 in FIG. 1A) where it is expected that the necessary nitrification water quality will be finally obtained. As described above, the “downstream nitrification section” is a section in which the nitrification state is confirmed by the nitrification confirmation means, and the denitrification reaction occurs also in this section.

本発明において、「散気により散気効果が発現するまでの区間」とは、使用する計器類の測定誤差を加味し、曝気手段から曝気した時に測定値に有意な変化が生じない区間(図1Aにおける83)で、このような区間で測定しても求められる精度での制御は不可能だからである。   In the present invention, “a section until the aeration effect appears due to aeration” refers to a section in which no significant change occurs in the measured value when aeration is performed from the aeration means, taking into account the measurement error of the instruments used. This is because the control with the required accuracy can not be made even if it is measured in such a section at 83) in 1A.

また、本発明において「脱窒確認手段に起因する散気手段の制御が行われる区間(図1Aにおける84)とは、脱窒確認手段により制御が行われる散気手段が配置されている区間をいい、「硝化確認手段に起因する散気手段の制御が行われる区間」とは、硝化確認手段により制御が行われる散気手段が配置されている区間(図1Aにおける85)をいう。   Further, in the present invention, “a section (84 in FIG. 1A) in which control of the aeration means caused by the denitrification confirmation means is performed is a section where the aeration means is controlled by the denitrification confirmation means The term "a section in which control of the aeration means caused by the nitrification confirmation means" refers to a section (85 in FIG. 1A) in which the aeration means is controlled by the nitrification confirmation means.

本発明に係る窒素含有水の処理装置は、上記の発明において、散気手段が、時間の経過または窒素含有水の流れ方向に従って、硝化反応が行われる領域と脱窒反応が行われる領域とを、順次、交互、または繰り返し形成させるように気体を供給可能に構成されていることを特徴とする。   In the apparatus for treating nitrogen-containing water according to the present invention, in the above-mentioned invention, the diffusing means comprises an area where the nitrification reaction is performed and an area where the denitrification reaction is performed according to the passage of time or the flow direction of the nitrogen-containing water. It is characterized in that it is configured to be able to supply a gas so as to form the gas sequentially, alternately, or repeatedly.

本発明に係る窒素含有水の処理装置は、上記の発明において、気体供給量制御手段が、硝化反応により硝化されて生じた硝酸に対する所望割合の脱窒が脱窒確認手段によって確認できない場合に、窒素含有水の流れ方向に沿って脱窒確認手段より少なくとも上流側における散気手段による気体の供給量を増減制御すること、あるいは気体供給量制御手段が、窒素含有水の流れ方向に沿った第1の所定位置から第nの所定位置の各所定位置のうちで、第1の所定位置において硝酸に対する所望割合の脱窒が脱窒確認手段によって確認できない場合に、窒素含有水の流れ方向に沿った第1の所定位置より少なくとも上流側における散気手段による気体の供給量を増減制御し、第iの所定位置(i:2以上n以下の自然数)において硝酸に対する所望割合の脱窒が脱窒確認手段によって確認できない場合に、少なくとも第iの所定位置と第(i−1)の所定位置との間における散気手段による気体の供給量を増減制御することを特徴とする。   In the apparatus for treating nitrogen-containing water according to the present invention, in the above-mentioned invention, when the gas supply amount control means can not confirm a desired ratio of denitrification to nitric acid generated by nitrification reaction by the denitrification confirmation means, Controlling increase or decrease of the gas supply amount by the aeration means at least upstream of the denitrification confirmation means along the flow direction of the nitrogen-containing water, or the gas supply amount control means controls the flow rate of the nitrogen-containing water Among the respective predetermined positions from the first predetermined position to the n-th predetermined position, the denitrification confirmation means can not confirm a desired ratio of denitrification to nitric acid at the first predetermined position along the flow direction of the nitrogen-containing water The amount of gas supplied by the aeration means at least on the upstream side of the first predetermined position is controlled to increase or decrease, and at the i-th predetermined position (i: natural number not less than 2 and not more than n) If the denitrification confirmation means can not confirm the proportion of denitrification, the amount of gas supplied by the aeration means between at least the i-th predetermined position and the (i-1) -th predetermined position is controlled to increase or decrease I assume.

本発明に係る窒素含有水の処理装置は、上記の発明において、脱窒確認手段が硝酸濃度を測定可能に構成された硝酸濃度測定手段であるとともに、硝酸の所望割合が脱窒されているか否かの確認を、硝酸濃度を測定することにより行い、気体供給量制御手段は、第1の所定位置から第nの所定位置までの各所定位置において硝酸濃度測定手段によって測定された硝酸濃度が各所定位置によって設定された所定範囲内になるように、窒素含有水の流れ方向に沿った、第1の所定位置より上流側の散気手段および第iの所定位置(i:2以上n以下の自然数)と第(i−1)の所定位置との間における散気手段から選択された少なくとも1つの散気手段からの気体の供給量を制御することを特徴とする。   In the nitrogen-containing water treatment apparatus according to the present invention, in the above-mentioned invention, the denitrification confirmation means is a nitric acid concentration measuring means configured to be capable of measuring the nitric acid concentration, and a desired ratio of nitric acid is denitrified or not. The concentration of nitric acid measured by the nitric acid concentration measuring means at each predetermined position from the first predetermined position to the nth predetermined position is determined by measuring the nitric acid concentration. Aeration means on the upstream side of the first predetermined position and an ith predetermined position (i: 2 or more and n or less) along the flow direction of the nitrogen-containing water so as to be within the predetermined range set by the predetermined position It is characterized in that the supply amount of gas from at least one aeration means selected from the aeration means between the natural number) and the (i-1) th predetermined position is controlled.

本発明に係る窒素含有水の処理装置は、上記の発明において、脱窒確認手段がアンモニア性窒素を測定可能に構成されたアンモニア性窒素測定手段であるとともに、アンモニア性窒素の所望割合が脱窒されているか否かの確認を、アンモニア性窒素濃度を測定することにより行い、気体供給量制御手段は、アンモニア性窒素測定手段によって測定された硝酸濃度が所定範囲内になるように、少なくとも窒素含有水の流れ方向に沿ったアンモニア性窒素測定手段より上流側における散気手段からの気体の供給量を制御することを特徴とする。   In the nitrogen-containing water treatment apparatus according to the present invention, in the above-mentioned invention, the denitrification confirmation means is an ammoniacal nitrogen measurement means configured to be capable of measuring ammoniacal nitrogen, and a desired ratio of ammoniacal nitrogen is denitrification It is confirmed by measuring the ammoniacal nitrogen concentration whether or not it has been used, and the gas supply amount control means at least contains nitrogen so that the nitric acid concentration measured by the ammoniacal nitrogen measurement means falls within a predetermined range. It is characterized in that the supply amount of gas from the aeration means on the upstream side of the ammoniacal nitrogen measurement means along the flow direction of water is controlled.

また、本発明に係る窒素含有水の処理装置は、上記の発明において、硝酸濃度測定手段が第1の所定位置に設置される第1の硝酸計から第nの所定位置に設置される第nの硝酸計(n:2以上の自然数)の複数の硝酸計から構成されることを特徴とする。
さらに、本発明に係る窒素含有水の処理装置は、上記の発明において、硝酸濃度測定手段が、少なくとも1つの硝酸計から構成され、第1の所定位置における窒素含有水の硝酸濃度の計測から、第nの所定位置における窒素含有水の硝酸濃度の計測までを選択的に切り替えて実行することを特徴とする。
In the apparatus for treating nitrogen-containing water according to the present invention, in the above-mentioned invention, the nitric acid concentration measuring means is disposed at an nth predetermined position from a first nitric acid meter disposed at a first predetermined position. A plurality of nitric acid meters (n: natural number of 2 or more).
Further, in the nitrogen-containing water treatment apparatus according to the present invention, in the above-mentioned invention, the nitric acid concentration measuring means is constituted by at least one nitric acid meter, and from the measurement of the nitric acid concentration of nitrogen-containing water at the first predetermined position, It is characterized by selectively switching and executing up to measurement of the nitric acid concentration of nitrogen-containing water at the n-th predetermined position.

本発明に係る窒素含有水の処理装置は、上記の発明において、気体供給量制御手段が、窒素含有水の流れ方向に沿って脱窒確認手段、あるいは反応槽における第1の所定位置より少なくとも上流側において、散気手段を、散気手段からの気体供給量が略一様になるように制御することを特徴とする。   In the apparatus for treating nitrogen-containing water according to the present invention, in the above-mentioned invention, the gas supply amount control means is at least upstream of the first position in the reaction vessel or the denitrification confirming means in the flow direction of the nitrogen-containing water. On the side, the aeration means is controlled so that the gas supply amount from the aeration means becomes substantially uniform.

本発明に係る窒素含有水の処理装置は、気体供給量制御手段が、窒素含有水の流れ方向に沿った全域において、あるいは、反応槽における第1の所定位置より上流側において散気手段からの気体の供給量が略一様になるように制御することを特徴とする。   In the apparatus for treating nitrogen-containing water according to the present invention, the gas supply control means is provided from the aeration means in the entire area along the flow direction of the nitrogen-containing water or upstream of the first predetermined position in the reaction tank. It is characterized in that the supply amount of gas is controlled so as to be substantially uniform.

本発明に係る窒素含有水の処理装置は、上記の発明において、反応槽の前段に嫌気槽が設けられていることを特徴とする。   The apparatus for treating nitrogen-containing water according to the present invention is characterized in that, in the above invention, an anaerobic tank is provided at a front stage of the reaction tank.

また、本件発明の窒素含有水の処理方法は、以下のとおりである。
(3)並列に接続された同一形式の複数の各反応槽に流入する窒素含有水の流量が同一となるよう制御する流量制御ステップと、
各反応槽内を流れる窒素含有水に対して硝化反応および脱窒反応による生物処理を行う生物処理ステップと、
各反応槽内の前記窒素含有水の流れに従って前記窒素含有水に含まれるアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置で硝酸の各所望割合が脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気ステップと、
前記複数の反応槽のいずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った、最低限必要な脱窒窒素量を得るための上流側脱窒区間と、前記上流側脱窒区間の下流側に後続する最終的に必要な硝化水質を得るための下流側硝化区間との間である、途中位置において、前記途中位置において前記硝酸の所望割合が脱窒されているか否かという脱窒状態を確認する脱窒確認ステップと、
前記脱窒確認ステップにおいて確認された前記脱窒状態に基づいて、前記途中位置において前記硝酸の所望割合が脱窒されるように、前記窒素含有水の流れ方向に沿った前記途中位置より少なくとも上流側を含む、前記脱窒確認手段に起因する散気手段の制御が行われる区間における気体の供給量を制御する第1の気体供給量制御ステップと、
各反応槽内であって、前記散気ステップにおける散気により散気効果が発現するまでの区間を除く前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記途中位置と同じ位置か又は異なる位置であり前記途中位置に対応する所定位置において溶存酸素量を測定する溶存酸素測定ステップと、
前記脱窒状態と硝化状態を確認した反応槽における前記所定位置において測定された溶存酸素濃度の測定値に基づいて、前記脱窒状態を確認した反応槽以外の他の反応槽の前記所定位置における溶存酸素目標濃度を設定する溶存酸素目標濃度設定ステップと、
前記脱窒状態と硝化状態を確認した反応槽以外の他の反応槽の前記所定位置における溶存酸素の測定値が前記目標濃度と一致するよう、当該反応槽の前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第2の気体供給制御ステップと、
を含むことを特徴とする。
Further, the method for treating nitrogen-containing water of the present invention is as follows.
(3) a flow control step of controlling the flow rates of nitrogen-containing water flowing into the plurality of reaction vessels of the same type connected in parallel to be the same;
A biological treatment step of performing biological treatment by nitrification reaction and denitrification reaction on nitrogen-containing water flowing in each reaction vessel;
Ammonia contained in the nitrogen-containing water is nitrated to nitric acid according to the flow of the nitrogen-containing water in each reaction tank, and each desired ratio of nitric acid is denitrified at each position along the flow direction of the nitrogen-containing water Supplying a gas to the nitrogen-containing water over substantially the entire flow direction;
In any one reaction vessel of the plurality of reaction vessels, an upstream denitrifying section for obtaining a minimum necessary denitrifying nitrogen amount along the flow direction of the nitrogen-containing water, and the upstream denitrifying section Between the downstream side and the downstream side nitrification zone for obtaining the finally necessary nitrification water quality downstream, the denitrification whether or not the desired proportion of the nitric acid is denitrified at the midway position at the midway position Denitrification check step to check the status of
Based on the denitrification state confirmed in the denitrification confirmation step, at least upstream from the halfway position along the flow direction of the nitrogen-containing water so that the desired ratio of the nitric acid is denitrified at the halfway position based on the denitrification state confirmed A first gas supply amount control step of controlling a gas supply amount in a section in which the control of the aeration means caused by the denitrification confirmation means is performed, the method including:
The same position as in the middle of each reaction tank, except for the section until the aeration effect is expressed by the aeration in the aeration step, in which the control of the aeration means caused by the denitrification confirmation means is performed A dissolved oxygen measurement step of measuring the amount of dissolved oxygen at a predetermined position which is a position or a different position and corresponds to the intermediate position;
Based on the measured value of the dissolved oxygen concentration measured at the predetermined position in the reaction vessel where the denitrification state and the nitrification state were confirmed, at the predetermined position of another reaction vessel other than the reaction vessel where the denitrification state was confirmed A dissolved oxygen target concentration setting step of setting a dissolved oxygen target concentration;
Dispersion due to the denitrification confirmation means of the reaction vessel such that the measured value of the dissolved oxygen at the predetermined position of the reaction vessel other than the reaction vessel where the denitrification state and the nitrification state are confirmed matches the target concentration A second gas supply control step of controlling a supply amount of gas by the aeration means in a section where the control of the air means is performed;
It is characterized by including.

(4)並列に接続された同一形式の複数の各反応槽に流入する窒素含有水の流量が同一となるよう制御する流量制御ステップと、
各反応槽内を流れる窒素含有水に対して硝化反応および脱窒反応による生物処理を行う生物処理ステップと、
各反応槽内の前記窒素含有水の流れに従って前記窒素含有水に含まれるアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置で硝酸の各所望割合が脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気ステップと、
前記複数の反応槽のいずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った、最低限必要な脱窒窒素量を得るための上流側脱窒区間と、前記上流側脱窒区間の下流側に後続する最終的に必要な硝化水質を得るための下流側硝化区間との間にいずれか1つは位置する、第1〜n(nは2以上の自然数)の所定位置において、前記第1〜nの所定位置において前記硝酸の所望割合が脱窒されているか否かという脱窒状態をそれぞれ確認する脱窒確認ステップと、
前記脱窒確認ステップにおいて確認された各脱窒状態に基づいて、前記第1〜nの所定位置において前記硝酸の各所望割合が脱窒されるように、前記窒素含有水の流れ方向に沿った前記第1〜nのそれぞれの所定位置より少なくとも上流側を含む、前記脱窒確認手段に起因する散気手段の制御が行われる各区間における気体の供給量をそれぞれ制御する第1の気体供給量制御ステップと、
各反応槽内であって、前記散気ステップにおける散気により散気効果が発現するまでの区間を除く前記脱窒確認手段に起因する散気手段の制御が行われる各区間における前記第1〜nの所定位置とそれぞれ同じ位置か又は異なる位置であり前記第1〜nの所定位置に対応する第1a〜naの各所定位置において溶存酸素量をそれぞれ測定する溶存酸素測定ステップと、
前記脱窒状態を確認した反応槽における前記第1a〜naの各所定位置において測定された溶存酸素濃度の測定値に基づいて、前記脱窒状態を確認した反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素目標濃度をそれぞれ設定する溶存酸素目標濃度設定ステップと、
前記脱窒状態を確認した反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素の測定値が前記目標濃度と一致するよう、当該反応槽の前記第1〜nの所定位置の脱窒確認手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第2の気体供給制御ステップと、
を含むことを特徴とする。
(4) a flow control step of controlling the flow rates of nitrogen-containing water flowing into the plurality of reaction vessels of the same type connected in parallel to be the same;
A biological treatment step of performing biological treatment by nitrification reaction and denitrification reaction on nitrogen-containing water flowing in each reaction vessel;
Ammonia contained in the nitrogen-containing water is nitrated to nitric acid according to the flow of the nitrogen-containing water in each reaction tank, and each desired ratio of nitric acid is denitrified at each position along the flow direction of the nitrogen-containing water Supplying a gas to the nitrogen-containing water over substantially the entire flow direction;
In any one reaction vessel of the plurality of reaction vessels, an upstream denitrifying section for obtaining a minimum necessary denitrifying nitrogen amount along the flow direction of the nitrogen-containing water, and the upstream denitrifying section In one of the first to n (n is a natural number greater than or equal to 2) predetermined positions, any one of which is located downstream of and downstream of the downstream nitrification section for obtaining the finally necessary nitrification water quality. A denitrification confirmation step of confirming a denitrification state as to whether or not the desired proportion of the nitric acid is denitrified at the first to nth predetermined positions;
Based on the flow direction of the nitrogen-containing water so that each desired ratio of the nitric acid is denitrified at the first to n-th predetermined positions based on the denitrification states confirmed in the denitrification confirmation step. A first gas supply amount for controlling the gas supply amount in each section in which control of the aeration means caused by the denitrification confirmation means is performed, including at least the upstream side of each of the first to n predetermined positions Control step,
In each reaction tank, the first to the first sections in each section where the control of the aeration means caused by the denitrification confirmation means is performed excluding the section until the aeration effect is expressed by the aeration in the aeration step. a dissolved oxygen measuring step of measuring the amount of dissolved oxygen at each of the predetermined positions 1a to na corresponding to the first to n predetermined positions, respectively at the same position as or different from the predetermined positions of n;
Based on the measurement value of the dissolved oxygen concentration measured at each of the predetermined positions of the first to na in the reaction vessel in which the denitrification state is confirmed, the above-mentioned other reaction vessels other than the reaction vessel in which the denitrification state is confirmed A dissolved oxygen target concentration setting step of setting the dissolved oxygen target concentration at each of the first predetermined positions 1a to 1n;
In the first to n-th reaction vessels, the measurement value of the dissolved oxygen at each predetermined position of the first to na of the reaction vessels other than the reaction vessel in which the denitrifying state is confirmed matches the target concentration. A second gas supply control step of controlling the supply amount of gas by the aeration means in each section in which control of the aeration means caused by the denitrification confirmation means at a predetermined position is performed;
It is characterized by including.

本発明に係る窒素含有水の処理方法は、上記の発明において、時間の経過または窒素含有水の流れ方向に従って、硝化反応が行われる領域と脱窒反応が行われる領域とを、順次、交互、または繰り返し形成させるように窒素含有水に気体を供給することを特徴とする。   In the method for treating nitrogen-containing water according to the present invention, in the above-mentioned invention, the region in which the nitrification reaction is performed and the region in which the denitrification reaction are sequentially alternated according to the passage of time or the flow direction of the nitrogen-containing water Alternatively, the gas is supplied to the nitrogen-containing water so as to form repeatedly.

本発明に係る窒素含有水の処理方法は、上記の発明において、脱窒確認ステップにおいて確認される硝酸の割合が所定位置における硝酸濃度であり、気体供給量制御ステップにおいて、脱窒確認ステップで測定された硝酸濃度が所定範囲に収まる方向に、所定位置より窒素含有水の流れ方向に沿った少なくとも上流側における気体の供給量を制御することを特徴とする。   In the method of treating nitrogen-containing water according to the present invention, in the above-mentioned invention, the ratio of nitric acid confirmed in the denitrification confirmation step is the nitric acid concentration at the predetermined position, and the measurement is performed in the denitrification confirmation step in the gas supply control step. It is characterized in that the supply amount of gas at least on the upstream side along the flow direction of the nitrogen-containing water from the predetermined position is controlled in the direction in which the nitric acid concentration falls within the predetermined range.

本発明に係る窒素含有水の処理方法は、上記の発明において、脱窒確認ステップにおいて確認される硝酸の割合が第1の所定位置から第nの所定位置の各所定位置における硝酸濃度であり、気体供給量制御ステップにおいて、脱窒確認ステップで測定された第1の所定位置における硝酸濃度が所定範囲に収まる方向に、第1の所定位置より窒素含有水の流れ方向に沿った少なくとも上流側における気体の供給量を制御するとともに、脱窒確認ステップで測定された第iの所定位置(i:2以上n以下の自然数)における硝酸濃度が所定範囲に収まる方向に、少なくとも第iの所定位置と第(i−1)の所定位置との間における窒素含有水への気体の供給量を制御することを特徴とすることを特徴とする。   In the method of treating nitrogen-containing water according to the present invention, in the above invention, the ratio of nitric acid confirmed in the denitrification confirmation step is the nitric acid concentration at each predetermined position from the first predetermined position to the nth predetermined position, In the gas supply amount control step, at least on the upstream side along the flow direction of the nitrogen-containing water from the first predetermined position in a direction in which the nitric acid concentration at the first predetermined position measured in the denitrification confirmation step falls within the predetermined range. While controlling the supply amount of gas, the nitric acid concentration at the i-th predetermined position (i: natural number not less than 2 and not more than n) measured in the denitrification confirmation step falls within at least the i-th predetermined position The present invention is characterized in that the amount of gas supplied to the nitrogen-containing water is controlled between the (i-1) th predetermined position and the predetermined position.

また、本発明に係る散気手段の制御装置は、以下のとおりである。
(5)流入する窒素含有水の流量が同一となるよう制御された、並列に接続された同一形式の複数の反応槽のうち、いずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った、最低限必要な脱窒窒素量を得るための上流側脱窒区間と、前記上流側脱窒区間の下流側に後続する最終的に必要な硝化水質を得るための下流側硝化区間との間である、途中位置に設けられた、硝酸の所望割合が脱窒されているか否かという脱窒状態を確認する脱窒確認手段を有し、各反応槽において、窒素含有水の流れに従って前記窒素含有水が含有するアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置で硝酸の各所望割合が脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気手段、並びに、前記散気手段による散気効果が発現するまでの区間を除く前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記途中位置と同じ位置か又は異なる位置であり前記途中位置に対応する所定位置に設けられ、前記途中位置に対応する所定位置において前記窒素含有水の溶存酸素量を測定する溶存酸素量測定手段を有する場合における、当該散気手段に対して用いられる散気手段の制御装置であって、
前記脱窒確認手段により確認された前記脱窒状態に基づいて、前記途中位置において前記硝酸の所望割合が脱窒されるように、前記窒素含有水の流れ方向に沿った、前記脱窒確認手段より少なくとも上流側を含む、前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第1の気体供給量制御手段と、
前記脱窒確認手段及び硝化確認手段が設けられた反応槽の前記途中位置に対応する所定位置において測定された溶存酸素量に基づいて、前記脱窒確認手段が設けられた反応槽以外の他の反応槽の前記途中位置に対応する所定位置における溶存酸素目標濃度をそれぞれ設定する手段と、
前記脱窒確認手段が設けられた反応槽以外の他の反応槽の前記途中位置に対応する所定位置における溶存酸素の測定値が前記目標濃度と一致するよう、当該反応槽の前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第2の気体供給量制御手段と、
を備えることを特徴とする。
Moreover, the control apparatus of the aeration means based on this invention is as follows.
(5) In the flow direction of the nitrogen-containing water in any one of a plurality of reaction vessels of the same type connected in parallel and controlled such that the flow rate of the inflowing nitrogen-containing water is the same An upstream denitrifying section for obtaining the minimum necessary denitrifying nitrogen amount, and a downstream nitrification section for obtaining the finally necessary nitrifying water quality downstream of the upstream denitrifying section along the line; And denitrification confirmation means for confirming whether denitrification is being performed or not for the desired proportion of nitric acid provided at an intermediate position between Ammonia contained in the nitrogen-containing water is nitrified to nitric acid, and each desired ratio of nitric acid is denitrified at each position along the flow direction of the nitrogen-containing water with respect to the nitrogen-containing water in the flow direction Aeration means for supplying gas over substantially the entire area, side by side The same intermediate position as the intermediate position in a section where control of the aeration means is performed due to the denitrification confirmation means excluding the section until the aeration effect is expressed by the aeration means, or the intermediate position The aeration used for the aeration means in the case of having the dissolved oxygen amount measuring means for measuring the dissolved oxygen amount of the nitrogen-containing water at the predetermined position corresponding to the halfway position. Control means of the means,
The denitrification confirming means along the flow direction of the nitrogen-containing water so that the desired proportion of the nitric acid is denitrified at the halfway position based on the denitrification state confirmed by the denitrification confirming means First gas supply amount control means for controlling the supply amount of gas by the aeration means in a section where the control of the aeration means caused by the denitrification confirmation means, including at least the upstream side, is performed;
Based on the amount of dissolved oxygen measured at a predetermined position corresponding to the halfway position of the reaction vessel provided with the denitrification confirmation means and the nitrification confirmation means, other than the reaction vessel provided with the denitrification confirmation means A means for respectively setting a dissolved oxygen target concentration at a predetermined position corresponding to the intermediate position of the reaction tank;
The denitrification confirming means of the reaction vessel such that the measured value of the dissolved oxygen at a predetermined position corresponding to the halfway position of the reaction vessel other than the reaction vessel provided with the denitrification confirming means matches the target concentration Second gas supply amount control means for controlling the supply amount of gas by the aeration means in a section in which the control of the aeration means resulting from the control is performed;
And the like.

(6)流入する窒素含有水の流量が同一となるよう制御された、並列に接続された同一形式の複数の反応槽のうち、いずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った、最低限必要な脱窒窒素量を得るための上流側脱窒区間と、前記上流側脱窒区間の下流側に接続する最終的に必要な硝化水質を得るための下流側硝化区間との間にいずれか1つは位置する、第1〜n(nは2以上の自然数)のそれぞれの所定位置に設けられた、硝酸の各所望割合が脱窒されているか否かという脱窒状態をそれぞれ確認する脱窒確認手段を有し、各反応槽において、窒素含有水の流れに従って前記窒素含有水が含有するアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置で硝酸の各所望割合が脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気手段、並びに、前記散気手段による散気効果が発現するまでの区間を除く前記第1〜nの所定位置の脱窒確認手段に起因する散気手段の制御が行われる各区間における前記第1〜nの所定位置とそれぞれ同じ位置か又は異なる位置であり前記第1〜nの所定位置に対応する第1a〜naの各所定位置に設けられ、前記第1a〜naの各所定位置において前記窒素含有水の溶存酸素量をそれぞれ測定する溶存酸素量測定手段を有する場合における、当該散気手段に対して用いられる散気手段の制御装置であって、
前記第1〜nの所定位置の脱窒確認手段により確認された各脱窒状態に基づいて、前記第1〜nのそれぞれの所定位置において前記硝酸の各所望割合が脱窒されるように、前記窒素含有水の流れ方向に沿った、前記第1〜nのそれぞれの所定位置より少なくとも上流側を含む、前記第1〜nの所定位置の脱窒確認手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第1の気体供給量制御手段と、
前記脱窒確認手段が設けられた反応槽の前記第1a〜naの各所定位置において測定されたそれぞれの溶存酸素量に基づいて、前記脱窒確認手段が設けられた反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素目標濃度を設定する手段と、
前記脱窒確認手段が設けられた反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素の測定値がそれぞれ前記目標濃度と一致するよう、当該反応槽の前記第1〜nの所定位置の脱窒確認手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第2の気体供給量制御手段と、
を備えることを特徴とする。
(6) In the flow direction of the nitrogen-containing water in any one of a plurality of reaction vessels of the same type connected in parallel and controlled such that the flow rate of the inflowing nitrogen-containing water is the same An upstream denitrifying section for obtaining the minimum necessary denitrifying nitrogen amount, and a downstream nitrification section for obtaining the finally necessary nitrification water quality connected downstream of the upstream denitrifying section The denitrification state as to whether or not each desired proportion of nitric acid is denitrified provided at each predetermined position of the first to n (n is a natural number of 2 or more) located in any one of Ammonia contained in the nitrogen-containing water is nitrated to nitric acid according to the flow of nitrogen-containing water in each reaction tank, and it is detected at each position along the flow direction of the nitrogen-containing water. Said nitrogen such that each desired proportion of nitric acid is denitrified Aeration means for supplying gas over substantially the entire flow direction to the presence of water, and removal of the first to n predetermined positions except for a section until the aeration effect is expressed by the aeration means The first to n corresponding to the first to n predetermined positions are the same or different positions as the first to n predetermined positions in each section in which control of the aeration means caused by the nitrogen confirmation means is performed. In the case where the oxygen concentration measuring means is provided at each predetermined position of each of the first to the first predetermined positions to measure the dissolved oxygen amount of the nitrogen-containing water, the diffuser used for the aeration means Control device for air means,
Based on the denitrification states confirmed by the denitrification confirmation means at the first to nth predetermined positions, the desired ratio of the nitric acid is denitrified at each of the first to nth predetermined positions, Control of the aeration means resulting from the denitrification confirmation means of the first to n predetermined positions including at least the upstream side of each of the first to n predetermined positions along the flow direction of the nitrogen-containing water First gas supply amount control means for controlling the supply amount of gas by the aeration means in each section to be performed;
The other reactions other than the reaction tank provided with the denitrification confirmation means based on the respective dissolved oxygen amounts measured at the respective predetermined positions of the first to na of the reaction tank provided with the denitrification confirmation means A means for setting a dissolved oxygen target concentration at each of the predetermined positions of the first to na of the tank;
The first of the reaction vessels is determined so that the measured value of the dissolved oxygen at each of the predetermined positions of the first to na of the reaction vessels other than the reaction vessel provided with the denitrification confirmation means respectively matches the target concentration. Second gas supply amount control means for controlling the supply amount of gas by the aeration means in each section in which control of the aeration means is performed due to the denitrification confirmation means at a predetermined position of to n;
And the like.

