JP2009215495A - Fluorescent material - Google Patents

Fluorescent material Download PDF

Info

Publication number
JP2009215495A
JP2009215495A JP2008062750A JP2008062750A JP2009215495A JP 2009215495 A JP2009215495 A JP 2009215495A JP 2008062750 A JP2008062750 A JP 2008062750A JP 2008062750 A JP2008062750 A JP 2008062750A JP 2009215495 A JP2009215495 A JP 2009215495A
Authority
JP
Japan
Prior art keywords
light
light emitting
phosphor
emitting diode
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008062750A
Other languages
Japanese (ja)
Other versions
JP4916469B2 (en
Inventor
Mitsuhiro Fujita
光広 藤田
Masaki Irie
正樹 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2008062750A priority Critical patent/JP4916469B2/en
Publication of JP2009215495A publication Critical patent/JP2009215495A/en
Application granted granted Critical
Publication of JP4916469B2 publication Critical patent/JP4916469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent material capable of obtaining high luminance without complicating a light emitting diode, excellent in heat resistance and light resistance, and capable of obtaining a long life of the light emitting diode. <P>SOLUTION: The fluorescent material consists of a ceramic sintered compact composed of a single inorganic material, has a linear transmittance at a peak wavelength of the fluorescent light of ≥73%, and a surface roughness (Ra) at a light emitting surface of 0.6 to 2.7 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蛍光体に関するものである。   The present invention relates to a phosphor.

発光素子からの光を蛍光体で波長変換して様々な発色光を得る発光ダイオード(LED:Light Emitting Diode)が知られている。   A light emitting diode (LED) that obtains various colored light by converting the wavelength of light from a light emitting element with a phosphor is known.

このような発光ダイオードは、発光素子上に樹脂と蛍光体との複合体を設置し、発光素子から発せられた光(例えば、青色光)の一部を前記蛍光体に当てることによってその光を他の色(例えば、黄色)に波長変換させて、該波長変換させた光と前記樹脂のみを透過した発光素子の光(例えば、青色光)とを該複合体内で混色させて、該複合体を所望の色の光(例えば、白色光)に発光させている(例えば、特許文献1)。   In such a light emitting diode, a composite of a resin and a phosphor is placed on the light emitting element, and a part of light (for example, blue light) emitted from the light emitting element is applied to the phosphor to emit light. The wavelength is converted to another color (for example, yellow), and the wavelength-converted light and the light of the light emitting element (for example, blue light) transmitted through only the resin are mixed in the complex, and the complex Is emitted to light of a desired color (for example, white light) (for example, Patent Document 1).

また、前記複合体内で発光素子から発せられた光を拡散し、輝度を均一化させるために、樹脂中に光拡散剤を添加する技術も知られている(例えば、特許文献2)。   In addition, a technique of adding a light diffusing agent to a resin in order to diffuse light emitted from a light emitting element in the composite and make the luminance uniform is also known (for example, Patent Document 2).

しかしながら、前記複合体を構成する樹脂は、発光素子から発せられた光や熱によって徐々に劣化する傾向にあり、発光強度の低下や光の変色等を引き起こす要因となる。そのため、前述した複合体を備えた発光ダイオードは、その作動温度が前記樹脂の耐熱性に支配されることになる。   However, the resin constituting the composite tends to be gradually deteriorated by light and heat emitted from the light emitting element, which causes a decrease in light emission intensity, discoloration of light, and the like. Therefore, the operating temperature of the light-emitting diode including the above-described composite is governed by the heat resistance of the resin.

よって、例えば、高輝度の発光ダイオードを得ようとする場合には、樹脂の劣化を防止するため、ヒートシンク等の冷却機構を新たに設ける必要がある。しかしながら、このような冷却機構は、発光ダイオードにおいてより高輝度を求めるほど、より大型化、複雑化するため、発光ダイオードの小型化、省電力化を妨げることになる。   Therefore, for example, in order to obtain a high-intensity light emitting diode, it is necessary to newly provide a cooling mechanism such as a heat sink in order to prevent deterioration of the resin. However, such a cooling mechanism increases in size and complexity as the luminance of the light emitting diode is increased, and thus prevents the light emitting diode from being reduced in size and power saving.

