JP6495137B2 - Combined cycle power plant and control method thereof - Google Patents

Combined cycle power plant and control method thereof Download PDF

Info

Publication number
JP6495137B2
JP6495137B2 JP2015151750A JP2015151750A JP6495137B2 JP 6495137 B2 JP6495137 B2 JP 6495137B2 JP 2015151750 A JP2015151750 A JP 2015151750A JP 2015151750 A JP2015151750 A JP 2015151750A JP 6495137 B2 JP6495137 B2 JP 6495137B2
Authority
JP
Japan
Prior art keywords
steam
turbine
valve
steam generator
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015151750A
Other languages
Japanese (ja)
Other versions
JP2017031859A (en
Inventor
祐介 眞鍋
祐介 眞鍋
石川 均
均 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2015151750A priority Critical patent/JP6495137B2/en
Publication of JP2017031859A publication Critical patent/JP2017031859A/en
Application granted granted Critical
Publication of JP6495137B2 publication Critical patent/JP6495137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、複数組の蒸気系からの蒸気を合流させて蒸気タービンに導く複合サイクル発電プラント及びその制御方法に係り、特に蒸気合流部に弁手段を備えない構成の複合サイクル発電プラント及びその制御方法に関する。   The present invention relates to a combined cycle power plant that joins steam from a plurality of sets of steam systems and guides them to a steam turbine, and a control method thereof, and more particularly, to a combined cycle power plant that has no valve means in a steam combined portion and a control thereof. Regarding the method.

近年、ガスタービンと排熱回収ボイラと蒸気タービンを組み合わせた複合サイクル発電プラントが広く採用されている。係る複合サイクル発電プラントでは、ガスタービンにより発電機を駆動して電力を得るとともに、ガスタービン排熱が保有する排熱を排熱回収ボイラにおいて蒸気として回収し、得られた蒸気を蒸気タービンに送気して発電機を駆動し再度電力を得る。なお、蒸気タービンの代わりに蒸気を産業用に使用する蒸気設備とすることも可能である。   In recent years, combined cycle power plants combining gas turbines, exhaust heat recovery boilers, and steam turbines have been widely adopted. In such a combined cycle power plant, a generator is driven by a gas turbine to obtain electric power, and exhaust heat held by the exhaust heat of the gas turbine is recovered as steam in an exhaust heat recovery boiler, and the obtained steam is sent to the steam turbine. Take care and drive the generator to get power again. In addition, it is also possible to use a steam facility that uses steam for industrial use instead of the steam turbine.

複合サイクル発電プラントは、高効率を実現するために化石燃料のエネルギーを、燃焼エネルギーから蒸気エネルギーに変換して有効に回収する設備であり、さらなる高効率化のためには、複数のガスタービンと排熱回収ボイラの組み合わせをユニット化し、複数ユニットからの蒸気を合流部で合流させて共通の蒸気タービンにおくる大容量化設備(多軸型複合サイクル発電プラント)とすることが有効である。   The combined cycle power plant is a facility that effectively converts fossil fuel energy from combustion energy to steam energy in order to achieve high efficiency. It is effective to unitize a combination of exhaust heat recovery boilers, and to make a large-capacity facility (multi-shaft combined cycle power plant) that joins steam from a plurality of units at a joining section and comes to a common steam turbine.

特許文献1、2、3は、上記の大容量化複合サイクル発電設備の一構成例を示したものであり、合流部の上流側あるいは後流側に適宜制御弁、逆止弁を備え、また合流部の上流側から蒸気タービンの復水器に至るタービンバイパス系統を備えている。特許文献1、2、3では、係る構成の複合サイクル発電プラントにおける起動、停止時の、合流部における蒸気条件の制御手法事例を述べている。   Patent Documents 1, 2, and 3 show one configuration example of the above-described large-capacity combined cycle power generation facility, and appropriately include a control valve and a check valve on the upstream side or the downstream side of the junction, A turbine bypass system is provided from the upstream side of the junction to the condenser of the steam turbine. Patent Documents 1, 2, and 3 describe examples of a method for controlling steam conditions in a merging section when starting and stopping in a combined cycle power plant having such a configuration.

特開昭57−179310号公報JP-A-57-179310 特開2004−27938号公報JP 2004-27938 A 特開平9−4416号公報Japanese Patent Laid-Open No. 9-4416

上記した大容量化複合サイクル発電設備の一構成例によれば、合流部の上流側あるいは後流側に適宜制御弁、逆止弁を備え、起動停止時における複数ユニットからの異なる条件の蒸気の繋ぎ込み、及び切離しを実現している。   According to one configuration example of the large-capacity combined cycle power generation facility described above, a control valve and a check valve are appropriately provided on the upstream side or the downstream side of the merging portion, and steam of different conditions from a plurality of units at the time of starting and stopping is provided. Connecting and disconnecting are realized.

このため従来設備では、制御弁、逆止弁などの弁手段を備えることから高価であり、弁手段の故障による信頼度低下が問題であり、さらに異なる条件の蒸気の繋ぎ込み、及び切り離しを実現するための計装、制御手段の構成が複雑であるという問題点を備えている。   For this reason, the conventional equipment is expensive because it is equipped with valve means such as a control valve and a check valve, and there is a problem of lowering reliability due to failure of the valve means, and further, connection and disconnection of steam under different conditions is realized. The problem is that the configuration of instrumentation and control means is complicated.

このうち弁手段の故障という観点から見たときに、特許文献の蒸気系繋ぎ込み及び切離しに関する一連の操作は、合流部上流側に逆止弁を設置し、蒸気逆流をなくすことで実現できている。   Among these, when viewed from the viewpoint of failure of the valve means, the series of operations related to steam system connection and disconnection in the patent document can be realized by installing a check valve upstream of the junction and eliminating steam backflow. Yes.

しかしながら、高温高圧の厳しい環境下にある逆止弁は、水蒸気酸化等による腐食又は飛来物などによる弁摺動部のスティックによる動作不良の要因を有している。このため現状では、プラントの運転員による逆止弁作動テストの実施や監視によって健全性の確認を行っている。   However, a check valve in a severe environment of high temperature and pressure has a cause of malfunction due to corrosion due to steam oxidation or the like, or malfunction of the valve sliding part due to flying objects. For this reason, at present, soundness is confirmed by performing and monitoring a check valve operation test by a plant operator.

例えば、万一蒸気系切り離し時に切り離し軸側の逆止弁がスティックし閉止機能を失った場合、上記の従来動作による切り離し軸のタービンバイパス弁制御動作によって、運転継続軸側からの発生蒸気が切り離し側のタービンバイパス弁を介し復水器に排出されることになる為、蒸気タービンへの蒸気導入量不足並びに運転継続側の蒸気ドラム圧力の急減に伴う減圧沸騰となり、水位変動によるトリップ事象に至る可能性がある。繋ぎ込み時においても逆止弁が全開のまま、又は微開でのスティック状態で繋ぎ込みを実施した場合も同様である。   For example, if the check valve on the cut-off shaft side sticks when the steam system is cut off and loses its closing function, the generated steam from the continuous operation shaft side is cut off by the turbine bypass valve control operation of the cut-off shaft by the conventional operation described above. Will be discharged to the condenser through the turbine bypass valve on the side of the engine, resulting in insufficient boiling of steam into the steam turbine and reduced pressure boiling due to a sudden decrease in steam drum pressure on the operation continuation side, leading to a trip event due to fluctuations in the water level. there is a possibility. The same applies to the case where the check valve is fully opened even when it is connected, or when the connection is performed in a stick state with slight opening.

以上のことから本発明においては、弁手段を有することによる信頼度の低下を防止し、確実な蒸気の繋ぎ込み、あるいは切り離しを可能とする複合サイクル発電プラント及びその制御方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide a combined cycle power plant and a control method therefor that prevent a decrease in reliability due to having valve means and enable reliable steam connection or disconnection. And

以上のことから本発明においては、複数の蒸気発生器と、複数の蒸気発生器に接続される第1の通路と、複数の第1の通路を逆流可能に合流する合流部と、蒸気タービンと、複数の第1の通路の夫々に設けられた遮断弁と、遮断弁の蒸気発生器側から分岐されて蒸気タービン後流に至る第2の通路と、第2の通路に設けられたタービンバイパス弁と、複数の蒸気発生器のうち第1の蒸気発生器からの蒸気が合流部を介して蒸気タービンに導かれている状態において、第2の蒸気発生器側の蒸気圧力を蒸気タービン入口圧力に制御した後、一定値に保持する前記タービンバイパス弁の制御回路と、タービンバイパス弁が一定値に保持された状態で遮断弁を開閉させる遮断弁の制御回路とを有して、第2の蒸気発生器側の繋ぎ込み及び切り離しを行うことを特徴とする複合サイクル発電プラントとしたものである。   From the above, in the present invention, a plurality of steam generators, a first passage connected to the plurality of steam generators, a merging portion that joins the plurality of first passages so as to be able to backflow, a steam turbine, A shut-off valve provided in each of the plurality of first passages, a second passage that branches from the steam generator side of the shut-off valve and reaches the wake of the steam turbine, and a turbine bypass provided in the second passage In a state where the steam from the first steam generator among the plurality of steam generators is led to the steam turbine through the junction, the steam pressure on the second steam generator side is changed to the steam turbine inlet pressure. A control circuit for the turbine bypass valve that maintains a constant value, and a control circuit for a shut-off valve that opens and closes the shut-off valve while the turbine bypass valve is maintained at a constant value. Connecting and disconnecting the steam generator side Ukoto is obtained by a combined cycle power plant according to claim.