また、本発明に係る制御方法は、以下のとおりである。
(7)流入する窒素含有水の流量が同一となるよう制御された、並列に接続された同一形式の複数の反応槽のうち、いずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った、最低限必要な脱窒窒素量を得るための上流側脱窒区間と、前記上流側脱窒区間の下流側に後続する最終的に必要な硝化水質を得るための下流側硝化区間との間である、途中位置に設けられた、硝酸の所望割合が脱窒されているか否かという脱窒状態を確認する脱窒確認手段を有し、各反応槽において、窒素含有水の流れに従って前記窒素含有水が含有するアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置で硝酸の各所望割合が脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気手段、並びに、前記散気手段による散気効果が発現するまでの区間を除く前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記途中位置と同じ位置か又は異なる位置であり前記途中位置に対応する所定位置に設けられ、前記所定位置において前記窒素含有水の溶存酸素量を測定する溶存酸素量測定手段を有する場合における、当該散気手段に対して用いられる散気手段の制御方法であって、
前記脱窒確認手段により確認された前記脱窒状態に基づいて、前記途中位置において前記硝酸の所望割合が脱窒されるように、前記窒素含有水の流れ方向に沿った、前記脱窒確認手段より少なくとも上流側を含む、前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第1の気体供給量制御ステップと、
前記脱窒確認手段及び硝化確認手段が設けられた反応槽の前記途中位置に対応する所定位置において測定されたそれぞれの溶存酸素量に基づいて、前記脱窒確認手段及が設けられた反応槽以外の他の反応槽の前記所定位置における溶存酸素目標濃度を設定するステップと、
前記脱窒確認手段が設けられた反応槽以外の他の反応槽の前記所定位置における溶存酸素の測定値が前記目標濃度と一致するよう、当該反応槽の前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第2の気体供給量制御ステップと、
を含むことを特徴とする。
The control method according to the present invention is as follows.
(7) In the flow direction of the nitrogen-containing water in any one reaction vessel among a plurality of reaction vessels of the same type connected in parallel and controlled such that the flow rate of the inflowing nitrogen-containing water is the same An upstream denitrifying section for obtaining the minimum necessary denitrifying nitrogen amount, and a downstream nitrification section for obtaining the finally necessary nitrifying water quality downstream of the upstream denitrifying section along the line; And denitrification confirmation means for confirming whether denitrification is being performed or not for the desired proportion of nitric acid provided at an intermediate position between Ammonia contained in the nitrogen-containing water is nitrified to nitric acid, and each desired ratio of nitric acid is denitrified at each position along the flow direction of the nitrogen-containing water with respect to the nitrogen-containing water in the flow direction Aeration means for supplying gas over substantially the entire area, side by side The same intermediate position as the intermediate position in a section where control of the aeration means is performed due to the denitrification confirmation means excluding the section until the aeration effect is expressed by the aeration means, or the intermediate position Control means for controlling the aeration means used for the aeration means in the case where the apparatus is provided at a predetermined position corresponding to the measurement means for measuring the dissolved oxygen amount of the nitrogen-containing water at the predetermined position There,
The denitrification confirming means along the flow direction of the nitrogen-containing water so that the desired proportion of the nitric acid is denitrified at the halfway position based on the denitrification state confirmed by the denitrification confirming means A first gas supply amount control step of controlling the supply amount of gas by the aeration means in a section where the control of the aeration means caused by the denitrification confirmation means, including at least the upstream side, is performed;
Other than the reaction vessel provided with the denitrification confirming means and based on the respective dissolved oxygen amounts measured at the predetermined positions corresponding to the halfway position of the reaction vessel provided with the denitrification confirming means and the nitrification confirming means Setting a dissolved oxygen target concentration at the predetermined position of the other reaction vessel of
Aeration due to the denitrification confirming means of the reaction vessel such that the measured value of the dissolved oxygen at the predetermined position of the reaction vessel other than the reaction vessel provided with the denitrification confirming means matches the target concentration A second gas supply amount control step of controlling a supply amount of gas by the aeration means in a section where control of the means is performed;
It is characterized by including.

(8)流入する窒素含有水の流量が同一となるよう制御された、並列に接続された同一形式の複数の反応槽のうち、いずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った、最低限必要な脱窒窒素量を得るための上流側脱窒区間と、前記上流側脱窒区間の下流側に後続する最終的に必要な硝化水質を得るための下流側硝化区間との間にいずれか1つは位置する、第1〜n(nは2以上の自然数)のそれぞれの所定位置に設けられた、硝酸の各所望割合が脱窒されているか否かという脱窒状態を確認する脱窒確認手段を有し、各反応槽において、窒素含有水の流れに従って前記窒素含有水が含有するアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置で硝酸の各所望割合が脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気手段、並びに、前記散気手段による散気効果が発現するまでの区間を除く前記第1〜nの所定位置の脱窒確認手段に起因する散気手段の制御が行われる各区間における前記第1〜nの所定位置とそれぞれ同じ位置か又は異なる位置であり前記第1〜nの所定位置に対応する第1a〜naの所定位置に設けられ、前記第1a〜naの各所定位置において前記窒素含有水の溶存酸素量をそれぞれ測定する溶存酸素量測定手段を有する場合における、当該散気手段に対して用いられる散気手段の制御方法であって、
前記第1〜nの所定位置の脱窒確認手段により確認された各脱窒状態に基づいて、前記第1〜nのそれぞれの所定位置において前記硝酸の各所望割合が脱窒されるように、前記窒素含有水の流れ方向に沿った、前記前記第1〜nのそれぞれの所定位置より少なくとも上流側を含む、前記第1〜nの所定位置の脱窒確認手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第1の気体供給量制御ステップと、
前記脱窒確認手段が設けられた反応槽の前記第1a〜naの各所定位置において測定されたそれぞれの溶存酸素量に基づいて、前記脱窒確認手段が設けられた反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素目標濃度をそれぞれ設定するステップと、
前記脱窒確認手段及が設けられた反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素の測定値が前記目標濃度と一致するよう、当該反応槽の前記第1〜nの所定位置の脱窒確認手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第2の気体供給量制御ステップと、
を含むことを特徴とする。
(8) In the flow direction of the nitrogen-containing water in any one reaction vessel among a plurality of reaction vessels of the same type connected in parallel and controlled such that the flow rate of the inflowing nitrogen-containing water is the same An upstream denitrifying section for obtaining the minimum necessary denitrifying nitrogen amount, and a downstream nitrification section for obtaining the finally necessary nitrifying water quality downstream of the upstream denitrifying section along the line; The denitrification state as to whether or not each desired proportion of nitric acid is denitrified provided at each predetermined position of the first to n (n is a natural number of 2 or more) located in any one of Ammonia contained in the nitrogen-containing water is nitrated to nitric acid according to the flow of nitrogen-containing water in each reaction tank, and nitric acid is added at each position along the flow direction of the nitrogen-containing water in each reaction vessel. To the nitrogen-containing water so that each desired fraction of And means for supplying gas over substantially the entire flow direction, and means for confirming denitrification at the first to nth predetermined positions except for a section until the aeration effect of the means for aeration is expressed. And the first to n predetermined positions corresponding to the first to n predetermined positions are the same position or different positions as the first to n predetermined positions in each section in which the control of the aeration means caused by the Control of the aeration means used for the aeration means in the case where the oxygen concentration measuring means is provided to measure the dissolved oxygen amount of the nitrogen-containing water at each predetermined position of the first to na Method,
Based on the denitrification states confirmed by the denitrification confirmation means at the first to nth predetermined positions, the desired ratio of the nitric acid is denitrified at each of the first to nth predetermined positions, Control of the aeration means caused by the denitrifying confirmation means at the first to n predetermined positions including at least the upstream side of each of the first to n predetermined positions along the flow direction of the nitrogen-containing water A first gas supply amount control step of controlling the supply amount of gas by the aeration means in each section in which
The other reactions other than the reaction tank provided with the denitrification confirmation means based on the respective dissolved oxygen amounts measured at the respective predetermined positions of the first to na of the reaction tank provided with the denitrification confirmation means Setting the dissolved oxygen target concentration at each predetermined position of each of the first to na of the tank;
In the reaction vessels other than the reaction vessel provided with the denitrification confirmation means, the first of the reaction vessels such that the measured value of dissolved oxygen at each predetermined position of the first to na of the reaction vessels matches the target concentration. A second gas supply amount control step of controlling the supply amount of gas by the aeration means in each section in which control of the aeration means is performed due to the denitrification confirmation means at a predetermined position of to n;
It is characterized by including.

さらに、本発明に係るプログラムは、以下のとおり。
(9)並列に接続された同一形式の複数の各反応槽に流入する窒素含有水の流量が同一となるよう制御する流量制御ステップと、
前記複数の反応槽のいずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った、最低限必要な脱窒窒素量を得るための上流側脱窒区間と、前記上流側脱窒区間の下流側に後続する最終的に必要な硝化水質を得るための下流側硝化区間との間である、途中位置において、前記途中位置において前記硝酸の所望割合が脱窒されているか否かという脱窒状態を確認する脱窒確認ステップと、
前記脱窒確認ステップにおいて確認された前記脱窒状態に基づいて、前記途中位置において前記硝酸の所望割合が脱窒されるように、前記窒素含有水の流れ方向に沿った前記途中位置より少なくとも上流側を含む、前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第1の気体供給量制御ステップと、
各反応槽内であって、前記散気ステップにおける散気により散気効果が発現するまでの区間を除く前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記途中位置と同じ位置か又は異なる位置であり前記途中位置に対応する所定位置において溶存酸素量を測定する溶存酸素測定ステップと、
前記脱窒状態を確認した反応槽における前記所定位置において測定された溶存酸素濃度の測定値に基づいて、前記脱窒状態を確認した反応槽以外の他の反応槽の前記所定位置における溶存酸素目標濃度を設定する溶存酸素目標濃度設定ステップと、
前記脱窒状態を確認した反応槽以外の他の反応槽の前記所定位置における溶存酸素の測定値が前記目標濃度と一致するよう、当該反応槽の前記脱窒確認手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第2の気体供給制御ステップと、
を含むことを特徴とする。
Furthermore, the program according to the present invention is as follows.
(9) A flow rate control step of controlling so that the flow rates of nitrogen-containing water flowing into the plurality of reaction vessels of the same type connected in parallel become the same;
In any one reaction vessel of the plurality of reaction vessels, an upstream denitrifying section for obtaining a minimum necessary denitrifying nitrogen amount along the flow direction of the nitrogen-containing water, and the upstream denitrifying section Between the downstream side and the downstream side nitrification zone for obtaining the finally necessary nitrification water quality downstream, the denitrification whether or not the desired proportion of the nitric acid is denitrified at the midway position at the midway position Denitrification check step to check the status of
Based on the denitrification state confirmed in the denitrification confirmation step, at least upstream from the halfway position along the flow direction of the nitrogen-containing water so that the desired ratio of the nitric acid is denitrified at the halfway position based on the denitrification state confirmed A first gas supply amount control step of controlling the supply amount of gas by the aeration means in a section where the control of the aeration means caused by the denitrification confirmation means including the side is performed;
The same position as in the middle of each reaction tank, except for the section until the aeration effect is expressed by the aeration in the aeration step, in which the control of the aeration means caused by the denitrification confirmation means is performed A dissolved oxygen measurement step of measuring the amount of dissolved oxygen at a predetermined position which is a position or a different position and corresponds to the intermediate position;
Based on the measured value of the dissolved oxygen concentration measured at the predetermined position in the reaction tank in which the denitrification state is confirmed, the dissolved oxygen target in the predetermined position of the reaction tank other than the reaction tank in which the denitrification state is confirmed Dissolved oxygen target concentration setting step to set the concentration,
An aeration means caused by the denitrification confirmation means of the reaction vessel such that the measured value of dissolved oxygen at the predetermined position of the other reaction vessel other than the reaction vessel whose denitrification state is confirmed matches the target concentration A second gas supply control step of controlling a supply amount of gas by the aeration means in a section where control is performed;
It is characterized by including.

(10)並列に接続された同一形式の複数の各反応槽に流入する窒素含有水の流量が同一となるよう制御する流量制御ステップと、
前記複数の反応槽のいずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った、最低限必要な脱窒窒素量を得るための上流側脱窒区間と、前記上流側脱窒区間の下流側に後続する最終的に必要な硝化水質を得るための下流側硝化区間との間にいずれか1つは位置する、第1〜n(nは2以上の自然数)のそれぞれの所定位置において、前記硝酸の各所望割合が脱窒されているか否かという脱窒状態を確認する脱窒確認ステップと、
前記脱窒確認ステップにおいて確認された各脱窒状態に基づいて、前記第1〜nの所定位置において前記硝酸の各所望割合が脱窒されるように、前記窒素含有水の流れ方向に沿った前記第1〜nのそれぞれの所定位置より少なくとも上流側を含む、前記脱窒確認手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第1の気体供給量制御ステップと、
各反応槽内であって、前記散気ステップにおける散気により散気効果が発現するまでの区間を除く前記脱窒確認手段に起因する散気手段の制御が行われる各区間における前記第1〜nの所定位置とそれぞれ同じ位置か又は異なる位置であり前記第1〜nの所定位置に対応する第1a〜naの各所定位置において溶存酸素量をそれぞれ測定する溶存酸素測定ステップと、
前記脱窒状態を確認した反応槽における前記第1a〜naの各所定位置において測定された溶存酸素濃度の測定値に基づいて、前記脱窒状態を確認した反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素目標濃度をそれぞれ設定する溶存酸素目標濃度設定ステップと、
前記脱窒状態を確認した反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素の測定値が前記目標濃度と一致するよう、当該反応槽の前記第1〜nの所定位置の脱窒確認手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第2の気体供給制御ステップと、
を含むことを特徴とする。
(10) a flow rate control step of controlling so that the flow rates of nitrogen-containing water flowing into the plurality of reaction vessels of the same type connected in parallel become the same;
In any one reaction vessel of the plurality of reaction vessels, an upstream denitrifying section for obtaining a minimum necessary denitrifying nitrogen amount along the flow direction of the nitrogen-containing water, and the upstream denitrifying section Any one of the first to n (where n is a natural number of 2 or more) predetermined positions between the downstream side and the downstream side nitrification section for obtaining the finally necessary nitrification water quality downstream A denitrification confirmation step of confirming a denitrification state as to whether or not each desired ratio of the nitric acid is denitrified in
Based on the flow direction of the nitrogen-containing water so that each desired ratio of the nitric acid is denitrified at the first to n-th predetermined positions based on the denitrification states confirmed in the denitrification confirmation step. The control of the gas supply amount by the aeration means in each section in which the control of the aeration means caused by the denitrification confirmation means is performed, including at least the upstream side of each of the first to n predetermined positions 1 gas supply control step;
In each reaction tank, the first to the first sections in each section where the control of the aeration means caused by the denitrification confirmation means is performed excluding the section until the aeration effect is expressed by the aeration in the aeration step. a dissolved oxygen measuring step of measuring the amount of dissolved oxygen at each of the predetermined positions 1a to na corresponding to the first to n predetermined positions, respectively at the same position as or different from the predetermined positions of n;
Based on the measurement value of the dissolved oxygen concentration measured at each of the predetermined positions of the first to na in the reaction vessel in which the denitrification state is confirmed, the above-mentioned other reaction vessels other than the reaction vessel in which the denitrification state is confirmed A dissolved oxygen target concentration setting step of setting the dissolved oxygen target concentration at each of the first predetermined positions 1a to 1n;
In the first to n-th reaction vessels, the measurement value of the dissolved oxygen at each predetermined position of the first to na of the reaction vessels other than the reaction vessel in which the denitrifying state is confirmed matches the target concentration. A second gas supply control step of controlling the supply amount of gas by the aeration means in each section in which control of the aeration means caused by the denitrification confirmation means at a predetermined position is performed;
It is characterized by including.

本発明の窒素含有水の処理装置及び処理方法によれば、同一形式の複数の反応槽を並列に接続して使用する窒素含有水の処理施設において、アンモニア検出器や硝酸検出器を使用した脱窒確認手段によって、適切な脱窒が行われるよう曝気手段を制御した反応槽における溶存酸素量分布に基づいて、脱窒確認手段が設けられた反応槽以外の他の反応槽の溶存酸素量を制御するので、他の反応槽においても、脱窒確認手段によって曝気手段を制御した反応槽と同程度な精度で曝気手段を制御することができ、しかも検出器として安価なDO計が使用できる   According to the apparatus and the method for treating nitrogen-containing water of the present invention, in a nitrogen-containing water treatment facility in which a plurality of reaction vessels of the same type are connected in parallel, removal using an ammonia detector or a nitric acid detector Based on the dissolved oxygen amount distribution in the reaction tank in which the aeration means is controlled so that appropriate denitrification is performed by the nitrogen confirmation means, the dissolved oxygen amounts in other reaction vessels other than the reaction tank provided with the denitrification confirmation means Since it controls, in other reaction vessels, the aeration means can be controlled with the same accuracy as the reaction vessel in which the aeration means is controlled by the denitrification confirmation means, and furthermore, an inexpensive DO meter can be used as a detector

図1Aは、本発明の複数の反応槽を並列の接続した窒素含有水処理装置を示す全体の構成図である。FIG. 1A is an overall configuration diagram showing a nitrogen-containing water treatment apparatus in which a plurality of reaction vessels of the present invention are connected in parallel. 図1Bは、本発明の複数の反応槽のいずれか1つの反応槽2Aを含む第1の実施形態による窒素含有水処理装置を示す構成図である。FIG. 1B is a block diagram showing a nitrogen-containing water treatment apparatus according to a first embodiment including a reaction vessel 2A of any one of a plurality of reaction vessels of the present invention. 図2Aは、本発明の第1の実施形態による窒素含有水処理装置における反応槽2Aを示す平面図である。FIG. 2A is a plan view showing a reaction tank 2A in the nitrogen-containing water treatment apparatus according to the first embodiment of the present invention. 図2Bは、本発明の第1の実施形態による窒素含有水処理装置における反応槽2Aの他の変形例を示す平面図である。FIG. 2B is a plan view showing another modification of the reaction tank 2A in the nitrogen-containing water treatment apparatus according to the first embodiment of the present invention. 図3Aは、硝化計が一つの場合の反応槽内の被処理水の流れに沿って測定した、NH−N、NO−N、およびNO−Nのそれぞれの窒素濃度、および全窒素濃度を示すグラフである。FIG. 3A shows the nitrogen concentrations of NH 4 -N, NO 2 -N, and NO 3 -N and total nitrogen measured along the flow of the treated water in the reaction vessel in the case of one nitrification meter. It is a graph which shows concentration. 図3Bは、硝化計が複数の場合の反応槽内の被処理水の流れに沿って測定した、NH−N、NO−N、およびNO−Nのそれぞれの窒素濃度、および全窒素濃度を示すグラフである。FIG. 3B shows the nitrogen concentrations of NH 4 -N, NO 2 -N, and NO 3 -N, and total nitrogen measured along the flow of the treated water in the reaction vessel in the cases where there are multiple nitrification meters. It is a graph which shows concentration. 図4Aは、本発明の硝化計が一つの場合の第1の実施形態による窒素含有水の処理方法を示すフローチャートである。FIG. 4A is a flow chart showing a method of treating nitrogen-containing water according to the first embodiment when there is one nitrification meter of the present invention. 図4Bは、本発明の硝化計が複数の場合の第1の実施形態による窒素含有水の処理方法を示すフローチャートである。FIG. 4B is a flowchart showing a method of treating nitrogen-containing water according to the first embodiment when there are a plurality of nitrification meters of the present invention. 図5は、本発明の第2の実施形態による窒素含有水処理装置を示す構成図である。FIG. 5 is a block diagram showing a nitrogen-containing water treatment apparatus according to a second embodiment of the present invention. 図6は、本発明の硝酸計が複数の場合の第3の実施形態による窒素含有水処理装置を示す構成図である。FIG. 6 is a block diagram showing a nitrogen-containing water treatment apparatus according to a third embodiment in which there are a plurality of nitric acid meters of the present invention. 図7は、本発明の硝酸計が複数の場合の第4の実施形態による窒素含有水処理装置を示す構成図である。FIG. 7 is a block diagram showing a nitrogen-containing water treatment apparatus according to a fourth embodiment in the case where there are a plurality of nitric acid meters of the present invention. 図8は、本発明の第5の実施形態による反応槽を示す斜視透視図である。FIG. 8 is a perspective perspective view showing a reaction vessel according to a fifth embodiment of the present invention. 図9Aは、図8に示す反応槽におけるA−A線に沿った断面図である。FIG. 9A is a cross-sectional view of the reaction vessel shown in FIG. 8 taken along the line A-A. 図9Bは、図8に示す反応槽におけるB−B線に沿った断面図である。FIG. 9B is a cross-sectional view taken along the line B-B in the reaction vessel shown in FIG. 図10は、本発明の硝酸計が複数の場合の第6の実施形態による窒素含有水処理装置を示す構成図である。FIG. 10 is a block diagram showing a nitrogen-containing water treatment apparatus according to a sixth embodiment in which there are a plurality of nitric acid meters of the present invention. 図11Aは、本発明の実施形態による反応槽の他の変形例を示す構成図である。FIG. 11A is a configuration diagram showing another modified example of the reaction vessel according to the embodiment of the present invention. 図11Bは、本発明の実施形態による反応槽の他の変形例を示す構成図である。FIG. 11B is a block diagram showing another modification of the reaction vessel according to the embodiment of the present invention. 図11Cは、本発明の実施形態による反応槽の他の変形例を示す構成図である。FIG. 11C is a configuration diagram showing another modified example of the reaction vessel according to the embodiment of the present invention. 図11Dは、図8Cに示す反応槽における散気部の時間経過に伴う曝気のタイミングを示すタイミング図である。FIG. 11D is a timing chart showing the timing of aeration according to the passage of time of the aeration part in the reaction tank shown in FIG. 8C. 図11Eは、本発明の実施形態による反応槽の他の変形例を示す構成図である。FIG. 11E is a view showing another modification of the reaction vessel according to the embodiment of the present invention. 図11Fは、図11Eに示す反応槽に浮遊させる微生物を担持した担体の断面模式図である。FIG. 11F is a cross-sectional schematic view of the carrier carrying microorganisms to be suspended in the reaction tank shown in FIG. 11E. 図12Aは、図5に示す窒素含有水処理装置においてアンモニア計を設置した場合を示す構成図である。12A is a configuration diagram showing a case where an ammonia meter is installed in the nitrogen-containing water treatment apparatus shown in FIG. 図12Bは、目標硝化速度および測定硝化速度を説明するための反応槽内の被処理水の流れに沿って測定した、NH−N、NO−N、およびNO−Nのそれぞれの窒素濃度、および全窒素濃度を示すグラフである。FIG. 12B shows each nitrogen of NH 4 -N, NO 2 -N, and NO 3 -N measured along the flow of the treated water in the reaction tank to explain the target nitrification rate and the measured nitrification rate. It is a graph which shows concentration and total nitrogen concentration.

以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。また、本発明は以下に説明する実施形態によって限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings of the following embodiments, the same or corresponding parts are denoted by the same reference numerals. Further, the present invention is not limited by the embodiments described below.

(第1の実施形態)
(窒素含有水処理装置の構成)
まず、本発明の第1の実施形態による制御装置を含む窒素含有水の処理装置の構成について説明する。図1Aは、窒素含有水処理装置の概略を示す模式図である。図1Aに示すように、本発明の窒素含有水の処理装置は、複数の同一形式の窒素含有水の反応槽(2A,2B,2C・・・)を含む処理装置が並列に接続されており、各処理装置には流量調節手段61により窒素含有水が同一の流量で供給される。流量調節手段61は、流量計、流量調節弁などからなる。本発明において、同一形式の反応槽とは、曝気手段を含め窒素含有水の処理構成が同一である反応槽をいう。
First Embodiment
(Configuration of nitrogen-containing water treatment system)
First, the configuration of a nitrogen-containing water treatment apparatus including a control device according to a first embodiment of the present invention will be described. FIG. 1A is a schematic view showing an outline of a nitrogen-containing water treatment apparatus. As shown in FIG. 1A, in the apparatus for treating nitrogen-containing water according to the present invention, the apparatuses for treating containing nitrogen-containing water reaction tanks (2A, 2B, 2C,...) Of the same type are connected in parallel. The nitrogen-containing water is supplied at the same flow rate by the flow rate adjusting means 61 to each processing apparatus. The flow rate adjusting unit 61 includes a flow meter, a flow rate adjusting valve, and the like. In the present invention, the same type of reaction vessel means a reaction vessel in which the treatment configuration of nitrogen-containing water is the same including the aeration means.

(第1の実施形態)
(窒素含有水処理装置の構成:複数の反応槽におけるいずれか1つの反応槽)
図1Bは、本発明の第1の実施形態である窒素含有水処理装置の構成を示す模式図である。図1Bに示すように、本発明の複数の反応槽のうちいずれか1つの反応槽2Aの構成を示す模式図である。図1Bに示すように、本発明の複数の反応槽のうちいずれか1つの反応槽2Aを含む第1の実施形態である窒素含有水処理装置は、最初沈殿池1、順次連通した複数段の好気槽2a,2b,2c,2d(第1槽〜第4槽)からなる反応槽2A、固液分離槽3、汚泥返送経路5、および制御部9を備える。なお、最初沈殿池1、固液分離槽3は、各反応槽(2A、2B、・・・)に対し共通とし、最初沈殿池1で処理された窒素含有水を各反応槽に分配するようにしたり、各反応槽(2A、2B、・・・)からの処理済水をまとめて固液分離することもできる。
First Embodiment
(Configuration of nitrogen-containing water treatment system: any one reaction tank in a plurality of reaction tanks)
FIG. 1B is a schematic view showing the configuration of a nitrogen-containing water treatment apparatus according to a first embodiment of the present invention. As shown to FIG. 1B, it is a schematic diagram which shows the structure of the reaction tank 2A in any one of several reaction tanks of this invention. As shown in FIG. 1B, the nitrogen-containing water treatment apparatus according to the first embodiment including any one reaction vessel 2A among the plurality of reaction vessels according to the present invention comprises: A reaction tank 2A consisting of aerobic tanks 2a, 2b, 2c, 2d (first to fourth tanks), a solid-liquid separation tank 3, a sludge return path 5, and a control unit 9 are provided. The first sedimentation tank 1 and the solid-liquid separation tank 3 are common to each reaction tank (2A, 2B, ...), and the nitrogen-containing water treated in the first sedimentation tank 1 is distributed to each reaction tank Alternatively, the treated water from each reaction tank (2A, 2B,...) Can be collected together and separated into solid and liquid.

