JP6499237B2 - Light wavelength conversion member and light emitting device - Google Patents

Light wavelength conversion member and light emitting device Download PDF

Info

Publication number
JP6499237B2
JP6499237B2 JP2017148393A JP2017148393A JP6499237B2 JP 6499237 B2 JP6499237 B2 JP 6499237B2 JP 2017148393 A JP2017148393 A JP 2017148393A JP 2017148393 A JP2017148393 A JP 2017148393A JP 6499237 B2 JP6499237 B2 JP 6499237B2
Authority
JP
Japan
Prior art keywords
light
phase
wavelength conversion
conversion member
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017148393A
Other languages
Japanese (ja)
Other versions
JP2019028306A (en
Inventor
翔平 高久
翔平 高久
祐介 勝
祐介 勝
経之 伊藤
経之 伊藤
祐紀 志村
祐紀 志村
光岡 健
健 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017148393A priority Critical patent/JP6499237B2/en
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to EP17865959.5A priority patent/EP3534193B1/en
Priority to KR1020197011086A priority patent/KR102229730B1/en
Priority to CN201780066919.2A priority patent/CN109923446B/en
Priority to US16/342,390 priority patent/US10727378B2/en
Priority to PCT/JP2017/037920 priority patent/WO2018079421A1/en
Priority to TW106137049A priority patent/TWI668295B/en
Publication of JP2019028306A publication Critical patent/JP2019028306A/en
Application granted granted Critical
Publication of JP6499237B2 publication Critical patent/JP6499237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Filters (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本開示は、例えば波長変換機器、蛍光材、各種照明、映像機器などに用いられるような、光の波長の変換が可能な光波長変換部材及び発光装置に関するものである。   The present disclosure relates to a light wavelength conversion member and a light emitting device capable of converting the wavelength of light, such as those used in wavelength conversion devices, fluorescent materials, various types of illumination, video equipment, and the like.

例えばヘッドランプや各種照明機器などでは、発光ダイオード(LED:Light Emitting Diode)や半導体レーザー(LD:Laser Diode)の青色光を、蛍光体によって波長変換することにより白色を得ている装置が主流となっている。   For example, in headlamps and various lighting devices, a device that obtains white by converting the wavelength of blue light of a light emitting diode (LED) or a semiconductor laser (LD: Laser Diode) with a phosphor is mainly used. It has become.

蛍光体としては、樹脂系やガラス系などが知られているが、近年、光源の高出力化が進められており、蛍光体には、より高い耐久性が求められるようになったことから、セラミックス蛍光体に注目が集まっている(特許文献1〜3参照)。   As the phosphor, a resin system or a glass system is known, but in recent years, the output of the light source has been increased, and the phosphor has been required to have higher durability. Attention has been focused on ceramic phosphors (see Patent Documents 1 to 3).

このセラミックス蛍光体としては、YAl12:Ce(YAG:Ce)に代表されるように、ガーネット構造(A12)の成分にCeが賦活された蛍光体が知られている。 As this ceramic phosphor, as represented by Y 3 Al 5 O 12 : Ce (YAG: Ce), a phosphor having a garnet structure (A 3 B 5 O 12 ) with Ce activated is known. ing.

特開2014−132084号公報JP 2014-132804 A 特開2015−34120号公報JP-A-2015-34120 特開2015−149394号公報JP-A-2015-149394

ところで、上述した従来技術では、下記のような問題があり、その改善が求められていた。
具体的には、前記特許文献1に記載の技術では、焼成中のCe揮発に伴う色ムラ防止のために、CeAl1118を組織中に分散させている。しかし、第三成分であるCeAl1118は光を吸収するので、発光強度および照度を減じる要因となる。このため、蛍光体の厚みを極端に薄くするなどして対処する必要があるが、薄片化は構造体としての蛍光体の耐久性を損なうという別の問題がある。
By the way, the above-described conventional technology has the following problems, and improvements have been demanded.
Specifically, in the technique described in Patent Document 1, CeAl 11 O 18 is dispersed in the structure in order to prevent color unevenness accompanying Ce volatilization during firing. However, CeAl 11 O 18 which is the third component absorbs light, which causes a decrease in emission intensity and illuminance. For this reason, it is necessary to deal with such a case that the thickness of the phosphor is extremely reduced. However, the thinning has another problem that the durability of the phosphor as a structure is impaired.

また、前記特許文献2に記載の技術では、発光中心イオンとなりうる希土類元素の含有量が1〜50mol%である。ところが、発光中心イオンの含有量が多い場合、濃度消光によって発光強度、光束が低下する要因となりうる。そのため、この範囲であると、蛍光特性および照度が著しく低下してしまう。   Moreover, in the technique described in Patent Document 2, the content of rare earth elements that can be luminescent center ions is 1 to 50 mol%. However, when the content of the luminescent center ion is large, the emission intensity and the luminous flux may decrease due to concentration quenching. Therefore, if it is in this range, the fluorescence characteristics and the illuminance are significantly lowered.

さらに、前記特許文献3に記載の技術では、YAGとAlとの界面での励起光の反射を抑制するために、Ceを賦活していないYAGが、発光成分となりうるYAGを取り囲む構造を取っている。しかし、この構造では蛍光成分のYAGで発生する熱が逃げづらく、温度消光の原因となる。 Furthermore, in the technique described in Patent Document 3, in order to suppress reflection of excitation light at the interface between YAG and Al 2 O 3 , a structure in which YAG that does not activate Ce surrounds YAG that can be a light-emitting component. Is taking. However, this structure makes it difficult for heat generated by the fluorescent component YAG to escape and causes temperature quenching.

つまり、上述した技術では、高い照度および蛍光強度を有するとともに、色ムラを抑制できる光波長変換部材を実現することは容易ではなかった。
本開示は、前記課題に鑑みてなされたものであり、その目的は、高い照度および蛍光強度を有し、色ムラを抑制できる光波長変換部材及び発光装置を提供することにある。
That is, with the above-described technique, it is not easy to realize a light wavelength conversion member that has high illuminance and fluorescence intensity and can suppress color unevenness.
The present disclosure has been made in view of the above problems, and an object thereof is to provide a light wavelength conversion member and a light-emitting device that have high illuminance and fluorescence intensity and can suppress color unevenness.

(1)本開示の第1局面は、蛍光性を有する結晶粒子を主体とする蛍光相と、透光性を有する結晶粒子を主体とする透光相と、を有するセラミックス焼結体から構成された光波長変換部材に関するものである。   (1) A first aspect of the present disclosure includes a ceramic sintered body having a fluorescent phase mainly composed of fluorescent crystal particles and a translucent phase mainly composed of translucent crystal particles. The present invention relates to a light wavelength conversion member.

この光波長変換部材では、蛍光相の結晶粒子は、化学式A12:Ceで表される組成を有するとともに、A元素及びB元素は、それぞれ下記元素群から選択される少なくとも1種の元素から構成されている。 In this light wavelength conversion member, the crystal particles in the fluorescent phase have a composition represented by the chemical formula A 3 B 5 O 12 : Ce, and each of the A element and the B element is at least one selected from the following element group It is composed of the elements.

A:Sc、Y、Ceを除くランタノイド
B:Al、Ga
さらに、この光波長変換部材では、光波長変換部材の断面における透光相と蛍光相との面積比(即ち、透光相の面積/蛍光相の面積)aが、0.3<a<34であり、且つ、前記断面における単位面積500μm の範囲内での蛍光相の界面長さyが300μm<y<1050μmである。
A: Lanthanoid excluding Sc, Y, and Ce B: Al, Ga
Further, in this light wavelength conversion member, the area ratio of the light transmitting phase to the fluorescent phase (that is, the area of the light transmitting phase / the area of the fluorescent phase) a in the cross section of the light wavelength converting member is 0.3 <a <34. In addition, the interface length y of the fluorescent phase within the range of the unit area 500 μm 2 in the cross section is 300 μm <y <1050 μm.

本第1局面では、基本的な構成として、セラミックス焼結体が、前記元素群から選択される少なくとも1種の元素から構成されているA12:Ceで表されるガーネット構造を有している。 In the first aspect, as a basic configuration, the ceramic sintered body has a garnet structure represented by A 3 B 5 O 12 : Ce, which is composed of at least one element selected from the element group. Have.