また本発明は、複数の蒸気発生器と、複数の蒸気発生器に接続される第1の通路と、複数の第1の通路を逆流可能に合流する合流部と、蒸気タービンと、複数の第1の通路の夫々に設けられた遮断弁と、遮断弁の蒸気発生器側から分岐されて蒸気タービン後流に至る第2の通路と、第2の通路に設けたタービンバイパス弁とを備えた複合サイクル発電プラントの制御方法であって、複数の蒸気発生器のうち第1の蒸気発生器からの蒸気が合流部を介して蒸気タービンに導かれている状態において、複数の蒸気発生器のうち第2の蒸気発生器側についてそのタービンバイパス弁の開度を一定に保持した状態でその遮断弁を開閉させて合流部における繋ぎ込み及び切り離しを行うことを特徴とする複合サイクル発電プラントの制御方法としたものである。   In addition, the present invention provides a plurality of steam generators, a first passage connected to the plurality of steam generators, a merging portion that joins the plurality of first passages so as to be able to reversely flow, a steam turbine, and a plurality of first A shut-off valve provided in each of the first passages, a second passage that branches from the steam generator side of the shut-off valve and reaches the wake of the steam turbine, and a turbine bypass valve provided in the second passage. A control method for a combined cycle power plant, wherein a steam from a first steam generator among a plurality of steam generators is led to a steam turbine through a junction, A control method for a combined cycle power plant characterized in that the shutoff valve is opened and closed to connect and disconnect at the junction with the opening of the turbine bypass valve held constant on the second steam generator side What A.

本発明によれば、弁手段を有することによる信頼度の低下を防止し、確実な蒸気の繋ぎ込み、あるいは切離しを可能とする複合サイクル発電プラント及びその制御方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fall of the reliability by having a valve means can be prevented, and the combined cycle power plant and its control method which make it possible to connect or disconnect steam reliably can be provided.

さらに具体的には、本発明の実施例によれば、複数の蒸気発生器と蒸気タービンと各々の蒸気発生器からの蒸気を遮断弁を有し且つ逆流を阻止する逆止弁を非設置とした蒸気タービン前の合流部に導く第1通路と、各々の蒸気発生器からの蒸気を第1通路の遮断弁の上流からタービンバイパス弁を介し蒸気タービンをバイパスさせる第2通路からなる複合サイクル発電プラントにおける蒸気系の繋ぎ込み・切離し操作時において、蒸気逆流を抑え、流入蒸気量の突変によるプラント発電量の急変や蒸気圧力の突変による排熱回収ボイラの蒸気ドラムレベル変動等プラント系統の不安定化を抑制し、逆止弁を設置とした従来と変わらぬ好適な制御運用が実施でき且つ逆止弁スティックによる不具合の回避並びに設備低減が図れるという効果がある。さらには、日々の逆止弁作動テストや監視といった運転員の作業負担が無くなるという効果が得られる。   More specifically, according to an embodiment of the present invention, a plurality of steam generators, steam turbines, and steam from each steam generator have a shut-off valve, and a check valve that prevents backflow is not installed. Combined cycle power generation comprising a first passage that leads to a confluence section in front of the steam turbine, and a second passage that bypasses the steam turbine from the upstream of the shutoff valve of the first passage through the turbine bypass valve from each steam generator When connecting and disconnecting steam systems in the plant, the steam back flow is suppressed, and sudden changes in the amount of generated power due to sudden changes in the amount of incoming steam and changes in the steam drum level of the exhaust heat recovery boiler due to sudden changes in steam pressure. It is possible to control the instability, implement a control operation that is the same as the conventional one with a check valve installed, avoid problems with the check valve stick, and reduce equipment. . Furthermore, there is an effect that the work burden of the operator such as daily check valve operation test and monitoring is eliminated.

本発明に係る多軸型複合サイクル発電プラントの構成を示す図。The figure which shows the structure of the multi-shaft combined cycle power plant concerning this invention. 従来における典型的な多軸型複合サイクル発電プラントの構成を示す図。The figure which shows the structure of the conventional typical multi-shaft type | mold combined cycle power plant. 本発明の実施形態に係るタービンバイパス弁の制御回路図。The control circuit diagram of the turbine bypass valve concerning the embodiment of the present invention. 図3の圧力設定部の具体的回路構成を示す図。The figure which shows the specific circuit structure of the pressure setting part of FIG. 規定開度設定部103で設定するガスタービン負荷とタービンバイパス弁規定開度設定値の関係を示す図。The figure which shows the relationship between the gas turbine load and the turbine bypass valve regulation opening setting value which are set by the regulation opening setting part 103. FIG. 繋ぎ込み操作時におけるタービンバイパス弁及び遮断弁の動作概略を示す図。The figure which shows the operation | movement outline | summary of the turbine bypass valve and the cutoff valve at the time of splicing operation. 切離し操作時におけるタービンバイパス弁及び遮断弁の動作概略を示す図。The figure which shows the operation | movement outline | summary of the turbine bypass valve and the cutoff valve at the time of disconnection operation. 実施例2における切り離し軸タービンバイパス弁の動作概略を示す図。The figure which shows the operation | movement outline | summary of the isolation | separation shaft turbine bypass valve in Example 2. FIG. 本発明に係る多重圧、多軸型複合サイクル発電プラントの構成を示す図。The figure which shows the structure of the multi-pressure, multi-shaft combined cycle power plant concerning this invention.

以下本発明の実施例について、図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例1について、図1、図3から図7を用いて説明する。   A first embodiment of the present invention will be described with reference to FIGS. 1 and 3 to 7.

最初に従来における典型的な多軸型複合サイクル発電プラントの構成および制御方法について図2を用いて説明する。一般的な多軸型複合サイクル発電プラントは、1台の蒸気タービンに2台以上のガスタービン及びそれに付随した蒸気発生器(排熱回収ボイラ)によって構成される。   First, the configuration and control method of a typical conventional multi-shaft combined cycle power plant will be described with reference to FIG. A general multi-shaft combined cycle power plant is composed of one steam turbine, two or more gas turbines, and a steam generator (exhaust heat recovery boiler) associated therewith.

図2では、説明の簡略化のために1台の蒸気タービンSTに対し2台のガスタービンGT1、GT2及びそれに付随する2台の蒸気発生器SG1、SG2と各蒸気発生器SGに設置される蒸気ドラムD1、D2、各蒸気ドラムD1、D2からの発生蒸気を蒸気タービンSTへ導く第1通路P11、P12と、その発生蒸気を第1通路P11、P12からタービンバイパス弁VB1、VB2を介し蒸気タービンSTをバイパスして復水器8へ導く第2通路P21、P22から成り、第1通路P11、P12の第2通路P21、P22への分岐部と蒸気タービンST前の各蒸気系の合流部15の間に逆止弁VC1、VC2と遮断弁VS1、VS2を設置したプラント構成を示す。   In FIG. 2, for simplification of description, two gas turbines GT 1 and GT 2 and two accompanying steam generators SG 1 and SG 2 and each steam generator SG are installed for one steam turbine ST. Steam drums D1 and D2, first passages P11 and P12 that guide the steam generated from the steam drums D1 and D2 to the steam turbine ST, and steam generated from the first passages P11 and P12 via the turbine bypass valves VB1 and VB2 It consists of second passages P21 and P22 that bypass the turbine ST and lead to the condenser 8, and branch portions of the first passages P11 and P12 to the second passages P21 and P22 and a joining portion of each steam system before the steam turbine ST. 15 shows a plant configuration in which check valves VC1 and VC2 and shut-off valves VS1 and VS2 are installed.

図示の構成によれば、各ガスタービンGT1、GT2の排気側の蒸気発生器SG1、SG2に設置される蒸気ドラムD1、D2で発生した蒸気は、各々の第1通路P11、P12を通り、逆止弁VC1、VC2及び遮断弁VS1、VS2を経て、蒸気合流部15で合流後、蒸気タービンSTへ流入される。流入蒸気は蒸気タービンSTで仕事をした後排出され、排出された蒸気は、復水器8で凝縮され復水となる。   According to the configuration shown in the figure, the steam generated in the steam drums D1 and D2 installed in the steam generators SG1 and SG2 on the exhaust side of the gas turbines GT1 and GT2 passes through the first passages P11 and P12 and reverses. After joining the stop valves VC1 and VC2 and the shut-off valves VS1 and VS2, after joining at the steam joining section 15, the steam flows into the steam turbine ST. The inflowing steam is discharged after working in the steam turbine ST, and the discharged steam is condensed in the condenser 8 to become condensate.

なお通常運転中においては、遮断弁VS1、VS2はいずれも全開しており、各蒸気発生器SG1、SG2の蒸気ドラムD1、D2から発生する蒸気は各々の第1通路P11、P12を経て蒸気合流部15で合流後、全て蒸気タービンSTに導かれている。またこの時、第1通路P11、P12から分岐し復水器8に連結された第2通路P21、P22に設けられているタービンバイパス弁VB1、VB2は、全閉状態となっている。   During normal operation, the shut-off valves VS1 and VS2 are both fully open, and the steam generated from the steam drums D1 and D2 of the steam generators SG1 and SG2 joins the steam through the first passages P11 and P12. After merging at the section 15, all are guided to the steam turbine ST. At this time, the turbine bypass valves VB1 and VB2 provided in the second passages P21 and P22 branched from the first passages P11 and P12 and connected to the condenser 8 are fully closed.