最初沈殿池1には、窒素含有原水(以下、原水)が流入する。最初沈殿池1においては、原水を緩やかに流水させて、比較的粒子の小さいゴミなどを沈殿させる。   Nitrogen-containing raw water (hereinafter, raw water) flows into the first sedimentation tank 1. In the first settling tank 1, the raw water is allowed to flow gently to precipitate relatively small particles of dust and the like.

反応槽2Aには、最初沈殿池1から流出した窒素含有水である被処理水が流入する。この反応槽2Aを構成する複数段の好気槽2a〜2dは、被処理水のれ方向に沿って配列されている。ここで、反応槽2Aにおける被処理水の流入側においては、BOD酸化領域が生じている場合もある。そして、好気槽2a〜2dはそれぞれ、散気手段としての散気部6a,6b,6c,6dを備える。散気部6a〜6dは、ブロア8が供給する空気などの気体を用いて、それぞれの好気槽2a〜2d内に散気を行い、貯留されている活性汚泥を曝気する。それぞれの好気槽2a〜2dにおいては、主に、好気条件下で被処理水中に含まれるアンモニア性窒素が亜硝酸性窒素および硝酸性窒素に硝化される。それぞれの散気部6a〜6dが設けられた好気槽2a〜2dは、直線的に配列しても良く、反応槽2Aの一例を示す平面図である図2Aに示すように、途中で折り返して配列した迂回水路としても良い。   Water to be treated, which is nitrogen-containing water that first flowed out of the settling tank 1, flows into the reaction tank 2A. A plurality of stages of aerobic tanks 2a to 2d constituting the reaction tank 2A are arranged along the flow direction of the water to be treated. Here, on the inflow side of the water to be treated in the reaction tank 2A, a BOD oxidation region may occur. And aerobic tank 2a-2d is provided with the aeration part 6a, 6b, 6c, 6d as an aeration means, respectively. The aeration units 6a to 6d perform aeration in the respective aerobic tanks 2a to 2d using a gas such as air supplied by the blower 8, and aerate the activated sludge stored. In each of the aerobic tanks 2a to 2d, ammonia nitrogen contained in the water to be treated is mainly nitrified to nitrite nitrogen and nitrate nitrogen under aerobic conditions. The aerobic tanks 2a to 2d provided with the respective aeration units 6a to 6d may be linearly arranged, and as shown in FIG. 2A which is a plan view showing an example of the reaction tank 2A, they are folded halfway It is good also as a detour channel arranged.

また、図1Bに示すように、散気部6a〜6dにはそれぞれ、制御装置を構成する気体供給量制御手段の一部としての気体供給量制御部10a,10b,10c,10dが設けられている。気体供給量制御部10a〜10dはそれぞれ、気体流量制御弁などから構成され、制御装置を構成する気体供給量制御手段の一部としての制御部9からの制御信号に従って、それぞれの好気槽2a〜2dにおける散気部6a〜6dからの気体供給量をそれぞれ一様または個別に制御する。気体としては、空気のような酸素含有ガスが使用される。   Moreover, as shown to FIG. 1B, gas supply amount control part 10a, 10b, 10c, 10d as a part of gas supply amount control means which comprises a control apparatus is provided in aeration part 6a-6d, respectively. There is. Each of the gas supply amount control units 10a to 10d includes a gas flow rate control valve or the like, and according to a control signal from the control unit 9 as a part of the gas supply amount control means constituting the control device, each aerobic tank 2a The amount of gas supplied from the aeration unit 6a to 6d at 2d to 2d is controlled uniformly or individually. As gas, an oxygen-containing gas such as air is used.

制御装置としての制御部9は、例えばCPU、ROMやRAMなどの記憶媒体、およびハードディスクなどの記録媒体を有して構成されるコンピュータ(PC)などからなる。制御部9においては、記録媒体に後述する窒素含有水の処理方法や制御方法を実行可能な所定のプログラムが格納されている。制御部9は、後述するように、入力された硝酸濃度の計測値データなどの確認信号に応答して、格納されたプログラムに従って制御信号を出力することで、気体供給量制御部10a〜10dを制御して散気部6a〜6dからの気体供給量を制御する。   The control unit 9 as a control device includes, for example, a computer (PC) configured to have a recording medium such as a CPU, a storage medium such as a ROM or a RAM, and a hard disk. In the control unit 9, a predetermined program capable of executing a method of treating and controlling nitrogen-containing water, which will be described later, is stored in the recording medium. The control unit 9 outputs the control signals according to the stored program in response to the confirmation signal such as the measured value data of the nitric acid concentration input as described later, thereby controlling the gas supply amount control units 10a to 10d. Control is performed to control the amount of gas supplied from the aeration units 6a to 6d.

また、反応槽2Aにおける被処理水の流れに沿った所望の位置には、一つの硝酸計7,または複数の硝酸計7a、7bが所定位置に備えられている。この脱窒確認手段としての硝酸計7,7a、7bは、脱窒を制御する所望の位置における被処理水の硝酸濃度を測定する硝酸濃度測定手段である。この第1の実施形態において、硝酸計7、複数の場合、被処理水の流れ方向に沿った最も上流側の第1の硝酸計としての硝酸計7aは、例えば反応槽2Aのほぼ中間位置である好気槽2cの流入位置に設置する。ここで、硝酸計7,7aの設置位置としては、所望の位置に設定可能であり、後述するように脱窒反応の制御に用いることから、脱窒反応により除去したい窒素量を確保できる位置より下流側、かつ、反応槽2Aの内部において硝化反応を十分に行うことができる位置より上流側が望ましい。さらには、硝酸計7の設置位置は、あらかじめ測定した全窒素濃度、硝酸性窒素、亜硝酸性窒素、およびアンモニア性窒素のそれぞれの濃度に関する反応槽2Aの位置依存性に基づいて決定可能である。すなわち、最低限必要な脱窒窒素量を得るための上流側脱窒区間81と、前記上流側脱窒区間の下流側に接続する最終的に必要な硝化水質を得るための下流側硝化区間82との間(途中位置または第1〜nの少なくとも1つの所定位置)である。そして、制御部9、気体供給量制御部10、および硝酸計7によって、窒素含有水の処理システムが構成されている。   Further, at a desired position along the flow of the water to be treated in the reaction tank 2A, one nitric acid meter 7 or a plurality of nitric acid meters 7a and 7b are provided at predetermined positions. The nitric acid meters 7, 7a and 7b as the denitrification confirming means are nitric acid concentration measuring means for measuring the nitric acid concentration of the water to be treated at a desired position for controlling the denitrification. In the first embodiment, the nitric acid meter 7, in the case of a plurality, the nitric acid meter 7a as the first nitric acid meter on the most upstream side along the flow direction of the water to be treated is, for example, at about the middle position of the reaction tank 2A. It is installed at the inflow position of a certain aerobic tank 2c. Here, the installation position of the nitric acid meter 7, 7a can be set to a desired position, and it is used for control of the denitrification reaction as described later, from the position where the amount of nitrogen to be removed by the denitrification reaction can be secured. It is desirable that the downstream side be upstream from the position where the nitrification reaction can be sufficiently performed in the reaction vessel 2A. Furthermore, the installation position of the nitric acid meter 7 can be determined based on the position dependency of the reaction vessel 2A with respect to each concentration of total nitrogen concentration, nitrate nitrogen, nitrite nitrogen, and ammonia nitrogen which are measured in advance. . That is, an upstream side denitrifying section 81 for obtaining the minimum necessary amount of denitrifying nitrogen, and a downstream side nitrification section 82 for obtaining the finally necessary nitrification water quality connected downstream of the upstream denitrifying section Between (in the middle position or at least one predetermined position of the first to n). The control unit 9, the gas supply control unit 10, and the nitric acid meter 7 constitute a system for treating nitrogen-containing water.

なお、本明細書において硝酸とは、硝酸(HNO)、亜硝酸(HNO)、硝酸性窒素(NO−N)、亜硝酸性窒素(NO−N)、硝酸性窒素と亜硝酸性窒素との集合、および硝酸と亜硝酸とをともに示すNOxを含む概念である。また、本明細書においてアンモニアとは、アンモニアおよびアンモニア性窒素を含む概念である。すなわち、本明細書において硝酸濃度は、硝酸、亜硝酸、硝酸性窒素、亜硝酸性窒素、硝酸性窒素と亜硝酸性窒素との集合、および硝酸と亜硝酸とをともに示すNOxの、いずれの濃度であってもよく、アンモニア濃度は、アンモニア(NH)およびアンモニア性窒素(NH−N)のいずれの濃度であっても良い。 In the present specification, nitric acid refers to nitric acid (HNO 3 ), nitrous acid (HNO 2 ), nitrate nitrogen (NO 3 -N), nitrite nitrogen (NO 2 -N), nitrate nitrogen and nitrite It is a concept including concentration with nitrogen, and NOx, which indicate both nitric acid and nitrous acid. Moreover, in the present specification, ammonia is a concept including ammonia and ammonia nitrogen. That is, in the present specification, the nitric acid concentration is any of nitric acid, nitrous acid, nitrate nitrogen, nitrite nitrogen, aggregation of nitrate nitrogen and nitrite nitrogen, and NOx showing both nitrate and nitrite. It may be a concentration, and the ammonia concentration may be any concentration of ammonia (NH 3 ) and ammoniacal nitrogen (NH 4 -N).

また、反応槽2Aを構成する複数段の好気槽2a〜2dが図2Aに示すように折り返して配列されている場合においても、硝酸計7、7aは反応槽2Aの被処理水の流れに沿った所望の位置、例えば好気槽2cの流入位置などに設けられ、硝酸計が複数のばあいは、最下流部に硝酸計7bが設けられる。なお、硝酸計7、7a,7bの設置位置に関する詳細については後述する。   Further, even when the plurality of stages of aerobic tanks 2a to 2d constituting the reaction tank 2A are arranged in a folded manner as shown in FIG. 2A, the nitric acid meters 7 and 7a are used as the flow of the water to be treated in the reaction tank 2A. It is provided at a desired position along, for example, the inflow position of the aerobic tank 2c, and in the case of a plurality of nitric acid meters, the nitric acid meter 7b is provided at the most downstream part. In addition, the detail regarding the installation position of nitric acid meter 7, 7a, 7b is mentioned later.

そして、硝酸計がひとつの場合、硝酸計7は、測定した硝酸濃度の値を制御部9に供給し、硝酸計が複数の場合は、図1Bに示すように、硝酸計7a,7bは、測定した硝酸濃度の値を制御部9に供給する。測定された硝酸濃度の値が供給された制御部9は、気体供給量制御部10a〜10dに制御信号を供給し、硝酸濃度の値に基づいて、散気部6a〜6dによる気体供給量を制御する。すなわち、制御部9および気体供給量制御部10a〜10dによって、制御装置である気体供給量制御手段が構成される。   And when there is one nitric acid meter, the nitric acid meter 7 supplies the measured nitric acid concentration value to the control unit 9, and when there are a plurality of nitric acid meters, the nitric acid meters 7a and 7b, as shown in FIG. The measured nitric acid concentration value is supplied to the control unit 9. The control unit 9 to which the measured nitric acid concentration value is supplied supplies a control signal to the gas supply amount control units 10a to 10d, and the gas supply amount by the aeration unit 6a to 6d is calculated based on the nitric acid concentration value. Control. That is, the control unit 9 and the gas supply control units 10a to 10d constitute a gas supply control unit which is a control device.

固液分離槽3には、最下流の好気槽2dから流出した被処理水が流入する。固液分離槽3においては、被処理水が分離液4aと活性汚泥4bとに分離する。固液分離槽3の側壁には、配管(図示せず)が接続されており、この配管を介して分離液4aが消毒処理過程に送られるように構成されている。また、固液分離槽3の底部には、汚泥返送経路5が接続されており、固液分離槽3の底部に堆積した活性汚泥4bを好気槽2aに返送できるように構成されている。これにより、好気槽2aおよび下流側の好気槽2b,2c,2d内の生物量を所定量に維持することができる。   The water to be treated that has flowed out of the most downstream aerobic tank 2 d flows into the solid-liquid separation tank 3. In the solid-liquid separation tank 3, the water to be treated is separated into the separated liquid 4a and the activated sludge 4b. A pipe (not shown) is connected to the side wall of the solid-liquid separation tank 3, and the separation liquid 4a is sent to the disinfection process through this pipe. A sludge return path 5 is connected to the bottom of the solid-liquid separation tank 3 so that the activated sludge 4b deposited on the bottom of the solid-liquid separation tank 3 can be returned to the aerobic tank 2a. Thereby, the amount of biomass in the aerobic tank 2a and the downstream aerobic tanks 2b, 2c, 2d can be maintained at a predetermined amount.

(窒素含有水の処理方法における気体供給量制御)
次に、好気槽2a〜2dにおいて行われる窒素含有水の処理方法、およびこれに伴う制御方法並びに制御部9が実行するプログラムによる気体供給量制御について説明する。図4Aは、硝酸計が一つの場合の第1の実施形態による処理方法を示すフローチャートである。
(Gas supply control in treatment method of nitrogen-containing water)
Next, a method of treating nitrogen-containing water performed in the aerobic tanks 2a to 2d, a control method associated therewith, and control of gas supply amount by a program executed by the control unit 9 will be described. FIG. 4A is a flow chart showing a processing method according to the first embodiment in the case of one nitric acid meter.

この好気槽2a〜2dにおいて行われる窒素含有水の処理方法においては、まず、図1Bに示す最初沈殿池1からの被処理水が、好気槽2aから好気槽2dに順次送られる。それぞれの好気槽2a〜2dにおいては、好気性条件下で活性汚泥中の好気性微生物である硝化菌により、被処理水中のアンモニア性窒素(NH−N)が、下記の反応式(1)〜(3)のように、亜硝酸性窒素(NO−N)や硝酸性窒素(NO−N)に硝化される(図4A中、ステップST1およびステップST2)。 In the method of treating nitrogen-containing water performed in the aerobic tanks 2a to 2d, first, the water to be treated from the first sedimentation tank 1 shown in FIG. 1B is sequentially sent from the aerobic tank 2a to the aerobic tank 2d. In each of the aerobic tanks 2a to 2d, ammonia nitrogen (NH 4 -N) in the water to be treated is converted to the following reaction formula (1) by nitrifying bacteria which are aerobic microorganisms in activated sludge under aerobic conditions. As shown in (4) to (3), nitrite (NO 2 -N) and nitrate (NO 3 -N) are nitrated (in FIG. 4A, step ST1 and step ST2).

Figure 0006499389
Figure 0006499389

一方、反応槽2Aにおける被処理水中の酸素量が少ない領域や場合によって硝化槽などにおいても、酸素量が少ない領域において脱窒菌による脱窒反応(嫌気反応)が発生する。そのため、この脱窒反応を生じる領域(脱窒反応領域)に充分な炭素源を供給すれば、脱窒反応も充分に進行させることができる。その結果、反応槽2Aにおいて、部分的に脱窒反応が行われる領域が発生する。これにより、下記の反応式(4)〜(10)のように、硝化が不充分であることによって発生した亜酸化窒素(NO)ガスを分解したり、亜酸化窒素を発生させることなく亜硝酸を還元したりして、窒素と二酸化炭素とに分解させて、窒素除去を行うことができる。 On the other hand, denitrification reaction (anaerobic reaction) occurs due to denitrification bacteria in the region where the amount of oxygen is small or in a region where the amount of oxygen in the water to be treated in the reaction tank 2A is small or in some cases the nitrification tank. Therefore, if a sufficient carbon source is supplied to the region (the denitrification reaction region) in which the denitrification reaction occurs, the denitrification reaction can be sufficiently advanced. As a result, in the reaction tank 2A, a region where partial denitrification reaction is performed is generated. As a result, as shown in the following reaction formulas (4) to (10), nitrous oxide (N 2 O) gas generated due to insufficient nitrification is not decomposed or nitrous oxide is not generated. Nitrite can be reduced and decomposed to nitrogen and carbon dioxide to effect nitrogen removal.

Figure 0006499389
Figure 0006499389

ここで、本発明者は、このような脱窒反応と硝化反応とが並行して進行する場合について、反応槽2Aにおける好気槽2aの流入側から好気槽2dの流出側の方向、すなわち被処理水の流れの方向に沿って、複数の位置での、アンモニア性窒素(NH−N)、亜硝酸性窒素(NO−N)、および硝酸性窒素(NO−N)におけるそれぞれの窒素濃度と、これらを合計した全窒素濃度とを測定した。図3Aは、硝酸計が一つの場合、図3Bは、硝酸計が複数の場合の、NH−N、NO−N、およびNO−Nの窒素濃度および全窒素濃度を、反応槽2Aの位置によって測定した結果を示すグラフである。 Here, in the case where the denitrification reaction and the nitrification reaction proceed in parallel, the inventor of the present invention is directed from the inflow side of the aerobic tank 2a to the outflow side of the aerobic tank 2d in the reaction tank 2A, that is, Each of ammonia nitrogen (NH 4 -N), nitrite nitrogen (NO 2 -N), and nitrate nitrogen (NO 3 -N) at a plurality of positions along the flow direction of the water to be treated And the total nitrogen concentration obtained by summing them. FIG. 3A shows the nitrogen concentration and total nitrogen concentration of NH 4 -N, NO 2 -N, and NO 3 -N in the case of multiple nitric acid meters, and FIG. It is a graph which shows the result measured by the position of.

図3Aに示すように、反応槽2Aの比較的前半側である好気槽2aの流入側から好気槽2bの流出側の位置までは、被処理水の流れに従って、NO−NおよびNO−Nの窒素濃度があまり増加せず、全窒素濃度が減少する。これは、反応槽2Aの上流側の好気槽2a,2bにおいて、硝化反応領域と脱窒反応領域とが存在し、硝化反応領域における硝化処理と脱窒反応領域における脱窒処理とが同時に進行して、窒素除去率が向上しているためと考えられる。また、反応槽2Aにおける比較的後半側である好気槽2cの流入側から好気槽2dの流出側の位置までは、NO−NおよびNO−Nの窒素濃度が増加している。すなわち、本発明者は、反応槽2Aの下流側の好気槽2c,2dにおいては、脱窒反応が継続して進行しているとともに、硝化反応が急速に進行していると考えた。そこで、本発明者は、まず、硝酸計7を反応槽2Aにおける窒素濃度が減少する所望の位置に設置して、この位置における硝酸濃度に基づいて、硝酸計7より少なくとも上流側における気体の供給量を略一様または個別に制御すれば、硝酸計7より上流側で発生している脱窒反応および硝化反応をともに制御可能になることを想起した。 As shown in FIG. 3A, from the inflow side of the aerobic tank 2a on the relatively front half side of the reaction tank 2A to the position on the outflow side of the aerobic tank 2b, NO 2 -N and NO according to the flow of water to be treated The 3- N nitrogen concentration does not increase much and the total nitrogen concentration decreases. This is because in the aerobic tanks 2a and 2b on the upstream side of the reaction tank 2A, the nitrification reaction area and the denitrification reaction area exist, and the nitrification treatment in the nitrification reaction area and the denitrification treatment in the denitrification reaction area proceed simultaneously It is considered that the nitrogen removal rate is improved. The nitrogen concentration of NO 2 -N and NO 3 -N is increased from the inflow side of the aerobic tank 2c, which is the second half of the reaction tank 2A, to the position of the outflow side of the aerobic tank 2d. That is, the present inventor considered that the denitrification reaction was continuously advancing and the nitrification reaction was rapidly advancing in the aerobic tanks 2c and 2d on the downstream side of the reaction tank 2A. Therefore, the inventor first places the nitric acid meter 7 at a desired position where the nitrogen concentration in the reaction tank 2A decreases, and supplies gas at least upstream of the nitric acid meter 7 based on the nitric acid concentration at this position. It was recalled that if the amount is controlled approximately uniformly or individually, both denitrification reaction and nitrification reaction occurring upstream of the nitric acid meter 7 can be controlled.

具体的に本発明者は、被処理水が反応槽2A内を流下するに従って、散気部6a〜6dによって被処理水に含まれるアンモニア(NH)が徐々に硝酸(亜硝酸性窒素(NO−N)および硝酸性窒素(NO−N))に硝化されるように、反応槽2A内における被処理水に対して、その流れ方向の略全体に亘って気体を供給することによって、反応槽2A内における被処理水の流れ方向における各位置で硝化されて生じた硝酸の各所望割合が脱窒できることを知見した。これにより、本発明者は、硝酸計7を所望位置に設置して、硝酸計7により計測される計測値が所定範囲に収まるように、少なくとも硝酸計7より上流側の散気部6からの気体供給量を一様または個別に制御することによって、硝酸計7より上流側の脱窒反応および硝化反応を制御できることを知見した。 Specifically, as the water to be treated flows down the reaction tank 2A, the ammonia (NH 4 ) contained in the water to be treated is gradually added to the nitric acid (NO 2 (NO) by the aeration units 6a to 6d. By supplying a gas to the water to be treated in the reaction tank 2A substantially throughout the flow direction so as to be nitrified to 2- N) and nitrate nitrogen (NO 3 -N)), It has been found that each desired ratio of nitric acid produced by nitrification at each position in the flow direction of the water to be treated in the reaction tank 2A can be denitrified. As a result, the inventor places the nitric acid meter 7 at a desired position, and at least from the aeration unit 6 on the upstream side of the nitric acid meter 7 so that the measurement value measured by the nitric acid meter 7 falls within the predetermined range. It has been found that the denitrification reaction and the nitrification reaction upstream of the nitric acid meter 7 can be controlled by uniformly or separately controlling the gas supply amount.

そこで、本発明においては、まず、制御部9は、好気槽2cの流入側に設置した硝酸計7、または硝酸計7a、7bによる硝酸濃度の測定をモニタリングするとともに、被処理水の流れ方向に沿って少なくとも硝酸計7、7aより上流側の気体供給量制御部10a,10bを制御する。そして、本発明においてはさらに、気体供給量制御部10a〜10dによって反応槽2Aにおける気体供給量、すなわちそれぞれの好気槽2a〜2dの気体供給量を調整する。この場合、反応槽2Aにおける脱窒反応を制御することを考慮すると、硝酸計7、あるいは硝酸計7a,7bのうちの最上流側の硝酸計7aは、脱窒反応および硝化反応が共存する領域のうちの脱窒反応の制御を所望する位置、例えば、硝化反応による硝酸の発生を抑制しつつ脱窒反応を進行させる必要のある反応槽2Aにおける領域の最下流側の近傍に設置することが望ましい。   Therefore, in the present invention, first, the control unit 9 monitors the measurement of the nitric acid concentration by the nitric acid meter 7 or the nitric acid meters 7a and 7b installed on the inflow side of the aerobic tank 2c, and the flow direction of the water to be treated And control at least the gas supply amount control units 10a and 10b on the upstream side of the nitric acid meter 7 and 7a. Further, in the present invention, the gas supply amount in the reaction tank 2A, that is, the gas supply amount in each of the aerobic tanks 2a to 2d is adjusted by the gas supply amount control units 10a to 10d. In this case, in consideration of controlling the denitrification reaction in the reaction tank 2A, the nitric acid meter 7a on the most upstream side of the nitric acid meter 7 or the nitric acid meter 7a, 7b is a region where the denitrification reaction and the nitrification reaction coexist. Position at the position where control of denitrification reaction is desired, for example, in the vicinity of the most downstream side of the region in reaction tank 2A where denitrification reaction needs to be advanced while suppressing the generation of nitric acid due to nitrification reaction. desirable.

そこで、この第1の実施形態においては、硝酸計7、あるいは硝酸計7aを好気槽2cの流入側に設置するのが望ましい。そして、この硝酸計7、または硝酸計7aによって測定されるNO−NおよびNO−Nの合計の硝酸濃度があらかじめ設定した目標範囲になるように、制御部9が、被処理水の流れ方向に沿って硝酸計7、または硝酸計7aより上流側の少なくとも気体供給量制御部10a,10bを制御する。なお、必要に応じて制御部9は、気体供給量制御部10c,10dに制御信号を供給する。これにより、制御部9は、それぞれの好気槽2a,2b、さらには好気槽2c,2dにおける気体供給量をそれぞれ個別または略一様に制御する。そして、硝酸計7、または硝酸計7aによって硝化反応により硝化されて生じた硝酸に対する所望割合の脱窒が確認できない場合に、被処理水の流れ方向に沿った硝酸計7、または硝酸計7aより少なくとも上流側の散気部6a,6bによる気体の供給量を個別または一様に増減制御する。そして、制御部9によって気体供給量を制御することによって、反応槽2A内の硝酸計7、または硝酸計7aより上流側における被処理水において、硝化反応を抑制しつつ脱窒反応を進行させることができる。硝酸計7、または硝酸計7aより下流側においては、被処理水の上流側から下流側への流れに沿って被処理水中の溶存酸素量が増加するので、脱窒反応が進行しつつも被処理水はより好気条件となって硝化反応が急速に進行して、アンモニア(NH)が急速に減少するとともに、硝酸(亜硝酸性窒素(NO−N)および硝酸性窒素(NO−N))の濃度が急速に増加する。なお、気体供給量の制御においては、後述するように曝気を連続的に行っても、気体供給量を0とした曝気の停止制御を含んで間欠的に行っても良い。 Therefore, in the first embodiment, it is desirable to install the nitric acid meter 7 or the nitric acid meter 7a on the inflow side of the aerobic tank 2c. Then, the control unit 9 controls the flow of the water to be treated so that the nitric acid concentration of the total of NO 2 -N and NO 3 -N measured by the nitric acid meter 7 or the nitric acid meter 7a falls within a predetermined target range. The nitric acid meter 7 or at least the gas supply control units 10a and 10b upstream of the nitric acid meter 7a are controlled along the direction. Note that the control unit 9 supplies control signals to the gas supply amount control units 10c and 10d as necessary. As a result, the control unit 9 controls the amount of gas supplied to each of the aerobic tanks 2a and 2b, and further to the aerobic tanks 2c and 2d individually or substantially uniformly. Then, when it is not possible to confirm denitrification of a desired ratio to nitric acid generated by nitrification reaction by nitric acid meter 7 or nitric acid meter 7a, nitric acid meter 7 or nitric acid meter 7a along the flow direction of the water to be treated The amount of gas supplied by at least the aeration section 6a, 6b on the upstream side is controlled to increase or decrease individually or uniformly. Then, by controlling the gas supply amount by the control unit 9, the denitrification reaction is allowed to proceed while suppressing the nitrification reaction in the treated water upstream of the nitric acid meter 7 or the nitric acid meter 7a in the reaction tank 2A. Can. On the downstream side of the nitric acid meter 7 or the nitric acid meter 7a, the amount of dissolved oxygen in the water to be treated increases along the flow from the upstream side to the downstream side of the water to be treated. The treated water has more aerobic conditions and the nitrification reaction proceeds rapidly, and ammonia (NH 4 ) decreases rapidly, and nitric acid (nitrite nitrogen (NO 2 -N) and nitrate nitrogen (NO 3) The concentration of -N) increases rapidly. In the control of the gas supply amount, aeration may be performed continuously as described later, or may be performed intermittently including stop control of aeration with the gas supply amount set to zero.