この組成により、効率よく青色光を可視光に変換することができる。
特に本第1局面では、光波長変換部材の断面における透光相と蛍光相との面積比(即ち、透光相の面積/蛍光相の面積)aが、0.3<a<34であり、且つ、前記断面における単位面積500μm の範囲内での蛍光相の界面長さyが300μm<y<1050μmであるので、後述する実施例等から明らかなように、光波長変換部材に光を照射した場合には、高い照度および蛍光強度が得られるとともに、色ムラが少ないという効果がある。
With this composition, blue light can be efficiently converted into visible light.
In particular, in the first aspect, the area ratio of the light transmitting phase to the fluorescent phase (that is, the area of the light transmitting phase / the area of the fluorescent phase) a in the cross section of the light wavelength conversion member is 0.3 <a <34. In addition, since the interface length y of the fluorescent phase within the range of the unit area of 500 μm 2 in the cross section is 300 μm <y <1050 μm, the light is applied to the light wavelength conversion member as will be apparent from Examples and the like described later. When irradiated, high illuminance and fluorescence intensity can be obtained, and color unevenness is reduced.

ここで、蛍光相の界面長さyが300μm未満であると、即ち所定の領域内(詳しくは規定された単位面積当たり)において蛍光相の塊が大きくなる、または、蛍光相の含有量が少ないと、蛍光相と透光相との界面での拡散が減るので透過率が向上し、照度および蛍光強度は向上するが、色ムラが発生する。   Here, when the interface length y of the fluorescent phase is less than 300 μm, that is, the mass of the fluorescent phase becomes large in a predetermined region (specifically, per specified unit area), or the content of the fluorescent phase is small. Then, since diffusion at the interface between the fluorescent phase and the light transmitting phase is reduced, the transmittance is improved, and the illuminance and fluorescence intensity are improved, but color unevenness occurs.

一方、蛍光相の界面長さyが1050μmを超えると、即ち所定の領域内における蛍光相の塊が小さくなると、界面での拡散が多くなるので、透過率が低くなり、色ムラは少なくなるものの、照度および蛍光強度が低下してしまう。   On the other hand, when the interface length y of the fluorescent phase exceeds 1050 μm, that is, when the mass of the fluorescent phase in a predetermined region becomes small, the diffusion at the interface increases, so the transmittance decreases and the color unevenness decreases. , Illuminance and fluorescence intensity will decrease.

また、面積比aが、0.3未満であると、蛍光相が不足するため、十分な透光性を示さず、照度および蛍光強度が低下してしまう。一方、面積比aが34を超えると、蛍光成分が不足するため、十分な発光を示さない。   On the other hand, when the area ratio a is less than 0.3, the fluorescent phase is insufficient, so that sufficient translucency is not exhibited, and the illuminance and fluorescence intensity are reduced. On the other hand, when the area ratio a exceeds 34, the fluorescent component is insufficient, and thus sufficient light emission is not exhibited.

なお、本第1局面の光波長変換部材は、耐熱性や耐久性についても、優れた性能を有している。
(2)本開示の第2局面では、透光相の結晶粒子の平均粒径r1と蛍光相の結晶粒子の平均粒径r2との比(即ち、r1/r2)xが、1.1<x<2.1であって、透光相の結晶粒子の平均粒径r1は0.2μm〜6μmの範囲であり、蛍光相の結晶粒子の平均粒径r2は0.1μm〜4μmの範囲であってもよい。
The light wavelength conversion member of the first aspect has excellent performance with respect to heat resistance and durability.
(2) In the second aspect of the present disclosure, the ratio of the average particle diameter r1 of the crystal particles in the light transmitting phase to the average particle diameter r2 of the crystal particles in the fluorescent phase (ie, r1 / r2) x is 1.1 < x <2.1, the average particle diameter r1 of the crystal particles in the light transmitting phase is in the range of 0.2 μm to 6 μm, and the average particle diameter r2 of the crystal particles in the fluorescent phase is in the range of 0.1 μm to 4 μm. There may be.

前記比x(即ち粒径比x)が1.1未満であると、透過率が低くなり、青色光の拡散が多くなるので、色ムラは小さくなるが、照度および蛍光強度が低下してしまう。
一方、 粒径比xが2.1超えると、透過率が向上し、照度および蛍光強度は向上するが、色ムラが発生する。
When the ratio x (that is, the particle size ratio x) is less than 1.1, the transmittance is lowered and the diffusion of blue light is increased, so that the color unevenness is reduced, but the illuminance and the fluorescence intensity are reduced. .
On the other hand, when the particle size ratio x exceeds 2.1, the transmittance is improved and the illuminance and fluorescence intensity are improved, but color unevenness occurs.

従って、前記粒径比xの範囲が好適である。
また、透光相の結晶粒子の平均粒径r1が0.2μm〜6μmの範囲であり、且つ、蛍光相の結晶粒子の平均粒径r2が0.1μm〜4μmの範囲の場合には、高い蛍光強度および照度を有しつつ、色ムラの少ないセラミックス蛍光体を得ることができる。
Therefore, the range of the particle size ratio x is preferable.
Further, it is high when the average particle diameter r1 of the crystal particles in the light transmitting phase is in the range of 0.2 μm to 6 μm and the average particle diameter r2 of the crystal particles in the fluorescent phase is in the range of 0.1 μm to 4 μm. A ceramic phosphor having little color unevenness while having fluorescence intensity and illuminance can be obtained.

ここで、透光相の結晶粒子の平均粒径r1が0.2μm未満で、且つ、蛍光相の結晶粒子の平均粒径r2が0.1μm未満の場合には、青色光および黄色光の拡散が多くなるので、色ムラは小さくなるが、青色光および黄色光の透過率が低下し、蛍光強度および照度も低下する。   Here, when the average particle diameter r1 of the crystal particles in the light transmitting phase is less than 0.2 μm and the average particle diameter r2 of the crystal particles in the fluorescent phase is less than 0.1 μm, the diffusion of blue light and yellow light is performed. However, although the color unevenness is reduced, the transmittance of blue light and yellow light is reduced, and the fluorescence intensity and illuminance are also reduced.

一方、透光相の結晶粒子の平均粒径r1が6μmより大きく、且つ、蛍光相の結晶粒子の平均粒径r2が4μmより大きい場合には、透過率が上がり、蛍光強度および照度は向上するが、色ムラが大きくなってしまう。   On the other hand, when the average particle diameter r1 of the transparent phase crystal particles is larger than 6 μm and the average particle diameter r2 of the fluorescent phase crystal particles is larger than 4 μm, the transmittance is increased and the fluorescence intensity and the illuminance are improved. However, the color unevenness becomes large.

(3)本開示の第3局面では、透光相の結晶粒子は、Alの組成を有していてもよい。
ここでは、透光相の結晶粒子の組成の好適な例を示している。
(3) In the third aspect of the present disclosure, the crystal particles of the light transmitting phase may have a composition of Al 2 O 3 .
Here, a suitable example of the composition of the crystal particles of the light transmitting phase is shown.

(4)本開示の第4局面では、化学式A12:Ceで表される化合物は、セラミックス焼結体全体の3vol%〜70vol%の範囲であってもよい。
セラミックス焼結体中のA12:Ceの割合が、全体の3vol%〜70vol%の範囲であると、高い照度を有しつつ色ムラの少ないセラミックス焼結体を得ることができる。
(4) In the fourth aspect of the present disclosure, the compound represented by the chemical formula A 3 B 5 O 12 : Ce may be in a range of 3 vol% to 70 vol% of the entire ceramic sintered body.
Ceramic sintered body in A 3 in B 5 O 12: ratio of Ce is, if it is the whole range of 3vol% ~70vol%, it is possible to obtain a small ceramic sintered body color unevenness while having a high illuminance .

ここで、前記割合が3vol%未満では、蛍光成分が不足するため十分な発光を示さない。一方、前記割合が70vol%を超えると、透光相が不足するため十分な透光性を示さず、照度および蛍光強度が低下してしまう。   Here, if the said ratio is less than 3 vol%, since the fluorescence component is insufficient, it does not show sufficient light emission. On the other hand, when the ratio exceeds 70 vol%, the light-transmitting phase is insufficient, so that sufficient light-transmitting properties are not exhibited, and illuminance and fluorescence intensity are reduced.