このような1台の蒸気タービンに対し、それぞれ独立した複数の蒸気発生器SGから発生する蒸気を合流させ蒸気タービンSTへ導き、当該蒸気タービンST及び発電機を駆動させる複合サイクル発電プラントでは、プラントの起動・停止時及びプラント運用効率向上のための蒸気発生器SG側のガスタービンやボイラの運転台数増減時等において、蒸気合流部15での蒸気系の繋ぎ込み・切離し操作が必要となる。この蒸気系の繋ぎ込み・切離し操作時は、流入蒸気量の突変によるプラント発電量の急変や蒸気圧力の突変による蒸気発生器SGの蒸気ドラムレベル変動等プラント系統の不安定化を防止した安全で円滑な制御が非常に重要となってくる。   In such a combined cycle power plant in which steam generated from a plurality of independent steam generators SG is joined to one steam turbine, guided to the steam turbine ST, and the steam turbine ST and the generator are driven, When starting / stopping and when the number of operating gas turbines and boilers on the steam generator SG side is increased or decreased for improving the plant operation efficiency, it is necessary to connect / disconnect the steam system at the steam confluence 15. When connecting and disconnecting this steam system, the plant system was prevented from becoming unstable, such as a sudden change in the amount of generated power due to a sudden change in the amount of incoming steam and a change in the steam drum level of the steam generator SG due to a sudden change in steam pressure. Safe and smooth control is very important.

ここで図2に示す多軸型複合サイクル発電プラントにおいて、ガスタービンGT1及び蒸気タービンSTが通常運転中にガスタービンGT2を追加起動する際の蒸気系繋ぎ込み操作を、既に通常運転中のガスタービンGT1及びそれに付随する蒸気発生器SG1を運転軸、ガスタービンGT2及びそれに付随する蒸気発生器SG2を繋ぎ込み軸として説明する。   Here, in the multi-shaft combined cycle power plant shown in FIG. 2, the steam system joining operation when the gas turbine GT2 and the steam turbine ST additionally start the gas turbine GT2 during the normal operation is already performed. GT1 and the steam generator SG1 associated therewith will be described as an operating shaft, and the gas turbine GT2 and the steam generator SG2 associated therewith will be described as a connecting shaft.

係る操作では、まず繋ぎ込み軸となるガスタービンGT2を起動する。蒸気発生器SG2の蒸気ドラムD2から発生した蒸気は当該タービンバイパス弁VB2によって一定の圧力に制御される。この時、繋ぎ込み軸側の遮断弁VS2は全閉状態である。また、この際タービンバイパス弁VB2の制御は、蒸気繋ぎ込み時の圧力変動やそれに伴う蒸気タービン負荷やプラント系統の不安定化を抑えるよう、既に蒸気タービンに通気している運転軸側の蒸気圧力と同圧となるようなプログラム圧力設定値または運転軸側の蒸気圧力の追従圧力設定値とし、繋ぎ込み軸側の第1通路P12に設けた圧力検出器PS2の計測値との比較演算(PI演算(比例+積分演算))の出力信号による圧力フィードバック制御によって設定圧力となるよう制御される。   In this operation, first, the gas turbine GT2 serving as a connecting shaft is started. The steam generated from the steam drum D2 of the steam generator SG2 is controlled to a constant pressure by the turbine bypass valve VB2. At this time, the shutoff valve VS2 on the connecting shaft side is in a fully closed state. At this time, the control of the turbine bypass valve VB2 is performed by controlling the steam pressure on the operating shaft side already ventilated in the steam turbine so as to suppress the pressure fluctuation at the time of steam connection and the accompanying steam turbine load and instability of the plant system. (PI) and the following pressure setting value of the steam pressure on the operating shaft side, and the comparison calculation (PI) with the measured value of the pressure detector PS2 provided in the first passage P12 on the connecting shaft side The pressure is controlled to be the set pressure by pressure feedback control using an output signal of calculation (proportional + integral calculation).

なお、蒸気系繋ぎ込み操作時の各ガスタービンGT1、GT2の負荷は繋ぎ込み時の蒸気系変動を防止するため、運転軸、繋ぎ込み軸ともにガスタービン排ガス温度が同等で各蒸気発生器SG1、SG2の発生蒸気量が同等となるような繋ぎ込み負荷条件で保持して実施する。   In addition, in order to prevent the steam system fluctuation | variation at the time of joining, the load of each gas turbine GT1, GT2 at the time of steam system connection operation has the same gas turbine exhaust gas temperature on each of the operation shaft and the connection shaft, and each steam generator SG1, It is carried out while maintaining the connected load condition so that the generated steam amount of SG2 is equivalent.

従って通常運転中の運転軸側はこの間、繋ぎ込み負荷の状態で待機させる。繋ぎ込み軸側の蒸気圧力が当該タービンバイパスVB2の制御により設定圧力となり、繋ぎ込み操作開始指令にて、全閉状態としていた繋ぎ込み軸側の遮断弁VS2を開する。遮断弁VS2が全開状態となるまでタービンバイパス弁VB2は上記圧力制御を継続し、遮断弁VS2が全開後徐閉していく。最終的には繋ぎ込み軸側タービンバイパス弁VB2の全閉を以て、繋ぎ込み操作が完了となる。   Therefore, the operation shaft side during normal operation is kept in a standby state in the connected load during this period. The steam pressure on the connecting shaft side becomes the set pressure by the control of the turbine bypass VB2, and the connecting valve start command VS2 on the connecting shaft side that has been fully closed is opened. The turbine bypass valve VB2 continues the pressure control until the shut-off valve VS2 is fully opened, and gradually closes after the shut-off valve VS2 is fully opened. Finally, the connecting operation is completed by fully closing the connecting shaft side turbine bypass valve VB2.

なお、この繋ぎ込み操作の際、例えば運転軸側の蒸気圧力を検出する蒸気タービンST入口側に設けた圧力検出器PS3及び繋ぎ込み軸側の第1通路P12に設けた圧力検出器PS2の計測誤差により繋ぎ込み軸側の蒸気圧力が運転軸側蒸気圧力より低い状態のまま合流させようとすると、運転軸側から繋ぎ込み軸側への蒸気逆流が生じる可能性がある。このため、従来から各々の第1通路P11、P12からタービンバイパス弁VB1、VB2を有する第2通路P21、P22への分岐部とタービン入口前の蒸気合流部に逆止弁VC1、VC22が設置されており、繋ぎ込み操作の際、運転軸側から繋ぎ込み軸側への蒸気逆流は阻止されている。   In this connection operation, for example, the pressure detector PS3 provided on the steam turbine ST inlet side for detecting the steam pressure on the operation shaft side and the measurement by the pressure detector PS2 provided on the first passage P12 on the connection shaft side are performed. If an attempt is made to join the steam while the steam pressure on the connecting shaft side is lower than the operating shaft side steam pressure due to an error, there is a possibility that a steam reverse flow from the operating shaft side to the connecting shaft side occurs. For this reason, check valves VC1 and VC22 are conventionally installed at the branching portion from the first passages P11 and P12 to the second passages P21 and P22 having the turbine bypass valves VB1 and VB2 and the steam confluence portion before the turbine inlet. In the connecting operation, the backflow of steam from the operation shaft side to the connecting shaft side is prevented.

次に図2に示す従来の多軸型複合サイクル発電プラントにおいて、ガスタービンGT1、ガスタービンGT2及び蒸気タービンSTが通常運転中にガスタービンGT2を停止する際の蒸気系切り離し操作を、ガスタービンGT1及びそれに付随する蒸気発生器SG1を運転軸、ガスタービンGT2及びそれに付随する蒸気発生器SG2を切り離し軸として説明する。   Next, in the conventional multi-shaft combined cycle power plant shown in FIG. 2, the steam system disconnection operation when the gas turbine GT1, the gas turbine GT2, and the steam turbine ST stop the gas turbine GT2 during normal operation is performed by the gas turbine GT1. The steam generator SG1 associated therewith will be described as an operating shaft, and the gas turbine GT2 and the steam generator SG2 associated therewith will be described as a separate shaft.

この場合には、まず運転効率、切り離し操作時間の観点から決定された切り離し負荷条件まで運転軸及び切離し軸のガスタービン負荷を降下させ、その後に切り離し操作を実施する。   In this case, first, the gas turbine load of the operation shaft and the separation shaft is lowered to the separation load condition determined from the viewpoint of the operation efficiency and the separation operation time, and then the separation operation is performed.

具体的には、切り離し負荷到達後、切離し軸側のタービンバイパス弁VB2を徐々に開し、当該蒸気発生器SG2からの発生蒸気量が全量復水器8に流れる状態となった後、当該遮断弁VS2を閉する。この際、切り離し軸のタービンバイパス弁VB2の制御は、当該蒸気発生器SG2の蒸気ドラムD2から発生する蒸気を全量バイパスさせる開度まで徐開し、蒸気タービン入口に設置される圧力検出器PS3の圧力計測値(蒸気タービン入口圧力)より当該蒸気発生器SG2出口の第1通路P12に設置される圧力検出器PS2の圧力計測値(蒸気発生器SG2出口圧力)が低くなった時点で切り離し軸側の発生蒸気が全量バイパスとなったとみなし、運転軸側の蒸気圧力より低めとなるようなプログラム圧力設定値または運転軸側の蒸気圧力より低めの追従圧力設定値とし、圧力検出器PS2の計測値との比較演算(PI演算(比例+積分演算))の出力信号による圧力フィードバック制御へ移行する。また、それと同時に切離し軸の遮断弁VS2を閉する。   Specifically, after reaching the separation load, the turbine bypass valve VB2 on the separation shaft side is gradually opened, and the amount of steam generated from the steam generator SG2 flows into the full condenser 8, and then the cutoff is performed. The valve VS2 is closed. At this time, the control of the turbine bypass valve VB2 of the separation shaft is performed by gradually opening the steam detector SG2 to the opening degree that bypasses the entire amount of steam generated from the steam drum D2 of the steam generator SG2, and the pressure detector PS3 installed at the steam turbine inlet. When the pressure measurement value (steam generator SG2 outlet pressure) of the pressure detector PS2 installed in the first passage P12 at the outlet of the steam generator SG2 becomes lower than the pressure measurement value (steam turbine inlet pressure), the separation shaft side Assuming that all the generated steam has been bypassed, set the program pressure setting value so that it is lower than the steam pressure on the operating shaft side or the follow-up pressure setting value lower than the steam pressure on the operating shaft side. Shifts to pressure feedback control based on the output signal of the comparison calculation (PI calculation (proportional + integral calculation)). At the same time, the cutoff valve VS2 of the separating shaft is closed.