具体的には、硝酸計がひとつの場合、硝酸計7が、好気槽2cの流入側におけるNO−NおよびNO−Nの合計の硝酸濃度を測定する(図4A中、ステップST3)。硝酸計7は、硝酸濃度の計測値を制御部9に供給する。制御部9は、供給された硝酸濃度の値が所定範囲内であるか否か、すなわち例えば5.0mg/L以下などのあらかじめ設定した目標範囲(設定目標範囲)内であるか否かを判断する(図4A中、ステップST4)。 Specifically, when there is one nitric acid meter, the nitric acid meter 7 measures the total nitric acid concentration of NO 2 -N and NO 3 -N on the inflow side of the aerobic tank 2c (in FIG. 4A, step ST3). . The nitric acid meter 7 supplies the measured value of the nitric acid concentration to the control unit 9. Control unit 9 determines whether or not the supplied nitric acid concentration is within a predetermined range, that is, whether or not it is within a predetermined target range (setting target range) such as 5.0 mg / L or less. (In FIG. 4A, step ST4).

ここで、本発明者の知見によれば、反応槽2A内の硝酸濃度が5.0mg/Lを超えると硝酸化が急激に進行してしまい、空気量を低減しても反応槽2Aの内部の状況を制御することが困難になるため、設定目標範囲は5.0mg/L以下であることが好ましい。そして、供給された硝酸濃度の計測値が設定目標範囲内である場合(図4A中、ステップST4:Yes)には、制御部9は、硝酸計7による硝酸濃度のモニタリングを継続する(図4A中、ステップST3)。なお、この設定目標範囲については、反応槽2Aの形状、寸法などの設計に応じて反応槽ごとに最適な設定目標範囲が設定される。   Here, according to the findings of the present inventor, when the nitric acid concentration in the reaction tank 2A exceeds 5.0 mg / L, the nitrification proceeds rapidly, and even if the amount of air is reduced, the inside of the reaction tank 2A The target setting range is preferably 5.0 mg / L or less, because it becomes difficult to control the situation. When the measured value of the supplied nitric acid concentration is within the set target range (step ST4 in FIG. 4A: Yes), the control unit 9 continues monitoring the nitric acid concentration by the nitric acid meter 7 (FIG. 4A). Middle, step ST3). As to this setting target range, an optimum setting target range is set for each reaction tank according to the design of the shape, dimensions, etc. of the reaction tank 2A.

他方、制御部9は、硝酸計7から供給された硝酸濃度の計測値が設定目標範囲未満、すなわち設定目標範囲の下限未満であると判断する(図4A中、ステップST4:No)と、気体供給量制御部10a〜10dに制御信号を供給して、少なくとも好気槽2a,2bにおける硝酸濃度を増加させるように、少なくとも散気部6a,6bからの気体供給量を増加させる制御を行う(図4A中、ステップST5)。このとき、好気槽2c,2dにおいては、散気部6c,6dによる気体供給量を、散気部6a,6bと同様に増加させる制御を行っても、変化させない制御を行っても良い。   On the other hand, the controller 9 determines that the measured value of the nitric acid concentration supplied from the nitric acid meter 7 is less than the set target range, that is, less than the lower limit of the set target range (step ST4 in FIG. 4A: No), A control signal is supplied to the supply amount control units 10a to 10d to perform control to at least increase the gas supply amount from the aeration units 6a and 6b so as to increase the nitric acid concentration in at least the aerobic tanks 2a and 2b In FIG. 4A, step ST5). At this time, in the aerobic tanks 2c and 2d, control may be performed to increase the amount of gas supplied by the aeration units 6c and 6d similarly to the aeration units 6a and 6b, or may not be controlled.

一方、硝酸計7から供給された硝酸濃度の値が設定目標範囲を超えた場合、すなわち設定目標範囲の上限を超えた場合にも、制御部9は、硝酸濃度の計測値が設定目標範囲外であると判断し(図4A中、ステップST4:No)、気体供給量制御部10a〜10dに制御信号を供給して、少なくとも好気槽2a,2bにおける硝酸濃度を低下させるように、少なくとも散気部6a,6bによる気体供給量を減少させる制御を行う(図4A中、ステップST5)。このとき、好気槽2c,2dにおいては、制御部9は、散気部6c,6dによる気体供給量を、散気部6a,6bと同様に減少させる制御を行っても、変化させない制御を行っても良い。   On the other hand, when the value of the nitric acid concentration supplied from the nitric acid meter 7 exceeds the set target range, that is, the upper limit of the set target range is exceeded, the control unit 9 also measures the nitric acid concentration out of the set target range. (Step ST4 in FIG. 4A: No), and at least the scattering is performed so as to reduce the nitric acid concentration in at least the aerobic tanks 2a and 2b by supplying a control signal to the gas supply amount control units 10a to 10d. Control is performed to reduce the amount of gas supplied by the air units 6a and 6b (step ST5 in FIG. 4A). At this time, in the aerobic tanks 2c and 2d, the control unit 9 performs control not to change the amount of gas supplied by the aeration units 6c and 6d even if the control is performed to reduce the gas supply amount similarly to the aeration units 6a and 6b. You may go.

すなわち、上述した散気部6a〜6dの制御においては、散気部6a〜6dからの気体供給量を一様に増減させたり、散気部6a,6bからの気体供給量を増減させつつ散気部6c,6dからの気体供給量を一定に維持させたりすることが可能である。なお、硝酸計7の設置位置に応じて、増減制御を行う必要のある散気部6が選択される。具体的には、硝酸計7を好気槽2aの下流側または好気槽2bの上流側に設置した場合においては、制御部9は、少なくとも気体供給量制御部10aにより、散気部6aからの気体供給量を制御する。反対に、硝酸計7を好気槽2cの下流側または好気槽2dの上流側に設置した場合には、制御部9は、少なくとも気体供給量制御部10a〜10cにより、散気部6a〜6cからのそれぞれの気体供給量を制御する。なお、これらの気体供給量の制御において、制御部9は、それぞれの散気部6a〜6dに対して、それぞれの気体供給量制御部10a〜10dごとの独立した制御を行っても良く、互いに同一の制御を行っても良く、散気部6a,6b,6c,6dにおいて複数の散気部を適宜選択して集団化させ、この集団ごとに独立して制御を行っても良い。   That is, in the control of the aeration units 6a to 6d described above, the gas supply amount from the aeration units 6a to 6d is uniformly increased or decreased, or the gas supply amount from the aeration units 6a and 6b is increased or decreased. It is possible to maintain the amount of gas supplied from the air portion 6c, 6d constant. In addition, according to the installation position of the nitric acid meter 7, the aeration part 6 which needs to perform increase / decrease control is selected. Specifically, when the nitric acid meter 7 is installed on the downstream side of the aerobic tank 2a or on the upstream side of the aerobic tank 2b, at least the gas supply amount controller 10a controls the control unit 9 from the aeration unit 6a. Control the gas supply of the On the other hand, when the nitric acid meter 7 is installed downstream of the aerobic tank 2c or upstream of the aerobic tank 2d, the controller 9 at least controls the gas supply units 10a to 10c to supply the aeration units 6a to 6c. Control each gas supply from 6c. In addition, in control of these gas supply amounts, the control part 9 may perform independent control for each gas supply amount control part 10a-10d with respect to each aeration part 6a-6d, The same control may be performed, and a plurality of aeration sections may be appropriately selected and grouped in the aeration sections 6a, 6b, 6c, and 6d, and control may be performed independently for each group.

このように、制御部9がそれぞれの気体供給量制御部10a〜10dに制御信号を供給して、それぞれの散気部6a〜6dにおける気体供給量を制御することにより、好気槽2a,2b内において、脱窒反応と硝化反応とを適切に共存させて、反応槽2Aの内部において脱窒反応の生成を制御することが可能となる。また、制御部9が気体供給量を最適に制御していることにより、散気部6a〜6dによる気体供給量を必要十分な量に制御することができ、ブロア8の消費電力量を削減して、窒素含有水処理における消費電力を削減することも可能となる。   In this manner, the control unit 9 supplies control signals to the respective gas supply amount control units 10a to 10d, and controls the gas supply amounts in the respective aeration units 6a to 6d, whereby the aerobic tanks 2a and 2b are provided. The denitrification reaction and the nitrification reaction can be made to coexist appropriately in the interior to control the generation of the denitrification reaction inside the reaction tank 2A. In addition, since the control unit 9 controls the gas supply amount optimally, the gas supply amount by the aeration units 6a to 6d can be controlled to a necessary and sufficient amount, and the power consumption of the blower 8 is reduced. It is also possible to reduce the power consumption in the nitrogen-containing water treatment.

硝酸計が複数の場合、制御部9は、供給される硝酸計7a,7bによるそれぞれの設置位置における硝酸濃度の計測値のうち、少なくとも1箇所における計測値が設定目標範囲から外れていると判断する(図4B中、ステップST4:No)と、ステップST5に移行する。ステップST5において制御部9は、気体供給量制御部10a〜10dに制御信号を供給して硝酸濃度が目標設定範囲の下限未満である場合には好気槽2a〜2dの硝酸濃度を増加させるように、散気部6a〜6dによる気体供給量を増加させる制御を行ったり、硝酸濃度が目標設定範囲の上限より大きい場合には好気槽2a〜2dの硝酸濃度を低下させるように散気部6a〜6dによる気体供給量を減少させる制御を行ったりする。   When there are a plurality of nitric acid meters, the control unit 9 determines that the measured values at at least one of the measured values of nitric acid concentration at the respective installation positions by the supplied nitric acid meters 7a and 7b are out of the set target range. If it does (in FIG. 4B, step ST4: No), it will transfer to step ST5. In step ST5, the control unit 9 supplies a control signal to the gas supply amount control units 10a to 10d to increase the nitric acid concentration in the aerobic tank 2a to 2d when the nitric acid concentration is less than the lower limit of the target setting range. The aeration part is controlled to increase the gas supply amount by the aeration parts 6a to 6d, or to decrease the nitric acid concentration of the aerobic tank 2a to 2d when the nitric acid concentration is larger than the upper limit of the target setting range. Control is performed to reduce the gas supply amount by 6a to 6d.

すなわち、上述した散気部6a〜6dの制御においては、散気部6a〜6dからの気体供給量を一様に増減させたり、散気部6a,6bからの気体供給量を増減させつつ散気部6c,6dからの気体供給量を一定に維持させたりするようなことが可能である。なお、硝酸計7a,7bのそれぞれの設置位置に応じて、増減制御を行う必要のある散気部6a〜6dが選択される。具体的には、硝酸計7aを好気槽2aの下流側または好気槽2bの上流側に設置した場合においては、制御部9は、少なくとも気体供給量制御部10aにより、散気部6aからの気体供給量を制御する。反対に、硝酸計7aを好気槽2cの下流側または好気槽2dの上流側に設置した場合には、制御部9は、少なくとも気体供給量制御部10a〜10cにより、散気部6a〜6cからのそれぞれの気体供給量を制御する。これらの制御については、硝酸計7bに基づく制御の場合においても同様であり、散気部6a〜6dのうちの、少なくとも硝酸計7aより下流側かつ硝酸計7bより上流側における散気部を制御する。さらに、これらの気体供給量の制御において、制御部9は、それぞれの散気部6a〜6dに対して、それぞれの気体供給量制御部10a〜10dごとの独立した制御を行っても良く、互いに同一の制御を行っても良く、散気部6a,6b,6c,6dにおいて複数の散気部を適宜選択して集団化させ、この集団ごとに独立して制御を行っても良い。   That is, in the control of the aeration units 6a to 6d described above, the gas supply amount from the aeration units 6a to 6d is uniformly increased or decreased, or the gas supply amount from the aeration units 6a and 6b is increased or decreased. It is possible to maintain the amount of gas supplied from the air portion 6c, 6d constant. In addition, according to each installation position of nitric acid meter 7a, 7b, the aeration part 6a-6d which needs to perform increase / decrease control is selected. Specifically, when the nitric acid meter 7a is installed on the downstream side of the aerobic tank 2a or on the upstream side of the aerobic tank 2b, at least the gas supply amount control section 10a controls the controller 9 from the aeration section 6a. Control the gas supply of the On the other hand, when the nitric acid meter 7a is installed downstream of the aerobic tank 2c or upstream of the aerobic tank 2d, the controller 9 at least controls the gas supply units 10a to 10c to supply the aeration units 6a to 6c. Control each gas supply from 6c. The same applies to the control based on the nitric acid meter 7b, and controls the aeration part downstream of at least the nitric acid meter 7a and upstream of the nitric acid meter 7b among the aeration units 6a to 6d. Do. Furthermore, in the control of these gas supply amounts, the control unit 9 may perform independent control for each of the gas supply amount control units 10a to 10d with respect to each of the aeration units 6a to 6d. The same control may be performed, and a plurality of aeration sections may be appropriately selected and grouped in the aeration sections 6a, 6b, 6c, and 6d, and control may be performed independently for each group.

具体的には、制御部9は、まず硝酸計7aによって測定されるNO−NおよびNO−Nの合計の硝酸濃度(以下、硝酸濃度)が例えば5.0mg/L以下のあらかじめ設定した目標設定範囲内になるように、気体供給量制御部10a〜10dに制御信号を供給して、それぞれの好気槽2a〜2dにおけるそれぞれの散気部6a〜6dによる気体供給量を制御する。 Specifically, the control unit 9 sets in advance a nitric acid concentration (hereinafter, nitric acid concentration) of the total of NO 2 -N and NO 3 -N measured by the nitric acid meter 7a is, for example, 5.0 mg / L or less in advance. Control signals are supplied to the gas supply amount control units 10a to 10d so as to be within the target setting range, and the gas supply amounts by the respective aeration units 6a to 6d in the respective aerobic tanks 2a to 2d are controlled.

また、制御すべき硝酸濃度の設定目標範囲は、硝酸計7aから水理学的滞留時間(HRT)が例えば1時間下流側になるごとに、反応槽2Aにおいて硝化を促進する場合と硝化を抑制する場合とでそれぞれ、所定の増加量だけ増加して設定される。   Further, the setting target range of the nitric acid concentration to be controlled is the case where nitrification is promoted in the reaction tank 2A and the nitrification is suppressed whenever the hydraulic retention time (HRT) from the nitric acid meter 7a becomes downstream for one hour, for example. In each case, it is set to increase by a predetermined increase amount.

具体的には、反応槽2Aにおいて硝化を促進する場合、制御すべき硝酸濃度の設定目標範囲を、硝酸計7aから水理学的滞留時間が1時間下流側になるごとに、例えば5.0mg/L以上の所定の増加量だけ増加させる。すなわち、硝酸計7bを、硝酸計7aから水理学的滞留時間が1時間となる下流側に設置した場合、硝酸計7bの設置位置における設定目標範囲を例えば10.0mg/L以上の所定範囲として、硝酸計7aの設置位置における設定目標範囲より5.0mg/L以上増加させた値にする。   Specifically, when promoting nitrification in the reaction tank 2A, the setting target range of the nitric acid concentration to be controlled is, for example, 5.0 mg / hour each time the hydraulic residence time from the nitric acid meter 7a is on the downstream side. Increase by a predetermined increase amount of L or more. That is, when the nitric acid meter 7b is installed on the downstream side where the hydraulic residence time is 1 hour from the nitric acid meter 7a, the set target range at the installation position of the nitric acid meter 7b is set to a predetermined range of 10.0 mg / L or more, for example. The target value of the setting position at the installation position of the nitric acid meter 7a is increased by 5.0 mg / L or more.

反対に、反応槽2Aにおいて硝化を抑制する場合、制御すべき硝酸濃度の設定目標範囲は、硝酸計7aから水理学的滞留時間が1時間下流側になるごとに、例えば3.0mg/L以下の所定の増加量だけ増加させる。すなわち、硝酸計7bを硝酸計7aから水理学的滞留時間が1時間となる下流側に設置した場合、硝酸計7bの設置位置における設定目標範囲を例えば8.0mg/L以下の所定値として、硝酸計7aの設置位置における設定目標範囲より3.0mg/L以下増加させた値にする。そして、制御部9は、それぞれの硝酸計7a,7bによる計測値が、それぞれの硝酸計7a,7bにおける上述した設定目標範囲内になるように、散気部6a〜6dによる気体供給量を制御する。   On the other hand, when suppressing nitrification in the reaction tank 2A, the setting target range of the nitric acid concentration to be controlled is, for example, 3.0 mg / L or less every time the hydraulic residence time from the nitric acid meter 7a becomes downstream for 1 hour. Increase by a predetermined amount of increase. That is, when the nitric acid meter 7b is installed on the downstream side where the hydraulic residence time is 1 hour from the nitric acid meter 7a, the set target range at the installation position of the nitric acid meter 7b is set to a predetermined value of, for example, 8.0 mg / L or less. The value is increased by 3.0 mg / L or less from the set target range at the installation position of the nitric acid meter 7a. And control part 9 controls the gas supply quantity by aeration part 6a-6d so that the measurement value by each nitric acid meter 7a, 7b becomes in the setting target range mentioned above in each nitric acid meter 7a, 7b. Do.

特に、硝酸計が複数の場合、硝酸計7aの計測値に応じて、好気槽2a,2b内において脱窒反応と硝化反応とを共存させて適切に制御することができ、硝酸計7bの計測値に応じて、好気槽2c,2c内において脱窒反応と硝化反応とを共存させて適切に制御することができる。これにより、反応槽2Aの内部における脱窒反応を硝化反応とともに制御することが可能となる。また、制御部9が気体供給量を最適に制御していることにより、散気部6a〜6dによる気体供給量を必要十分な量に制御することができ、ブロア8の消費電力量を削減して、窒素含有水処理における消費電力を削減することも可能となる。   In particular, when there are a plurality of nitric acid meters, denitrification reaction and nitrification reaction can be made to coexist in the aerobic tanks 2a and 2b according to the measurement value of the nitric acid meter 7a, and can be appropriately controlled. Depending on the measured value, denitrification reaction and nitrification reaction can be made to coexist in the aerobic tank 2c, 2c and appropriately controlled. This makes it possible to control the denitrification reaction inside the reaction tank 2A together with the nitrification reaction. In addition, since the control unit 9 controls the gas supply amount optimally, the gas supply amount by the aeration units 6a to 6d can be controlled to a necessary and sufficient amount, and the power consumption of the blower 8 is reduced. It is also possible to reduce the power consumption in the nitrogen-containing water treatment.

以上説明した本発明の第1の実施形態によれば、硝酸計がひとつの場合、反応槽2A
を構成する複数の好気槽2a〜2dにおいて、反応槽2Aにおける被処理水の流れ方向に沿った所望の位置、例えば反応槽2Aの中間の位置である好気槽2cの流入部側に硝酸計7を設置し、この硝酸計7による硝酸濃度の測定に基づいて、硝酸濃度が所定範囲に収まるように、少なくとも散気部6a,6b,必要に応じて散気部6a〜6dによって、好気槽2a〜2dにおける気体供給量を制御している。これにより、主に反応槽2Aの比較的前半側である好気槽2a,2bにおいて行われる脱窒反応を硝化反応とともに制御することができ、窒素除去率を向上させることができるとともに、被処理水の有機物負荷や窒素負荷に応じて反応槽2Aに適正な量の酸素を供給することができる。
According to the first embodiment of the present invention described above, in the case of one nitric acid meter, the reaction tank 2A
In a plurality of aerobic tanks 2a to 2d constituting the reaction vessel, the desired position along the flow direction of the water to be treated in the reaction tank 2A, for example, the nitric acid at the inflow part side of the aerobic tank 2c Based on the measurement of the nitric acid concentration by the nitric acid meter 7, a total of 7 are provided, and at least the aeration sections 6a and 6b, and if necessary, the aeration sections 6a to 6d, so that the nitric acid concentration falls within the predetermined range. The gas supply amount in the gas tank 2a-2d is controlled. Thereby, the denitrification reaction performed mainly in the aerobic tank 2a, 2b on the relatively front half side of the reaction tank 2A can be controlled together with the nitrification reaction, and the nitrogen removal rate can be improved, and An appropriate amount of oxygen can be supplied to the reaction tank 2A according to the organic substance load and the nitrogen load of water.

また、図1Aに示されるように、反応槽2Aと同形状の別の反応槽2B、2C・・・があり、同条件で窒素含有水の流入、返送汚泥の返送がある場合、その別の反応槽も反応槽2Aと同条件で気体供給量の制御をして、適正な量の酸素を供給すれば上記反応槽2A(複数の反応槽におけるいずれか1つの反応槽)と同程度の精度で脱窒及び硝化を制御することができる。   In addition, as shown in FIG. 1A, when there is another reaction tank 2B, 2C... Of the same shape as the reaction tank 2A, and there is inflow of nitrogen-containing water under the same conditions and return sludge return, the other The reaction tank also controls the gas supply amount under the same conditions as the reaction tank 2A, and if the appropriate amount of oxygen is supplied, the same accuracy as the above-mentioned reaction tank 2A (any one reaction tank in a plurality of reaction tanks) Can control denitrification and nitrification.

このため、本発明では、複数の反応槽におけるいずれか1つの反応槽2Aにおける前記硝酸計7に対応してDO計88が設けられている。このDO計では、前記硝酸計7の測定値に基づいて散気手段からの散気量の制御に起因する溶存酸素量の変化を測定するものであるから、硝酸計に対応するDO計は、硝酸計7の測定値に基づいて散気手段の制御が行われる区間内の所定位置に設けられていればよい。ただし、反応槽の入口付近の散気手段による散気効果が発現するまでの区間では溶存酸素量はほとんど変化しない。したがって、使用するDO計の測定限界未満の変化しか生じないこれらの区間83は、DO計を設ける意味がなく、当然除かれる。   Therefore, in the present invention, the DO meter 88 is provided corresponding to the nitric acid meter 7 in any one reaction tank 2A in a plurality of reaction tanks. In this DO meter, since the change in the amount of dissolved oxygen resulting from the control of the aeration amount from the aeration means is measured based on the measurement value of the nitric acid meter 7, the DO meter corresponding to the nitric acid meter is It may be provided at a predetermined position in a section where the control of the aeration means is performed based on the measurement value of the nitric acid meter 7. However, the amount of dissolved oxygen hardly changes in the section until the aeration effect by the aeration means near the inlet of the reaction tank appears. Therefore, those sections 83 that cause changes less than the measurement limit of the DO meter used do not make sense of providing the DO meter and are naturally excluded.

前記複数の反応槽におけるいずれか1つの反応槽2A以外の反応槽(2B、2C、・・・)には、反応槽2Aにおける各硝酸計に対応するDO計88と同じ所定位置にDO計が設けられている。
一方、前記複数の反応槽におけるいずれか1つの反応槽2AのDO計88において測定された溶存酸素量は、前記制御部9に送られ、各反応槽(2B、2C・・・)におけるDO計88の目標値に設定される。そして、各反応槽(2B、2C、…)では、各反応槽のDO計88で測定された溶存酸素量が、前記設定された目標と一致するよう当該反応槽の散気手段が制御される。
すなわち、反応槽2BのDO計88の測定値が目標値と一致しなかった場合、反応槽2Aの脱窒確認手段によって制御される散気手段6a〜6dに対応する反応槽2Bの散気手段6a〜6dにより散気量が制御される。
In the reaction vessels (2B, 2C, ...) other than any one reaction vessel 2A in the plurality of reaction vessels, a DO meter is provided at the same predetermined position as the DO meter 88 corresponding to each nitric acid meter in the reaction vessel 2A. It is provided.
On the other hand, the dissolved oxygen amount measured in the DO meter 88 of any one reaction tank 2A in the plurality of reaction tanks is sent to the control unit 9, and the DO meter in each reaction tank (2B, 2C,...) It is set to the target value of 88. Then, in each reaction tank (2B, 2C, ...), the diffusion means of the reaction tank is controlled so that the dissolved oxygen amount measured by the DO meter 88 of each reaction tank matches the set target. .
That is, when the measured value of the DO meter 88 of the reaction tank 2B does not match the target value, the diffusion means of the reaction tank 2B corresponding to the diffusion means 6a to 6d controlled by the denitrification confirmation means of the reaction tank 2A. The aeration amount is controlled by 6a to 6d.

一方、硝酸計が複数の場合、反応槽2Aに複数の硝酸計7a,7bを設置し、これらの硝酸計7a,7bのうちの最も上流側の硝酸計7aを反応槽2Aにおける脱窒領域の制御を行う所望の位置に設置し、この硝酸計7a,7bによる硝酸濃度の測定に基づいて、硝酸濃度が設定目標範囲になるように、好気槽2a〜2dにおける気体供給量を制御している。これにより、主に反応槽2Aの前半部分である好気槽2a,2bにおいて行われる脱窒反応を制御することができ、窒素除去率を向上させることができるとともに、被処理水の有機物負荷や窒素負荷に応じて反応槽2Aに適正な量の酸素を供給することができる。また、反応槽2Aにおいて硝化を促進させる場合と硝化を抑制させる場合とにおいて、複数の硝酸計7a,7bによる硝酸濃度の目標設定値の上限を異ならせていることにより、反応槽2Aにおける脱窒反応および硝化反応をより一層適切に制御することが可能となる。   On the other hand, when there are a plurality of nitric acid meters, a plurality of nitric acid meters 7a and 7b are installed in the reaction tank 2A, and the most upstream nitric acid meter 7a of these nitric acid meters 7a and 7b is a denitrification zone in the reaction tank 2A. It is installed at a desired position to be controlled, and based on the measurement of nitric acid concentration by this nitric acid meter 7a, 7b, the gas supply amount in the aerobic tanks 2a to 2d is controlled so that the nitric acid concentration becomes within the setting target range. There is. Thereby, it is possible to control the denitrification reaction mainly performed in the aerobic tanks 2a and 2b which is the first half of the reaction tank 2A, and it is possible to improve the nitrogen removal rate, and An appropriate amount of oxygen can be supplied to the reaction tank 2A according to the nitrogen load. In addition, denitrification in the reaction tank 2A is achieved by making the upper limit of the target setting value of the nitric acid concentration by the plurality of nitric acid meters 7a and 7b different in the case of promoting nitrification in the reaction tank 2A and the case of suppressing nitrification. It is possible to control the reaction and the nitrification reaction more appropriately.