(5)本開示の第5局面では、化学式A12:Ceで表される化合物におけるCe濃度は、化合物のA元素に対して0.1mol%〜1.0mol%の範囲であってもよい。 (5) In the fifth aspect of the present disclosure, the Ce concentration in the compound represented by the chemical formula A 3 B 5 O 12 : Ce is in the range of 0.1 mol% to 1.0 mol% with respect to the element A of the compound. May be.

セラミックス焼結体中のA12:Ceで表される化合物のCe濃度がA元素に対して、0.1mol%〜1.0mol%の範囲であると、高い照度および蛍光強度を有しつつ、色ムラが少ないセラミックス焼結体を得ることができる。 When the Ce concentration of the compound represented by A 3 B 5 O 12 : Ce in the ceramic sintered body is in the range of 0.1 mol% to 1.0 mol% with respect to the A element, high illuminance and fluorescence intensity are obtained. A ceramic sintered body with little color unevenness can be obtained.

ここで、前記割合が0.1mol%未満では、発光中心イオンが少なく蛍光成分が不足するため十分な発光が得られない。一方、前記割合が1.0mol%を超えると発光中心イオンの濃度が高く、濃度消光が起き、蛍光強度および照度が低下してしまう。
(6)本開示の第6局面は、第1〜第5局面のいずれかの光波長変換部材を備えた発光装置である。
Here, if the said ratio is less than 0.1 mol%, since there are few luminescent center ions and a fluorescent component is insufficient, sufficient light emission cannot be obtained. On the other hand, when the ratio exceeds 1.0 mol%, the concentration of the luminescent center ion is high, concentration quenching occurs, and the fluorescence intensity and illuminance decrease.
(6) 6th aspect of this indication is a light-emitting device provided with the optical wavelength conversion member in any one of 1st-5th aspect.

本第6局面の発光装置(詳しくは光波長変換部材)にて波長が変換された光(即ち蛍光)は、高い蛍光強度を有する。また、高い色均質性を有する。
なお、発光装置の発光素子としては、例えばLEDやLDなどの公知の素子を用いることができる。
The light (that is, fluorescence) whose wavelength is converted by the light emitting device of the sixth aspect (specifically, the light wavelength conversion member) has high fluorescence intensity. Moreover, it has high color uniformity.
In addition, as a light emitting element of a light-emitting device, well-known elements, such as LED and LD, can be used, for example.

<以下に、本発明の各構成について説明する>
・「蛍光相」は、蛍光性を有する結晶粒子を主体とする相であり、「透光相」は、透光性を有する結晶粒子、詳しくは蛍光相の結晶粒子とは異なる組成の結晶粒子を主体とする相である。
<Each configuration of the present invention will be described below>
-"Fluorescent phase" is a phase mainly composed of crystal particles having fluorescence, and "Translucent phase" is a crystal particle having translucency, specifically, a crystal particle having a composition different from that of crystal particles in a fluorescent phase. It is a phase mainly composed of.

・「主体」とは、前記光波長変換部材中において、最も多い量(即ち体積)存在することを示している。例えば、蛍光相には、蛍光性を有する結晶粒子を50体積%以上(好ましくは90体積%以上)含まれていてもよい。また、例えば、透光相には、透光性を有する結晶粒子を50体積%以上(好ましくは90体積%以上)含まれていてもよい。   “Subject” indicates that the largest amount (ie, volume) exists in the light wavelength conversion member. For example, the fluorescent phase may contain 50% by volume or more (preferably 90% by volume or more) of crystal particles having fluorescence. Further, for example, the light transmitting phase may contain 50 vol% or more (preferably 90 vol% or more) of crystal particles having translucency.

・「光波長変換部材」は、上述した構成を有するセラミックス焼結体であり、各結晶粒子やその粒界には、不可避不純物が含まれていてもよい。このセラミックス焼結体には、透光相及び透光相(従って蛍光性を有する結晶粒子及び透光性を有する結晶粒子)が、セラミックス焼結体の50体積%以上(好ましくは90体積%以上)含まれていてもよい。   The “light wavelength conversion member” is a ceramic sintered body having the above-described configuration, and each crystal particle and its grain boundary may contain inevitable impurities. In this ceramic sintered body, the light-transmitting phase and the light-transmitting phase (therefore, fluorescent crystal particles and translucent crystal particles) are 50% by volume or more (preferably 90% by volume or more) of the ceramic sintered body. ) May be included.

・「A12:Ce」とは、A12中の元素Aの一部にCeが固溶置換していることを示しており、このような構造を有することにより、同化合物は蛍光特性を示すようになる。 - "A 3 B 5 O 12: Ce" means, Ce part of the element A in A 3 B 5 O 12 has indicated that the solid solution substitution, by having such a structure The compound exhibits fluorescence characteristics.

・「界面長さ」とは、光波長変換部材の断面の所定の領域、詳しくは単位面積である500μmにおいて、1又は複数の蛍光相を構成する部分の外周の長さの合計である。例えば、所定の領域において、周囲から分離された蛍光相が複数ある場合には、各蛍光相の界面長さの合計である。 The “interface length” is the total length of the outer circumferences of the portions constituting one or a plurality of fluorescent phases in a predetermined region of the cross section of the light wavelength conversion member, specifically, in a unit area of 500 μm 2 . For example, when there are a plurality of fluorescent phases separated from the surroundings in a predetermined region, the total interface length of the fluorescent phases is obtained.

実施形態の光波長変換部材を備えた発光装置を厚み方向に破断した断面を示す断面図である。It is sectional drawing which shows the cross section which fractured | ruptured the light-emitting device provided with the light wavelength conversion member of embodiment in the thickness direction. 実施形態の光波長変換部材の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the optical wavelength conversion member of embodiment. 実施形態の光波長変換部材の断面のSEM画像の模式図、詳しくはエッチング処理をしないSEM画像の模式図である。It is the schematic diagram of the SEM image of the cross section of the optical wavelength conversion member of embodiment, and the schematic diagram of the SEM image which does not perform an etching process in detail. 実施形態の光波長変換部材の断面のSEM画像の模式図、詳しくはエッチング処理をしたSEM画像の模式図である。It is the schematic diagram of the SEM image of the cross section of the optical wavelength conversion member of embodiment, and the schematic diagram of the SEM image which carried out the etching process in detail. 色ムラの測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of a color nonuniformity.

次に、本開示の光波長変換部材及び発光装置の実施形態について説明する。
[1.実施形態]
[1−1.発光装置]
まず、本実施形態の光波長変換部材及び発光装置について説明する。
Next, embodiments of the light wavelength conversion member and the light emitting device of the present disclosure will be described.
[1. Embodiment]
[1-1. Light emitting device]
First, the light wavelength conversion member and the light emitting device of this embodiment will be described.

図1に示すように、本実施形態の発光装置1は、例えばアルミナ等の箱状のセラミック製のパッケージ(容器)3と、容器3の内部に配置された例えばLD等の発光素子5と、容器3の開口部7を覆うように配置された板状の光波長変換部材9とを備えている。   As shown in FIG. 1, a light emitting device 1 of the present embodiment includes a box-shaped ceramic package (container) 3 such as alumina, and a light emitting element 5 such as an LD disposed inside the container 3. And a plate-like light wavelength conversion member 9 disposed so as to cover the opening 7 of the container 3.

この発光装置1では、発光素子5から放射された光は、透光性を有する光波長変換部材9を透過するとともに、その光の一部は光波長変換部材9の内部で波長変換されて発光する。つまり、光波長変換部材9では、発光素子5から放射される光の波長とは異なる波長の蛍光を発する。   In the light emitting device 1, the light emitted from the light emitting element 5 is transmitted through the light wavelength conversion member 9 having translucency, and a part of the light is wavelength-converted inside the light wavelength conversion member 9 to emit light. To do. That is, the light wavelength conversion member 9 emits fluorescence having a wavelength different from the wavelength of the light emitted from the light emitting element 5.

例えば、LDから照射される青色光が、光波長変換部材9によって波長変換されることにより、全体として白色光が光波長変換部材9から外部(例えば図1の上方)に照射される。
[1−2.光波長変換部材]
次に、光波長変換部材9について説明する。
For example, blue light emitted from the LD is wavelength-converted by the light wavelength conversion member 9, so that white light as a whole is emitted from the light wavelength conversion member 9 to the outside (for example, upward in FIG. 1).
[1-2. Optical wavelength conversion member]
Next, the light wavelength conversion member 9 will be described.