このように、切離し軸の蒸気発生器SG出口の圧力が蒸気タービン入口の圧力よりも低くなれば蒸気発生器SGの発生蒸気が全てタービンバイパスにより復水器に流れている状態であり、このタイミングで当該遮断弁を閉するため、蒸気タービンへの蒸気流入量の変化させることなく切離すことができる。最終的には切離し軸の遮断弁が全閉することで蒸気系統の切り離し操作が完了し、次いで切り離し軸のガスタービン停止操作となる。なお、各々の第1通路P11、P12には逆止弁VC1、VC2が設置されているため、蒸気系切り離し操作の際も、運転軸側から切り離し軸側への蒸気逆流は生じない。   Thus, if the pressure at the outlet of the steam generator SG of the separating shaft becomes lower than the pressure at the inlet of the steam turbine, all the steam generated by the steam generator SG is flowing to the condenser by the turbine bypass. Thus, since the shut-off valve is closed, it can be separated without changing the amount of steam flowing into the steam turbine. Eventually, the shutoff valve on the separation shaft is fully closed, so that the steam system disconnecting operation is completed, and then the gas turbine is stopped on the disconnecting shaft. In addition, since the check valves VC1 and VC2 are installed in each of the first passages P11 and P12, the steam backflow from the operation shaft side to the separation shaft side does not occur during the steam system separation operation.

図1に、本発明に係る多軸型複合サイクル発電プラントの構成を図示している。従来の図2と本発明の図1を比較して明らかなように、本発明においては各第1通路P11、P12から第2通路P21、P22へ分岐する分岐部と蒸気タービンSTに導入される各蒸気系の蒸気合流部15の間の逆止弁VC1、VC2が設置されておらず、排除されている。   FIG. 1 shows a configuration of a multi-shaft combined cycle power plant according to the present invention. As is apparent from the comparison between FIG. 2 of the prior art and FIG. 1 of the present invention, in the present invention, the branched portions branching from the first passages P11 and P12 to the second passages P21 and P22 and the steam turbine ST are introduced. The check valves VC1 and VC2 between the steam merging portions 15 of the respective steam systems are not installed and are excluded.

図1に示す多軸型複合サイクル発電プラントの構成であっても、図1と同様に起動停止が可能な複合サイクル発電プラントの制御方法について、以下説明する。   A control method of a combined cycle power plant that can be started and stopped even in the configuration of the multi-shaft combined cycle power plant shown in FIG. 1 will be described below.

ここで例えば、ガスタービンGT1が運転中で且つ第1通路P11に設置の遮断弁VS1を全開とし、蒸気発生器SG1の蒸気ドラムD1からの発生蒸気を、第1通路P11を介し蒸気タービンSTへ導き、蒸気タービンSTを運転している状態において、ガスタービンGT2を起動し、第1通路P12に設置の遮断弁VS2を全閉状態としたまま蒸気発生器SG2の蒸気ドラムD2からの発生蒸気を第1通路P12から分岐する第2通路P22を介し、蒸気タービンSTをバイパスして全量復水器8へ導入している状態から、蒸気発生器SG2の蒸気ドラムD2からの発生蒸気を全量蒸気タービンSTへ導入する当該蒸気系の繋ぎ込み制御方法について、既に蒸気タービンSTへ連通しているガスタービンGT1及びそれに付随する蒸気発生器SG1を運転軸、ガスタービンGT2及びそれに付随する蒸気発生器SG2を繋ぎ込み軸として説明する。   Here, for example, the gas turbine GT1 is in operation and the shut-off valve VS1 installed in the first passage P11 is fully opened, and the generated steam from the steam drum D1 of the steam generator SG1 is sent to the steam turbine ST via the first passage P11. In the state where the steam turbine ST is operated, the gas turbine GT2 is started, and the generated steam from the steam drum D2 of the steam generator SG2 is kept with the shut-off valve VS2 installed in the first passage P12 being fully closed. Through the second passage P22 branched from the first passage P12, the steam generated from the steam drum D2 of the steam generator SG2 is completely discharged from the state where the steam turbine ST is bypassed and introduced into the full condenser 8. Regarding the connection control method for the steam system to be introduced into the ST, the gas turbine GT1 already in communication with the steam turbine ST and the steam generation associated therewith. Driving shaft vessel SG1, described as axial narrowing connecting steam generator SG2 associated with the gas turbine GT2 and it.

本発明の制御方法では、この場合にまず繋ぎ込み軸となるガスタービンGT2を起動する。繋ぎ込み軸側の遮断弁VS2は全閉状態のままとし、蒸気発生器SG2の蒸気ドラムD2から発生した蒸気は当該タービンバイパス弁VB2によって一定の圧力に制御される。   In the control method of the present invention, first, in this case, the gas turbine GT2 serving as the connecting shaft is started. The shutoff valve VS2 on the connecting shaft side remains in a fully closed state, and the steam generated from the steam drum D2 of the steam generator SG2 is controlled to a constant pressure by the turbine bypass valve VB2.

この繋ぎ込み操作前の段階における繋ぎ込み軸のタービンバイパス弁VB2の制御を、図3、図4を用いて説明する。図3は本発明の実施例1に係るタービンバイパス弁の制御回路を示す図であり、図4は図3内の圧力設定部の具体的な内部回路構成を示す図である。   The control of the turbine bypass valve VB2 of the connecting shaft before this connecting operation will be described with reference to FIGS. FIG. 3 is a diagram illustrating a control circuit for the turbine bypass valve according to the first embodiment of the present invention, and FIG. 4 is a diagram illustrating a specific internal circuit configuration of the pressure setting unit in FIG. 3.

図3におけるタービンバイパス弁の制御回路は、繋ぎ込み軸側の第1通路P12から蒸気圧力を圧力検出器PS2により検知して、タービンバイパス弁VB2を制御する回路図である。つまり、図3は蒸気タービンSTへ連通しているガスタービンGT1及びそれに付随する蒸気発生器SG1を運転軸、ガスタービンGT2及びそれに付随する蒸気発生器SG2を繋ぎ込み軸とする場合を想定しているが、逆の場合には繋ぎ込み軸側の第1通路P11から蒸気圧力を圧力検出器PS1により検知して、タービンバイパス弁VB1を制御する回路図を備えることになる。   The turbine bypass valve control circuit in FIG. 3 is a circuit diagram for controlling the turbine bypass valve VB2 by detecting the steam pressure from the first passage P12 on the connecting shaft side by the pressure detector PS2. That is, FIG. 3 assumes a case where the gas turbine GT1 and the associated steam generator SG1 communicating with the steam turbine ST are used as the operation shaft, and the gas turbine GT2 and the associated steam generator SG2 are used as the connecting shaft. However, in the opposite case, a circuit diagram for detecting the steam pressure from the first passage P11 on the connecting shaft side by the pressure detector PS1 and controlling the turbine bypass valve VB1 is provided.

タービンバイパス弁VB2の制御例では図3に示すように、蒸気タービンST入口に設置される圧力検出器PS3の圧力計測値を圧力設定部100に導入する。圧力設定部100の詳細構成、動作は図4を用いて詳述するが、要するに、既に運転している運転軸側の蒸気圧力相当とする圧力設定値を求めて目標値としている。これに対し、繋ぎ込み軸側の第1通路P12から圧力検出器PS2を介して求めた蒸気圧力が、目標値に対する帰還値としてタービンバイパス弁の制御回路に導入されている。   In the control example of the turbine bypass valve VB2, as shown in FIG. 3, the pressure measurement value of the pressure detector PS3 installed at the inlet of the steam turbine ST is introduced into the pressure setting unit 100. The detailed configuration and operation of the pressure setting unit 100 will be described in detail with reference to FIG. 4. In short, a pressure setting value corresponding to the steam pressure on the already operating shaft side is obtained and set as a target value. On the other hand, the steam pressure obtained from the first passage P12 on the connecting shaft side via the pressure detector PS2 is introduced into the turbine bypass valve control circuit as a feedback value with respect to the target value.

図4は、図3の圧力設定部100の具体的回路構成を示しているが、要するに圧力検出器PS3の圧力計測値を、設定器200を介して設定した第1の値P01と、圧力検出器PS3の圧力計測値に、信号発生器203が与える所定のバイアス値を加算器202で加算して求めた第2の値P02の一方を切替器201で切り替えて圧力設定部100の与える目標値としたものである。起動当初は第1の値P01を目標値とし、その後第2の値P02に切り替え使用する。   FIG. 4 shows a specific circuit configuration of the pressure setting unit 100 of FIG. 3. In short, the pressure measurement value of the pressure detector PS3 is set to the first value P01 set via the setting device 200, and the pressure detection. A target value given by the pressure setting unit 100 by switching one of the second values P02 obtained by adding the predetermined bias value given by the signal generator 203 to the pressure measurement value of the device PS3 by the adder 202 by the switch 201 It is what. At the beginning of activation, the first value P01 is set as a target value, and then switched to the second value P02.