本発明では、前記反応槽2Aにおける前記硝酸計7a、7bに対応してDO計88、89が設けられている。このDO計では、前記硝酸計7a、7bの測定値に基づいて散気手段からの散気量の制御に起因する溶存酸素量の変化を測定するものであるから、硝酸計に対応するDO計は、各硝酸計7a、7bの測定値に基づいて散気手段の制御が行われる区間(84,85)内の所定位置に設けられていればよい。ただし、反応槽の入口付近の散気手段による散気効果が発現するまでの区間83では溶存酸素量はほとんど変化しない。したがって、使用するDO計の測定限界未満の変化しか生じないこれらの区間83は、DO計を設ける意味がなく、当然除かれる。
前記複数の反応槽におけるいずれか1つの反応槽2A以外の反応槽(2B、2C、・・・)には、反応槽2Aにおける各硝酸計に対応するDO計88、89と同じ所定位置にDO計が設けられている。
一方、前記反応槽2AのDO計88、89において測定された溶存酸素量は、前記制御部9に送られ、各反応槽(2B、2C・・・)におけるDO計88、89の目標値に設定される。そして、各反応槽(2B、2C、…)では、各反応槽のDO計88、89で測定された溶存酸素量が、前記設定された目標と一致するよう当該反応槽の散気手段が制御される。
すなわち、反応槽2BのDO計88の測定値が目標値と一致しなかった場合、反応槽2Aの硝酸計7aの測定値によって制御される散気手段6a、6bに対応する反応槽2Bの散気手段6a、6bにより散気量が制御され、反応槽2BのDO計89の測定値が目標値と一致しなかった場合、反応槽2Aの硝酸計7bの測定値によって制御される散気手段6c、6dに対応する反応槽2Bの散気手段6c、6dにより散気量が制御される。
In the present invention, DO meters 88 and 89 are provided corresponding to the nitric acid meters 7a and 7b in the reaction tank 2A. In this DO meter, the change in the amount of dissolved oxygen resulting from the control of the aeration amount from the aeration means is measured based on the measurement values of the nitric acid meters 7a and 7b. Therefore, the DO meter corresponding to the nitric acid meter May be provided at a predetermined position in the section (84, 85) where the control of the aeration means is performed based on the measurement values of the nitric acid meters 7a, 7b. However, the amount of dissolved oxygen hardly changes in the section 83 until the aeration effect by the aeration means near the inlet of the reaction tank appears. Therefore, those sections 83 that cause changes less than the measurement limit of the DO meter used do not make sense of providing the DO meter and are naturally excluded.
In reaction vessels (2B, 2C,...) Other than any one reaction vessel 2A in the plurality of reaction vessels, DO at the same predetermined position as DO meters 88, 89 corresponding to the respective nitric acid meters in the reaction vessel 2A. A total is provided.
On the other hand, the dissolved oxygen amount measured in the DO totals 88 and 89 of the reaction tank 2A is sent to the control unit 9 and is made the target value of the DO totals 88 and 89 in each reaction tank (2B, 2C,...). It is set. And, in each reaction tank (2B, 2C, ...), the diffusion means of the reaction tank controls so that the dissolved oxygen amount measured by DO meter 88, 89 of each reaction tank matches the set target. Be done.
That is, when the measured value of the DO meter 88 of the reaction tank 2B does not match the target value, the dispersion of the reaction tank 2B corresponding to the diffusion means 6a, 6b controlled by the measured value of the nitric acid meter 7a of the reaction tank 2A. Aeration means controlled by the measurement value of the nitric acid meter 7b of the reaction tank 2A when the aeration amount is controlled by the air means 6a, 6b and the measured value of the DO meter 89 of the reaction tank 2B does not match the target value. The aeration amount is controlled by the aeration means 6c, 6d of the reaction tank 2B corresponding to 6c, 6d.

(第1の実施形態の変形例1)
また、この第1の実施形態においては、反応槽2Aを4槽の好気槽2a〜2dから構成したが、この反応槽2Aを被処理水の流れが生じる単一槽とすることも可能である。図2Bは、第1の実施形態の変形例1としての、反応槽2Aを単一槽から構成した場合の平面図である。図2Bに示すように、散気手段としては、複数の散気部6a〜6dの代わりに単体の散気部6から構成しても良い。この場合においても、硝酸計7、または硝酸計7a,7bの最上流側の硝酸計7aは、被処理水の流れ方向に沿って、脱窒反応を制御する必要がある領域の最下流側の所望の位置に設けられるが、硝酸計がひとつの場合、ここでは反応槽2Aの被処理水の流れ方向に沿ったほぼ中間の位置に設けられる。なお、散気手段を単体の散気部6から構成した場合であっても、散気部6における反応槽2A内での気体の供給部分ごとに気体供給量を制御可能に構成しても良い。また、反応槽2Aを単一槽とした場合においても、散気手段を、上述した第1の実施形態と同様に複数の散気部から構成してもよい。そして、反応槽2Aを単一槽とし、散気手段を複数の散気部から構成する場合においても、複数の散気部を互いに独立して制御しても、互いに同一に制御しても良い。
(Modification 1 of the first embodiment)
Moreover, in the first embodiment, the reaction tank 2A is configured of four aerobic tanks 2a to 2d, but it is also possible to use this reaction tank 2A as a single tank in which the flow of the water to be treated occurs. is there. FIG. 2B is a plan view of a case where the reaction vessel 2A is configured as a single vessel, as a first modification of the first embodiment. As shown in FIG. 2B, the aeration means may be constituted by a single aeration part 6 instead of the plurality of aeration parts 6a to 6d. Also in this case, the nitric acid meter 7 or the nitric acid meter 7a on the most upstream side of the nitric acid meters 7a and 7b is the most downstream side of the area where the denitrification reaction needs to be controlled along the flow direction of the water to be treated. It is provided at a desired position, but in the case of one nitric acid meter, it is provided at a substantially middle position along the flow direction of the water to be treated in the reaction vessel 2A here. Even when the aeration means is constituted by the single aeration unit 6, the gas supply amount may be controlled for each gas supply portion in the reaction tank 2A in the aeration unit 6 . Further, even when the reaction vessel 2A is a single vessel, the aeration means may be constituted of a plurality of aeration parts as in the first embodiment described above. Further, even when the reaction vessel 2A is a single vessel and the aeration means is composed of a plurality of aeration units, the plurality of aeration units may be controlled independently of each other or may be controlled in the same manner. .

(第2の実施形態)
次に、本発明の第2の実施形態による制御装置を備えた窒素含有水の処理装置について説明する。図5は、この第2の実施形態による窒素含有水の処理装置を示す構成図である。
Second Embodiment
Next, an apparatus for treating nitrogen-containing water provided with a control apparatus according to a second embodiment of the present invention will be described. FIG. 5 is a block diagram showing an apparatus for treating nitrogen-containing water according to the second embodiment.

図5に示すように、この第2の実施形態による窒素含有水の処理装置においては、第1の実施形態と異なり、反応槽2Aは、複数段の好気槽ではなく単一の好気槽である硝化脱窒反応槽から構成されている。また、この反応槽2Aの被処理水の流れ方向において所望の位置、すなわち、より上流側の被処理水中の脱窒反応を制御するための所定位置に硝酸計7が設置され、硝酸計が複数の場合は、反応槽2Aの被処理水の流れ方向に沿った少なくとも2箇所の所望の位置に硝酸計7a,7bが設置されている。硝酸計7、7a、7bは、それらの所定位置における硝酸濃度を測定して測定結果を制御部9に供給する。制御部9は、供給されたそれぞれの硝酸濃度に基づいて、それぞれの硝酸計より少なくとも上流側の散気部6a,6b,6c,6dの気体供給量(曝気量)を制御する。なお、制御部9は、反応槽2Aに亘って、散気部6a〜6dを気体供給量が一様になるように制御することも可能であり、散気部6a,6bと散気部6c,6dとをそれぞれ個別に制御することも可能である。   As shown in FIG. 5, in the apparatus for treating nitrogen-containing water according to the second embodiment, unlike the first embodiment, the reaction tank 2A is not a multistage aerobic tank but a single aerobic tank. It consists of a nitrification denitrification reaction tank. In addition, a nitric acid meter 7 is installed at a desired position in the flow direction of the water to be treated in the reaction tank 2A, that is, at a predetermined position for controlling the denitrification reaction in the water to be treated further upstream. In this case, nitric acid meters 7a and 7b are provided at desired two or more desired positions along the flow direction of the water to be treated in the reaction tank 2A. The nitric acid meter 7, 7a, 7b measures the nitric acid concentration at their predetermined position and supplies the measurement result to the control unit 9. The control unit 9 controls the gas supply amount (aeration amount) of the aeration units 6a, 6b, 6c, 6d at least upstream of the respective nitric acid meters based on the supplied nitric acid concentrations. The control unit 9 can also control the aeration units 6a to 6d so that the gas supply amount becomes uniform across the reaction tank 2A, and the aeration units 6a and 6b and the aeration unit 6c , 6d can also be controlled individually.

また、反応槽2Aに対して、被処理水の流れ方向に沿った前段には、嫌気槽12が設けられている。嫌気槽12は、窒素含有水である被処理水が最初沈殿池1を介して流入する槽である。嫌気槽12内には、外部のモータ12aにより回転可能な攪拌部12bが設けられており、この攪拌部12bにより、嫌気槽12内の活性汚泥が攪拌される。なお、下水処理場の構成によっては最初沈殿地1が設けられていない場合もあり、この場合には原水は最初に嫌気槽12に流入する。この嫌気槽12は、嫌気環境下でリン蓄積細菌の作用によって被処理水に対し脱リン処理(嫌気処理)を施すための槽である。そして、嫌気槽12においては、嫌気条件下で被処理水中に含まれる有機物が活性汚泥に取り込まれるとともに、活性汚泥中に含まれるリンが原水中に放出される。   Moreover, the anaerobic tank 12 is provided in the front | former stage along the flow direction of the to-be-processed water with respect to 2 A of reaction tanks. The anaerobic tank 12 is a tank into which the to-be-processed water which is nitrogen containing water flows in via the sedimentation tank 1 initially. In the anaerobic tank 12, the stirring part 12b which can be rotated by the external motor 12a is provided, and the activated sludge in the anaerobic tank 12 is stirred by this stirring part 12b. In addition, depending on the configuration of the sewage treatment plant, the first settling place 1 may not be provided, and in this case, the raw water first flows into the anaerobic tank 12. The anaerobic tank 12 is a tank for performing dephosphorization treatment (anaerobic treatment) on the water to be treated by the action of phosphorus accumulating bacteria under an anaerobic environment. And in the anaerobic tank 12, while the organic substance contained in to-be-processed water is taken in to activated sludge under anaerobic conditions, the phosphorus contained in activated sludge is discharge | released to raw water.

また、固液分離槽3の底部に接続された汚泥返送経路5によって、固液分離槽3の底部に堆積した活性汚泥4bが嫌気槽12に返送される。これにより、嫌気槽12および下流側の反応槽2A内の生物量を所定量に維持することができる。なお、固液分離槽3において生成された活性汚泥4bの残部は余剰汚泥として外部に排出される。その他の構成については、第1の実施形態と同様であるので、説明を省略する。   The activated sludge 4 b deposited on the bottom of the solid-liquid separation tank 3 is returned to the anaerobic tank 12 by the sludge return path 5 connected to the bottom of the solid-liquid separation tank 3. Thereby, the amount of biomass in the anaerobic tank 12 and the reaction tank 2A on the downstream side can be maintained at a predetermined amount. The remaining portion of the activated sludge 4b generated in the solid-liquid separation tank 3 is discharged to the outside as excess sludge. The other configuration is the same as that of the first embodiment, so the description will be omitted.

この第2の実施形態においては、単一槽からなる反応槽2Aの所望の位置に、計測した硝酸濃度を制御部9に供給する硝酸計7、あるいは硝酸計7a,7bを設置していることにより、第1の実施形態と同様の効果を得ることができる。   In the second embodiment, a nitric acid meter 7 or a nitric acid meter 7a or 7b for supplying the measured nitric acid concentration to the control unit 9 is installed at a desired position of the single reaction vessel 2A. Thus, the same effect as that of the first embodiment can be obtained.

(第3の実施形態)
次に、本発明の第3の実施形態による窒素含有水処理装置の構成について説明する。図6は、この第2の実施形態による窒素含有水処理装置の構成を示す模式図である。図6に示すように、本発明の第3の実施形態による窒素含有水処理装置は、最初沈殿池1、順次連通した複数段の好気槽2a,2b,2c,2d(第1槽〜第4槽)からなる反応槽2A、固液分離槽3、汚泥返送経路5、および制御部9を備える。
Third Embodiment
Next, the configuration of a nitrogen-containing water treatment apparatus according to a third embodiment of the present invention will be described. FIG. 6 is a schematic view showing the configuration of the nitrogen-containing water treatment apparatus according to the second embodiment. As shown in FIG. 6, the nitrogen-containing water treatment apparatus according to the third embodiment of the present invention comprises a first settling tank 1, a plurality of stages of aerobic tanks 2a, 2b, 2c, 2d (first tank to A reaction tank 2A consisting of four tanks, a solid-liquid separation tank 3, a sludge return path 5, and a control unit 9 are provided.

この第3の実施形態においては、反応槽2Aにおける被処理水の流れ方向に沿って、複数の硝酸計7a,7b,7c,7dが備えられている。これらの硝酸計7a〜7dはそれぞれ、被処理水の硝酸濃度を測定する硝酸濃度測定手段である。これらの硝酸計7a〜7dのうちの少なくとも1つの硝酸計7aは、反応槽2Aにおける被処理水の流れに沿ったほぼ中間の位置、すなわち好気槽2a〜2dにおける中間位置である好気槽2bの下流で好気槽2cの流入側に備えられる。また、反応槽2Aを構成する複数段の好気槽2a〜2dが図2Aに示すように折り返して配列されている場合であっても、硫酸計7a〜7dのうちの少なくとも1つの硝酸計7aは、反応槽2Aの被処理水の流れに沿ったほぼ中間の位置である好気槽2cの流入位置に備えられる。なお、このような少なくとも1つの硝酸計としては、複数の硝酸計7a〜7dのうちの最も上流側に設ける硝酸計7aを採用するのが望ましいが、中間に設ける硝酸計7b,7cや、最も下流側に設ける硝酸計7dを採用しても良い。   In the third embodiment, a plurality of nitric acid meters 7a, 7b, 7c, 7d are provided along the flow direction of the water to be treated in the reaction tank 2A. These nitric acid meters 7a to 7d are nitric acid concentration measuring means for measuring the nitric acid concentration of the water to be treated. At least one of the nitric acid meters 7a to 7d is at approximately one middle position along the flow of the water to be treated in the reaction tank 2A, that is, at an intermediate position in the aerobic tanks 2a to 2d. It is provided on the inflow side of the aerobic tank 2c downstream of 2b. Further, even when the plurality of stages of aerobic tanks 2a to 2d constituting the reaction tank 2A are arranged in a folded manner as shown in FIG. 2A, at least one nitric acid meter 7a of the sulfuric acid meters 7a to 7d Is provided at the inflow position of the aerobic tank 2c, which is a substantially middle position along the flow of the water to be treated in the reaction tank 2A. In addition, as such at least one nitric acid meter, it is preferable to adopt the nitric acid meter 7a provided on the most upstream side among the plurality of nitric acid meters 7a to 7d, but the nitric acid meter 7b, 7c provided in the middle, the most A nitric acid meter 7d provided downstream may be employed.

そして、図6に示すように、硝酸計7a〜7dは、計測定した硝酸濃度の値を制御部9に供給する。測定された硝酸濃度の値が供給された制御部9は、気体供給量制御部10a〜10dに制御信号を供給し、硝酸濃度の値に基づいて、散気部6a〜6dによる気体供給量を制御する。すなわち、制御部9および気体供給量制御部10a〜10dによって、気体供給量制御手段が構成される。その他の構成については第1の実施形態と同様であるので、説明を省略する。   Then, as shown in FIG. 6, the nitric acid meters 7 a to 7 d supply the measured value of the nitric acid concentration to the control unit 9. The control unit 9 to which the measured nitric acid concentration value is supplied supplies a control signal to the gas supply amount control units 10a to 10d, and the gas supply amount by the aeration unit 6a to 6d is calculated based on the nitric acid concentration value. Control. That is, the control unit 9 and the gas supply control units 10a to 10d constitute a gas supply control unit. The other configuration is the same as that of the first embodiment, so the description will be omitted.

(窒素含有水の処理方法における気体供給量制御)
次に、好気槽2a〜2dにおいて行われる窒素含有水の処理方法における気体供給量の制御について、適宜図4Bを参照しつつ説明する。
(Gas supply control in treatment method of nitrogen-containing water)
Next, control of the gas supply amount in the method of treating nitrogen-containing water performed in the aerobic tanks 2a to 2d will be described with reference to FIG. 4B as appropriate.

すなわち、第1の実施形態と同様に、ステップST1およびステップST2を実行する。その後、硝酸計7a〜7dが、それぞれの設置位置において硝酸濃度を測定する(図4B中、ステップST3)。硝酸計7a〜7dは、それぞれの設置位置における硝酸濃度の計測値を制御部9に供給する。制御部9は、供給された硝酸計7a〜7dによるそれぞれの硝酸濃度の計測値が、それぞれの硝酸計7a〜7dの設置位置ごとにあらかじめ設定した設定目標範囲内であるか否かを判断する(図4B中、ステップST4)。   That is, as in the first embodiment, steps ST1 and ST2 are executed. Thereafter, the nitric acid meters 7a to 7d measure the nitric acid concentration at each installation position (in FIG. 4B, step ST3). The nitric acid meters 7a to 7d supply the measured value of the nitric acid concentration at each installation position to the control unit 9. The control unit 9 determines whether or not the measured values of the nitric acid concentration supplied by the nitric acid meter 7a to 7d are within the set target range previously set for each installation position of the nitric acid meter 7a to 7d. (In FIG. 4B, step ST4).

制御部9に供給された硝酸計7a〜7dによるそれぞれの硝酸濃度の計測値がすべて、あらかじめ設定された設定目標範囲内である場合(図4B中、ステップST4:Yes)には、制御部9は、硝酸計7a〜7dによる硝酸濃度のモニタリングを継続する(図4B中、ステップST3)。   When all the measured values of the nitric acid concentration by the nitric acid meter 7a to 7d supplied to the control unit 9 are all within the preset target range (step ST4 in FIG. 4B: Yes), the control unit 9 is Continue monitoring the nitric acid concentration by the nitric acid meter 7a to 7d (step ST3 in FIG. 4B).

一方、制御部9は、供給される硝酸計7a〜7dによるそれぞれの設置位置(第1〜第4の所定位置)における硝酸濃度の計測値のうち、少なくとも1箇所における計測値が設定目標範囲から外れていると判断する(図4B中、ステップST4:No)と、ステップST5に移行する。ステップST5において制御部9は、気体供給量制御部10a〜10dに制御信号を供給して硝酸濃度が設定目標範囲の下限未満の場合には好気槽2a〜2dの硝酸濃度を増加させるように、散気部6a〜6dによる気体供給量を増加させる制御を行ったり、硝酸濃度が設定目標範囲の上限より大きい場合には好気槽2a〜2dの硝酸濃度を低下させるように散気部6a〜6dによる気体供給量を減少させる制御を行ったりする。   On the other hand, the control unit 9 determines that the measurement value at at least one of the measurement values of the nitric acid concentration at each of the installation positions (first to fourth predetermined positions) by the supplied nitric acid meter 7a to 7d is a set target range. If it judges that it has remove | deviated (step ST4: No in FIG. 4B), it will transfer to step ST5. In step ST5, the control unit 9 supplies a control signal to the gas supply amount control units 10a to 10d to increase the nitric acid concentration of the aerobic tank 2a to 2d when the nitric acid concentration is less than the lower limit of the set target range. , The control to increase the gas supply amount by the aeration units 6a to 6d, or the aeration unit 6a so as to reduce the nitric acid concentration of the aerobic tank 2a to 2d when the nitric acid concentration is larger than the upper limit of the setting target range. Control to decrease the gas supply amount by ~ 6d is performed.

具体的には、制御部9は、まず、第1の所定位置に設置された硝酸計7aによって測定される硝酸濃度が例えば5.0mg/L以下といった、あらかじめ設定目標範囲内になるように、気体供給量制御部10a〜10dに制御信号を供給する。これにより、少なくとも第1の所定位置より上流側の散気部6a,6bの気体供給量を制御し、それぞれの好気槽2a〜2dにおけるそれぞれの脱窒反応および硝化反応を制御する。   Specifically, the control unit 9 first causes the nitric acid concentration measured by the nitric acid meter 7a installed at the first predetermined position to fall within the set target range in advance, for example, 5.0 mg / L or less. The control signal is supplied to the gas supply amount control units 10a to 10d. As a result, the gas supply amount of the aeration units 6a and 6b on the upstream side of at least the first predetermined position is controlled, and the denitrification reaction and the nitrification reaction in each of the aerobic tanks 2a to 2d are controlled.

また、制御すべき硝酸濃度の設定目標範囲は、硝酸計7aから水理学的滞留時間が1時間下流側になるごとに、反応槽2Aにおいて硝化を促進する場合と硝化を抑制する場合とでそれぞれ、所定の増加量だけ増加させて設定される。   In addition, the setting target range of the nitric acid concentration to be controlled is each when promoting nitrification and suppressing nitrification in the reaction tank 2A each time the hydraulic residence time on the downstream side from the nitric acid meter 7a is 1 hour downstream. , Is set to increase by a predetermined increase amount.

具体的には、反応槽2Aにおいて硝化を促進する場合、制御すべき硝酸濃度の設定目標範囲を、硝酸計7aから水理学的滞留時間が1時間下流側になるごとに、例えば5.0mg/L以上の所定の増加量だけ増加させる。すなわち、硝酸計7bを、硝酸計7aから水理学的滞留時間が1時間となる下流側の第2の所定位置に設置した場合、硝酸計7bの第2の所定位置における設定目標範囲の上限を例えば10.0mg/L以上の所定値として、硝酸計7aの設置位置における設定目標範囲の上限より5.0mg/L以上増加させた値にする。   Specifically, when promoting nitrification in the reaction tank 2A, the setting target range of the nitric acid concentration to be controlled is, for example, 5.0 mg / hour each time the hydraulic residence time from the nitric acid meter 7a is on the downstream side. Increase by a predetermined increase amount of L or more. That is, when the nitric acid meter 7b is installed at the second predetermined position on the downstream side where the hydraulic residence time is 1 hour from the nitric acid meter 7a, the upper limit of the setting target range at the second predetermined position of the nitric acid meter 7b is For example, as a predetermined value of 10.0 mg / L or more, the value is increased by 5.0 mg / L or more from the upper limit of the setting target range at the installation position of the nitric acid meter 7a.

反対に、反応槽2Aにおいて硝化を抑制する場合、制御すべき硝酸濃度の設定目標範囲の上限は、硝酸計7aから水理学的滞留時間が1時間下流側になるごとに、例えば3.0mg/L以下の所定の増加量だけ増加させる。すなわち、硝酸計7bを硝酸計7aから水理学的滞留時間が1時間となる下流側に設置した場合、硝酸計7bの設置位置における設定目標範囲の上限を、例えば8.0mg/L以下の所定値として、硝酸計7aの設置位置における設定目標範囲の上限より3.0mg/L以下増加させた値にする。   On the contrary, when suppressing nitrification in the reaction tank 2A, the upper limit of the setting target range of the nitric acid concentration to be controlled is, for example, 3.0 mg / hour each time the hydraulic residence time from the nitric acid meter 7a is on the downstream side. Increase by a predetermined increment below L. That is, when the nitric acid meter 7b is installed on the downstream side where the hydraulic residence time is 1 hour from the nitric acid meter 7a, the upper limit of the setting target range at the installation position of the nitric acid meter 7b is, for example, a predetermined value of 8.0 mg / L or less The value is increased by 3.0 mg / L or less from the upper limit of the setting target range at the installation position of the nitric acid meter 7a.

そして、制御部9は、少なくとも第1の所定位置と第2の所定位置との間の散気部6cの一部からの気体供給量を制御する。   Then, the control unit 9 controls the gas supply amount from a part of the aeration unit 6c between at least the first predetermined position and the second predetermined position.

さらに、硝酸計7cを、硝酸計7bから水理学的滞留時間が1時間となる下流側の第3の所定位置に設置した場合、硝酸計7cの第3の所定位置における設定目標範囲は、硝化促進の場合、硝酸計7bの設定目標範囲から例えば5.0mg/L以上の所定の増加量だけ増加させ、例えば少なくとも15.0mg/L以上の所定値とする。反対に、硝化抑制の場合の硝酸計7cの設置位置における設定目標範囲は、硝酸計7bの設定目標範囲から例えば3.0mg/L以下の所定の増加量だけ増加させ、例えば高々11.0mg/L以下の所定値とする。そして、制御部9は、少なくとも第2の所定位置と第3の所定位置との間の散気部6cの一部からの気体供給量を制御する。   Furthermore, when the nitric acid meter 7c is installed at the third predetermined position on the downstream side where the hydraulic residence time is 1 hour from the nitric acid meter 7b, the setting target range at the third predetermined position of the nitric acid meter 7c is nitrification In the case of acceleration, it is increased by a predetermined increase amount of, for example, 5.0 mg / L or more from the setting target range of the nitric acid meter 7 b, for example, to a predetermined value of at least 15.0 mg / L or more. On the contrary, the setting target range at the installation position of the nitric acid meter 7c in the case of the nitrification suppression is increased from the setting target range of the nitric acid meter 7b by a predetermined increment of 3.0 mg / L or less, for example, at most 11.0 mg / Let L be a predetermined value less than or equal to L. Then, the control unit 9 controls the gas supply amount from a part of the aeration unit 6c between at least the second predetermined position and the third predetermined position.

同様に、硝酸計7dにおいても、硝酸計7cから水理学的滞留時間が1時間となる下流側の第4の所定位置に設置された場合、硝酸計7dの第4の所定位置における設定目標範囲は、硝化促進の場合、硝酸計7cの設定目標範囲から例えば5.0mg/L以上の所定の増加量だけ増加させ、例えば少なくとも20.0mg/L以上の所定値となる。反対に、硝化抑制の場合の硝酸計7dの設置位置における設定目標範囲は、硝酸計7cの設定目標範囲から例えば3.0mg/L以下の所定の増加量だけ増加させた、例えば高々14.0mg/L以下の所定値となる。そして、制御部9は、少なくとも第3の所定位置と第4の所定位置との間の散気部6dからの気体供給量を制御する。   Similarly, in the nitric acid meter 7d, when the nitric acid meter 7c is installed at the fourth predetermined position on the downstream side where the hydraulic residence time is 1 hour, the setting target range at the fourth predetermined position of the nitric acid meter 7d In the case of promotion of nitrification, it is increased by a predetermined increment of, for example, 5.0 mg / L or more from the setting target range of the nitric acid meter 7c, and becomes, for example, a predetermined value of at least 20.0 mg / L. On the other hand, the setting target range at the installation position of the nitric acid meter 7d in the case of nitrification suppression is increased by a predetermined increment of 3.0 mg / L or less from the setting target range of the nitric acid meter 7c, for example, at most 14.0 mg It becomes a predetermined value less than / L. Then, the control unit 9 controls the gas supply amount from the aeration unit 6 d between at least the third predetermined position and the fourth predetermined position.

以上のようにして、制御部9は、それぞれの硝酸計7a〜7dによる計測値が、それぞれの硝酸計7a〜7dにおける上述した設定目標範囲になるように、散気部6a〜6dによる気体供給量を制御する。このように制御部9がそれぞれの気体供給量制御部10a〜10dに制御信号を供給して、それぞれの散気部6a〜6dによる気体供給量を制御することにより、好気槽2a,2b内において、硝化反応を抑制しつつ脱窒反応を共存させて、脱窒反応を適切に制御することができ、反応槽2A内の全域における脱窒反応を硝化反応とともに制御することが可能となる。また、硝酸計7aによって硝化反応により硝化されて生じた硝酸に対する所望割合の脱窒が確認できない場合に、被処理水の流れ方向に沿った硝酸計7aより少なくとも上流側の散気部6a,6bによる気体の供給量を個別または一様に増減制御する。同様に、硝酸計7b,7c,7dによって硝酸に対する所望割合の脱窒が確認できない場合に、少なくともそれぞれの硝酸計7b,7c,7dの上流側のそれぞれ硝酸計7a,7b,7cとの間の散気部6c,6dによる気体の供給量を個別または一様に増減制御する。このように制御部9によって気体供給量を制御することによって、反応槽2A内の硝酸計7aより上流側における被処理水において、硝化反応を抑制しつつ脱窒反応を進行させることができるとともに、硝酸計7aより下流側における被処理水に対しても脱窒反応および硝化反応を制御することができる。また、制御部9が気体供給量を最適に制御していることにより、散気部6a〜6dによる気体供給量を必要十分な量に制御することができ、ブロア8の消費電力量を削減して、窒素含有水処理における消費電力を削減することも可能となる。   As described above, the control unit 9 supplies the gas by the aeration units 6a to 6d so that the measured values by the nitric acid meters 7a to 7d fall within the above-mentioned set target ranges in the nitric acid meters 7a to 7d. Control the quantity. As described above, the control unit 9 supplies control signals to the respective gas supply amount control units 10a to 10d, and controls the gas supply amounts by the respective aeration units 6a to 6d, whereby the inside of the aerobic tanks 2a and 2b is provided. In this case, the denitrification reaction can be made to coexist while suppressing the nitrification reaction, and the denitrification reaction can be appropriately controlled, and the denitrification reaction in the entire region in the reaction tank 2A can be controlled together with the nitrification reaction. In addition, when denitrification of a desired ratio to the nitric acid generated by the nitrification reaction can not be confirmed by the nitric acid meter 7a, the aeration part 6a, 6b at least upstream of the nitric acid meter 7a along the flow direction of the water to be treated Increase or decrease the gas supply amount individually or uniformly. Similarly, when denitrification of a desired ratio to nitric acid can not be confirmed by the nitric acid meter 7b, 7c, 7d, at least the nitric acid meter 7a, 7b, 7c upstream of at least each nitric acid meter 7b, 7c, 7d. The amount of gas supplied by the aeration units 6c and 6d is controlled to increase or decrease individually or uniformly. By controlling the gas supply amount by the control unit 9 in this manner, it is possible to allow the denitrification reaction to proceed while suppressing the nitrification reaction in the water to be treated on the upstream side of the nitric acid meter 7a in the reaction tank 2A. The denitrification reaction and the nitrification reaction can also be controlled for the water to be treated downstream of the nitric acid meter 7a. In addition, since the control unit 9 controls the gas supply amount optimally, the gas supply amount by the aeration units 6a to 6d can be controlled to a necessary and sufficient amount, and the power consumption of the blower 8 is reduced. It is also possible to reduce the power consumption in the nitrogen-containing water treatment.