本実施形態の光波長変換部材9は、蛍光性を有する結晶粒子(即ち蛍光相粒子)を主体とする蛍光相と、透光性を有する結晶粒子(即ち蛍光相粒子)を主体とする透光相と、を有するセラミックス焼結体から構成されたものである。   The light wavelength conversion member 9 of the present embodiment has a fluorescent phase mainly composed of fluorescent crystal particles (that is, fluorescent phase particles) and a translucent light mainly composed of translucent crystal particles (that is, fluorescent phase particles). And a ceramic sintered body having a phase.

この光波長変換部材9では、蛍光相粒子は、化学式A12:Ceで表される組成を有するとともに、そのA元素及びB元素は、それぞれ下記元素群から選択される少なくとも1種の元素から構成されている。 In this light wavelength conversion member 9, the fluorescent phase particles have a composition represented by the chemical formula A 3 B 5 O 12 : Ce, and each of the A element and the B element is at least one selected from the following element group It is composed of the elements.

A:Sc、Y、Ceを除くランタノイド
B:Al、Ga
なお、前記化学式A12:CeのA及びBは、化学式A12:Ceで示される物質を構成する各元素(但し異なる元素)を示しており、Oは酸素、Ceはセリウムである。
A: Lanthanoid excluding Sc, Y, and Ce B: Al, Ga
In the chemical formula A 3 B 5 O 12 : Ce, A and B represent each element (however, a different element) constituting the substance represented by the chemical formula A 3 B 5 O 12 : Ce, O is oxygen, Ce is cerium.

この光波長変換部材9では、光波長変換部材9の断面における透光相と蛍光相との面積比(即ち、透光相の面積/蛍光相の面積)aが、0.3<a<34であり、且つ、前記断面における単位面積500μm の範囲内での蛍光相の所定の領域における界面長さyが300μm<y<1050μmである。 In the light wavelength conversion member 9, the area ratio (that is, the area of the light transmission phase / the area of the fluorescence phase) a in the cross section of the light wavelength conversion member 9 is 0.3 <a <34. And the interface length y in the predetermined region of the fluorescent phase within the range of the unit area of 500 μm 2 in the cross section is 300 μm <y <1050 μm.

なお、所定の領域とは、500μmの大きさの単位面積であり、界面長さyとは、前記単位面積において、各蛍光相の周囲の長さを示す各界面長さの合計である。
また、透光相粒子の平均粒径r1と蛍光相粒子の平均粒径r2との比(即ち、r1/r2)xが、1.1<x<2.1であって、透光相の結晶粒子の平均粒径r1は0.2μm〜6μmの範囲であり、蛍光相の結晶粒子の平均粒径r2は0.1μm〜4μmの範囲である。
The predetermined region is a unit area having a size of 500 μm 2 , and the interface length y is the total of the interface lengths indicating the circumference of each fluorescent phase in the unit area.
Further, the ratio of the average particle diameter r1 of the light transmitting phase particles to the average particle diameter r2 of the fluorescent phase particles (ie, r1 / r2) x is 1.1 <x <2.1, The average particle diameter r1 of the crystal particles is in the range of 0.2 μm to 6 μm, and the average particle diameter r2 of the crystal particles in the fluorescent phase is in the range of 0.1 μm to 4 μm.

さらに、光波長変換部材9では、化学式A12:Ceで表される化合物は、セラミックス焼結体全体の3vol%〜70vol%の範囲である。
また、化学式A12:Ceで表される化合物におけるCe濃度は、化合物のA元素に対して0.1mol%〜1.0mol%の範囲である。
Furthermore, the optical wavelength conversion member 9, the formula A 3 B 5 O 12: a compound represented by Ce is in the range of 3vol% ~70vol% of the total ceramic sintered body.
The Ce concentration in the compound represented by the chemical formula A 3 B 5 O 12 : Ce is in the range of 0.1 mol% to 1.0 mol% with respect to the A element of the compound.

なお、透光相粒子は、例えばAlの組成を有している。
[1−2.光波長変換部材の製造方法]
ここでは、光波長変換部材9を製造する際の概略の手順について、図2に基づいて、簡単に説明する。
The light transmitting phase particles have, for example, a composition of Al 2 O 3 .
[1-2. Manufacturing method of optical wavelength conversion member]
Here, a schematic procedure for manufacturing the light wavelength conversion member 9 will be briefly described with reference to FIG.

まず、前記実施形態の構成を満たすように、セラミックス焼結体である光波長変換部材9の粉末材料の秤量等を行った(即ち調製した)。
次に、調製した粉末材料に、有機溶剤と分散剤とを加え、ボールミルにて粉砕混合を行い、スラリーを作製した。
First, the powder material of the light wavelength conversion member 9 which is a ceramic sintered body was weighed (that is, prepared) so as to satisfy the configuration of the embodiment.
Next, an organic solvent and a dispersant were added to the prepared powder material, and pulverized and mixed with a ball mill to prepare a slurry.

次に、得られたスラリーを、乾燥、造粒した。
次に、得られた造粒粉を、プレス成形した。
次に、プレス成形体を、所定温度で所定時間焼成し、セラミックス焼結体を得た。
Next, the obtained slurry was dried and granulated.
Next, the obtained granulated powder was press-molded.
Next, the press-molded body was fired at a predetermined temperature for a predetermined time to obtain a ceramic sintered body.

なお、上述したプレス成形によるセラミックス焼結体の製造方法以外に、スラリーをシート成形して得られたシート成形体を焼成することにより、セラミックス焼結体を得てもよい。
[1−3.効果]
次に、本実施形態の効果を説明する。
In addition to the above-described method for producing a ceramic sintered body by press molding, a ceramic sintered body may be obtained by firing a sheet molded body obtained by sheet forming a slurry.
[1-3. effect]
Next, the effect of this embodiment will be described.

(1)本実施形態では、基本的な構成として、セラミック焼結体が、前記元素群から選択される少なくとも1種の元素から構成されているA12:Ceで表されるガーネット構造を有している。この組成により、効率よく青色光を可視光に変換することができる。 (1) In the present embodiment, as a basic configuration, the ceramic sintered body is represented by A 3 B 5 O 12 : Ce composed of at least one element selected from the element group. It has a structure. With this composition, blue light can be efficiently converted into visible light.

特に本実施形態は、光波長変換部材9の断面における透光相と蛍光相との面積比(即ち、透光相の面積/蛍光相の面積)aが、0.3<a<34であり、且つ、前記断面における単位面積500μm の範囲内での蛍光相の界面長さyが300μm<y<1050μmである。そのため、光波長変換部材9に例えば発光素子5から光を照射した場合には、高い照度および蛍光強度が得られるとともに、色ムラが少ないという効果がある。 In particular, in the present embodiment, the area ratio of the light transmitting phase to the fluorescent phase (that is, the area of the light transmitting phase / the area of the fluorescent phase) a in the cross section of the light wavelength conversion member 9 is 0.3 <a <34. And the interface length y of the fluorescent phase in the range of the unit area of 500 μm 2 in the cross section is 300 μm <y <1050 μm. Therefore, when the light wavelength conversion member 9 is irradiated with light from the light emitting element 5, for example, there is an effect that high illuminance and fluorescence intensity can be obtained and color unevenness is small.

(2)本実施形態では、透光相粒子の平均粒径r1と蛍光相粒子の平均粒径r2との比(即ち、r1/r2)xが、1.1<x<2.1であって、透光相の結晶粒子の平均粒径r1は0.2μm〜6μmの範囲であり、蛍光相の結晶粒子の平均粒径r2は0.1μm〜4μmの範囲である。 (2) In this embodiment, the ratio of the average particle diameter r1 of the light transmitting phase particles to the average particle diameter r2 of the fluorescent phase particles (ie, r1 / r2) x is 1.1 <x <2.1. The average particle diameter r1 of the crystal particles in the light transmitting phase is in the range of 0.2 to 6 μm, and the average particle diameter r2 of the crystal particles in the fluorescent phase is in the range of 0.1 to 4 μm.