また、前記光拡散剤を添加する技術は、光拡散剤により多重反射された光が発光素子側にも出力されてしまうため、発光強度が低下し、高輝度化を阻害する要因となる。   In addition, the technique of adding the light diffusing agent causes the light multiple-reflected by the light diffusing agent to be output also to the light emitting element side, so that the light emission intensity is lowered and becomes a factor that hinders high luminance.

また、上述した樹脂の劣化による発光強度の低下や短寿命化を抑制するために、無機材料のみから構成され、その表面粗さ(Ra)が0.05〜3μmの範囲内にある塊状蛍光体を用いる技術が知られている(例えば、特許文献3)。
特開平7−99345号公報 特開2006−286896号公報 特開2007−161944号公報
In addition, in order to suppress the decrease in the emission intensity and the shortening of the lifetime due to the deterioration of the resin described above, the bulk phosphor which is composed only of an inorganic material and whose surface roughness (Ra) is in the range of 0.05 to 3 μm. A technique using this is known (for example, Patent Document 3).
JP-A-7-99345 JP 2006-286896 A JP 2007-161944 A

しかしながら、特許文献3に記載の技術は、発光素子からの光を波長変換させる部位は、前記塊状蛍光体内に析出したCe3+を含有したガーネット結晶である。このように蛍光体内で結晶が析出してなると、この析出した結晶によって発光素子からの光は多重反射され、この多重反射された光が発光素子側にも出力されてしまうため、発光強度が低下し、高輝度化を阻害する要因となる。   However, in the technique described in Patent Document 3, the site for converting the wavelength of light from the light emitting element is a garnet crystal containing Ce3 + precipitated in the bulk phosphor. When crystals are precipitated in the phosphor in this way, the light from the light emitting element is multiple-reflected by the precipitated crystals, and this multi-reflected light is also output to the light emitting element side. However, this becomes a factor that hinders high brightness.

本発明は、上記問題に鑑みてなされたものであり、発光ダイオードを煩雑化させること無く、高輝度化を実現することができ、耐熱性、耐光性に優れ、発光ダイオードの長寿命化を図ることができる蛍光体を提供することを目的とする。   The present invention has been made in view of the above problems, and can achieve high luminance without complicating the light-emitting diode, has excellent heat resistance and light resistance, and extends the life of the light-emitting diode. An object of the present invention is to provide a phosphor that can be used.

本発明に係る蛍光体は、単一の無機材料のみで構成されたセラミックス焼結体からなり、蛍光のピーク波長に対する直線透過率が73%以上であり、光出射面における表面粗さ(Ra)が0.6μm以上2.7μm以下であることを特徴とする。   The phosphor according to the present invention is made of a ceramic sintered body composed only of a single inorganic material, has a linear transmittance of 73% or more with respect to the peak wavelength of fluorescence, and has a surface roughness (Ra) on the light exit surface. Is 0.6 μm or more and 2.7 μm or less.

前記無機材料は、Ceを含有したYAG単一相である。   The inorganic material is a YAG single phase containing Ce.

本発明は、発光ダイオードを煩雑化させること無く、高輝度化を実現することができ、耐熱性、耐光性に優れ、発光ダイオードの長寿命化を図ることができる蛍光体が提供される。   The present invention provides a phosphor that can achieve high brightness without complicating the light emitting diode, has excellent heat resistance and light resistance, and can extend the life of the light emitting diode.

本発明について、詳細に説明する。   The present invention will be described in detail.

図1は、本発明の実施形態に係る蛍光体の外観の一例を示す概念図である。   FIG. 1 is a conceptual diagram showing an example of the appearance of a phosphor according to an embodiment of the present invention.

本発明に係る蛍光体は、図1に示すように、例えば、板状体1で構成されている。   As shown in FIG. 1, the phosphor according to the present invention includes, for example, a plate-like body 1.

本発明に係る蛍光体は、単一の無機材料のみで構成されたセラミックス焼結体からなり、蛍光のピーク波長に対する直線透過率が73%以上であり、光出射面における表面粗さ(Ra)が0.6μm以上2.7μm以下であることを特徴とする。   The phosphor according to the present invention is made of a ceramic sintered body composed only of a single inorganic material, has a linear transmittance of 73% or more with respect to the peak wavelength of fluorescence, and has a surface roughness (Ra) on the light exit surface. Is 0.6 μm or more and 2.7 μm or less.