本発明の第3の実施形態によれば、反応槽2Aに硝酸計7a〜7dを設置していることにより、第1の実施形態と同様の効果を得ることができるとともに、反応槽2Aに、第1の実施形態の場合に比してより多い4箇所の、第1〜第4の所定位置における硝酸濃度を測定する硝酸計7a〜7dを設置し、これらの硝酸計7a〜7dのうちの最上流側の硝酸計7aを、反応槽2Aにおいて、脱窒反応を制御する所望位置である好気槽2cの流入部側に設置し、さらに、これらの硝酸計7a〜7dによる硝酸濃度の測定に基づいて、硝酸濃度が設定目標範囲内になるように、好気槽2a〜2dにおける気体供給量を制御している。これにより、主に反応槽2Aにおいて行われる脱窒反応をより細かく制御することができ、窒素除去率を向上させることができるとともに、被処理水の有機物負荷や窒素負荷に応じて反応槽2Aに適正な量の酸素を供給することができる。また、反応槽2Aにおいて脱窒反応を適切に生成させつつ、硝化を促進させる場合と硝化を抑制させる場合とにおいて、複数の硝酸計7a〜7dによる硝酸濃度の目標設定範囲の上限を異ならせていることにより、第1の実施形態に比して、反応槽2Aにおける硝化反応をより一層適切に制御することが可能となる。その他の構成については第1の実施形態と同様であるので、説明を省略する。   According to the third embodiment of the present invention, by installing the nitric acid meters 7a to 7d in the reaction tank 2A, the same effect as that of the first embodiment can be obtained, and the reaction tank 2A can be obtained. Nitric acid meters 7a to 7d for measuring the nitric acid concentration at the first to fourth predetermined positions, which are more than four in the first embodiment, are installed, and one of these nitric acid meters 7a to 7d is installed. The most upstream nitric acid meter 7a is installed in the reaction tank 2A on the inflow side of the aerobic tank 2c which is a desired position for controlling denitrification reaction, and further, the measurement of nitric acid concentration by these nitric acid meters 7a to 7d The amount of gas supplied to the aerobic tanks 2a to 2d is controlled so that the nitric acid concentration falls within the set target range. As a result, the denitrifying reaction mainly performed in the reaction tank 2A can be controlled more finely, and the nitrogen removal rate can be improved, and the reaction tank 2A can be adjusted according to the organic substance load and nitrogen load of the water to be treated. An appropriate amount of oxygen can be supplied. Further, the upper limit of the target setting range of the nitric acid concentration by the plurality of nitric acid meters 7a to 7d is made different between the case where nitrification is promoted and the case where nitrification is suppressed while appropriately generating denitrification reaction in reaction tank 2A. As compared with the first embodiment, the nitrification reaction in the reaction tank 2A can be more appropriately controlled. The other configuration is the same as that of the first embodiment, so the description will be omitted.

(第4の実施形態)
次に、本発明の第4の実施形態による窒素含有水処理装置について説明する。図7は、この第4の実施形態による窒素含有水処理装置の構成を示す。
Fourth Embodiment
Next, a nitrogen-containing water treatment apparatus according to a fourth embodiment of the present invention will be described. FIG. 7 shows the configuration of the nitrogen-containing water treatment apparatus according to the fourth embodiment.

(窒素含有水処理装置の構成)
図7に示すように、この第4の実施形態による窒素含有水処理装置においては、上述した第3の実施形態におけると異なり、1つの硝酸計7に、反応槽2Aの複数箇所における処理水をそれぞれ採取するための複数の配管が、相互で切り替え可能に接続されている。それぞれの配管には、バルブ11a,11b,11c,11dがそれぞれ設けられている。そして、これらのバルブ11a〜11dの開閉によって、硝酸計7に供給する被処理水を反応槽2A内の位置ごとに切り換えるようにする。
(Configuration of nitrogen-containing water treatment system)
As shown in FIG. 7, in the nitrogen-containing water treatment apparatus according to the fourth embodiment, unlike in the third embodiment described above, treated water at a plurality of locations of the reaction tank 2A is contained in one nitric acid meter 7. A plurality of pipes for each sampling are switchably connected to each other. Valves 11a, 11b, 11c and 11d are respectively provided in the respective pipes. Then, the water to be treated supplied to the nitric acid meter 7 is switched at each position in the reaction tank 2A by opening and closing the valves 11a to 11d.

また、硝酸計7は、バルブ11a〜11dのうちで開いたバルブに応じて、反応槽2Aの複数箇所における被処理水の硝酸濃度を独立に測定可能に構成されているとともに、硝酸濃度の値を制御部9に供給可能に構成されている。これによって、第1の実施形態におけると異なり、硝酸計7を1台設置するのみで、反応槽2Aの複数箇所における被処理水の硝酸濃度を測定することができる。なお、硝酸計7に被処理水を供給する方法以外にも、計測用槽を設け、この計測用槽に反応槽2Aのそれぞれの位置の被処理水を供給して、硝酸計7により硝酸濃度を計測することも可能である。その他の構成および気体供給量の制御については、第1の実施形態におけると同様であるので、その説明を省略する。   In addition, the nitric acid meter 7 is configured to be capable of independently measuring the nitric acid concentration of the water to be treated in multiple places of the reaction tank 2A according to the valve opened among the valves 11a to 11d, and the value of nitric acid concentration Can be supplied to the control unit 9. By this, unlike in the first embodiment, the nitric acid concentration of the water to be treated in a plurality of places of the reaction tank 2A can be measured only by installing one nitric acid meter 7. In addition to the method of supplying the water to be treated to the nitric acid meter 7, a tank for measurement is provided, the water to be treated at each position of the reaction tank 2A is supplied to the tank for measurement, and the nitric acid concentration is measured by the nitric acid meter 7. It is also possible to measure The other configurations and control of the gas supply amount are the same as in the first embodiment, and thus the description thereof is omitted.

第4の実施形態においても、反応槽2Aの複数箇所において被処理水の硝酸濃度を測定することができるので、第2の実施形態と同様の効果を得ることができる。   Also in the fourth embodiment, since the nitric acid concentration of the water to be treated can be measured at a plurality of locations in the reaction tank 2A, the same effect as that of the second embodiment can be obtained.

(第5の実施形態)
次に、本発明の第5の実施形態による制御装置を備えた窒素含有水の処理装置について説明する。図8は、第5の実施形態による窒素含有水の処理装置における嫌気槽12および反応槽2Aを示す斜視透過図である。図8において、以下の説明のために、嫌気槽12および反応槽2Aにおける図面手前側の側壁は記載していない。また、図9Aおよび図9Bはそれぞれ、図8におけるA−A線およびB−B線に沿った反応槽の断面図である。なお、硝酸計が一つの場合、図9Bに示される硝酸計7bは存在しない。
Fifth Embodiment
Next, an apparatus for treating nitrogen-containing water provided with a controller according to a fifth embodiment of the present invention will be described. FIG. 8 is a perspective transparent view showing the anaerobic tank 12 and the reaction tank 2A in the apparatus for treating nitrogen-containing water according to the fifth embodiment. In FIG. 8, the side wall on the front side of the drawing in the anaerobic tank 12 and the reaction tank 2A is not described for the following description. 9A and 9B are cross-sectional views of the reaction vessel taken along the lines A-A and B-B in FIG. 8, respectively. In addition, when the nitric acid meter is one, the nitric acid meter 7b shown by FIG. 9B does not exist.

図8に示すように、この反応槽2Aは、単一槽から構成されているとともに、被処理水の流れ方向に沿った反応槽2Aの前段には嫌気槽12が設けられている。嫌気槽12には一方の側から原水が流入され、嫌気槽12において嫌気処理された被処理水が、他方の側から反応槽2Aに供給される。   As shown in FIG. 8, the reaction tank 2A is composed of a single tank, and an anaerobic tank 12 is provided at the front stage of the reaction tank 2A along the flow direction of the water to be treated. Raw water flows into the anaerobic tank 12 from one side, and treated water anaerobically treated in the anaerobic tank 12 is supplied to the reaction tank 2A from the other side.

また、反応槽2Aの内部には、反応槽2Aの高さ方向に沿ったほぼ中間に板形状の散気部6が設けられている。散気部6は、反応槽2Aの長手方向である被処理水の流れ方向に沿った所定の区画ごとに、気体供給量制御部10によって気体の供給量を調整可能に構成されている。   Moreover, the plate-shaped aeration part 6 is provided in the inside of the reaction tank 2A substantially in the middle along the height direction of the reaction tank 2A. The aeration unit 6 is configured to be able to adjust the gas supply amount by the gas supply amount control unit 10 for each predetermined section along the flow direction of the water to be treated which is the longitudinal direction of the reaction tank 2A.

また、反応槽2Aにおける被処理水の流れ方向、すなわち反応槽2Aの長手方向に沿った所定位置に硝酸濃度を計測可能な硝酸計7、あるいは硝酸計7a,7bが設置されている。硝酸計が一つの場合、硝酸計7は計測した硝酸濃度を制御部9に供給する。制御部9は、供給された硝酸濃度の計測値に応じ、所定のプログラムに従って、気体供給量制御部10に制御信号を供給する。気体供給量制御部10は、供給された制御信号に応じて、散気部6の全体に亘って一様になるように気体供給量を制御したり、散気部6の所定の区画ごとに気体供給量を制御したりする。硝酸計が複数の場合、硝酸計7a,7bは計測した硝酸濃度を制御部9に供給する。制御部は、供給された硝酸濃度の計測値に応じ、所定のプログラムにしたがって、気体供給量制御部10に制御信号を供給する。気体供給量制御部10は、供給された制御信号に応じて、散気部6の所定の区画ごとの気体供給量を制御する。   A nitric acid meter 7 or nitric acid meters 7a and 7b capable of measuring nitric acid concentration is installed at a predetermined position along the flow direction of the water to be treated in the reaction tank 2A, that is, the longitudinal direction of the reaction tank 2A. When there is one nitric acid meter, the nitric acid meter 7 supplies the measured nitric acid concentration to the control unit 9. The control unit 9 supplies a control signal to the gas supply amount control unit 10 according to a predetermined program according to the supplied measurement value of the nitric acid concentration. The gas supply amount control unit 10 controls the gas supply amount so as to be uniform throughout the aeration portion 6 in accordance with the supplied control signal, or for each predetermined section of the aeration portion 6. Control the gas supply rate. When there are a plurality of nitric acid meters, the nitric acid meters 7a and 7b supply the measured nitric acid concentration to the control unit 9. The control unit supplies a control signal to the gas supply control unit 10 according to a predetermined program in accordance with the supplied measurement value of the nitric acid concentration. The gas supply amount control unit 10 controls the gas supply amount for each predetermined section of the aeration unit 6 according to the supplied control signal.

また、反応槽2A内には、その中央部分に、反応槽2Aの長手方向に沿って仕切り板13が設けられている。仕切り板13は、その厚さ方向が反応槽2Aの底面とほぼ平行になるように設置されている。換言すると、仕切り板13は、その面が反応槽2Aの底面に対して垂直になるように設置されている。この仕切り板13によって、反応槽2Aの内部は、仕切り板13の上方部分および下方部分が開いて部分的に仕切られた状態になっている。   Moreover, in the reaction tank 2A, the partition plate 13 is provided in the center part along the longitudinal direction of the reaction tank 2A. The partition plate 13 is installed such that the thickness direction thereof is substantially parallel to the bottom surface of the reaction vessel 2A. In other words, the partition plate 13 is installed so that its surface is perpendicular to the bottom of the reaction vessel 2A. The partition plate 13 opens the upper portion and the lower portion of the partition plate 13 so that the inside of the reaction vessel 2A is partially partitioned.

以上のように構成された反応槽2A内において、被処理水を流しつつ散気部6から被処理水に気体を供給して曝気を行うと、曝気された気体は、仕切り板13に沿って上昇して、仕切り板13に仕切られた状態で反対面側に旋回する。これとともに、被処理水は、反応槽2Aの長手方向に沿って流動しているため、曝気された気体は図6中矢印Cのように螺旋状の旋回流を形成しながら、被処理水に溶存していく。同様にして、被処理水は反応槽2Aの長手方向の軸をほぼ中心とするような螺旋状に旋回しつつ、反応槽2Aの長手方向に沿って進行する。なお、散気部6からの気体供給量は、被処理水の流入量や反応槽2Aの大きさや形状などの条件に応じて適宜設定される。   In the reaction tank 2A configured as described above, when aeration is performed by supplying a gas from the aeration unit 6 to the water to be treated while flowing the water to be treated, the aerated gas flows along the partition plate 13. Ascends and turns to the opposite surface side in a state of being divided by the partition plate 13. At the same time, since the water to be treated flows along the longitudinal direction of the reaction tank 2A, the aerated gas forms a spiral swirling flow as shown by arrow C in FIG. It will be dissolved. Similarly, the water to be treated travels along the longitudinal direction of the reaction vessel 2A while swirling in a spiral shape substantially centered on the longitudinal axis of the reaction vessel 2A. In addition, the gas supply amount from the aeration part 6 is suitably set according to conditions, such as the inflow of to-be-processed water, and the magnitude | size and shape of reaction tank 2A.

そして、硝酸計7、7aが設けられた位置におけるA−A線に沿った断面図である図9A中の矢印Cに示すように、散気部6から散気される空気などの酸素を含有した気体は被処理水とともに仕切り板13の上方部分の間隙を通過して反対側に旋回する。また、空気の旋回に随伴する被処理水は、仕切り板13の下方部分の間隙を通過して、散気部6の下方に到達する。この場合、被処理水の旋回流の流れ方向(矢印C)に沿って、上流側の好気領域31と下流側の無酸素嫌気領域32とが共存状態となる。好気領域31は、好気性の硝化菌によって硝化反応が促進されて硝化領域を構成する一方で、無酸素嫌気領域32は、嫌気性の脱窒菌によって脱窒反応が促進されて脱窒領域を構成する。   Then, as shown by arrow C in FIG. 9A, which is a cross-sectional view taken along the line A-A at a position where the nitric acid meter 7, 7a is provided, oxygen such as air diffused from the aeration unit 6 is contained. The resulting gas passes through the gap in the upper portion of the partition plate 13 together with the water to be treated and swirls to the opposite side. Further, the water to be treated accompanying the swirl of the air passes through the gap of the lower portion of the partition plate 13 and reaches the lower side of the aeration unit 6. In this case, along the flow direction (arrow C) of the swirling flow of the water to be treated, the aerobic area 31 on the upstream side and the anoxic anaerobic area 32 on the downstream side coexist. In the aerobic area 31, the nitrification reaction is promoted by the aerobic nitrifying bacteria to constitute a nitrification area, while in the anoxic anaerobic area 32, the denitrification reaction is promoted by the anaerobic denitrifying bacteria to form the denitrification area. Configure.

そして、図9Aに示すように、反応槽2Aの長手方向に沿った上流側においては、被処理水には、図9Aに示す位置より上流側の散気部6からの気体供給量に基づいた酸素が溶存している。これに対し、図9Bに示す位置においては、さらに反応槽2Aの長手方向に沿った下流側であるため、図9Aに示す位置に比して、溶存酸素量が多くなっている。そのため、図9Bに示す無酸素嫌気領域32は、図9Aに示す無酸素嫌気領域32に比して、その領域が縮小している。すなわち、被処理水は、反応槽2Aの長手方向に沿って上流側から下流側に向かって流れることから、下流に行くほど酸素との接触量が増加するので、溶存酸素が増加して好気領域31が拡大する。これにより、この反応槽2A内の被処理水においては、上流側から下流側になるに従って脱窒領域は減少傾向になる。一方、硝化領域は、上流側から下流側になるに従って増加傾向になる。   And as shown to FIG. 9A, in the upstream along the longitudinal direction of 2 A of reaction tanks, to-be-processed water was based on the gas supply_amount | feed_rate from the aeration part 6 more upstream than the position shown to FIG. 9A. Oxygen is dissolved. On the other hand, in the position shown to FIG. 9B, since it is the downstream side along the longitudinal direction of 2 A of reaction tanks, compared with the position shown to FIG. 9A, dissolved oxygen amount is large. Therefore, the area of the anoxic anaerobic area 32 shown in FIG. 9B is smaller than that of the anoxic anaerobic area 32 shown in FIG. 9A. That is, since the water to be treated flows from the upstream side to the downstream side along the longitudinal direction of the reaction tank 2A, the amount of contact with oxygen increases as it goes downstream, so the dissolved oxygen increases and the aerobic The area 31 is expanded. Thereby, in the water to be treated in the reaction tank 2A, the denitrification region tends to decrease as going from the upstream side to the downstream side. On the other hand, the nitrification region tends to increase as going from upstream to downstream.

以上のことから、反応槽2Aの上流側においては、硝化反応が共存しつつも脱窒反応が促進され、下流側においては脱窒反応が生じつつも硝化反応が促進される。これにより、図3A,図3Bに示すように、反応槽2Aの上流側では、硝化反応が行われてもすぐに脱窒反応が進行するため、硝酸系窒素(NO−N)や亜硝酸系窒素(NO−N)はほとんど現出しない。そして、反応槽2Aの下流側に進むに従って、脱窒反応によって全窒素濃度が減少しつつも、硝化反応が促進されることによって硝酸濃度が増加する。なお、その他の構成については、第1および第2の実施形態と同様であるので、説明を省略する。 From the above, on the upstream side of the reaction tank 2A, the denitrification reaction is promoted while the nitrification reaction coexists, and on the downstream side, the nitrification reaction is promoted while the denitrification reaction occurs. Thereby, as shown in FIG. 3A and FIG. 3B, since the denitrification reaction progresses immediately after the nitrification reaction is performed on the upstream side of the reaction tank 2A, nitrate nitrogen (NO 3 -N) or nitrite system nitrogen (nO 2 -N) is hardly emerge. Then, as proceeding to the downstream side of the reaction tank 2A, the nitric acid concentration is increased by promoting the nitrification reaction while reducing the total nitrogen concentration by the denitrification reaction. The other configurations are the same as those of the first and second embodiments, and thus the description thereof is omitted.

以上説明したこの第5の実施形態によれば、反応槽2Aの内部において、仕切り板13を設けつつ散気部6からの気体の供給によって、被処理水の旋回流を形成していることにより、硝化反応と脱窒反応とを制御良く共存させつつ、上流側において硝化反応による硝酸の現出をより効率良く抑制できるとともに、下流側において硝化反応を促進できるので、硝酸計7によって硝酸濃度を計測しつつ、この硝酸濃度が設定範囲内に納まるように散気部6を制御することにより、反応槽2Aにおける脱窒反応と硝化反応とをより正確に制御することが可能となる。   According to the fifth embodiment described above, the swirl flow of the water to be treated is formed by supplying the gas from the aeration unit 6 while providing the partition plate 13 inside the reaction tank 2A. The nitric acid concentration can be controlled by the nitric acid meter 7 because nitric acid development by the nitrification reaction can be more efficiently suppressed on the upstream side and the nitrification reaction can be promoted on the downstream side while making the nitrification reaction and denitrification reaction coexist in a controlled manner. By controlling the aeration unit 6 so that the nitric acid concentration falls within the set range while measuring, it is possible to more accurately control the denitrification reaction and the nitrification reaction in the reaction tank 2A.

(第6の実施形態)
次に、本発明の第6の実施形態による制御装置を備えた窒素含有水の処理装置について説明する。図10は、この第6の実施形態による窒素含有水の処理装置を示す構成図である。
Sixth Embodiment
Next, an apparatus for treating nitrogen-containing water provided with a control apparatus according to a sixth embodiment of the present invention will be described. FIG. 10 is a block diagram showing an apparatus for treating nitrogen-containing water according to the sixth embodiment.

図10に示すように、この第6の実施形態による窒素含有水の処理装置においては、第2の実施形態と異なり、複数箇所、具体的は例えば第1,第2,第3,および第4の所定位置の4箇所にそれぞれ硝酸計7a〜7dが設けられている。具体的には、硝酸計7a〜7dが第3の実施形態のように反応槽2Aにおける被処理水の流れ方向に沿った後半部分ではなく、反応槽2Aのほぼ全域に亘って配置されている。なお、全域に亘る配置においては、硝酸計7a〜7dを互いに均等な間隔で並べても、不均等な間隔で並べても良い。   As shown in FIG. 10, in the apparatus for treating nitrogen-containing water according to the sixth embodiment, unlike the second embodiment, a plurality of places, specifically, for example, the first, second, third, and fourth, are provided. Nitric acid meters 7a to 7d are respectively provided at four places of the predetermined position of. Specifically, as in the third embodiment, the nitric acid meters 7a to 7d are disposed over substantially the entire area of the reaction tank 2A, not the latter half portion along the flow direction of the water to be treated in the reaction tank 2A. . In addition, in arrangement | positioning over the whole area, even if nitric acid meter 7a-7d is put in order by equal intervals mutually, you may arrange in unequal intervals.

この第6の実施形態においては、制御部9は、硝酸計7aによる硝酸濃度の計測値に基づいて、散気部6aからの気体の供給量を制御する。また、制御部9は、硝酸計7bによる硝酸濃度の計測値に基づいて、散気部6bからの気体の供給量を制御する。同様に、制御部9は、硝酸計7c,7dによるそれぞれの硝酸濃度の計測値に基づいて、散気部6c,6dのそれぞれからの気体の供給量を制御する。その他の構成においては、第2および第3の実施形態と同様であるので、説明を省略する。   In the sixth embodiment, the control unit 9 controls the supply amount of gas from the aeration unit 6a based on the measurement value of the nitric acid concentration by the nitric acid meter 7a. Moreover, the control part 9 controls the supply amount of the gas from the aeration part 6b based on the measured value of the nitric acid concentration by the nitric acid meter 7b. Similarly, the control unit 9 controls the amount of gas supplied from each of the aeration units 6c and 6d based on the measurement value of the nitric acid concentration by the nitric acid meter 7c and 7d. The other configurations are the same as those of the second and third embodiments, and thus the description thereof is omitted.

この第6の実施形態においては、第2の実施形態に比して硝酸計の設置箇所を増加させていることにより、第2の実施形態の場合に比して、反応槽2A内の硝化反応および脱窒反応をより細かく制御することができる。さらに、第3の実施形態に比して反応槽2Aにおける硝酸計の設置箇所をより広範にしていることにより、反応槽2Aの全域に亘って硝化反応および脱窒反応をより詳細に制御することが可能になる。   In the sixth embodiment, the nitrification reaction in the reaction tank 2A is made as compared with the second embodiment by increasing the installation location of the nitric acid meter as compared with the second embodiment. And the denitrification reaction can be controlled more finely. Furthermore, the nitrification reaction and the denitrification reaction are controlled in more detail over the entire area of the reaction tank 2A by making the installation location of the nitric acid meter in the reaction tank 2A wider than in the third embodiment. Becomes possible.

(反応槽および散気部の変形例)
次に、上述した本発明の各実施形態における反応槽2Aおよび内部の散気部6に関する変形例について説明する。
(Modification of reaction tank and aeration part)
Next, modified examples relating to the reaction tank 2A and the internal aeration unit 6 in each embodiment of the present invention described above will be described.

(変形例2)
図11A〜図11Fは、変形例2による反応槽2A,2B,2C,・・・・を示す構成図である。図11Aに示すように、変形例2による反応槽2A(2B,2C,・・・・も同じ)においては、第2の実施形態と同様に、反応槽2Aの内部に複数の散気部16a,16b,16cが設けられている。これらの散気部16a〜16cはそれぞれ、制御部9(図11A中、図示せず)からの制御信号に基づいて、気体供給量を制御する気体供給量制御部19a,19b,19cにより制御される。また、第2の実施形態とは異なり、それぞれの散気部16a〜16cの間は、所定間隔に隔てて設けられている。すなわち、反応槽2Aの全体としては気体が供給されている一方、被処理水の流れ方向に沿って局所的に、気体が供給される領域と気体が供給されない領域とが順次、交互または繰り返して形成される。これにより、反応槽2A内において、好気性細菌の硝化菌と通性嫌気性の脱窒菌とを共存させつつ、それらの活動を交互に活発化させることができるので、第3の実施形態において説明した反応槽2Aのように、反応槽2A内において、硝化反応が生じる領域と脱窒反応が生じる領域とを制御性良く形成することができる。
(Modification 2)
11A to 11F are configuration diagrams showing reaction vessels 2A, 2B, 2C,... According to the second modification. As shown in FIG. 11A, in the reaction vessel 2A according to the modification 2 (the same applies to 2B, 2C,...), As in the second embodiment, a plurality of aeration portions 16a inside the reaction vessel 2A. , 16b, 16c are provided. These aeration units 16a to 16c are respectively controlled by gas supply amount control units 19a, 19b, and 19c that control the gas supply amount based on a control signal from control unit 9 (not shown in FIG. 11A). Ru. Further, unlike the second embodiment, the respective aeration units 16a to 16c are provided at predetermined intervals. That is, while the gas is supplied as the whole of the reaction tank 2A, the area to which the gas is supplied and the area to which the gas is not supplied are alternately and repeatedly sequentially or repeatedly along the flow direction of the water to be treated. It is formed. Since this makes it possible to alternately activate the activities of nitrifying bacteria of the aerobic bacteria and denitrifying bacteria of the facultative anaerobe in the reaction tank 2A, the explanation will be made in the third embodiment. As in the reaction tank 2A, in the reaction tank 2A, a region in which a nitrification reaction occurs and a region in which a denitrification reaction occurs can be formed with good controllability.