この構成によって、一層高い照度および蛍光強度が得られ、色ムラも低減する。
(3)本実施形態では、化学式A12:Ceで表される化合物は、セラミックス焼結体全体の3vol%〜70vol%の範囲である。
With this configuration, higher illuminance and fluorescence intensity can be obtained, and color unevenness can be reduced.
(3) In the present embodiment, the compound represented by the chemical formula A 3 B 5 O 12 : Ce is in the range of 3 vol% to 70 vol% of the entire ceramic sintered body.

この構成によって、一層高い照度および蛍光強度が得られ、色ムラも低減する。
(4)本実施形態では、化学式A12:Ceで表される化合物におけるCe濃度は、化合物のA元素に対して0.1mol%〜1.0mol%の範囲である。
With this configuration, higher illuminance and fluorescence intensity can be obtained, and color unevenness can be reduced.
(4) In the present embodiment, the Ce concentration in the compound represented by the chemical formula A 3 B 5 O 12 : Ce is in the range of 0.1 mol% to 1.0 mol% with respect to the element A of the compound.

この構成によって、一層高い照度および蛍光強度が得られ、色ムラも低減する。
(5)本実施形態の発光装置1、詳しくは光波長変換部材9にて波長が変換された光(即ち蛍光)は、高い蛍光強度を有する。また、色バラツキが少なく高い色均質性を有する。
[2.実施例]
次に、前記実施形態の具体的な実施例について説明する。
With this configuration, higher illuminance and fluorescence intensity can be obtained, and color unevenness can be reduced.
(5) Light (that is, fluorescence) whose wavelength is converted by the light emitting device 1 of this embodiment, specifically, the light wavelength conversion member 9, has high fluorescence intensity. In addition, there is little color variation and high color uniformity.
[2. Example]
Next, specific examples of the embodiment will be described.

ここでは、下記表1に記載のNo.1〜30のセラミックス焼結体の各試料、即ち実施例1〜5の光波長変換部材の各試料を作製した。
なお、各試料のうち、No.3〜7、11〜30が本開示の範囲内の試料であり、No.1、2、8〜10が本開示の範囲外(比較例)の試料である。
[2−1.試料の評価方法]
まず、各試料に対して実施した各評価の方法について説明する。
Here, each sample of the ceramic sintered bodies No. 1 to 30 described in Table 1 below, that is, each sample of the light wavelength conversion member of Examples 1 to 5 was prepared.
Of the samples, Nos. 3 to 7, 11 to 30 are samples within the scope of the present disclosure, and Nos. 1, 2, and 8 to 10 are samples outside the scope of the present disclosure (comparative example). .
[2-1. Sample evaluation method]
First, each evaluation method performed on each sample will be described.

<相対密度>
各試料のセラミックス焼結体の相対密度は、アルキメデス法で密度を測定し、測定した密度を相対密度に換算する方法で算出した。
<Relative density>
The relative density of the ceramic sintered body of each sample was calculated by measuring the density by the Archimedes method and converting the measured density to the relative density.

<開気孔率>
各試料のセラミックス焼結体の開気孔率は、JIS R1634に規定される方法によって測定した。
<Open porosity>
The open porosity of the ceramic sintered body of each sample was measured by the method defined in JIS R1634.

<面積比>
各試料のセラミックス焼結体を破断し、その破断面を鏡面研磨後、その研磨面を走査型電子顕微鏡(SEM)で観察し、5000倍のSEM画像を得た。そのSEM画像の1例の模式図を図3に示すが、白色に近い明部が蛍光相であり、黒色に近い暗部が透光相である。
<Area ratio>
The ceramic sintered body of each sample was broken, the fractured surface was mirror-polished, and the polished surface was observed with a scanning electron microscope (SEM) to obtain a 5000-fold SEM image. A schematic diagram of an example of the SEM image is shown in FIG. 3, where a bright portion close to white is a fluorescent phase, and a dark portion close to black is a translucent phase.

そして、前記SEM画像のうち、500μmの領域内で、それぞれ透光相の面積STと蛍光相の面積SKとを測定した。そして、透光相の面積STと蛍光相の面積SKとの面積比aを、ST/SKの演算により求めた。 Then, in the SEM image, the area ST of the light transmitting phase and the area SK of the fluorescent phase were measured in the region of 500 μm 2 , respectively. Then, an area ratio a between the area ST of the light transmitting phase and the area SK of the fluorescent phase was obtained by calculation of ST / SK.

なお、前記面積は、SEM画像を画像解析ソフト(例えばWinloof)によって処理して求めた。また、500μmの領域とは、5000倍のSEM画像であれば、特定の視野範囲で測定した後、500μmに換算して面積比aを求めてもよい。後述する界面長さについても、同様であり、500μm当たりに換算してもよい。 The area was obtained by processing the SEM image with image analysis software (for example, Winloof). In addition, if the 500 μm 2 region is a 5000 times SEM image, the area ratio a may be obtained by converting to 500 μm 2 after measurement in a specific visual field range. The same applies to the interface length described later, and may be converted per 500 μm 2 .

<平均結晶粒径>
各試料のセラミックス焼結体を破断し、その破断面を鏡面研磨後、1350℃で熱エッチングを行った。エッチング面をSEM観察し、セラミックス焼結体中の任意の5箇所の位置において、それぞれ2500倍の画像(即ちSEM画像)を得た。そのSEM画像の1例の模式図を図4に示すが、明部が蛍光相粒子であり、暗部が透光相粒子である。
<Average crystal grain size>
The ceramic sintered body of each sample was fractured, and the fractured surface was mirror-polished, followed by thermal etching at 1350 ° C. The etched surface was observed with an SEM, and images of 2500 times (that is, SEM images) were obtained at arbitrary five positions in the ceramic sintered body. A schematic diagram of an example of the SEM image is shown in FIG. 4, where the bright part is the fluorescent phase particle and the dark part is the light transmitting phase particle.

そして、前記各位置における各SEM画像中の20μm角の中で、任意の線を5本引き、インターセプト法により、蛍光相粒子と透光相粒子との平均結晶粒径(即ち平均粒径)を求めた。つまり、5箇所の領域の全体において、蛍光相粒子の平均粒径r2と透光相粒子の平均粒径r1とを求めた。   Then, within the 20 μm square in each SEM image at each position, five arbitrary lines are drawn, and the average crystal grain size (that is, the average grain size) of the fluorescent phase particles and the transparent phase particles is determined by the intercept method. Asked. That is, the average particle diameter r2 of the fluorescent phase particles and the average particle diameter r1 of the light transmitting phase particles were determined in the entire five regions.

<粒径比>
さらに、得られた蛍光相粒子の平均粒径r2と透光相粒子の平均粒径r1から、以下の式(1)を用いて粒径比xを算出した。
<Particle size ratio>
Furthermore, the particle size ratio x was calculated from the average particle size r2 of the obtained fluorescent phase particles and the average particle size r1 of the light transmitting phase particles using the following formula (1).

粒径比x=透光相粒子の平均粒径r1/蛍光相粒子の平均粒径r2・・(1)
<界面長さ>
前記面積比を求める際に使用した前記5000倍のSEM画像に対して、前記画像解析ソフト(例えばWinloof)を用いて、任意の5箇所の位置の各領域において、それぞれ蛍光相毎に界面長さを求めた。即ち、一塊の蛍光相単位での界面長さを求めた。また、蛍光相が複数ある領域においては、各蛍光相の界面長さを合計した。つまり、各領域において全ての蛍光相の界面長さを求め、各領域毎にそれらの合計値(即ち各領域毎の全界面長さ)を求めた。
Particle size ratio x = transparent phase particle average particle size r1 / fluorescent phase particle average particle size r2 (1)
<Interface length>
Using the image analysis software (for example, Winloof) for the 5000 times SEM image used when determining the area ratio, the interface length for each fluorescent phase in each region at any five positions Asked. That is, the interface length in units of a single fluorescent phase was determined. Moreover, in the area | region with two or more fluorescence phases, the interface length of each fluorescence phase was totaled. That is, the interface length of all fluorescent phases in each region was obtained, and the total value (that is, the total interface length for each region) was obtained for each region.

ここでは、5箇所の位置における各領域は、それぞれ500μmの大きさであり、5箇所の位置の領域で求めた各領域における全界面長さ求め、その平均値を界面長さyとした。 Here, each area | region in five positions is each a magnitude | size of 500 micrometers 2 , The total interface length in each area | region calculated | required in the area | region of five positions was calculated | required, and the average value was made into interface length y.