目標値(圧力設定部100の出力)と帰還値(圧力検出器PS2の出力)は、比較演算器101にて比較されてその偏差信号がフィードバック制御部102に導入される。フィードバック制御部102における比例積分制御(PI制御)により求められ、出力された操作量の信号S2はタービンバイパス弁VB2の開度指令S4としてタービンバイパス弁VB2に与えられ、繋ぎ込み軸側の蒸気発生器SG2の蒸気ドラムD2からの発生蒸気量を全量復水器8へ排出しながら、繋ぎ込み軸蒸気系の圧力を運転軸側蒸気圧力と同等で且つ一定となるよう制御する。なお、繋ぎ込み軸蒸気系の圧力が運転軸側蒸気圧力と同等で且つ一定となるまでの期間では、フィードバック制御部102における切替器105、弁解度保持部104は機能しておらず、フィードバック制御部102の出力S2がそのままタービンバイパス弁制御回路の出力S4としてタービンバイパス弁VB2に与えられている。   The target value (output of the pressure setting unit 100) and the feedback value (output of the pressure detector PS2) are compared by the comparison calculator 101 and the deviation signal is introduced into the feedback control unit 102. An operation amount signal S2 obtained and output by proportional integral control (PI control) in the feedback control unit 102 is given to the turbine bypass valve VB2 as an opening degree command S4 of the turbine bypass valve VB2, and steam is generated on the connecting shaft side. While discharging the total amount of steam generated from the steam drum D2 of the container SG2 to the condenser 8, the pressure of the connecting shaft steam system is controlled to be equal to and constant with the operating shaft side steam pressure. In the period until the pressure of the connecting shaft steam system is equal to and constant with the operating shaft side steam pressure, the switching unit 105 and the valve solution holding unit 104 in the feedback control unit 102 do not function, and feedback control is performed. The output S2 of the part 102 is directly supplied to the turbine bypass valve VB2 as the output S4 of the turbine bypass valve control circuit.

繋ぎ込み軸蒸気圧力が設定圧力に到達するまでの上記動作は、従来と同じものであり、本発明においては設定圧力到達後に行う繋ぎ込み操作に特徴を有する。繋ぎ込み操作時における繋ぎ込み軸のタービンバイパス弁VB2の制御では、図3に示すように、まず弁開度保持指令信号S1を弁開度保持部104に与え、圧力のフィードバック制御部102の出力S2を遮断し、現状の弁開度操作量信号S2を保持させることでタービンバイパス弁VB2の開度を現位置から動作させないようにその位置に保持(ロック)する。この場合に弁開度保持指令信号S1は、図示せぬ回路により繋ぎ込み軸蒸気圧力が設定圧力に到達したことをもって、発生されている。   The above-described operation until the connecting shaft vapor pressure reaches the set pressure is the same as the conventional one, and the present invention is characterized by the connecting operation performed after reaching the set pressure. In the control of the turbine bypass valve VB2 of the connecting shaft during the connecting operation, as shown in FIG. 3, first, the valve opening holding command signal S1 is given to the valve opening holding unit 104, and the output of the pressure feedback control unit 102 is output. By shutting off S2 and holding the current valve opening operation amount signal S2, the opening of the turbine bypass valve VB2 is held (locked) at that position so as not to operate from the current position. In this case, the valve opening degree holding command signal S1 is generated when the connecting shaft steam pressure reaches the set pressure by a circuit (not shown).

その後、繋ぎ込み軸側の遮断弁VS2へ開動作指令を与え、遮断弁VS2を開き始める。この際、繋ぎ込み軸側の蒸気圧力が各圧力検出器PS2、PS3の計測誤差又は圧力設定部100における出力値(設定値)の計算誤差によって、運転軸側の蒸気圧力より高めであった場合、繋ぎ込み軸側の第1通路P12に設置されている遮断弁VS2の開動作過程で繋ぎ込み軸側の蒸気が少量蒸気タービンSTに流入し、運転軸の第1通路PS11〜蒸気タービンST間の蒸気圧力の上昇となるが、繋ぎ込み軸側のタービンバイパス弁VB2の開度が固定状態であることから、前述の圧力計測誤差分あるいは圧力設定部100の計算誤差分の圧力上昇量に留まり、蒸気タービンST及び運転軸側の蒸気ドラムD1への影響は極めて少ないものにできる。   Thereafter, an opening operation command is given to the shutoff valve VS2 on the connecting shaft side, and the shutoff valve VS2 starts to open. At this time, when the steam pressure on the connecting shaft side is higher than the steam pressure on the operating shaft side due to the measurement error of each pressure detector PS2, PS3 or the calculation error of the output value (set value) in the pressure setting unit 100 In the process of opening the shutoff valve VS2 installed in the first passage P12 on the connecting shaft side, the steam on the connecting shaft side flows into the steam turbine ST in a small amount, and between the first passage PS11 to the steam turbine ST on the operating shaft. However, since the opening degree of the turbine bypass valve VB2 on the connecting shaft side is in a fixed state, the amount of increase in the pressure is equal to the pressure measurement error or the calculation error of the pressure setting unit 100. The influence on the steam turbine ST and the steam drum D1 on the operation shaft side can be made extremely small.

一方、繋ぎ込み軸側の蒸気圧力が前述の誤差等により、運転軸側蒸気圧力より低めであった場合には繋ぎ込み軸側の第1通路P12に設置の遮断弁VS2の開動作過程で運転軸側の蒸気が繋ぎ込み軸側へ逆流し、運転軸側の第1通路P11〜蒸気タービンST間の蒸気圧力低下となるが、繋ぎ込み軸側のタービンバイパス弁VB2の開度が固定開度であることから、前述の圧力上昇時と同様に、圧力計測誤差分あるいは圧力設定部100の計算誤差分の圧力低下量に留まるため、蒸気タービンST及び運転軸側の蒸気ドラムD1への影響は極めて少ないものにできる。   On the other hand, when the steam pressure on the connecting shaft side is lower than the steam pressure on the operating shaft side due to the above-mentioned error, the operation is performed in the process of opening the shut-off valve VS2 installed in the first passage P12 on the connecting shaft side. The steam on the shaft side flows backward to the connecting shaft side, resulting in a drop in steam pressure between the first passage P11 to the steam turbine ST on the operating shaft side, but the opening degree of the turbine bypass valve VB2 on the connecting shaft side is a fixed opening degree. Therefore, as in the case of the above-mentioned pressure increase, the pressure drop amount is equivalent to the pressure measurement error or the calculation error of the pressure setting unit 100, so the influence on the steam turbine ST and the steam drum D1 on the operation shaft side is limited. Can be very few.

なお、プラント運用や送電系統側の諸事情により影響を懸念する場合は、繋ぎ込み軸の当該遮断弁VS2の開動作スピードを調整することで容易に対処できる。   In addition, when there is a concern about the influence due to various circumstances on the plant operation and power transmission system side, it can be easily dealt with by adjusting the opening operation speed of the shutoff valve VS2 of the connecting shaft.

次いで繋ぎ込み軸側の遮断弁VS2が全開後、タービンバイパス弁VB2の設定値を切り替える。この動作は、図4の圧力設定部100の出力値(第1の値P01)を圧力検出器PS2の計測値にバイアス値を加算器202にて加算した設定値(第2の値P02)に切替器201にて切替えることで実現される。さらに図3の弁開度保持部104の開度出力保持を解除し再度圧力フィードバック制御102の制御へ移行し、圧力制御にて当該タービンバイパス弁VB2を全閉させる。   Subsequently, after the shutoff valve VS2 on the connecting shaft side is fully opened, the set value of the turbine bypass valve VB2 is switched. This operation is performed by setting the output value (first value P01) of the pressure setting unit 100 in FIG. 4 to the set value (second value P02) obtained by adding the bias value to the measured value of the pressure detector PS2 by the adder 202. This is realized by switching with the switch 201. Further, the opening degree output holding of the valve opening degree holding unit 104 in FIG. 3 is released, and the process again proceeds to the control of the pressure feedback control 102, and the turbine bypass valve VB2 is fully closed by the pressure control.

図6に繋ぎ込み操作時におけるタービンバイパス弁及び遮断弁の動作概略を示している。図6において、横軸は経過時間であり、縦軸は繋ぎ込み軸タービンバイパス弁及び遮断弁の開度を示している。また、図上部には上記説明による実施例1のタービンバイパス弁制御形態を補足として記載している。   FIG. 6 shows an outline of the operation of the turbine bypass valve and the shutoff valve during the splicing operation. In FIG. 6, the horizontal axis represents elapsed time, and the vertical axis represents the opening degrees of the connecting shaft turbine bypass valve and the shutoff valve. Moreover, the turbine bypass valve control form of Example 1 by the said description is described in the upper part of the figure as a supplement.

横軸の経過時間において、t1は遮断弁開動作開始時点(繋ぎ込み開始時点)であり、従って時刻t1以前の制御状態がフィードバック制御部102の圧力制御による繋ぎ込み軸タービンバイパス弁VB2の操作期間ということができる。図示のようにこの期間では、タービンバイパス弁VB2の開度は適宜調整されて不定の開度とされている。   In the elapsed time of the horizontal axis, t1 is the shut-off valve opening operation start time (connection start time), and therefore the control state before time t1 is the operation period of the connection shaft turbine bypass valve VB2 by the pressure control of the feedback control unit 102. It can be said. As shown in the figure, during this period, the opening degree of the turbine bypass valve VB2 is adjusted appropriately to be an indefinite opening degree.

横軸の経過時間において、t2は遮断弁全開時点であり、従って時刻t1から時刻t2までの間の制御状態が繋ぎ込み軸タービンバイパス弁VB2の開度保持期間ということができる。この期間では、タービンバイパス弁VB2の開度が一定に保持された状態で、遮断弁VS2が時間経過とともに解放されていく状態を示している。図示のようにこの期間では、タービンバイパス弁VB2の開度は固定の開度とされている。   In the elapsed time on the horizontal axis, t2 is the time when the shut-off valve is fully opened. Therefore, the control state between time t1 and time t2 is connected, and it can be said that the opening degree holding period of the shaft turbine bypass valve VB2. In this period, the shutoff valve VS2 is released over time while the opening of the turbine bypass valve VB2 is kept constant. As illustrated, during this period, the opening of the turbine bypass valve VB2 is a fixed opening.