(変形例3)
また、図11Bは、変形例3による反応槽2Aを示す構成図である。図11Bに示すように、変形例3による反応槽2Aにおいては、第2の実施形態におけると同様に、反応槽2Aの内部に複数の散気部26a,26b,26c,26d,26eが設けられている。そして、これらの散気部26a〜26eはそれぞれ、制御部9(図11B中、図示せず)からの制御信号に基づいて、気体供給量を制御する気体供給量制御部29a,29b,29c,29d,29eにより制御される。また、第2の実施形態とは異なり、制御部9により、複数の散気部26a〜26eに対して選択的に、曝気を行う散気部と曝気を行わない散気部とが設定される。なお、図11Bにおいては、散気部26a,26c,26eが曝気を行うとともに、散気部26b,26dが曝気を行わないように制御される。そして、これらの散気部26a〜26eのうちの曝気を行う散気部と曝気を行わない散気部とは、反応槽2A内を流れる被処理水の水質性状に応じて適宜選択される。すなわち、反応槽2Aの全体としては気体が供給されている一方、被処理水の流れ方向に沿って局所的に、気体が供給される領域と気体が供給されない領域とが順次、交互または繰り返して形成される。これにより、反応槽2A内において、好気性細菌の硝化菌と通性嫌気性の脱窒菌とを共存させつつ、それらの活動を順次、交互、または繰り返して活発化させることができるので、第3の実施形態による反応槽2Aと同様に、反応槽2A内において、硝化反応が生じる領域と脱窒反応が生じる領域とを制御性良く形成することができる。
(Modification 3)
11B is a block diagram showing a reaction tank 2A according to a third modification. As shown in FIG. 11B, in the reaction vessel 2A according to the third modification, as in the second embodiment, a plurality of aeration units 26a, 26b, 26c, 26d and 26e are provided inside the reaction vessel 2A. ing. These aeration units 26a to 26e control the gas supply amount based on the control signal from control unit 9 (not shown in FIG. 11B), and supply amount control units 29a, 29b, 29c, It is controlled by 29d and 29e. Further, unlike the second embodiment, the control unit 9 selectively sets the aeration unit performing aeration and the aeration unit performing no aeration on the plurality of aeration units 26a to 26e. . In FIG. 11B, the aeration units 26a, 26c, and 26e perform aeration, and the aeration units 26b and 26d are controlled so as not to perform aeration. And the aeration part which performs aeration among these aeration parts 26a-26e and the aeration part which does not perform aeration are suitably selected according to the water quality | type property of the to-be-processed water which flows through the inside of reaction tank 2A. That is, while the gas is supplied as the whole of the reaction tank 2A, the area to which the gas is supplied and the area to which the gas is not supplied are alternately and repeatedly sequentially or repeatedly along the flow direction of the water to be treated. It is formed. As a result, while coexisting aerobic bacteria nitrifying bacteria and facultative anaerobic denitrifying bacteria in the reaction tank 2A, these activities can be sequentially alternately or repeatedly activated. Similar to the reaction vessel 2A according to the embodiment, in the reaction vessel 2A, the region where the nitrification reaction occurs and the region where the denitrification reaction occur can be formed with good controllability.

(変形例4)
また、図11Cは、変形例4による反応槽2Aを示す構成図である。図11Cに示すように、変形例4による反応槽2Aにおいては、第1の実施形態における変形例1と同様に、反応槽2Aの内部に単体の散気部36が設けられている。そして、この散気部36は、制御部9(図11C中、図示せず)からの制御信号に基づいて、気体供給量を制御する気体供給量制御部39により制御される。また、変形例3とは異なり、制御部9により、散気部36は、時間の経過に従って、順次、交互、または繰り返して曝気を行ったり曝気を行わなかったりするように制御される。
(Modification 4)
11C is a block diagram showing a reaction vessel 2A according to a fourth modification. As shown in FIG. 11C, in the reaction vessel 2A according to the fourth modification, a single aeration unit 36 is provided inside the reaction vessel 2A as in the first modification of the first embodiment. The aeration unit 36 is controlled by a gas supply control unit 39 that controls the gas supply based on a control signal from the control unit 9 (not shown in FIG. 11C). Further, unlike the third modification, the aeration unit 36 is controlled by the control unit 9 so as to sequentially or repeatedly perform aeration or a non-aeration as time passes.

図11Dは、この曝気の有無のタイミングを示すタイミングチャートの一例である。図11Dに示すように、散気部36による曝気を行う時間(図11D中、ON)と、曝気を行わない時間(図11D中、OFF)とは、反応槽2A内を流れる被処理水の水質性状などの種々の条件によって適宜設定される。すなわち、反応槽2Aの全体としては気体が供給される一方、時間の経過に従って、被処理水に気体が供給される時間と供給されない時間とが順次、交互または繰り返して設定される。これにより、反応槽2A内において、好気性細菌の硝化菌と通性嫌気性の脱窒菌とを共存させつつ、それらの活動を時間の経過に従って、順次、交互、または繰り返して活発化させることができるので、第3の実施形態において説明した反応槽2Aと同様に、反応槽2A内において、硝化反応が生じる領域と脱窒反応が生じる領域とを制御性良く形成することができる。   FIG. 11D is an example of a timing chart showing the timing of the presence or absence of this aeration. As shown in FIG. 11D, the time during which aeration is performed by the aeration unit 36 (ON in FIG. 11D) and the time during which aeration is not performed (OFF in FIG. 11D) It is set appropriately according to various conditions such as water quality. That is, while gas is supplied as a whole of reaction tank 2A, according to progress of time, time when gas is supplied to treated water, and time which are not supplied are set up alternately or repeatedly in order. Thereby, in the reaction tank 2A, while coexisting the nitrifying bacteria of the aerobic bacteria and the denitrifying bacteria of the facultative anaerobe, those activities may be alternately or repeatedly activated sequentially according to the passage of time. Since it is possible, as in the reaction vessel 2A described in the third embodiment, in the reaction vessel 2A, the region in which the nitrification reaction occurs and the region in which the denitrification reaction occurs can be formed with good controllability.

(変形例5)
さらに、図11Eは、変形例5による反応槽2Aを示す構成図である。図11Eに示すように、変形例5による反応槽2Aにおいては、変形例4と同様に反応槽2Aの内部に単体の散気部46が設けられている。そして、この散気部46は、制御部9(図11E中、図示せず)からの制御信号に基づいて、気体供給量を制御する気体供給量制御部49により制御される。また、反応槽2A内には、好気性細菌の硝化菌と通性嫌気性の脱窒菌とをともに担持した担体43が複数投入されている。そして、反応槽2A内に散気部46から気体が供給されると反応槽2A内が攪拌され、処理水中において担体43が流動して被処理水内において担体43は略一様に分布する。図11Fは、この担体43の断面構造を示す断面図である。
(Modification 5)
Furthermore, FIG. 11E is a block diagram which shows the reaction tank 2A by the modification 5. As shown in FIG. As shown in FIG. 11E, in the reaction vessel 2A according to the fifth modification, a single aeration unit 46 is provided inside the reaction vessel 2A as in the fourth modification. The aeration unit 46 is controlled by a gas supply control unit 49 that controls the gas supply based on a control signal from the control unit 9 (not shown in FIG. 11E). Further, in the reaction tank 2A, a plurality of carriers 43 carrying both the aerobic bacteria nitrifying bacteria and the facultative anaerobic denitrifying bacteria are charged. Then, when the gas is supplied from the aeration unit 46 into the reaction tank 2A, the inside of the reaction tank 2A is agitated, the carrier 43 flows in the treated water, and the carrier 43 is distributed substantially uniformly in the water to be treated. FIG. 11F is a cross sectional view showing a cross sectional structure of the carrier 43. As shown in FIG.

図11Fに示すように、担体43は、粒状の樹脂製担体からなり、担体43が被処理水中において、流動しても菌を保持可能である限りにおいて、その大きさや形状は種々の大きさや形状を採用できる。例えば、円柱形、球形等で、外径寸法が数mm程度のものが好ましい。また、担体43の表面部の硝化反応ゾーンには主に好気性の硝化菌が、脱窒反応ゾーンには主に通性嫌気性の脱窒菌が担持されるようにしている。具体的には、担体43は、硝化反応に寄与する好気性の硝化菌を外側領域43aに、この硝化菌に取り囲まれる形態で嫌気性の脱窒反応に寄与する通性嫌気性の脱窒菌を優占種として内側領域43bに、それぞれ存在させる2層の微生物膜を表面部に担持させている。これにより、被処理水中の担体43において、優占種として、より外側に位置する硝化菌は好気性条件とされ、より内側に位置する脱窒菌は、硝化菌に取り囲まれる形態で嫌気性条件が確保される。   As shown in FIG. 11F, the carrier 43 is made of a particulate resin carrier, and as long as the carrier 43 can retain bacteria even when it flows in the water to be treated, its size and shape are various sizes and shapes. Can be adopted. For example, it is preferable to have a cylindrical shape, a spherical shape, or the like, and have an outer diameter of about several millimeters. Also, aerobic nitrification bacteria are mainly carried in the nitrification reaction zone on the surface portion of the carrier 43, and facultative anaerobic denitrification bacteria are mainly carried in the denitrification reaction zone. Specifically, the carrier 43 is a facultative anaerobic denitrifying bacteria that contributes to an anaerobic denitrification reaction in a form surrounded by aerobic nitrifiers that contribute to the nitrification reaction in the outer region 43a. The surface area is made to carry two layers of microbial membranes which are respectively present in the inner region 43b as a dominant species. Thereby, in the carrier 43 in the water to be treated, the nitrifying bacteria located on the outer side are regarded as aerobic conditions as dominant species, and the denitrifying bacteria located on the inner side are anaerobic conditions in a form surrounded by the nitrifying bacteria. Secured.

すなわち、反応槽2Aの全体としては気体が供給される一方、反応槽2Aの被処理水内における担体43自体によって、好気性の硝化菌と嫌気性の脱窒菌とが共存して、硝化反応と脱窒反応とが共存した状態を形成することができる。これにより、反応槽2A内において、好気性細菌の硝化菌と通性嫌気性の脱窒菌とを共存させつつ、それらの活動をともに活発化させることができるので、反応槽2A内において、硝化反応と脱窒反応とを制御性良く共存させることができる。   That is, while gas is supplied as a whole of reaction tank 2A, aerobic nitrifying bacteria and anaerobic denitrifying bacteria coexist by carrier 43 itself in the water to be treated of reaction tank 2A, and nitrification reaction A state in which the denitrification reaction coexists can be formed. As a result, the nitrification bacteria of the aerobic bacteria and the facultative anaerobic denitrifying bacteria can coexist in the reaction tank 2A while activating their activities together. Therefore, the nitrification reaction can be performed in the reaction tank 2A. And denitrifying reaction can be coexistent with good controllability.

(変形例6)
次に、変形例6について説明する。図12Aは、第2の実施形態における図5に対応した変形例6による窒素含有水処理装置の構成図である。また、図12Bは、目標硝化速度および測定硝化速度を説明するための反応槽内の被処理水の流れに沿って測定した図3Aに対応するNH−N、NO−N、およびNO−Nのそれぞれの窒素濃度、および全窒素濃度を示すグラフである。この変形例6においては、脱窒確認手段として一対のアンモニア計を用いる。
(Modification 6)
Next, a sixth modification will be described. FIG. 12A is a configuration diagram of a nitrogen-containing water treatment apparatus according to Modification 6 corresponding to FIG. 5 in the second embodiment. FIG. 12B is a graph showing NH 4 -N, NO 2 -N, and NO 3 corresponding to FIG. 3A measured along the flow of water to be treated in the reaction tank to explain the target nitrification rate and the measured nitrification rate. It is a graph which shows each nitrogen concentration of -N, and a total nitrogen concentration. In this modification 6, a pair of ammonia meter is used as a denitrification confirmation means.

すなわち、図12Aに示すように、変形例6においては、第2の実施形態とは異なり、反応槽2Aの硝酸計7の代わりに、被処理水の流れ方向に沿った上流側の第1のアンモニア計58aと下流側の第2のアンモニア計58bとの一対のアンモニア計からなる硝化速度計58が設置されている。第1のアンモニア計58aおよび第2のアンモニア計58bによって計測されたアンモニア濃度の計測値は、それぞれ制御部9に供給される。その他の構成は、第2の実施形態と同様であるので、説明を省略する。   That is, as shown in FIG. 12A, in the sixth modification, unlike the second embodiment, the first upstream side along the flow direction of the water to be treated instead of the nitric acid meter 7 of the reaction tank 2A. A nitrification rate meter 58 comprising a pair of ammonia gauges, an ammonia gauge 58a and a second ammonia gauge 58b on the downstream side, is installed. The measured values of the ammonia concentration measured by the first ammonia meter 58a and the second ammonia meter 58b are supplied to the control unit 9, respectively. The other configuration is the same as that of the second embodiment, so the description will be omitted.

次に、脱窒確認手段として一対の第1のアンモニア計58aおよび第2のアンモニア計58bからなる硝化速度計58を用いた場合における、制御部9による制御方法について説明する。まず、第1のアンモニア計58aおよび第2のアンモニア計58bがそれぞれ、第1のアンモニア濃度NH1および第2のアンモニア濃度NH2を計測する。それぞれの第1のアンモニア濃度NH1および第2のアンモニア濃度NH2は、制御部9に供給される。制御部9は、供給された第1のアンモニア濃度NH1と第2のアンモニア濃度NH2(NH1>NH2)とから測定硝化速度を算出する。具体的には、上流側の第1のアンモニア計58aにより測定されたアンモニア濃度NH1と、これより下流側のアンモニア濃度NH2とから、(11)式に基づいて測定硝化速度を算出する。なお、この測定硝化速度は、図12Bに示す実線の傾きの絶対値に相当し、硝化速度計58の設置位置に応じて測定硝化速度は2本の実線のように異なる場合がある。

Figure 0006499389
Next, a control method by the control unit 9 in the case where the nitrification velocimeter 58 including the pair of first ammonia gauges 58a and the second ammonia gauge 58b is used as the denitrification confirmation means will be described. First, the first ammonia meter 58a and the second ammonia meter 58b measure the first ammonia concentration NH1 and the second ammonia concentration NH2, respectively. The first ammonia concentration NH1 and the second ammonia concentration NH2 are supplied to the control unit 9, respectively. The controller 9 calculates the measured nitrification rate from the supplied first ammonia concentration NH1 and the second ammonia concentration NH2 (NH1> NH2). Specifically, from the ammonia concentration NH1 measured by the first ammonia meter 58a on the upstream side and the ammonia concentration NH2 on the downstream side therefrom, the measured nitrification rate is calculated based on the equation (11). The measured nitrification speed corresponds to the absolute value of the slope of the solid line shown in FIG. 12B, and the measured nitrification speed may differ as indicated by two solid lines depending on the installation position of the nitrification velocimeter 58.
Figure 0006499389

一方、種々の反応槽2Aごとにあらかじめ、処理水目標値としての最終的なアンモニア濃度(目標アンモニア濃度)NHが設定されている。制御部9は、この目標アンモニア濃度NHと、第1のアンモニア計58aの位置において計測されたアンモニア濃度NH1とから、基準となる硝化速度(目標硝化速度)を算出して、制御部9の記録領域(図示せず)に格納する。この目標硝化速度は、以下の(12)式に基づいて算出される。なお、この目標硝化速度は、図12Bに示す点線の傾きの絶対値に相当する。

Figure 0006499389
On the other hand, the final ammonia concentration (target ammonia concentration) NH 3 as a treated water target value is set in advance for each of the various reaction vessels 2A. Control unit 9, and the target ammonia concentration NH 3, from ammonia concentration NH1 Metropolitan measured in the position of the first ammonia meter 58a, and calculates the nitrification rate (target nitrification rate) as a reference, the control unit 9 Store in the recording area (not shown). The target nitrification speed is calculated based on the following equation (12). This target nitrification speed corresponds to the absolute value of the slope of the dotted line shown in FIG. 12B.
Figure 0006499389

そして、図12Aに示すように、制御部9は、第1のアンモニア計58aと第2のアンモニア計58bとの間における測定硝化速度、すなわち硝化速度計58により計測された測定硝化速度が、目標硝化速度未満になるように、少なくとも第2のアンモニア計58bより上流側の散気部6からの気体供給量を制御する。これにより、第2のアンモニア計58bより上流側における硝化反応の進行を抑制して、この領域における脱窒反応を促進することができる。また、測定硝化速度が目標硝化速度未満であっても、遅くなりすぎてしまうと、反応槽2Aの流出側においてアンモニア濃度が所望の目標アンモニア濃度NHまで減少しない場合がある。そこで、本発明者の実験から得た知見によれば、測定硝化速度は、目標硝化速度の半分より大きくするのが好ましい。すなわち、制御部9は、以下の(13)式が成り立つように散気部6からの気体供給量を制御する。

Figure 0006499389
And as shown to FIG. 12A, the control part 9 measures the nitrification speed between the 1st ammonia meter 58a and the 2nd ammonia meter 58b, ie, the measured nitrification speed measured by the nitrification rate meter 58, The gas supply amount from the aeration unit 6 on the upstream side of at least the second ammonia meter 58 b is controlled so as to be less than the nitrification speed. Thereby, the progress of the nitrification reaction on the upstream side of the second ammonia meter 58 b can be suppressed, and the denitrification reaction in this region can be promoted. In addition, even if the measured nitrification rate is less than the target nitrification rate, the ammonia concentration may not decrease to the desired target ammonia concentration NH 3 on the outflow side of the reaction tank 2A if it becomes too slow. Then, according to the knowledge obtained from the experiment of the inventor, it is preferable to make the measured nitrification rate larger than half of the target nitrification rate. That is, the control unit 9 controls the gas supply amount from the aeration unit 6 such that the following equation (13) holds.
Figure 0006499389

具体的には、目標硝化速度に対する測定硝化速度が(13)式によって設定された範囲よりも大きくなった場合、すなわち、測定硝化速度が目標硝化速度以上になった場合には、硝化反応が進みすぎていることになる。そのため、制御部9は、反応槽2Aにおける被処理水の流れ方向に沿った第2のアンモニア計58bより少なくとも上流側における散気部6a,6bからの空気の供給量を減少させる。これにより制御部9は、反応槽2Aにおいて、硝化反応が進みすぎないように制御する。一方、目標硝化速度に対する測定硝化速度が(13)式によって設定された範囲よりも小さくなった場合、すなわち、測定硝化速度が目標硝化速度の半分以下になった場合には、硝化反応が抑制されすぎていることになる。そのため、制御部9は、反応槽2Aにおける被処理水の流れ方向に沿った第2のアンモニア計58bより少なくとも上流側における散気部6a,6bからの空気の供給量を増加させる。これにより、制御部9は、反応槽2Aにおいて硝化反応を所望の硝化速度で行うように制御する。   Specifically, when the measured nitrification rate with respect to the target nitrification rate becomes larger than the range set by equation (13), that is, when the measured nitrification rate becomes equal to or higher than the target nitrification rate, the nitrification reaction proceeds. It will be too much. Therefore, the control unit 9 reduces the amount of air supplied from the aeration units 6a and 6b at least upstream of the second ammonia meter 58b along the flow direction of the water to be treated in the reaction tank 2A. Thereby, the control unit 9 controls the nitrification reaction not to proceed excessively in the reaction tank 2A. On the other hand, when the measured nitrification rate with respect to the target nitrification rate becomes smaller than the range set by equation (13), that is, when the measured nitrification rate becomes half or less of the target nitrification rate, the nitrification reaction is suppressed. It will be too much. Therefore, the control unit 9 increases the amount of air supplied from the aeration units 6a and 6b at least upstream of the second ammonia meter 58b along the flow direction of the water to be treated in the reaction tank 2A. Thereby, the control unit 9 controls the nitrification reaction to be performed at a desired nitrification rate in the reaction tank 2A.

以上説明した変形例6においては、上述した実施形態において硝酸計によって行っていた脱窒処理の制御を、一対のアンモニア計を用いて行っている。これにより、反応槽2A内において、好気性細菌の硝化菌と通性嫌気性の脱窒菌とを共存させつつ、それらの活動をともに活発化させることができる。これによって、反応槽2A内において、硝化反応と脱窒反応とを制御性良く共存させることができる。   In the modification 6 described above, the control of the denitrification processing performed by the nitric acid meter in the embodiment described above is performed using a pair of ammonia gauges. Thereby, in the reaction tank 2A, while coexisting the nitrifying bacteria of the aerobic bacteria and the denitrifying bacteria of the facultative anaerobe, both activities can be activated. Thereby, in the reaction tank 2A, the nitrification reaction and the denitrification reaction can coexist with good controllability.

以上、本発明の実施形態について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。例えば、上述の一実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。   As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, Various deformation | transformation based on the technical idea of this invention are possible. For example, the numerical values listed in the above-described embodiment are merely examples, and different numerical values may be used as needed.

また、上述の実施形態においては、いわゆる標準活性汚泥法による窒素含有水の生物処理について説明したが、本発明は、必ずしもこの方法に限定されるものではなく、好気槽を用いる種々の処理方法に適用することができる。具体的に、本発明は、AO(嫌気−好気)法、A2O(嫌気−無酸素−好気)法、硝化+内生脱窒法、多段ステップ流入式硝化脱窒法、および多段ステップ流入式A2O法などの好気槽を用いる各種の窒素含有水の処理方法に適用することが可能である。   Moreover, in the above-mentioned embodiment, although biological treatment of nitrogen-containing water by what is called a standard activated sludge method was explained, the present invention is not necessarily limited to this method, and various treatment methods using an aerobic tank It can be applied to Specifically, the present invention relates to AO (anaerobic-aerobic) method, A2O (anaerobic-anoxic-aerobic) method, nitrification + endogenous denitrification method, multistage step inflow type nitrification denitrification method, and multistage step inflow type A2O It is possible to apply to the processing method of various nitrogen containing water which uses an aerobic tank, such as a method.

また、反応槽2A、2B、2C・・・として、深さが10m程度の深槽旋回流反応槽や、5m程度の浅槽反応槽を採用することも可能である。   Moreover, it is also possible to employ | adopt a deep tank swirl flow reaction tank about 10 m in depth, and a shallow tank reaction tank about 5 m as reaction tank 2A, 2B, 2C.

また、上述の実施形態においては、制御部と気体供給量制御部とを別体としているが、これらの制御部と気体供給量制御部とは同一の制御部から構成することも可能であり、同様の機能を有する3つ以上の別体から構成することも可能である。   Further, in the above embodiment, the control unit and the gas supply control unit are separately provided, but these control units and the gas supply control unit can be configured from the same control unit, It is also possible to constitute from three or more separate bodies having similar functions.

また、上述の変形例6においては、硝化速度計を複数のアンモニア計、具体的には一対のアンモニア計から構成し、この硝化速度計を用いて反応槽2A内の被処理水における硝化速度を測定しているが、硝化速度計は必ずしも一対のアンモニア計に限定されるものではなく、さらに3つ以上のアンモニア計を採用しても、硝化速度を計測可能な各種の装置を採用しても良い。   Moreover, in the above-mentioned modification 6, the nitrification rate meter is comprised of a plurality of ammonia gauges, specifically, a pair of ammonia gauges, and the nitrification rate of the water to be treated in the reaction tank 2A is calculated using this nitrification rate meter. Although it measures it, a nitrification rate meter is not necessarily limited to a pair of ammonia meter, and even if it adopts three or more ammonia meters, even if it adopts various devices which can measure a nitrification rate good.

1 最初沈殿池
2A 複数の反応槽のうちいずれか1つの反応槽
2B,2C それ以外の反応槽
2a,2b,2c,2d 好気槽
3 固液分離槽
4a 分離液
4b 活性汚泥
5 汚泥返送経路
6,6a,6b,6c,6d,16a,16b,16c,26a,26b,26c,26d,26e,36,46 散気部
7 硝酸計
7a 第1の所定位置の硝酸計
7b 第nの所定位置の硝酸計
8 ブロア
9 制御部
10,10a,10b,10c,10d,19a,19b,19c,29a,29b,29c,29d,29e,39,49 気体供給量制御部
12 嫌気槽
12a モータ
12b 攪拌部
13 仕切り板
31 好気領域
32 無酸素嫌気領域
43 担体
43a 外側領域
43b 内側領域
58 硝化速度計
58a 第1のアンモニア計
58b 第2のアンモニア計
61 流量制御手段
81 上流側脱窒区間
82 下流側硝化区間
83 散気による散気効果が発現するまでの区間
84,85 硝酸計に起因する散気手段の制御が行われる区間
88、89 DO計
1 First sedimentation tank 2A Any one of a plurality of reaction tanks 2B, 2C Other reaction tanks 2a, 2b, 2c, 2d aerobic tank 3 solid-liquid separation tank 4a separated liquid 4b activated sludge 5 sludge return path 6, 6a, 6b, 6c, 6d, 16a, 16b, 26a, 26b, 26c, 26d, 26e, 36, 46 Aeration unit 7 Nitrate meter 7a Nitrate meter 7b at the first predetermined position nth predetermined position Nitrate meter 8 Blower 9 Control part 10, 10a, 10b, 10c, 10d, 19a, 19b, 19c, 29a, 29b, 29c, 29d, 29e, 39, 49 Gas supply control part 12 Anaerobic tank 12a Motor 12b Stirring part 13 Partition Plate 31 Aerobic Region 32 Anaerobic Anaerobic Region 43 Carrier 43a Outer Region 43b Inner Region 58 Nitrification Rate Meter 58a First Ammonia Meter 58b Second Ammonia Meter 61 Flow Amount control means 81 Upstream denitrification section 82 Downstream side nitrification section 83 Section 84, 85 until aeration effect due to aeration is expressed Section 88, 89 DO meter where control of the aeration means due to the nitric acid meter is performed

Claims (6)