ここで「単一の無機材料のみで構成された」とは、蛍光体内に樹脂等の有機物質を一切含まず、一種類の均質な無機材料のみで構成されていることをいう。   Here, “comprised of only a single inorganic material” means that the phosphor does not contain any organic substance such as a resin and is composed of only one type of homogeneous inorganic material.

また、「光出射面」とは、蛍光体から光が出力される面のことを差す。なお、本実施形態では、便宜上、図1に示す板状体1に対して裏面1b側に図示しない発光素子を配置するという想定で、裏面1bを発光素子からの光が入射する面(以下、光入射面という)とし、表面1aを混色した光が出射される面(以下、光出射面という)とする。   The “light exit surface” refers to a surface from which light is output from the phosphor. In the present embodiment, for the sake of convenience, it is assumed that a light emitting element (not shown) is arranged on the back surface 1b side with respect to the plate-like body 1 shown in FIG. A light incident surface), and a surface from which light mixed with the surface 1a is emitted (hereinafter referred to as a light emission surface).

本発明に係る蛍光体は、単一の無機材料のみで構成されている。このように、樹脂等を含まない一種類の均質な無機材料のみで構成されているため、樹脂の劣化による発光強度の低下や短寿命化を防止することができる。   The phosphor according to the present invention is composed of only a single inorganic material. Thus, since it is comprised only with one type of homogeneous inorganic material which does not contain resin etc., the fall of the emitted light intensity by the deterioration of resin and shortening of lifetime can be prevented.

また、一種類の均質な無機材料のみで構成されているため、蛍光体内における光散乱が極めて少なく、発光素子側への光の戻り量(反射量)を少なくすることが可能となる。従って、発光ダイオードの高輝度化を実現することができる。   Further, since it is composed of only one kind of homogeneous inorganic material, light scattering in the phosphor is extremely small, and the amount of light returned to the light emitting element side (amount of reflection) can be reduced. Therefore, it is possible to realize high luminance of the light emitting diode.

前記無機材料は、Ceを含有するYAG単一相で構成されている。   The inorganic material is composed of a YAG single phase containing Ce.

また、本発明に係る蛍光体はセラミックス焼結体で構成されている。そのため、高い耐熱性、耐光性を備えることができ、発光ダイオードの長寿命化を図ることができる。   The phosphor according to the present invention is composed of a ceramic sintered body. Therefore, high heat resistance and light resistance can be provided, and the life of the light emitting diode can be extended.

なお、前記蛍光体を、単一の無機材料のみからなる単結晶で構成することは可能であるが、YAG単結晶を製造する際にCeを均質に結晶中へ固溶させることが難しく、YAG単結晶中におけるCe濃度にバラツキが生じやすくなり、均質な発光色を有する発光ダイオードが得られにくいという問題がある。   Although the phosphor can be composed of a single crystal made of only a single inorganic material, it is difficult to uniformly dissolve Ce into the crystal when producing a YAG single crystal. There is a problem that the Ce concentration in the single crystal is likely to vary, and it is difficult to obtain a light-emitting diode having a uniform emission color.

また、前記蛍光体が、単一の無機材料のみからなるガラスで構成されている場合には、セラミックス焼結体と比べて、ガラスの熱伝導率が低いために発光ダイオードの温度が上昇しやすくなり、高輝度発光ダイオードでは発光素子に熱損傷が生じやすくなってしまう問題がある。   In addition, when the phosphor is made of glass made of only a single inorganic material, the temperature of the light emitting diode is likely to rise because the thermal conductivity of the glass is lower than that of the ceramic sintered body. Thus, the high-intensity light emitting diode has a problem that the light emitting element is likely to be thermally damaged.

また、本発明に係る蛍光体は、蛍光のピーク波長に対する直線透過率が73%以上であり、光出射面における表面粗さ(Ra)が0.6μm以上2.7μm以下で構成されている。   In addition, the phosphor according to the present invention has a linear transmittance with respect to the peak wavelength of fluorescence of 73% or more and a surface roughness (Ra) on the light exit surface of 0.6 μm or more and 2.7 μm or less.