横軸の経過時間において、t3はタービンバイパス弁VB2全閉時点(繋ぎ込み完了時点)であり、従って時刻t2から時刻t3までの間の制御状態がフィードバック制御部102の圧力制御によるタービンバイパス弁VB2の徐閉期間ということができる。この期間では、遮断弁VS2が全開された状態で、タービンバイパス弁VB2の開度が一定に徐々に閉じられていく経過を示している。   In the elapsed time on the horizontal axis, t3 is the time point when the turbine bypass valve VB2 is fully closed (connection completion time point). Therefore, the control state from time t2 to time t3 is the turbine bypass valve VB2 based on pressure control of the feedback control unit 102. It can be said that the gradual closing period. In this period, the opening degree of the turbine bypass valve VB2 is gradually and constantly closed while the shutoff valve VS2 is fully opened.

本発明では、このように繋ぎ込み軸側の遮断弁開動作開始から全開となるまでの間、繋ぎ込み軸側からの発生蒸気量を全量バイパスしていた当該タービンバイパス弁開度をその位置保持(ロック)としておくことで、各々の第1通路P11、P12から第2通路P21、P22へ分岐する分岐部と蒸気タービンSTに導入される各蒸気系の蒸気合流部15の間の逆止弁を非設置としたプラント構成においても蒸気系繋ぎ込み時の蒸気圧力、蒸気タービンへの蒸気流入の変化による運転への影響を無くし、逆止弁を設置とした従来と遜色のない蒸気系の繋ぎ込み運用が可能となる。   In the present invention, the position of the turbine bypass valve opening, in which the amount of steam generated from the connecting shaft side is completely bypassed from the start of the shutoff valve opening operation on the connecting shaft side to the fully open state in this way, is maintained. (Lock), a check valve between the branching portion branching from each of the first passages P11 and P12 to the second passages P21 and P22 and the steam joining portion 15 of each steam system introduced into the steam turbine ST. Even in a plant configuration in which the system is not installed, the steam pressure when the steam system is connected and the change in steam flow into the steam turbine are not affected by the operation, and the connection between the conventional steam system and a check valve is installed. Operation is possible.

次に、図1に示す本発明のプラント構成において、各ガスタービンGT1、GT2が運転中で且つ各第1通路P11、P12に設置の各遮断弁VS1、VS2を全開、各第2通路P21、P22に設置の各タービンバイパス弁VB1、VB2を全閉とし、各蒸気発生器SG1、SG2の各蒸気ドラムD1、D2からの発生蒸気を全量蒸気タービンSTへ導入し蒸気タービンSTを運転している状態から、ガスタービンGT2に付随する蒸気発生器SG2の蒸気ドラムD2からの発生蒸気を、当該第1通路P12に設置の遮断弁VS2を全閉とし、第2通路P12及びそれに設置されるタービンバイパス弁VB2を介し全量復水器8へ導入する当該蒸気系の切り離し制御方法について、切り離し後に蒸気タービンSTへ連通しているガスタービンGT1及びそれに付随する蒸気発生器SG1を運転軸、ガスタービンGT2及びそれに付随する蒸気発生器SG2を切り離し軸として説明する。   Next, in the plant configuration of the present invention shown in FIG. 1, the gas turbines GT1 and GT2 are in operation and the shut-off valves VS1 and VS2 installed in the first passages P11 and P12 are fully opened, and the second passages P21 and P21, The turbine bypass valves VB1 and VB2 installed at P22 are fully closed, and the steam generated from the steam drums D1 and D2 of the steam generators SG1 and SG2 is introduced into the steam turbine ST to operate the steam turbine ST. From the state, the generated steam from the steam drum D2 of the steam generator SG2 attached to the gas turbine GT2 is fully closed with the shutoff valve VS2 installed in the first passage P12, and the second passage P12 and the turbine bypass installed in the second passage P12. Regarding the disconnection control method for the steam system to be introduced into the full condenser 8 via the valve VB2, the gas turbine connected to the steam turbine ST after disconnection GT1 and operating shaft steam generator SG1 associated therewith, described as axis detach the steam generator SG2 associated with the gas turbine GT2 and it.

図7は、切り離し操作時におけるタービンバイパス弁及び遮断弁の動作概略を示す図である。図7において、当該切離し操作開始前の状態は時刻t4に示されており、時刻t4の状態は、図6の時刻t3と同じ状態である。つまり、タービンバイパス弁VB2が全閉とされ、遮断弁VS2が全開とされた状態である。   FIG. 7 is a diagram showing an outline of operations of the turbine bypass valve and the shutoff valve during the separation operation. In FIG. 7, the state before the start of the detachment operation is shown at time t4, and the state at time t4 is the same as the time t3 in FIG. That is, the turbine bypass valve VB2 is fully closed and the cutoff valve VS2 is fully open.

タービンバイパス弁VB2の上記全閉状態は、図3、図4に示すタービンバイパス弁制御回路において、圧力設定器100が圧力検出器PS3の計測値にバイアス値を加算器202にて加算した設定値(第2の値P02)与えることで実現されている。   The fully closed state of the turbine bypass valve VB2 is a set value in which the pressure setter 100 adds a bias value to the measured value of the pressure detector PS3 by the adder 202 in the turbine bypass valve control circuit shown in FIGS. This is realized by giving (second value P02).

図7によれば、横軸は経過時間であり、縦軸は切り離し軸タービンバイパス弁VB2及び遮断弁VS2の開度を示している。また、図7上部には上記説明による実施例1のタービンバイパス弁制御形態を補足として記載している。   According to FIG. 7, the horizontal axis represents the elapsed time, and the vertical axis represents the opening degrees of the separation shaft turbine bypass valve VB2 and the cutoff valve VS2. Further, in the upper part of FIG. 7, the turbine bypass valve control mode of the first embodiment according to the above description is described as a supplement.

横軸の経過時間において、t4はタービンバイパス弁VB2開指令時点であり、t5はタービンバイパス弁VB2規定開度到達時点であり、時刻t4から時刻t5までの間の制御状態は規定開度設定部103の出力値によるタービンバイパス弁VB2の徐開期間(規定開度操作期間)である。この期間では、遮断弁VS2が全開された状態で、タービンバイパス弁VB2の開度が一定に徐々に開かれていく経過を示している。なお、時点t5は、タービンバイパス弁VB2が規定開度に到達して、遮断弁VS2の閉動作を開始する時点(切離し開始時点)でもある。   In the elapsed time of the horizontal axis, t4 is the turbine bypass valve VB2 opening command time point, t5 is the turbine bypass valve VB2 specified opening arrival time point, and the control state from time t4 to time t5 is the specified opening setting unit. This is a gradual opening period (specified opening operation period) of the turbine bypass valve VB2 according to the output value of 103. In this period, the opening degree of the turbine bypass valve VB2 is gradually and constantly opened while the shutoff valve VS2 is fully opened. Note that the time point t5 is also the time point when the turbine bypass valve VB2 reaches the specified opening and the closing operation of the shutoff valve VS2 is started (the separation start time point).

横軸の経過時間において、t6は遮断弁全閉時点(切離し完了時点)であり、時刻t5から時刻t6までの間の制御状態が切り離し軸タービンバイパス弁VB2の開度保持期間である。この期間では、タービンバイパス弁VB2の開度が一定に保持された状態で、遮断弁VS2が時間経過とともに閉成されていく状態を示している。図示のようにこの期間では、タービンバイパス弁VB2の開度は固定の開度とされている。   In the elapsed time of the horizontal axis, t6 is the shut-off valve fully closed time (separation completion time), and the control state from time t5 to time t6 is disconnected and is the opening holding period of the shaft turbine bypass valve VB2. In this period, the shutoff valve VS2 is closed over time while the opening of the turbine bypass valve VB2 is kept constant. As illustrated, during this period, the opening of the turbine bypass valve VB2 is a fixed opening.

横軸の経過時間において、t6は遮断弁閉時点(切離し完了時点)であり、時刻t6以後の制御状態はフィードバック制御部102の圧力制御による切り離し軸タービンバイパス弁VB2の操作期間である。   In the elapsed time of the horizontal axis, t6 is the shut-off valve closing time (separation completion time), and the control state after time t6 is the operating period of the separation shaft turbine bypass valve VB2 by pressure control of the feedback control unit 102.

図6の繋ぎ込み操作時におけるタービンバイパス弁及び遮断弁の動作波形を、図7の切り離し操作時におけるタービンバイパス弁及び遮断弁の動作波形と対比して明らかなように、繋ぎ込み操作時のプロセスと逆の手順でのプロセス処理により切離し操作が行われたことが明らかである。   As is clear from the operation waveforms of the turbine bypass valve and the shut-off valve at the time of the disconnecting operation shown in FIG. 7 in comparison with the operation waveforms of the turbine bypass valve and the shut-off valve at the time of the disconnecting operation of FIG. It is clear that the separation operation was performed by the process processing in the reverse procedure.

この切り離し処理は、図3、図4に示したタービンバイパス弁制御回路の以下の処理により実現されている。まず、タービンバイパス弁VB2の徐開期間(規定開度操作期間)t4−t5の制御について説明する。この時には、運転中全閉状態としていた切り離し軸のタービンバイパス弁VB2を制御する。   This separation processing is realized by the following processing of the turbine bypass valve control circuit shown in FIGS. First, control of the gradual opening period (specified opening operation period) t4-t5 of the turbine bypass valve VB2 will be described. At this time, the turbine bypass valve VB2 of the separation shaft that has been fully closed during operation is controlled.

具体的には、時刻t4以前において、図3の切替え器105が選択していた圧力フィードバック制御部102からの開度入力値S2(全閉状態の指令信号)を、時刻t4以降は規定開度設定部103の出力値S3へ切替えて操作する。規定開度設定部103の出力値S3は、切り離し軸の蒸気発生器SG2の蒸気ドラムD2からの発生蒸気を全量復水器8へバイパスさせるための必要開度を表す信号であり、一定レートで徐開していく。   Specifically, before the time t4, the opening input value S2 (command signal in the fully closed state) from the pressure feedback control unit 102 selected by the switch 105 in FIG. Switching to the output value S3 of the setting unit 103 is performed. The output value S3 of the specified opening setting unit 103 is a signal representing a required opening for bypassing the generated steam from the steam drum D2 of the steam generator SG2 of the separation shaft to the full condenser 8 at a constant rate. Slowly open.