なお、前記界面長さの1例、即ち蛍光相単位での蛍光相の界面長さを前記図3に示す。図3において、一つの蛍光相(即ち一つの薄い灰色の明部の部分)を囲む白色の環状のラインの長さが蛍光相単位での界面長さである。   FIG. 3 shows an example of the interface length, that is, the interface length of the fluorescent phase in units of fluorescent phase. In FIG. 3, the length of the white circular line surrounding one fluorescent phase (that is, one light gray bright portion) is the interface length in units of fluorescent phase.

<照度>
照度は照度計によって測定した。具体的には、13mm角×厚み0.2mmに加工した各試料に対し、465nmの波長を有する青色LD光をレンズで集光させて0.5mm幅とし、これを照射して反対面から透過してくる光について、分光放射照度計(コニカミノルタ製CL−500A)によって照度を測定した。
<Illuminance>
The illuminance was measured with a luminometer. Specifically, blue LD light having a wavelength of 465 nm is condensed with a lens to a width of 0.5 mm for each sample processed to a 13 mm square × thickness 0.2 mm, and this is irradiated and transmitted from the opposite surface. The illuminance of the incoming light was measured with a spectral irradiance meter (CL-500A manufactured by Konica Minolta).

なお、照度は、YAG:Ce単結晶体の強度を100とした時の相対値(%)で評価した。
<色ムラ>
色ムラ(即ち色バラツキ)は、照度計による色度バラツキ測定によって評価した。
The illuminance was evaluated as a relative value (%) when the strength of the YAG: Ce single crystal was 100.
<Color unevenness>
Color unevenness (that is, color variation) was evaluated by measuring chromaticity variation with an illuminometer.

具体的には、13mm角×厚み0.2mmに加工した各試料に対し、465nmの波長を有する青色LD光をレンズで集光させて0.5mm幅とし、これを照射して反対面から透過してくる光について、分光放射照度計(コニカミノルタ製CL−500A)によって色度を測定した。   Specifically, blue LD light having a wavelength of 465 nm is condensed with a lens to a width of 0.5 mm for each sample processed to a 13 mm square × thickness 0.2 mm, and this is irradiated and transmitted from the opposite surface. The chromaticity of the incoming light was measured with a spectral irradiance meter (CL-500A manufactured by Konica Minolta).

照射は、各試料の表面(即ちサンプル面)に対して、図5に示すように、9mm角の中央部分を3mm間隔で9個所の領域に区分し、各領域の色度(X方向)のバラツキ(Δx)を評価した。バラツキ(Δx)とは色度方向の偏差の最大値を示し、Δx<0.03となることが好ましい。   As shown in FIG. 5, with respect to the surface of each sample (ie, the sample surface), the irradiation is performed by dividing the 9 mm square central portion into 9 regions at intervals of 3 mm, and the chromaticity (X direction) of each region. Variation (Δx) was evaluated. The variation (Δx) indicates the maximum value of deviation in the chromaticity direction, and preferably Δx <0.03.

なお、色度とは、国際照明委員会(CIE)が1931年に策定した国際表示法で、CIE-XYZ表色系で示される色度である。つまり、表色上の3原色を数値化し、xy座標空間で色を表したxy色度図(いわゆるCIE色度図)で示される色度である。   The chromaticity is an international display method established in 1931 by the International Commission on Illumination (CIE) and is a chromaticity represented by the CIE-XYZ color system. That is, the chromaticity is represented by an xy chromaticity diagram (so-called CIE chromaticity diagram) in which the three primary colors on the color are digitized and the colors are expressed in the xy coordinate space.

<蛍光強度>
13mm角×厚み0.2mmに加工した各試料に対し、465nmの波長を有する青色LD光をレンズで0.5mm幅まで集光させて照射し、透過した光をレンズによって集光させ、パワーセンサーによりその発光強度(即ち蛍光強度)を測定した。このとき照射される出力密度は40W/mmとなるようにした。
<Fluorescence intensity>
Each sample processed to 13 mm square x 0.2 mm thickness is irradiated with blue LD light having a wavelength of 465 nm by condensing it to a width of 0.5 mm with a lens, and the transmitted light is condensed with the lens, and the power sensor Was used to measure the emission intensity (ie, fluorescence intensity). The power density irradiated at this time was set to 40 W / mm 2 .

なお、蛍光強度は、YAG:Ce単結晶体の強度を100とした時の相対値(%)で評価した。
[2−2.試料の製造方法及び評価結果]
次に、各試料の製造方法と、各試料の評価結果について説明する。
The fluorescence intensity was evaluated as a relative value (%) when the intensity of the YAG: Ce single crystal was 100.
[2-2. Sample manufacturing method and evaluation results]
Next, a manufacturing method of each sample and an evaluation result of each sample will be described.

<実施例1>
下記表1に示す条件により、No.1〜9のセラミックス焼結体(即ち光波長変換部材)の試料を作製した。
<Example 1>
Samples of ceramic sintered bodies No. 1 to 9 (that is, light wavelength conversion members) were produced under the conditions shown in Table 1 below.

具体的には、各試料のセラミックス焼結体に応じて、下記表1に示すように、Al(平均粒径0.2μm)とY(平均粒径1.2μm)、Gd(平均粒径1.5μm)、CeO(平均粒径1.5μm)の各粉末材料を秤量した。 Specifically, according to the ceramic sintered body of each sample, as shown in Table 1 below, Al 2 O 3 (average particle size 0.2 μm) and Y 2 O 3 (average particle size 1.2 μm), Each powder material of Gd 2 O 3 (average particle size 1.5 μm) and CeO 2 (average particle size 1.5 μm) was weighed.

このとき、A12:Ce量は、セラミックス焼結体全体の30vol%に固定した。また、Ce濃度は、A元素に対して0.3mol%に固定した。
これらの粉末を、エタノールと共にボールミル中に投入し、4〜48hr粉砕混合を行った。得られたスラリーを乾燥・造粒し、得られた造粒粉をプレス成形した。得られた成形体を大気雰囲気中で焼成を行った。この際、焼成温度を1500〜1800℃、保持時間を2〜10時間として焼成を行った。
At this time, the amount of A 3 B 5 O 12 : Ce was fixed at 30 vol% of the entire ceramic sintered body. The Ce concentration was fixed at 0.3 mol% with respect to the A element.
These powders were put into a ball mill together with ethanol and pulverized and mixed for 4 to 48 hours. The obtained slurry was dried and granulated, and the obtained granulated powder was press-molded. The obtained molded body was fired in an air atmosphere. At this time, firing was performed at a firing temperature of 1500 to 1800 ° C. and a holding time of 2 to 10 hours.

具体的には、試料No.1、2では、粉砕時間を30時間より長くし、焼成温度を1500℃とし、保持時間を2〜5時間とした。
試料No.3〜7では、粉砕時間を16時間とし、焼成温度を1500℃〜1750℃とし、保持時間を10時間とした。
Specifically, in Sample Nos. 1 and 2, the pulverization time was longer than 30 hours, the firing temperature was 1500 ° C., and the holding time was 2 to 5 hours.
In sample Nos. 3 to 7, the pulverization time was 16 hours, the firing temperature was 1500 ° C. to 1750 ° C., and the holding time was 10 hours.

試料No.8、9では、粉砕時間をそれぞれ16時間、4時間とし、焼成温度を同じ1800℃とし、保持時間を同じ10時間とした。
なお、前記条件の範囲で、粉砕時間と焼成条件を変更することで、実施例1の各試料を得ることができる。例えば粉砕時間を長くすることで、結晶粒子の粒径を小さくできる。また、焼成温度を高くすることで、結晶粒子を成長させて、粒径を大きくできる。従って、これらが、界面長さに影響を与えると考えられる。
In Sample Nos. 8 and 9, the grinding time was 16 hours and 4 hours, the firing temperature was the same 1800 ° C., and the holding time was the same 10 hours.
In addition, each sample of Example 1 can be obtained by changing a grinding | pulverization time and baking conditions in the range of the said conditions. For example, by increasing the pulverization time, the particle size of the crystal particles can be reduced. Further, by increasing the firing temperature, crystal grains can be grown and the particle size can be increased. Therefore, these are considered to affect the interface length.