並列に接続された同一形式の複数の反応槽と、
各反応槽に流入する窒素含有水の流量が同一となるよう制御する流量制御手段と、
各反応槽内において窒素含有水の流れに従って前記窒素含有水が含有するアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置において硝酸が所望の脱窒反応の進行度合いで脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気手段と、
前記複数の反応槽のいずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った途中位置で前記窒素含有水の硝酸濃度を5.0 mg/L以下に制御可能な位置に設けられ、前記途中位置において脱窒反応の進行度合いを確認するため前記窒素含有水の硝酸濃度を測定する硝酸濃度測定手段と
前記硝酸濃度測定手段により測定された前記窒素含有水の硝酸濃度に基づいて、前記途中位置において硝酸が所望の脱窒反応の進行度合いで脱窒されるように、前記窒素含有水の流れ方向に沿った、前記硝酸濃度測定手段より少なくとも上流側を含む、前記硝酸濃度測定手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第1の気体供給量制御手段と、
各反応槽内であって、前記散気手段による散気効果が発現するまでの区間を除く前記硝酸濃度測定手段に起因する散気手段の制御が行われる区間における前記途中位置と同じ位置又は異なる位置である前記途中位置に対応する所定位置に設けられ、前記所定位置において前記窒素含有水の溶存酸素濃度を測定する溶存酸素濃度測定手段と、
前記硝酸濃度測定手段が設けられた反応槽の前記所定位置に設けられた前記溶存酸素濃度測定手段により測定された前記窒素含有水の溶存酸素濃度に基づいて、前記硝酸濃度測定手段が設けられた反応槽以外の他の反応槽の前記所定位置における溶存酸素目標濃度を設定する手段と、
前記硝酸濃度測定手段が設けられた反応槽以外の他の反応槽の前記所定位置における前記窒素含有水の溶存酸素濃度の測定値が前記目標濃度と一致するよう、当該反応槽の前記硝酸濃度測定手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第2の気体供給制御手段と、
を備えることを特徴とする活性汚泥を用いた下水処理装置。
Multiple reactors of the same type connected in parallel;
Flow control means for controlling the flow of nitrogen-containing water flowing into each reaction tank to be the same;
In each reaction tank, ammonia contained in the nitrogen-containing water is nitrated to nitric acid according to the flow of nitrogen-containing water, and nitric acid is denatured at a desired progress of denitrification reaction at each position along the flow direction of the nitrogen-containing water A diffuser for supplying a gas to the nitrogen-containing water over substantially the entire flow direction so as to be nitrided;
In any one reaction vessel of the plurality of reaction vessels, the nitric acid concentration of the nitrogen-containing water is provided at a position controllable at 5.0 mg / L or less halfway along the flow direction of the nitrogen-containing water , Nitric acid concentration measuring means for measuring the nitric acid concentration of the nitrogen-containing water in order to confirm the progress of denitrification reaction at an intermediate position ;
Based on the nitric acid concentration of the nitrogen-containing water that has been measured by the nitric acid concentration measurement means, as Oite nitrate to the middle position location is denitrified in progress of the desired denitrification, the nitrogen-containing water The first control method for controlling the gas supply amount by the aeration means in a section in which the control of the aeration means due to the nitric acid concentration measurement means is performed, including at least the upstream side of the nitric acid concentration measurement means along the flow direction Gas supply control means of
The same position or different position in the middle of each reaction tank in the section where the control of the aeration means caused by the nitric acid concentration measurement means is performed excluding the section until the aeration effect by the aspiration means appears provided at a predetermined position corresponding to a position above the middle position, and the dissolved oxygen concentration measuring means for measuring a dissolved oxygen concentration of the nitrogen-containing water at the predetermined position,
The nitric acid concentration measuring means is provided based on the dissolved oxygen concentration of the nitrogen-containing water measured by the dissolved oxygen concentration measuring means provided at the predetermined position of the reaction vessel provided with the nitric acid concentration measuring means A means for setting a dissolved oxygen target concentration at the predetermined position of another reaction vessel other than the reaction vessel;
As the measured value of the dissolved oxygen concentration in the nitrogen-containing water in the predetermined position of the other reactor other than the reactor that the nitric acid concentration measurement means it is provided coincides with the target density, the nitrate concentration measurement of the reaction vessel a second gas supply control means for controlling the supply amount of the gas by the air diffuser means in a section where the control of the aeration means due to the means is performed,
And a sewage treatment apparatus using activated sludge.
並列に接続された複数の同一形式の反応槽と、
各反応槽に流入する窒素含有水の流量が同一となるよう制御する流量制御手段と、
各反応槽内において窒素含有水の流れに従って前記窒素含有水が含有するアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置において硝酸が所望の脱窒反応の進行度合いで脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気手段と、
前記複数の反応槽のいずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った第1〜n(nは2以上の自然数)の各所定位置で前記窒素含有水の硝酸濃度を5.0 mg/L以下に制御可能な位置に設けられ、前記第1〜nの各所定位置において脱窒反応の進行度合いを確認するため前記窒素含有水の硝酸濃度をそれぞれ測定する硝酸濃度測定手段と
前記第1〜nの各所定位置の硝酸濃度測定手段により測定された前記窒素含有水の各硝酸濃度に基づいて、前記第1〜nの各所定位置において硝酸が所望の脱窒反応の進行度合いで脱窒されるように、前記窒素含有水の流れ方向に沿った、前記第1〜nの各所定位置より少なくとも上流側を含む、前記第1〜nの各所定位置の硝酸濃度測定手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第1の気体供給量制御手段と、
各反応槽内であって、前記散気手段による散気効果が発現するまでの区間を除く前記第1〜nの各所定位置の硝酸濃度測定手段に起因する散気手段の制御が行われる各区間における前記第1〜nの各所定位置とそれぞれ同じ位置か又は異なる位置である前記第1〜nの各所定位置に対応する第1a〜naの各所定位置に設けられ、前記第1a〜naの各所定位置において前記窒素含有水の溶存酸素濃度をそれぞれ測定する溶存酸素濃度測定手段と、
前記硝酸濃度測定手段が設けられた反応槽の前記第1a〜naの各所定位置に設けられた前記溶存酸素濃度測定手段により測定された前記窒素含有水の溶存酸素濃度に基づいて、前記硝酸濃度測定手段が設けられた反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素目標濃度をそれぞれ設定する手段と、
前記硝酸濃度測定手段が設けられた反応槽以外の他の反応槽の前記第1a〜naの各所定位置における前記窒素含有水の溶存酸素濃度の測定値がそれぞれ前記目標濃度と一致するよう、当該反応槽の前記第1〜nの各所定位置の硝酸濃度測定手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第2の気体供給量制御手段と、
を備えることを特徴とする活性汚泥を用いた下水処理装置。
A plurality of reactors of the same type connected in parallel;
Flow control means for controlling the flow of nitrogen-containing water flowing into each reaction tank to be the same;
In each reaction tank, ammonia contained in the nitrogen-containing water is nitrated to nitric acid according to the flow of nitrogen-containing water, and nitric acid is denatured at a desired progress of denitrification reaction at each position along the flow direction of the nitrogen-containing water A diffuser for supplying a gas to the nitrogen-containing water over substantially the entire flow direction so as to be nitrided;
In any one reaction vessel of the plurality of reaction vessels, the nitric acid concentration of the nitrogen-containing water is 5.0 at each predetermined position of the first to n (n is a natural number of 2 or more) along the flow direction of the nitrogen-containing water Nitric acid concentration measuring means provided at controllable positions below mg / L and respectively measuring the nitric acid concentration of the nitrogen-containing water to confirm the progress of the denitrifying reaction at each of the first to nth predetermined positions ;
Based on the nitric acid concentration of the nitrogen-containing water that has been measured by the nitric acid concentration measuring means of each predetermined position of the first 1 to n, Oite nitrate throughout localization location of the first 1 to n of the desired denitrification The nitric acid concentration measurement of each of the first to n predetermined positions including at least the upstream side of each of the first to n predetermined positions along the flow direction of the nitrogen-containing water so as to be denitrified by the progress degree a first gas supply amount control means for controlling each of the feed rate of the gas by the air diffuser means in each section to the control of the air diffuser means caused performed means,
Control of the aeration means caused by the nitric acid concentration measurement means at each of the first to n predetermined positions except for the section until the aeration effect of the aeration means appears in each reaction tank It is provided at each predetermined position of 1a to na corresponding to each of the first to n predetermined positions which is the same position as or different from the predetermined position of the first to n in the section, respectively. Dissolved oxygen concentration measuring means for respectively measuring the dissolved oxygen concentration of the nitrogen-containing water at each predetermined position of
Based on the dissolved oxygen concentration in the nitrogen-containing water that has been measured by the dissolved oxygen concentration measuring means provided in each predetermined position of the first 1a~na reaction vessel in which the nitric acid concentration measurement means is provided, the nitric acid concentration A means for individually setting a dissolved oxygen target concentration at each of the predetermined positions of the first to na of the reaction vessels other than the reaction vessel provided with the measurement means ;
The measurement values of the dissolved oxygen concentration of the nitrogen-containing water at each predetermined position of the first to na of the reaction vessels other than the reaction vessel provided with the nitric acid concentration measuring means respectively match the target concentration A second gas supply amount for controlling the gas supply amount by the aeration means in each section in which control of the aeration means is performed due to the nitric acid concentration measurement means at each of the first to n predetermined positions of the reaction tank Control means,
And a sewage treatment apparatus using activated sludge.
流入する窒素含有水の流量が同一となるよう制御された、並列に接続された同一形式の複数の反応槽のうち、いずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った途中位置で前記窒素含有水の硝酸濃度を5.0 mg/L以下に制御可能な位置に設けられた、脱窒反応の進行度合いを確認するため前記窒素含有水の硝酸濃度を測定する硝酸濃度測定手段を有し、各反応槽において、窒素含有水の流れに従って前記窒素含有水が含有するアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置において硝酸が所望の脱窒反応の進行度合いで脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気手段、並びに、前記散気手段による散気効果が発現するまでの区間を除く前記硝酸濃度測定手段に起因する散気手段の制御が行われる区間における前記途中位置と同じ位置か又は異なる位置であり前記途中位置に対応する所定位置に設けられた、前記窒素含有水の溶存酸素濃度を測定する溶存酸素濃度測定手段を有する場合における、当該散気手段に対して用いられる散気手段の制御装置であって、
前記硝酸濃度測定手段により測定された前記窒素含有水の硝酸濃度に基づいて、前記途中位置において硝酸が所望の脱窒反応の進行度合いで脱窒されるように、前記窒素含有水の流れ方向に沿った、前記硝酸濃度測定手段より少なくとも上流側を含む、前記硝酸濃度測定手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第1の気体供給量制御手段と、
前記硝酸濃度測定手段が設けられた反応槽の前記所定位置において前記溶存酸素濃度測定手段により測定された前記窒素含有水の溶存酸素濃度に基づいて、前記硝酸濃度測定手段が設けられた反応槽以外の他の反応槽の前記所定位置における溶存酸素目標濃度をそれぞれ設定する手段と、
前記硝酸濃度測定手段が設けられた反応槽以外の他の反応槽の前記所定位置における前記窒素含有水の溶存酸素濃度の測定値が前記目標濃度と一致するよう、当該反応槽の前記硝酸濃度測定手段に起因する散気手段の制御が行われる区間における前記散気手段による気体の供給量を制御する第2の気体供給量制御手段と、
を備えることを特徴とする散気手段の制御装置。
In one of the reaction vessels of the same type connected in parallel and controlled such that the flow rate of the nitrogen-containing water flowing into the same, the way along the flow direction of the nitrogen-containing water A nitric acid concentration measuring means for measuring the nitric acid concentration of the nitrogen-containing water to confirm the progress of the denitrification reaction , provided at a position where the nitric acid concentration of the nitrogen-containing water can be controlled to 5.0 mg / L or less at the position ; In each reaction tank, ammonia contained in the nitrogen-containing water is nitrified to nitric acid according to the flow of nitrogen-containing water, and the progress of desired denitrification reaction of nitric acid at each position along the flow direction of the nitrogen-containing water Aeration means for supplying a gas over substantially the entire flow direction to the nitrogen-containing water so as to be denitrified by degree, and a section until the aeration effect is exhibited by the aeration means measuring the nitrate concentration Control of air diffuser means due provided at a predetermined position corresponding to the middle position and the same position or different positions the middle position in the section to be performed in unit, for measuring the dissolved oxygen concentration of the nitrogen-containing water It is a control device of the aeration means used with respect to the said aeration means in the case of having a dissolved oxygen concentration measurement means ,
Based on the nitric acid concentration of the nitrogen-containing water that has been measured by the nitric acid concentration measurement means, as Oite nitrate to the middle position location is denitrified in progress of the desired denitrification, the nitrogen-containing water along the flow direction, before Symbol comprising at least an upstream side of the nitric acid concentration measuring means, to control the supply amount of the gas by the air diffuser means in the interval control is performed in the aeration unit due to the nitric acid concentration measurement means the 1 gas supply amount control means,
Based on the dissolved oxygen concentration in the nitrogen-containing water that has been measured by the dissolved oxygen concentration measuring means before Symbol predetermined position of the reaction vessel in which the nitric acid concentration measurement means is provided, the reactor in which the nitric acid concentration measurement means is provided A means for individually setting a dissolved oxygen target concentration at the predetermined position of another reaction tank other than the reaction vessel ;
As the measured value of the dissolved oxygen concentration in the nitrogen-containing water in the predetermined position of the other reactor other than the reactor that the nitric acid concentration measurement means it is provided coincides with the target density, the nitrate concentration measurement of the reaction vessel a second gas supply amount control means for controlling the supply amount of the gas by the air diffuser means in the interval control is performed in the aeration unit due to the means,
A control device of the air diffusion means characterized by comprising:
流入する窒素含有水の流量が同一となるよう制御された、並列に接続された同一形式の複数の反応槽のうち、いずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った第1〜n(nは2以上の自然数)の各所定位置で前記窒素含有水の硝酸濃度を5.0 mg/L以下に制御可能な位置に設けられた、脱窒反応の進行度合いを確認するため前記窒素含有水の硝酸濃度を測定する硝酸濃度測定手段を有し、各反応槽において、窒素含有水の流れに従って前記窒素含有水が含有するアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置において硝酸が所望の脱窒反応の進行度合いで脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気手段、並びに、前記散気手段による散気効果が発現するまでの区間を除く前記第1〜nの各所定位置の硝酸濃度測定手段に起因する散気手段の制御が行われる各区間における前記第1〜nの各所定位置とそれぞれ同じ位置か又は異なる位置であり前記第1〜nの各所定位置に対応する第1a〜naの各所定位置に設けられた、前記窒素含有水の溶存酸素濃度をそれぞれ測定する溶存酸素量測定手段を有する場合における、当該散気手段に対して用いられる散気手段の制御装置であって、
前記第1〜nの各所定位置の硝酸濃度測定手段により測定された前記窒素含有水の各硝酸濃度に基づいて、前記第1〜nの各所定位置において硝酸が所望の脱窒反応の進行度合いで脱窒されるように、前記窒素含有水の流れ方向に沿った、前記第1〜nの所定位置より少なくとも上流側を含む、前記第1〜nの所定位置の硝酸濃度測定手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第1の気体供給量制御手段と、
前記硝酸濃度測定手段が設けられた反応槽の前記第1a〜naの各所定位置において測定された前記窒素含有水の各溶存酸素濃度に基づいて、前記硝酸濃度測定手段が設けられた反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素目標濃度をそれぞれ設定する手段と、
前記硝酸濃度測定手段が設けられた反応槽以外の他の反応槽の前記第1a〜naの各所定位置における前記窒素含有水の溶存酸素濃度の測定値がそれぞれ前記目標濃度と一致するよう、当該反応槽の前記第1〜nの各所定位置の硝酸濃度測定手段に起因する散気手段の制御が行われる各区間における前記散気手段による気体の供給量をそれぞれ制御する第2の気体供給量制御手段と、
を備えることを特徴とする散気手段の制御装置。
Flow rate of nitrogen-containing water flowing is controlled to be the same among the plurality of reaction vessels of the same type connected in parallel, in any one reaction vessel, the along the flow direction of the nitrogen-containing water 1 to n (n is a natural number of 2 or more) provided at positions where the nitric acid concentration of the nitrogen-containing water can be controlled to 5.0 mg / L or less at each predetermined position, in order to confirm the progress of denitrification reaction Ammonia concentration measurement means for measuring the nitric acid concentration of nitrogen-containing water is included , and in each reaction vessel, ammonia contained in the nitrogen-containing water is nitrated to nitric acid according to the flow of nitrogen-containing water, and in the flow direction of the nitrogen-containing water A diffuser for supplying a gas over substantially the entire flow direction to the nitrogen-containing water so that nitric acid is denitrified at a desired degree of progress of denitrification reaction at each position along the line; Diffuse effect by air means The control of the air diffuser means due to nitric acid concentration measurement means of each predetermined position of the 1~n or different each predetermined position and each same location of the first 1~n or in each section to be performed except for the interval until the In the case of having a dissolved oxygen amount measuring means for measuring the dissolved oxygen concentration of the nitrogen-containing water , provided at each predetermined position of the 1a to na corresponding to each of the 1st to nth predetermined positions. It is a control device of the aeration means used to the aeration means concerned,
Based on each nitric acid concentration of the nitrogen-containing water measured by the nitric acid concentration measuring means at each of the first to n predetermined positions, the progress degree of denitrification reaction desired for nitric acid at each of the first to n predetermined positions The nitric acid concentration measuring means at each of the first to n predetermined positions including at least the upstream side of each of the first to n predetermined positions along the flow direction of the nitrogen-containing water so as to be denitrified at First gas supply amount control means for controlling the supply amount of gas by the aeration means in each section in which the control of the aeration means resulting therefrom is performed;
Based on the dissolved oxygen concentration of the nitrogen-containing water that has been measured at each specified position of the first 1a~na reaction vessel in which the nitric acid concentration measurement means is provided, except the reaction vessel in which the nitric acid concentration measurement means is provided Means for respectively setting the dissolved oxygen target concentration at each of the predetermined positions of the first to na of the other reaction vessels;
The measurement values of the dissolved oxygen concentration of the nitrogen-containing water at each predetermined position of the first to na of the reaction vessels other than the reaction vessel provided with the nitric acid concentration measuring means respectively match the target concentration A second gas supply amount for controlling the gas supply amount by the aeration means in each section in which control of the aeration means is performed due to the nitric acid concentration measurement means at each of the first to n predetermined positions of the reaction tank Control means,
A control device of the air diffusion means characterized by comprising:
並列に接続された同一形式の複数の各反応槽に流入する窒素含有水の流量が同一となるよう制御する流量制御ステップと、
各反応槽内の前記窒素含有水の流れに従って前記窒素含有水に含まれるアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置において硝酸が所望の脱窒反応の進行度合いで脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気ステップと、
前記複数の反応槽のいずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った途中位置で前記窒素含有水の硝酸濃度を5.0 mg/L以下に制御可能な位置において脱窒反応の進行度合いを確認するため前記窒素含有水の硝酸濃度を測定する硝酸濃度測定ステップと、
前記硝酸濃度測定ステップにおいて測定された前記窒素含有水の硝酸濃度に基づいて、前記途中位置において硝酸が所望の脱窒反応の進行度合いで脱窒されるように、前記窒素含有水の流れ方向に沿った、前記途中位置より少なくとも上流側を含む、前記硝酸濃度測定ステップに起因する散気ステップの制御が行われる区間における前記散気ステップにおける気体の供給量を制御する第1の気体供給量制御ステップと、
各反応槽内であって、前記散気ステップによる散気効果が発現するまでの区間を除く前記硝酸濃度測定ステップに起因する散気ステップの制御が行われる区間における前記途中位置と同じ位置か又は異なる位置であり前記途中位置に対応する所定位置において前記窒素含有水の溶存酸素濃度を測定する溶存酸素測定ステップと、
前記窒素含有水の硝酸濃度を測定した反応槽における前記所定位置において測定された前記窒素含有水の溶存酸素濃度の測定値に基づいて、前記窒素含有水の硝酸濃度を測定した反応槽以外の他の反応槽の前記所定位置における溶存酸素目標濃度を設定する溶存酸素目標濃度設定ステップと、
前記窒素含有水の硝酸濃度を測定した反応槽以外の他の反応槽の前記所定位置における前記窒素含有水の溶存酸素濃度の測定値が前記目標濃度と一致するよう、当該反応槽の前記硝酸濃度測定ステップに起因する散気ステップの制御が行われる区間における前記散気ステップにおける気体の供給量を制御する第2の気体供給制御ステップと、
を含むことを特徴とするプログラムを記録したコンピュータで読み取り可能な記録媒体。
A flow control step of controlling the flow rates of nitrogen-containing water flowing into the plurality of reaction vessels of the same type connected in parallel to be the same;
Ammonia contained in the nitrogen-containing water is nitrated to nitric acid according to the flow of the nitrogen-containing water in each reaction tank, and the nitric acid is at the desired progress of denitrification reaction at each position along the flow direction of the nitrogen-containing water Supplying a gas to the nitrogen-containing water substantially across the flow direction so as to be denitrified;
In any one of the reaction vessel of the plurality of reaction vessels, Oite a nitric acid concentration of said nitrogen-containing water controllable located below 5.0 mg / L at a position midway along the flow direction of the nitrogen-containing water denitrification A nitric acid concentration measuring step of measuring the nitric acid concentration of the nitrogen-containing water to confirm the progress of the reaction;
Based on the nitric acid concentration of the nitrogen-containing water measured in the nitric acid concentration measurement step, in the flow direction of the nitrogen-containing water so that nitric acid is denitrified at the intermediate position at a desired progress of denitrification reaction First gas supply amount control for controlling the gas supply amount in the aeration step in a section in which control of the aeration step caused by the nitric acid concentration measurement step is performed, including at least the upstream side from the halfway position along Step and
A each reaction vessel, or the same position as the middle position in the section where the control of the aeration step due to the nitric acid concentration measuring step, except the section between diffuser effect by the air diffuser step is expressed is performed Or a dissolved oxygen measurement step of measuring the dissolved oxygen concentration of the nitrogen-containing water at a predetermined position corresponding to the middle position, which is a different position;
Based on the measured value of the dissolved oxygen concentration in the nitrogen-containing water that has been measured at the predetermined position in the reaction vessel was measured nitric acid concentration of said nitrogen-containing water, other than the reaction vessel was measured nitric acid concentration of the nitrogen-containing water A target dissolved oxygen concentration setting step of setting a target dissolved oxygen concentration at the predetermined position of the reaction tank;
The nitric acid concentration of the reaction vessel is determined so that the measured value of the dissolved oxygen concentration of the nitrogen-containing water at the predetermined position of the reaction vessel other than the reaction vessel where the nitric acid concentration of the nitrogen-containing water is measured matches the target concentration. A second gas supply control step of controlling a supply amount of gas in the aeration step in a section in which control of the aeration step resulting from the measurement step is performed;
And a computer readable recording medium having recorded thereon a program.
並列に接続された同一形式の複数の各反応槽に流入する窒素含有水の流量が同一となるよう制御する流量制御ステップと、
各反応槽内の前記窒素含有水の流れに従って前記窒素含有水に含まれるアンモニアが硝酸に硝化され、前記窒素含有水の流れ方向に沿った各位置において硝酸が所望の脱窒反応の進行度合いで脱窒されるように前記窒素含有水に対して前記流れ方向の略全域に亘って気体を供給する散気ステップと
前記複数の反応槽のいずれか1つの反応槽において、前記窒素含有水の流れ方向に沿った第1〜n(nは2以上の自然数)の所定位置で前記窒素含有水の硝酸濃度を5.0 mg/L以下に制御可能な位置において硝酸が所望の脱窒反応の進行度合いを確認するため前記窒素含有水の硝酸濃度を測定する硝酸濃度測定ステップと、
前記硝酸濃度測定ステップにおいて測定された前記窒素含有水の各硝酸濃度に基づいて、前記第1〜nの各所定位置において硝酸が所望の脱窒反応の進行度合いで脱窒されるように、前記窒素含有水の流れ方向に沿った前記第1〜nの各所定位置より少なくとも上流側を含む、前記硝酸濃度測定ステップに起因する散気ステップの制御が行われる各区間における前記散気ステップにおける気体の供給量をそれぞれ制御する第1の気体供給量制御ステップと、
各反応槽内であって、前記散気ステップによる散気効果が発現するまでの区間を除く前記硝酸濃度測定ステップに起因する散気ステップの制御が行われる各区間における前記第1〜nの所定位置とそれぞれ同じ位置か又は異なる位置であり前記第1〜nの所定位置に対応する第1a〜naの各所定位置において前記窒素含有水の溶存酸素濃度をそれぞれ測定する溶存酸素濃度測定ステップと、
前記窒素含有水の硝酸濃度を測定した反応槽における前記第1a〜naの各所定位置において測定された前記窒素含有水の溶存酸素濃度の測定値に基づいて、前記硝酸濃度を測定した反応槽以外の他の反応槽の前記第1a〜naの各所定位置における溶存酸素目標濃度をそれぞれ設定する溶存酸素目標濃度設定ステップと、
前記窒素含有水の硝酸濃度を測定した反応槽以外の他の反応槽の前記第1a〜naの各所定位置における前記窒素含有水の溶存酸素濃度の測定値がそれぞれ記目標濃度と一致するよう、当該反応槽の前記第1〜nの各所定位置の硝酸濃度測定ステップに起因する散気ステップの制御が行われる各区間における前記散気ステップにおける気体の供給量をそれぞれ制御する第2の気体供給制御ステップと、
を含むことを特徴とするプログラムを記録したコンピュータで読み取り可能な記録媒体。
A flow control step of controlling the flow rates of nitrogen-containing water flowing into the plurality of reaction vessels of the same type connected in parallel to be the same;
Ammonia contained in the nitrogen-containing water is nitrated to nitric acid according to the flow of the nitrogen-containing water in each reaction tank, and the nitric acid is at the desired progress of denitrification reaction at each position along the flow direction of the nitrogen-containing water Supplying a gas to the nitrogen-containing water substantially across the flow direction so as to be denitrified ;
In any one reaction vessel of the plurality of reaction vessels, the nitric acid concentration of the nitrogen-containing water is 5.0 at each predetermined position of the first to n (n is a natural number of 2 or more) along the flow direction of the nitrogen-containing water A nitric acid concentration measuring step of measuring the nitric acid concentration of the nitrogen-containing water in order to confirm the progress of desired denitrifying reaction by the nitric acid at a position controllable to less than mg / L.
Based on each nitric acid concentration of the nitrogen-containing water measured in the nitric acid concentration measurement step, the nitric acid is denitrified at each of the first to n predetermined positions at a desired progress of denitrifying reaction, Gas in the aeration step in each section in which control of the aeration step caused by the nitric acid concentration measurement step is performed, including at least the upstream side from each of the first to n predetermined positions along the flow direction of nitrogen-containing water A first gas supply amount control step of controlling the supply amount of
A each reaction vessel, each of said first 1~n in each section to control the aeration step due to the nitrate concentration measurement step, except the section between diffuser effect by the air diffuser step is expressed is performed dissolved oxygen concentration measurement step of measuring respective dissolved oxygen concentration in the nitrogen-containing water at each predetermined position of the 1a~na corresponding to each predetermined position of a predetermined position and are each the same location or different locations said first 1~n When,
Other than the reaction tank in which the nitric acid concentration was measured based on the measurement value of the dissolved oxygen concentration of the nitrogen-containing water measured at each predetermined position of the first to the first in the reaction tank in which the nitric acid concentration of the nitrogen-containing water was measured A target dissolved oxygen concentration setting step of setting a target dissolved oxygen concentration at each of the predetermined positions of the first to na of the other reaction tank;
The measurement value of the dissolved oxygen concentration of the nitrogen-containing water at each predetermined position of the first to na of the reaction vessels other than the reaction vessel where the nitric acid concentration of the nitrogen-containing water is measured matches the target concentration respectively A second gas supply for controlling the gas supply amount in the aeration step in each section in which the control of the aeration step caused by the nitric acid concentration measurement step at each of the first to nth predetermined positions of the reaction vessel is performed Control step,
And a computer readable recording medium having recorded thereon a program.
JP2013187963A 2013-09-11 2013-09-11 Waste water treatment apparatus and waste water treatment method Active JP6499389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013187963A JP6499389B2 (en) 2013-09-11 2013-09-11 Waste water treatment apparatus and waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013187963A JP6499389B2 (en) 2013-09-11 2013-09-11 Waste water treatment apparatus and waste water treatment method

Publications (2)

Publication Number Publication Date
JP2015054270A JP2015054270A (en) 2015-03-23
JP6499389B2 true JP6499389B2 (en) 2019-04-17

Family

ID=52819049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013187963A Active JP6499389B2 (en) 2013-09-11 2013-09-11 Waste water treatment apparatus and waste water treatment method

Country Status (1)

Country Link
JP (1) JP6499389B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11485655B2 (en) * 2017-08-24 2022-11-01 Mitsubishi Electric Corporation Water treatment control system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131955B2 (en) * 2004-01-13 2008-08-13 株式会社東芝 Aeration air volume control device of sewage treatment plant
JP4381473B1 (en) * 2009-03-25 2009-12-09 弘之 菅坂 Wastewater treatment equipment
WO2011148949A1 (en) * 2010-05-25 2011-12-01 メタウォーター株式会社 Method for biological denitrification using anaerobic ammonia oxidation reaction

Also Published As

Publication number Publication date
JP2015054270A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5878231B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JP6022536B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JP2011212670A (en) Wastewater treatment apparatus and wastewater treatment method
JP6422639B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, and program
JP6532723B2 (en) Method and system for treating organic wastewater
Peeters et al. Nutrient removal intensification with MABR–developing a process model supported by piloting
JP6499390B2 (en) Waste water treatment apparatus and waste water treatment method
JP2013202544A (en) Waste water treatment method
Sun et al. Comparison of operational strategies for nitrogen removal in aerobic granule sludge sequential batch reactor (AGS-SBR): A model-based evaluation
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
JP6499389B2 (en) Waste water treatment apparatus and waste water treatment method
JP6022537B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
Roustan et al. Separation of the two functions aeration and mixing in oxidation ditches: Application to the denitrification by activated sludge
Snowling et al. Modeling Aerobic Granular Sludge Reactor Considering Granule Formation
CN111732195A (en) Anaerobic ammonia oxidation sewage autotrophic denitrification device and method based on pulse aeration
Wett et al. Design considerations for SBRs used in digestion liquor sidestream treatment
JP2013202543A (en) Waste water treatment apparatus and waste water treatment method
Khunjar et al. Demonstration of a Novel Separate Centrate Deammonification Process at the 26th Ward Wastewater Treatment Plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170728

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170803

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190315

R150 Certificate of patent or registration of utility model

Ref document number: 6499389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250