なお、ここでいう蛍光のピーク波長は、蛍光体がCe:YAGの場合は550〜590nmの波長領域で得られるピーク波長を差す。   In addition, the peak wavelength of fluorescence here refers to the peak wavelength obtained in a wavelength region of 550 to 590 nm when the phosphor is Ce: YAG.

また、ここでいう直線透過率とは、該蛍光体の光入射面1bから光出射面1aまでの厚さt方向に対する直線的な透過率(入射光強度に対する出射光強度率)のことを差す。   Further, the term “linear transmittance” as used herein refers to a linear transmittance in the direction of thickness t from the light incident surface 1b to the light emitting surface 1a of the phosphor (emitted light intensity ratio with respect to incident light intensity). .

また、ここでいう表面粗さ(Ra)は、テーラーホブソン社製の表面形状粗さ測定器フォームタリサーフPGI830を用いて測定したものである。   Moreover, the surface roughness (Ra) here is measured using a surface shape roughness measuring instrument Foam Talysurf PGI830 manufactured by Taylor Hobson.

このように、本発明に係る蛍光体は、直線透過率及び表面粗さ(Ra)が上記のような範囲で構成されているため、発光ダイオードの高輝度化を図ることができ、高輝度化に伴う色分離の発生も抑制することができる。   As described above, the phosphor according to the present invention has the linear transmittance and the surface roughness (Ra) in the above ranges, so that the brightness of the light emitting diode can be increased and the brightness can be increased. It is also possible to suppress the occurrence of color separation associated with.

なお、前記直線透過率が73%以上であっても、前記光出射面における表面粗さ(Ra)が0.6μm未満である場合には、高輝度化に伴い発光素子の光と蛍光体内で波長変換した光との色分離が発生し、発光素子の光と該蛍光体内で波長変換された光とが充分に混色しなくなるため、好ましくない。   Even when the linear transmittance is 73% or more, when the surface roughness (Ra) on the light emitting surface is less than 0.6 μm, the light and the phosphor of the light emitting element are increased with the increase in luminance. Color separation from the wavelength-converted light occurs, and the light from the light emitting element and the light wavelength-converted in the phosphor are not sufficiently mixed, which is not preferable.

さらに、前記表面粗さ(Ra)が0.6μm以上2.7μm以下であっても、直線透過率が73%未満である場合には、蛍光体内部における光散乱の増加によって発光強度が極端に低下するため、高輝度の発光ダイオードを得ることが難しい。   Furthermore, even when the surface roughness (Ra) is 0.6 μm or more and 2.7 μm or less, if the linear transmittance is less than 73%, the light emission intensity is extremely increased due to the increase of light scattering inside the phosphor. Therefore, it is difficult to obtain a light-emitting diode with high brightness.

また、前記表面粗さ(Ra)が2.7μmを超える場合においても、高い発光強度を得ることができると考えるが、表面粗さ(Ra)が2.7μmを超える粗さを得ることは、通常の研削加工では困難であり、新たに、別の加工処理(例えば、エッチング処理による表面への溝やエンボス形状加工)を施す必要が出てくるため、製造工程が煩雑化してしまい好ましくない。よって、製造上、好適な表面粗さ(Ra)の範囲は、0.6μm以上2.7μm以内であることが好ましい。   In addition, even when the surface roughness (Ra) exceeds 2.7 μm, it is considered that a high emission intensity can be obtained, but obtaining a roughness with a surface roughness (Ra) exceeding 2.7 μm, This is difficult with ordinary grinding, and it is necessary to newly perform another processing (for example, groove processing or embossing on the surface by etching processing), which undesirably complicates the manufacturing process. Therefore, it is preferable that the range of surface roughness (Ra) suitable for production is 0.6 μm or more and 2.7 μm or less.

なお、前記直線透過率は、高ければ高いほど好ましいが、現時点においてセラミックス焼結体として得ることができる最大直線透過率は83%であった(実施例参照)。一般的に、物質の最大直線透過率は、物質固有の値である屈折率によって決定され、YAGの場合は可視光領域波長に対して83〜84%である。従って、前記直線透過率は、73%以上83%以下であることが実験により見出された最も好適な範囲である。   In addition, although the said linear transmittance | permeability is so high that it is preferable, the maximum linear transmittance | permeability which can be obtained as a ceramic sintered compact at this time was 83% (refer an Example). Generally, the maximum linear transmittance of a substance is determined by a refractive index that is a value inherent to the substance, and in the case of YAG, it is 83 to 84% with respect to the wavelength in the visible light region. Therefore, the linear transmittance is the most preferable range found by experiment to be 73% or more and 83% or less.