次に、この製造方法によって得られた各試料のセラミックス焼結体について、上述した評価方法による評価を行った。その結果を、下記表1に記す。
表1から明らかなように、面積比aが0.3<a<34の範囲であり、且つ、蛍光相の界面長さyが300μm<y<1050μmの範囲にあるNo.3〜7の試料は、蛍光強度および照度が大きく、しかも、色ムラが少なく、好結果が得られた。
Next, the ceramic sintered body of each sample obtained by this manufacturing method was evaluated by the above-described evaluation method. The results are shown in Table 1 below.
As is clear from Table 1, the samples No. 3 to 7 in which the area ratio a is in the range of 0.3 <a <34 and the interface length y of the fluorescent phase is in the range of 300 μm <y <1050 μm. Had high fluorescence intensity and illuminance, and had little color unevenness, and good results were obtained.

一方、界面長さyが1050μmを超えるNo.1、2の試料は、透過率が低下し、蛍光強度および照度が低下した。また、界面長さyが300μm未満のNo.8、9の試料は、青色光の透過が非常に大きくなるため色ムラが増加した。   On the other hand, the samples No. 1 and No. 2 in which the interface length y exceeded 1050 μm had decreased transmittance, and decreased fluorescence intensity and illuminance. Further, in the samples No. 8 and 9 having an interface length y of less than 300 μm, the transmission of blue light became very large, and thus the color unevenness increased.

なお、表1には記載しないが、相対密度はいずれの試料も99%以上であった。なお、他の実施例2〜4の試料についても同様であった。
<実施例2>
下記表1に示す条件により、No.10〜19のセラミックス焼結体の試料を作製した。
Although not shown in Table 1, the relative density of each sample was 99% or more. The same applies to the samples of other Examples 2 to 4.
<Example 2>
Under the conditions shown in Table 1 below, samples of ceramic sintered bodies No. 10 to 19 were prepared.

この実施例2の試料の作製方法は、基本的には、実施例1と同様である。
但し、粉砕時間は16時間、焼成温度は1600℃、保持時間は10時間に、それぞれ固定した。また、A12:Ce量が全体の1vol%〜80vol%となるようにした。
The method for preparing the sample of Example 2 is basically the same as that of Example 1.
However, the grinding time was fixed at 16 hours, the firing temperature was 1600 ° C., and the holding time was 10 hours. Further, the amount of A 3 B 5 O 12 : Ce was adjusted to 1 vol% to 80 vol% of the whole.

この製造方法によって得られた各試料のセラミックス焼結体について、上述した評価方法による評価を行った。その結果を、下記表1に記す。
表1から明らかなように、A12:Ce量が3vol%〜70vol%にあるNo.11〜18の試料は、発光強度が大きく、しかも色ムラが小さく、好結果が得られた。
The ceramic sintered body of each sample obtained by this manufacturing method was evaluated by the above-described evaluation method. The results are shown in Table 1 below.
As can be seen from Table 1, the samples No. 11 to 18 with A 3 B 5 O 12 : Ce content of 3 vol% to 70 vol% have high emission intensity, small color unevenness, and good results. It was.

一方、A12:Ce量が1vol%と少ないNo.10の試料は、蛍光不足により蛍光強度が低くなった。また、A12:Ce量が80vol%と多いNo.19の試料は、熱伝導低下に伴う温度上昇が顕著となり、温度消光によって発光強度が低下した。 On the other hand, the sample No. 10 having a small amount of A 3 B 5 O 12 : Ce of 1 vol% had low fluorescence intensity due to insufficient fluorescence. Further, the No. 19 sample having a large amount of A 3 B 5 O 12 : Ce of 80 vol% showed a significant increase in temperature due to a decrease in thermal conductivity, and the emission intensity decreased due to temperature quenching.

<実施例3>
下記表1に示す条件により、No.20〜26のセラミックス焼結体の試料を作製した。
この実施例3の試料の作製方法は、基本的には、実施例1と同様である。
<Example 3>
Under the conditions shown in Table 1 below, samples of ceramic sintered bodies of Nos. 20 to 26 were produced.
The method for producing the sample of Example 3 is basically the same as that of Example 1.

但し、粉砕時間及び焼成条件は、実施例2と同様にした。また、A12:Ce量を全体の30vol%で固定し、Ce量を0.05vol%〜2.0vol%となるようにした。
この製造方法によって得られた各試料のセラミックス焼結体について、上述した評価方法による評価を行った。その結果を、下記表1に記す。
However, the grinding time and firing conditions were the same as in Example 2. Moreover, the amount of A 3 B 5 O 12 : Ce was fixed at 30 vol% of the whole, and the amount of Ce was set to 0.05 vol% to 2.0 vol%.
The ceramic sintered body of each sample obtained by this manufacturing method was evaluated by the above-described evaluation method. The results are shown in Table 1 below.

表1から明らかなように、Ce量が0.1vol%〜1vol%にあるNo.21〜25の試料は、発光強度および照度が大きく、且つ、色ムラが小さく、好結果が得られた。
一方、Ce量が0.1mol%より少ないNo.20の試料は、発光中心イオンが少ないため、蛍光不足により蛍光強度が低くなった。また、Ce量が1mol%より多いNo.26の試料は、Ce量が過剰にあることで濃度消光が起こり、蛍光強度が低下した。
As is clear from Table 1, the samples Nos. 21 to 25 having the Ce amount of 0.1 vol% to 1 vol% had high emission intensity and illuminance, small color unevenness, and good results were obtained.
On the other hand, the sample No. 20 having a Ce content of less than 0.1 mol% has a low fluorescence intensity due to insufficient fluorescence because of a small amount of luminescent center ions. Further, in the sample No. 26 in which the amount of Ce was more than 1 mol%, concentration quenching occurred due to an excessive amount of Ce, and the fluorescence intensity was lowered.

<実施例4>
下記表1に示す条件により、No.27〜30のセラミックス焼結体の試料を作製した。
この実施例3の試料の作製方法は、基本的には、実施例1と同様である。
<Example 4>
Under the conditions shown in Table 1 below, samples of ceramic sintered bodies No. 27 to 30 were produced.
The method for producing the sample of Example 3 is basically the same as that of Example 1.

但し、調合時にY粉末だけでなく、Lu(平均粒径1.3μm)またはYb(平均粒径1.5μm)、Ga(平均粒径1.3μm)の各粉末を1つ以上用い、所定のA12:Ceを合成できるように、配合比を変化させた。また、粉砕時間および焼成条件は、実施例2と同様にした。 However, not only Y 2 O 3 powder at the time of blending, but also Lu 2 O 3 (average particle size 1.3 μm), Yb 2 O 3 (average particle size 1.5 μm), Ga 2 O 3 (average particle size 1.3 μm) The compounding ratio was changed so that a predetermined A 3 B 5 O 12 : Ce could be synthesized using one or more of each of the above powders. The pulverization time and firing conditions were the same as in Example 2.

この製造方法によって得られた各試料のセラミックス焼結体について、上述した評価方法による評価を行った。その結果を、下記表1に記す。
表1から明らかなように、No.27〜30のすべてのセラミックス焼結体において、照度、蛍光強度、色ムラのいずれも、良好な結果になった。
The ceramic sintered body of each sample obtained by this manufacturing method was evaluated by the above-described evaluation method. The results are shown in Table 1 below.
As is clear from Table 1, all of the ceramic sintered bodies of Nos. 27 to 30 had good results in terms of illuminance, fluorescence intensity, and color unevenness.

[4.他の実施形態]
本開示は前記実施形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
[4. Other Embodiments]
It is needless to say that the present disclosure is not limited to the above-described embodiment and can be implemented in various modes without departing from the present invention.

(1)例えば、前記実施例では大気焼成にて試料を作製したが、その他にホットプレス焼成、真空焼成、還元雰囲気焼成、HIP、またはこれらを組み合わせた焼成方法によって、同等の性能を有した試料を作製することができる。   (1) For example, in the above-described example, the sample was produced by atmospheric firing, but in addition, a sample having equivalent performance by hot press firing, vacuum firing, reducing atmosphere firing, HIP, or a firing method combining these. Can be produced.