ここで、規定開度設定部103の出力値について、図5を用いて説明する。図5は規定開度設定部103で設定するガスタービン負荷とタービンバイパス弁規定開度設定値の関係を示す図である。図5は横軸に切り離し軸のガスタービン負荷を記述し、縦軸にタービンバイパス弁開度を示している。この関係によれば切り離し軸側ガスタービン負荷が大きいほど、大きなタービンバイパス弁開度を出力するという関係にある。また図5の特性では、運転軸側のガスタービン負荷をパラメーターとして複数の特性を設定している。この関係によれば切離し軸側ガスタービン負荷が同じであっても、運転軸側のガスタービン負荷が大きいほど小さなタービンバイパス弁開度を出力するという関係にある。   Here, the output value of the specified opening setting unit 103 will be described with reference to FIG. FIG. 5 is a diagram showing the relationship between the gas turbine load set by the specified opening setting unit 103 and the turbine bypass valve specified opening setting value. In FIG. 5, the horizontal axis represents the gas turbine load of the separation shaft, and the vertical axis represents the turbine bypass valve opening. According to this relationship, the larger the decoupling shaft side gas turbine load is, the larger turbine bypass valve opening degree is output. Further, in the characteristics of FIG. 5, a plurality of characteristics are set with the gas turbine load on the operation shaft side as a parameter. According to this relationship, even if the separation shaft side gas turbine load is the same, a smaller turbine bypass valve opening degree is output as the operation shaft side gas turbine load is larger.

この図5は、運転軸及び切り離し軸のガスタービン負荷に基づき、運転軸と切り離し軸のガスタービン負荷の割合によって決定される弁開度を出力したものである。またここでは説明の簡略化のため、パラメーターとした運転軸のガスタービン負荷を大、中、小とした概念図を示している。   FIG. 5 shows the valve opening determined by the ratio of the gas turbine load between the operation shaft and the separation shaft based on the gas turbine load on the operation shaft and the separation shaft. In addition, here, for simplification of explanation, a conceptual diagram is shown in which the gas turbine load of the operation shaft as a parameter is large, medium, and small.

図5に示す関係図では、例えば運転軸のガスタービン負荷(中)で切り離し運用開始とした場合、切り離し軸のガスタービン負荷が大きいほど弁開度は開方向となり、一方切り離し軸のガスタービン負荷を一定と見た場合、運転軸のガスタービン負荷が大きいほど弁開度は閉方向となる。   In the relational diagram shown in FIG. 5, for example, when the separation operation is started with the gas turbine load (middle) of the operation shaft, the valve opening degree becomes the open direction as the gas turbine load of the separation shaft increases, while the gas turbine load of the separation shaft Is constant, the greater the gas turbine load on the operating shaft, the closer the valve opening becomes.

これにより、規定開度設定部103からの徐開信号出力値S3がタービンバイパス弁VB2に与えられ、タービンバイパス弁VB2は徐開信号による緩動作により開放方向に制御されるが、その最終開度は図5の関係から導かれた規定開度とされている。   Thereby, the gradual opening signal output value S3 from the specified opening setting unit 103 is given to the turbine bypass valve VB2, and the turbine bypass valve VB2 is controlled in the opening direction by the slow operation by the gradual opening signal. Is a specified opening degree derived from the relationship of FIG.

規定開度設定部103からの徐開信号出力値S3が規定開度設定部103で算出した必要開度(規定開度)に達した後、又は実弁開度値を導入している場合はその実開度が必要開度に達した後に、弁開度保持指令信号S1を弁開度保持部104に与え、規定開度設定部103の出力を遮断し、現状の弁開度操作量信号を保持させることで当該タービンバイパス弁VB2の開度を現位置から動作させないようにその位置保持(ロック)とする。この状態が、図7の時刻t5の遮断弁閉動作開始時点、切離し開始時点である。   After the gradual opening signal output value S3 from the specified opening setting unit 103 reaches the required opening (specified opening) calculated by the specified opening setting unit 103, or when the actual valve opening value is introduced After the actual opening reaches the required opening, the valve opening holding command signal S1 is given to the valve opening holding unit 104, the output of the specified opening setting unit 103 is shut off, and the current valve opening operation amount signal is displayed. By holding, the position of the turbine bypass valve VB2 is held (locked) so as not to operate from the current position. This state is the time when the shut-off valve closing operation starts and the time when separation starts at time t5 in FIG.

その後時刻t5−t6間の開度保持状態において、遮断弁VS2へ閉動作指令を与え、遮断弁VS2を閉め始める。遮断弁VS2が閉動作開始から全閉するまでの間、切離し軸のタービンバイパス弁VB2は、切離し軸の蒸気発生器SG2からの発生蒸気を全量バイパスできる規定開度が保持されており動作しないようにされている。   Thereafter, in a state where the opening is maintained between time t5 and time t6, a closing operation command is given to the shutoff valve VS2, and the shutoff valve VS2 is started to close. Until the shutoff valve VS2 is fully closed until the shut-off valve VS2 is fully closed, the turbine bypass valve VB2 of the separation shaft is maintained at a predetermined opening degree that can bypass all the generated steam from the steam generator SG2 of the separation shaft, so that it does not operate. Has been.

このため、前述の繋ぎ込み操作時に説明の如く、検出器計測誤差または規定開度設定部103での算出誤差分の切り離し蒸気系への合流部15からの逆流、または合流部15へ流入継続の事象は生じる可能性があるが、微少であり、運転軸への運転の影響は極めて少ない。   For this reason, as explained at the time of the connecting operation described above, the detector measurement error or the calculation error in the specified opening setting unit 103 is separated by the reverse flow from the merging unit 15 to the separated steam system, or the inflow to the merging unit 15 is continued. Although the event may occur, it is very small and the driving effect on the driving axis is very small.

時刻t6において切り離し軸側の遮断弁VS2が全閉する。その後、タービンバイパス弁VB2は圧力設定部100の設定器200の出力値(第1の値P01)を設定値とし、且つ弁開度保持部104の開度出力保持を解除し、弁開度操作量を切替え器105にて再度フィードバック制御部102からの信号に切替え、ガスタービンの停止操作へ移行する。   At time t6, the cutoff valve VS2 on the separation shaft side is fully closed. Thereafter, the turbine bypass valve VB2 sets the output value (first value P01) of the setting device 200 of the pressure setting unit 100 as a set value, cancels the opening output holding of the valve opening holding unit 104, and operates the valve opening operation. The amount is again switched to the signal from the feedback control unit 102 by the switch 105, and the operation proceeds to the gas turbine stop operation.

このように切り離し軸側の遮断弁VS2閉動作開始t5から全閉t6となるまでの間、切り離し軸側からの発生蒸気量を全量バイパスするタービンバイパス弁VB2開度をその位置に保持しておくことで、各々の第1通路P11、P12から第2通路P21、P22へ分岐する分岐部と蒸気タービンSTに導入される各蒸気系の合流部15の間の逆止弁を非設置としたプラント構成においても蒸気系切り離し時の蒸気圧力、蒸気タービンへの蒸気流入の変化による運転への影響を無くし、逆止弁を設置とした従来と遜色のない蒸気系の切り離し運用が可能となる。   In this way, the opening degree of the turbine bypass valve VB2 that bypasses all the generated steam amount from the separation shaft side is maintained at that position from the start of the closing operation VS2 on the separation shaft side t5 until the full closure t6. Thus, a plant in which a check valve is not installed between the branch portion branching from each of the first passages P11 and P12 to the second passages P21 and P22 and the joining portion 15 of each steam system introduced into the steam turbine ST. Even in the configuration, it is possible to eliminate the influence on the operation due to the change of the steam pressure at the time of the steam system disconnection and the steam inflow to the steam turbine, and the steam system can be separated from the conventional system with a check valve installed.

実施例2では、切り離し操作において、合流部15から切り離し軸への逆流を抑える手法について説明する。   In the second embodiment, a method for suppressing the backflow from the merging portion 15 to the separation shaft in the separation operation will be described.

実施例1の図7における時刻t4以前の切り離し軸のタービンバイパス弁VB2の制御状態は、切り離し軸のタービンバイパス弁VB2の制御設定値は、図3に示す圧力設定部100の出力値を圧力検出器PS3の計測値にバイアス値203を加算器202にて加算して得ている。これにより、運転軸側蒸気圧力より高めに設定することでタービンバイパス弁VB2を圧力フィードバック制御による全閉状態としているが、実施例2ではこの状態のまま、すなわち切り離し軸側からの発生蒸気が全量蒸気タービンへ導入されている状態のまま、おもむろに切離し操作開始にて切離し軸の遮断弁VS2を閉していく。   The control state of the separation shaft turbine bypass valve VB2 before time t4 in FIG. 7 of the first embodiment is that the control setting value of the separation shaft turbine bypass valve VB2 is the pressure detection of the output value of the pressure setting unit 100 shown in FIG. The bias value 203 is added to the measured value of the device PS3 by the adder 202. As a result, the turbine bypass valve VB2 is set to a fully closed state by pressure feedback control by setting it higher than the operating shaft side steam pressure, but in this embodiment, in this state, that is, all of the generated steam from the separated shaft side. While being introduced into the steam turbine, the separation shaft VS2 of the separation shaft is closed at the start of the separation operation.