なお、前記直線透過率を73%以上とするためには、前記セラミックス焼結体を製造する際の原料粉の粒径や、焼成温度等を制御することにより行うことができる。また、前記表面粗さ(Ra)を、0.6μm以上2.7μm以内とするためには、前記光出射面に対する研削加工において使用する砥粒の大きさ、加工速度、切り込み深さ等により制御することができる。   In addition, in order to make the said linear transmittance | permeability 73% or more, it can carry out by controlling the particle size, baking temperature, etc. of the raw material powder at the time of manufacturing the said ceramic sintered compact. Further, in order to set the surface roughness (Ra) to 0.6 μm or more and 2.7 μm or less, it is controlled by the size, processing speed, cutting depth, etc. of the abrasive grains used in the grinding processing for the light emitting surface. can do.

以上のような構成を備えることで、本発明に係る蛍光体は、発光ダイオードを煩雑化させること無く、高輝度化を実現することができ、耐熱性、耐光性に優れ、発光ダイオードの長寿命化を図ることができる。   With the above-described configuration, the phosphor according to the present invention can achieve high brightness without complicating the light-emitting diode, has excellent heat resistance and light resistance, and has a long lifetime of the light-emitting diode. Can be achieved.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.

[実施例1]
純度99.9%の酸化アルミニウム粉末(平均粒径:0.5μm)、純度99.9%の酸化イットリウム粉末(平均粒径:0.6μm)、酸化セリウム粉末(平均粒径:0.8μm)を、組成1at%Ce:YAG組成となるように秤量し、エタノールを分散液として、前記秤量した粉末に対して1wt%のアクリル樹脂バインダと、焼結助剤として0.5wt%のコロイダルシリカとともにボールミルによって混合し、スラリーを作製した。得られたスラリーをスプレードライヤによって造粒し、二次粒子径約50μmの造粒粉を作製した。この造粒粉を金型成形及び冷間静水圧成形によって成形し、該成形体を大気中1000℃にて脱脂仮焼した。
[Example 1]
99.9% pure aluminum oxide powder (average particle size: 0.5 μm), 99.9% pure yttrium oxide powder (average particle size: 0.6 μm), cerium oxide powder (average particle size: 0.8 μm) 1 wt% Ce: YAG composition, ethanol as a dispersion, 1 wt% acrylic resin binder with respect to the weighed powder, and 0.5 wt% colloidal silica as a sintering aid The slurry was prepared by mixing with a ball mill. The obtained slurry was granulated with a spray dryer to produce a granulated powder having a secondary particle diameter of about 50 μm. The granulated powder was molded by die molding and cold isostatic pressing, and the molded body was degreased and calcined at 1000 ° C. in the atmosphere.

次に、前記仮焼した成形体を、表1に示す温度にて焼成し、Ce:YAG焼結体を作製した。   Next, the calcined molded body was fired at a temperature shown in Table 1 to prepare a Ce: YAG sintered body.

次に、焼成したすべて焼結体を加工し、厚さ1mmの板状体とし、光入射面及び光出射面の表面に鏡面研磨を施し、表面粗さ(Ra)1.0nmの鏡面とした。   Next, all the fired sintered bodies were processed to form a plate-like body having a thickness of 1 mm, and the surfaces of the light incident surface and the light emitting surface were mirror-polished to obtain a mirror surface having a surface roughness (Ra) of 1.0 nm. .

次に、光出射面となる一方の面に対して、研削加工を行い、厚さ0.3mmの表1に示す光出射面における表面粗さ(Ra)を各々備えた複数のCe:YAG焼結体を作製した(実施例1〜6、比較例1〜4)。   Next, grinding was performed on one surface serving as the light emitting surface, and a plurality of Ce: YAG firings each having a surface roughness (Ra) on the light emitting surface shown in Table 1 having a thickness of 0.3 mm were provided. Knots were produced (Examples 1 to 6, Comparative Examples 1 to 4).