(2)前記光波長変換部材や発光装置の用途としては、蛍光体、光波長変換機器、ヘッドランプ、照明、プロジェクター等の光学機器など、各種の用途が挙げられる。
(3)発光装置に用いる発光素子としては特に限定はなく、周知のLEDやLDなど、各種のものを採用できる。
(2) Examples of uses of the light wavelength conversion member and the light emitting device include various uses such as phosphors, light wavelength conversion devices, headlamps, illumination, and optical devices such as projectors.
(3) The light-emitting element used in the light-emitting device is not particularly limited, and various elements such as well-known LEDs and LDs can be employed.

(4)なお、上記実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記実施形態の構成の一部を、省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。   (4) In addition, the function which one component in the said embodiment has may be shared by a some component, or the function which a some component has may be exhibited by one component. Moreover, you may abbreviate | omit a part of structure of the said embodiment. In addition, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of another embodiment. In addition, all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.

1…発光装置
5…発光素子
9…光波長変換部材
DESCRIPTION OF SYMBOLS 1 ... Light-emitting device 5 ... Light emitting element 9 ... Light wavelength conversion member

Claims (6)

蛍光性を有する結晶粒子を主体とする蛍光相と、
透光性を有する結晶粒子を主体とする透光相と、
を有するセラミックス焼結体から構成された光波長変換部材において、
前記蛍光相の結晶粒子は、化学式A12:Ceで表される組成を有するとともに、前記A元素及び前記B元素は、それぞれ下記元素群から選択される少なくとも1種の元素から構成されており、
A:Sc、Y、Ceを除くランタノイド
B:Al、Ga
前記光波長変換部材の断面における前記透光相と前記蛍光相との面積比(即ち、透光相の面積/蛍光相の面積)aが、0.3<a<34であり、且つ、前記断面における単位面積500μm の範囲内での前記蛍光相の界面長さyが300μm<y<1050μmである、
光波長変換部材。
A fluorescent phase mainly composed of fluorescent crystal particles;
A translucent phase mainly composed of crystal grains having translucency;
In a light wavelength conversion member composed of a ceramic sintered body having
The fluorescent phase crystal particles have a composition represented by the chemical formula A 3 B 5 O 12 : Ce, and the A element and the B element are each composed of at least one element selected from the following element group: Has been
A: Lanthanoid excluding Sc, Y, and Ce B: Al, Ga
Area ratio of the transparent phase and the fluorescent phases in the cross section of the optical wavelength conversion member (i.e., area / area of the fluorescent phase Toruhikarisho) a is a 0.3 <a <34, and, the The interface length y of the fluorescent phase within a unit area of 500 μm 2 in the cross section is 300 μm <y <1050 μm.
Light wavelength conversion member.
前記透光相の結晶粒子の平均粒径r1と前記蛍光相の結晶粒子の平均粒径r2との比(即ち、r1/r2)xが、1.1<x<2.1であって、前記透光相の結晶粒子の平均粒径r1は0.2μm〜6μmの範囲であり、前記蛍光相の結晶粒子の平均粒径r2は0.1μm〜4μmの範囲である、
請求項1に記載の波長変換部材。
The ratio (ie, r1 / r2) x of the average particle diameter r1 of the crystal particles of the light transmitting phase and the average particle diameter r2 of the crystal particles of the fluorescent phase is 1.1 <x <2.1, The average particle diameter r1 of the crystal particles of the light transmitting phase is in the range of 0.2 μm to 6 μm, and the average particle diameter r2 of the crystal particles of the fluorescent phase is in the range of 0.1 μm to 4 μm.
The wavelength conversion member according to claim 1.
前記透光相の結晶粒子は、Alの組成を有する、
請求項1又は2に記載の光波長変換部材。
The crystal particles of the light transmitting phase have a composition of Al 2 O 3 ,
The light wavelength conversion member according to claim 1 or 2.
前記化学式A12:Ceで表される化合物は、前記セラミックス焼結体全体の3vol%〜70vol%の範囲である、
請求項1〜3のいずれか1項に記載の光波長変換部材。
The compound represented by the chemical formula A 3 B 5 O 12 : Ce is in the range of 3 vol% to 70 vol% of the entire ceramic sintered body.
The light wavelength conversion member of any one of Claims 1-3.
前記化学式A12:Ceで表される化合物におけるCe濃度は、前記化合物のA元素に対して0.1mol%〜1.0mol%の範囲である、
請求項1〜4のいずれか1項に記載の光波長変換部材。
The Ce concentration in the compound represented by the chemical formula A 3 B 5 O 12 : Ce is in the range of 0.1 mol% to 1.0 mol% with respect to the element A of the compound.
The optical wavelength conversion member of any one of Claims 1-4.
前記請求項1〜5のいずれか1項に記載の光波長変換部材を備えた、
発光装置。
The optical wavelength conversion member according to any one of claims 1 to 5 is provided.
Light emitting device.
JP2017148393A 2016-10-28 2017-07-31 Light wavelength conversion member and light emitting device Active JP6499237B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017148393A JP6499237B2 (en) 2017-07-31 2017-07-31 Light wavelength conversion member and light emitting device
KR1020197011086A KR102229730B1 (en) 2016-10-28 2017-10-20 Optical wavelength conversion member and light emitting device
CN201780066919.2A CN109923446B (en) 2016-10-28 2017-10-20 Optical wavelength conversion member and light emitting device
US16/342,390 US10727378B2 (en) 2016-10-28 2017-10-20 Optical wavelength conversion member and light-emitting device
EP17865959.5A EP3534193B1 (en) 2016-10-28 2017-10-20 Optical wavelength conversion member and light-emitting device
PCT/JP2017/037920 WO2018079421A1 (en) 2016-10-28 2017-10-20 Optical wavelength conversion member and light-emitting device
TW106137049A TWI668295B (en) 2016-10-28 2017-10-27 Optical wavelength conversion member and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017148393A JP6499237B2 (en) 2017-07-31 2017-07-31 Light wavelength conversion member and light emitting device

Publications (2)

Publication Number Publication Date
JP2019028306A JP2019028306A (en) 2019-02-21
JP6499237B2 true JP6499237B2 (en) 2019-04-10

Family

ID=65478373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017148393A Active JP6499237B2 (en) 2016-10-28 2017-07-31 Light wavelength conversion member and light emitting device

Country Status (1)

Country Link
JP (1) JP6499237B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022041435A (en) 2020-09-01 2022-03-11 キヤノン株式会社 Wavelength conversion element, light source device, and image projection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4420021B2 (en) * 2004-06-24 2010-02-24 宇部興産株式会社 White light emitting diode device
KR101013146B1 (en) * 2010-02-16 2011-02-10 충남대학교산학협력단 Rapid solid-state synthesis of yttrium aluminum garnet yellow-emitting phosphors
US8940187B2 (en) * 2010-03-31 2015-01-27 Ube Industries, Ltd Ceramic composite for light conversion, process for production thereof, and light-emitting devices provided with same
JP5088977B2 (en) * 2010-08-18 2012-12-05 コバレントマテリアル株式会社 Ceramic composite
EP2607449B1 (en) * 2011-12-22 2014-04-02 Shin-Etsu Chemical Co., Ltd. Preparation of yttrium-cerium-aluminum garnet phosphor
KR20170105532A (en) * 2015-01-21 2017-09-19 미쯔비시 케미컬 주식회사 Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor

Also Published As

Publication number Publication date
JP2019028306A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US10753574B2 (en) Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor
WO2018079421A1 (en) Optical wavelength conversion member and light-emitting device
JP5153014B2 (en) Green phosphor
WO2018021418A1 (en) Sintered phosphor, light-emitting device, lighting device and vehicle indicator lamp
JP6449963B2 (en) Light wavelength conversion member and light emitting device
JP2008231218A (en) Phosphor material and white light-emitting diode
JP6499237B2 (en) Light wavelength conversion member and light emitting device
JP6591951B2 (en) Light wavelength conversion member and light emitting device
JP2009215495A (en) Fluorescent material
US20190245118A1 (en) Light wavelength conversion member and light emitting device
KR102318473B1 (en) Method for producing optical wavelength conversion member, optical wavelength conversion member, optical wavelength conversion component, and light-emitting device
JP5615222B2 (en) Green phosphor
KR102500926B1 (en) Light wavelength conversion member and light emitting device
JP6741885B2 (en) Light wavelength conversion member and light emitting device
WO2018079373A1 (en) Light wavelength conversion member and light emission device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190314

R150 Certificate of patent or registration of utility model

Ref document number: 6499237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250