得られた各々のCe:YAG焼結体に対して、前記鏡面研磨した表面粗さ(Ra)1.0nmの光入射面を青色発光ダイオード側になるように、各々青色発光ダイオードに設置した。   For each of the obtained Ce: YAG sintered bodies, the mirror-polished surface roughness (Ra) of 1.0 nm was placed on each blue light emitting diode so that the light incident surface was on the blue light emitting diode side.

その後、青色発光ダイオードを点灯させてCe:YAG焼結体の光出射面における色分離を目視にて評価した。また、光出射面における出射光を積分球によって集め、フォトダイオードを用いて平均発光量を測定した。 Thereafter, the blue light emitting diode was turned on, and color separation on the light emitting surface of the Ce: YAG sintered body was visually evaluated. Further, the emitted light on the light emitting surface was collected by an integrating sphere, and the average light emission amount was measured using a photodiode.

表1に、目視による色分離の評価結果(目視で色分離が確認されなかったものを○、色分離が確認されたものを×)と、平均発光量(実施例1の平均発光量を100としたときの各試料における平均発光量の相対値)をそれぞれ示す。なお、ここでいう色分離が確認されたとは、光出射面において、発光素子から発せられる青色光と、該青色光が蛍光体により波長変換された黄色光の両方の光が光出射面で確認されてしまうことを差す。この色分離は、発光ダイオードが高輝度になればなるほど発現しやすくなるものである。

Figure 2009215495
Table 1 shows the results of visual color separation evaluation (circles for which color separation was not confirmed by visual inspection, x for those for which color separation was confirmed) and average light emission (the average light emission of Example 1 was 100). The relative value of the average luminescence amount in each sample is shown. Note that the color separation here is confirmed on the light emitting surface of both the blue light emitted from the light emitting element and the yellow light obtained by converting the wavelength of the blue light by the phosphor on the light emitting surface. It will be that it will be. This color separation is more likely to occur as the light emitting diode becomes brighter.
Figure 2009215495

以上の結果より、蛍光体の直線透過率が73%以上であり、表面粗さ(Ra)が0.6〜2.7μmである場合に、色分離が無く、平均発光量、すなわち、発光強度が高い特性を有する蛍光体を得ることができることがわかる。 From the above results, when the linear transmittance of the phosphor is 73% or more and the surface roughness (Ra) is 0.6 to 2.7 μm, there is no color separation and the average light emission amount, that is, the light emission intensity. It can be seen that a phosphor having high characteristics can be obtained.

なお、直線透過率が比較例4のように高くても、表面粗さ(Ra)を0.6〜2.7μmに制御しない限り、色分離が発生してしまう。   Even when the linear transmittance is high as in Comparative Example 4, color separation occurs unless the surface roughness (Ra) is controlled to 0.6 to 2.7 μm.

本発明の実施形態に係る蛍光体の外観の一例を示す概念図である。It is a conceptual diagram which shows an example of the external appearance of the fluorescent substance which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 板状体
1a 表面(光出射面)
1b 裏面(光入射面)
1 Plate 1a Surface (light exit surface)
1b Back surface (light incident surface)

Claims (2)

単一の無機材料のみで構成されたセラミックス焼結体からなり、蛍光のピーク波長に対する直線透過率が73%以上であり、光出射面における表面粗さ(Ra)が0.6μm以上2.7μm以下であることを特徴とする蛍光体。   It consists of a ceramic sintered body composed of only a single inorganic material, has a linear transmittance of 73% or more with respect to the peak wavelength of fluorescence, and a surface roughness (Ra) on the light exit surface of 0.6 μm or more and 2.7 μm. A phosphor characterized by the following. 前記無機材料は、Ceを含有したYAG単一相からなることを特徴とする請求項1に記載の蛍光体。   The phosphor according to claim 1, wherein the inorganic material is a YAG single phase containing Ce.
JP2008062750A 2008-03-12 2008-03-12 Phosphor Active JP4916469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062750A JP4916469B2 (en) 2008-03-12 2008-03-12 Phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062750A JP4916469B2 (en) 2008-03-12 2008-03-12 Phosphor

Publications (2)

Publication Number Publication Date
JP2009215495A true JP2009215495A (en) 2009-09-24
JP4916469B2 JP4916469B2 (en) 2012-04-11

Family

ID=41187682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062750A Active JP4916469B2 (en) 2008-03-12 2008-03-12 Phosphor

Country Status (1)

Country Link
JP (1) JP4916469B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024278A (en) * 2008-07-16 2010-02-04 Stanley Electric Co Ltd Phosphor ceramic plate and light-emitting element using it
JP2015023291A (en) * 2013-07-22 2015-02-02 中国科学院福建物質構造研究所Fujian Institute Of Research On The Structure Of Matter, Chinese Academyof Sciences GaN-BASED LED EPITAXIAL STRUCTURE AND METHOD FOR MANUFACTURING THE SAME
WO2015060254A1 (en) * 2013-10-23 2015-04-30 株式会社光波 Single-crystal phosphor and light-emitting device
JP2017211226A (en) * 2016-05-24 2017-11-30 株式会社オキサイド Phosphor element evaluation method, phosphor element evaluation program, phosphor element evaluation device, and phosphor element
US11920072B2 (en) 2019-04-11 2024-03-05 Nichia Corporation Method for producing rare earth aluminate sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093011A1 (en) * 2005-03-01 2006-09-08 Kabushiki Kaisha Toshiba Light emission device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093011A1 (en) * 2005-03-01 2006-09-08 Kabushiki Kaisha Toshiba Light emission device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024278A (en) * 2008-07-16 2010-02-04 Stanley Electric Co Ltd Phosphor ceramic plate and light-emitting element using it
JP2015023291A (en) * 2013-07-22 2015-02-02 中国科学院福建物質構造研究所Fujian Institute Of Research On The Structure Of Matter, Chinese Academyof Sciences GaN-BASED LED EPITAXIAL STRUCTURE AND METHOD FOR MANUFACTURING THE SAME
WO2015060254A1 (en) * 2013-10-23 2015-04-30 株式会社光波 Single-crystal phosphor and light-emitting device
JP2017211226A (en) * 2016-05-24 2017-11-30 株式会社オキサイド Phosphor element evaluation method, phosphor element evaluation program, phosphor element evaluation device, and phosphor element
US11920072B2 (en) 2019-04-11 2024-03-05 Nichia Corporation Method for producing rare earth aluminate sintered body

Also Published As

Publication number Publication date
JP4916469B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
Raukas et al. Ceramic phosphors for light conversion in LEDs
JP6449963B2 (en) Light wavelength conversion member and light emitting device
CN110720060B (en) Wavelength converter, method for producing same, and light-emitting device using wavelength converter
JP5740017B2 (en) Ceramic composite
KR102229730B1 (en) Optical wavelength conversion member and light emitting device
JP2012089316A (en) Light source device, and lighting system
JP5709463B2 (en) Light source device and lighting device
JP2011021062A (en) Fluorescent substance, light-emitting module and lighting fixture for vehicle
WO2018021418A1 (en) Sintered phosphor, light-emitting device, lighting device and vehicle indicator lamp
TWI624529B (en) Ceramic composite material for light conversion, method for producing the same, and light-emitting device therewith
KR102059425B1 (en) Oxide Ceramic Fluorescent Material Having Rare Earth Diffused Therein
JP2008231218A (en) Phosphor material and white light-emitting diode
CN109896851B (en) Ceramic composite with concentration gradient, preparation method and light source device
JP2016204561A (en) Fluorescent member, manufacturing method therefor and light emitting device
JP4916469B2 (en) Phosphor
JP2014172940A (en) Fluophor dispersion ceramic plate
JP5917183B2 (en) Light source device and lighting device
JP6852463B2 (en) Fluorescent lens and light emitting device
JP6591951B2 (en) Light wavelength conversion member and light emitting device
JP5509997B2 (en) Method for producing ceramic composite for light conversion
JP6499237B2 (en) Light wavelength conversion member and light emitting device
TWI619906B (en) Phosphor plate using light diffusing agent
JP2008277341A (en) Light-emitting device employing composite ceramic for optical conversion
CN112384832B (en) Optical wavelength conversion member and light emitting device
WO2018079373A1 (en) Light wavelength conversion member and light emission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100921

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110728

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350