この操作では、遮断弁VS2が閉していく過程において、切離し軸側の蒸気圧力が上昇していくが、当該タービンバイパス弁VB2は前述で設定した設定圧力(圧力設定部100の出力値(第1の値P01))に制御するよう開き始める。切り離し軸側の遮断弁VS2が全閉にて切り離し運用は完了となり、ガスタービンの停止操作に移行する。   In this operation, while the shutoff valve VS2 is closed, the steam pressure on the separating shaft side increases, but the turbine bypass valve VB2 has the set pressure (the output value of the pressure setting unit 100 (the first value) Start opening to control to a value of P01)). The separation operation is completed when the cutoff valve VS2 on the separation shaft side is fully closed, and the operation proceeds to a gas turbine stop operation.

図8に実施例2における切り離し軸タービンバイパス弁動作概略図を示す。図8において、横軸及び縦軸は図7と同様であり、図上部にはタービンバイパス弁制御形態を補足として記載している。   FIG. 8 shows a schematic operation diagram of the separated shaft turbine bypass valve in the second embodiment. In FIG. 8, the horizontal axis and the vertical axis are the same as those in FIG. 7, and the turbine bypass valve control mode is described as a supplement at the top of the figure.

この切り離し運用においては、運転軸と切り離し軸の各蒸気系の蒸気圧力が均衡している状態で、切り離し軸のタービンバイパス弁VB2開動作より先に当該遮断弁VS2を閉していくため、各々の第1通路P11、P12から第2通路p21、P22へ分岐する分岐部と蒸気タービンSTに導入される各蒸気系の合流部15の間の逆止弁を非設置としたプラント構成においても、常に切り離し蒸気系から合流部15への蒸気供給継続状態での切り離し操作となり、蒸気系切り離し時の合流部15から切離し軸側への蒸気逆流を防止した運用とすることができる。   In this separation operation, the shutoff valve VS2 is closed before the turbine bypass valve VB2 opening operation of the separation shaft in a state where the steam pressures of the respective steam systems of the operation shaft and the separation shaft are balanced. Even in the plant configuration in which the check valve between the branching portion branched from the first passages P11 and P12 to the second passages p21 and P22 and the joining portion 15 of each steam system introduced into the steam turbine ST is not installed, Separation operation is always performed in a state where steam is continuously supplied from the separated steam system to the merging section 15, and the operation can be performed while preventing the steam backflow from the merging section 15 to the shaft side when the steam system is separated.

また、プラント運用や送電系統側の諸事情により、蒸気圧力、蒸気タービンへの蒸気流入の変化による運転への影響を懸念する場合は、切り離し軸の当該遮断弁VS2の閉動作スピードを調整することで容易に対処できる。   In addition, if there are concerns about the impact on operation due to changes in steam pressure or steam flow into the steam turbine due to various circumstances on the plant operation or power transmission system side, the closing operation speed of the shutoff valve VS2 of the separation shaft should be adjusted. Can be easily handled.

なお本発明の実施例として、ガスタービンGT1とそれに付随する蒸気発生器SG1の蒸気ドラムD1からの発生蒸気を全量蒸気タービンSTへ導入し運転している状態で、ガスタービンGT2を追加起動する際の蒸気系繋ぎ込み操作を挙げたが、通常のプラント起動の際も同様の操作を適用可能である。   As an embodiment of the present invention, when the gas turbine GT2 is additionally operated while the steam generated from the steam drum D1 of the gas turbine GT1 and the accompanying steam generator SG1 is fully introduced into the steam turbine ST, the gas turbine GT2 is additionally started. However, the same operation can be applied to normal plant startup.

また本発明の実施例として、各ガスタービンGT1、GT2とそれに付随する各蒸気発生器SG1、SG2の各蒸気ドラムD1、D2からの発生蒸気を全量蒸気タービンSTへ導入し運転している状態で、ガスタービンGT2を停止する際の蒸気系切り離し操作実施例を挙げたが、通常のプラント停止の際も同様の操作を適用できる。   As an embodiment of the present invention, the steam generated from the steam drums D1 and D2 of the gas turbines GT1 and GT2 and the steam generators SG1 and SG2 accompanying the gas turbines GT1 and GT2 is introduced into the steam turbine ST and is in operation. The steam system disconnecting operation example when stopping the gas turbine GT2 has been described, but the same operation can be applied when stopping a normal plant.

実施例1では、本発明の基本概念を説明することに主眼を置いたために、多軸型複合サイクル発電プラントの構成をシンプルな一重圧のものとして説明した。これに対し実際の多軸型複合サイクル発電プラントにおける排熱回収ボイラは高圧、中圧、低圧などの複数の蒸気圧力を与える構成のものとされ、また蒸気タービンも高圧タービン、中圧タービン、低圧タービンなどを有する構成のものとされることがある。さらにこれらの多段圧タービンにおける起動停止では、主蒸気の切り替えにより行う方式、中圧蒸気の切り替えにより行う方式など、種々のものが考えられる。   In Example 1, since the focus was on explaining the basic concept of the present invention, the configuration of the multi-shaft combined cycle power plant was described as a simple single pressure type. On the other hand, the exhaust heat recovery boiler in an actual multi-shaft combined cycle power plant is configured to give a plurality of steam pressures such as high pressure, medium pressure, and low pressure, and the steam turbine is also a high pressure turbine, medium pressure turbine, and low pressure. It may be configured to have a turbine or the like. Furthermore, in starting and stopping in these multi-stage pressure turbines, various methods such as a method performed by switching main steam and a method performed by switching intermediate pressure steam are conceivable.

図9は、多段圧の多軸型複合サイクル発電プラントの構成例を示している。図示の例では、蒸気発生器(排熱回収ボイラ)SG1、SG2は、高圧ドラムD1H、D2Hと低圧ドラムD1L、D2Lを備え、蒸気タービンSTは、高圧蒸気タービンSTHと低圧蒸気タービンSTLを備える。これらの記号付与の約束から明らかなように、高圧部には記号Hを低圧部には記号Lを示している。基本的な構成は図1で説明したと同じであるので詳細説明を割愛し、新たに追加されている部分のみ説明すると、45、46は低温再熱蒸気管であり、各高圧タービンバイパス管P21H、P22Hに設けられる高圧タービンバイパス弁VB1H、VB2Hは低温再熱蒸気管45、46に接続されている。   FIG. 9 shows an example of the configuration of a multi-stage multi-shaft combined cycle power plant with multi-stage pressure. In the illustrated example, the steam generators (exhaust heat recovery boilers) SG1 and SG2 include high-pressure drums D1H and D2H and low-pressure drums D1L and D2L, and the steam turbine ST includes a high-pressure steam turbine STH and a low-pressure steam turbine STL. As is apparent from these promises of symbol assignment, symbol H is shown for the high pressure portion and symbol L is shown for the low pressure portion. Since the basic configuration is the same as that described with reference to FIG. 1, the detailed description is omitted, and only newly added portions are described. 45 and 46 are low-temperature reheat steam pipes, and each high-pressure turbine bypass pipe P21H. , P22H, high pressure turbine bypass valves VB1H and VB2H are connected to low-temperature reheat steam pipes 45 and 46, respectively.

ここで特徴的なことは、高圧と低圧の合流部15H、15Lに逆止弁を備えていないことであり、この点において図1の本発明の構成と同じ構成を採用している。従って、繋ぎ込みあるいは切り離しを行う時に、実施例1、実施例2の適用が可能である。   What is characteristic here is that the high-pressure and low-pressure merging portions 15H and 15L are not provided with a check valve, and in this respect, the same configuration as that of the present invention in FIG. 1 is adopted. Accordingly, the first and second embodiments can be applied when connecting or disconnecting.

このように、図1ではプラント構成として一重圧での蒸気発生器(排熱回収ボイラ)の構成を例に挙げたが、本発明の実施例3では、図9に示すように蒸気発生設備SG1、SG2からの発生蒸気を蒸気タービンSTHに導く配管P11H、P12Hと、その配管から分岐し蒸気タービンSTHをバイパスし低温再熱蒸気管45、46へ排出する高圧タービンバイパス管P21H、P22H及びそれに設置される高圧タービンバイパス弁VB1H、VB2Hの制御を行う。また、蒸気発生設備SG1、SG2からの発生蒸気を蒸気タービンSTLに導く配管P11L、P12Lと、その配管から分岐し蒸気タービンSTLをバイパスし復水器8へ排出するタービンバイパス系統P21L、P22L及びそれに設置される低圧タービンバイパス弁VB1L、VB2Lの制御を行う。このように、高圧の蒸気発生器D1H、D2Hと低圧の蒸気発生器D1L、D2Lと高圧蒸気タービンSTH及び低圧蒸気タービンSTLを有し、高圧の蒸気発生器D1H、D2Hからの発生蒸気を高圧タービンバイパス管P11H、P12H及び高圧タービンバイパス弁VB1H、VB2Hを介し、高圧蒸気タービンSTHをバイパスして高圧蒸気タービン排気側の蒸気配管(低温再熱蒸気管)45、46へ導く高圧タービンバイパス系統と低圧の蒸気発生器D1L、D2Lからの発生蒸気を低圧タービンバイパス管P21L、P22L及び低圧タービンバイパス弁VB1L、VB2Lを介し、低圧蒸気タービンSTLをバイパスして復水器8へ導く低圧タービンバイパス系統で構成される再熱型二重圧の蒸気発生器(排熱回収ボイラ)の構成及び上記再熱型の三重圧以上の蒸気発生器(排熱回収ボイラ)の構成においても適用できる。   As described above, in FIG. 1, the configuration of the steam generator (exhaust heat recovery boiler) at a single pressure is taken as an example of the plant configuration, but in the third embodiment of the present invention, the steam generation facility SG <b> 1 as shown in FIG. 9. , Pipes P11H and P12H for leading the steam generated from SG2 to the steam turbine STH, and high-pressure turbine bypass pipes P21H and P22H that branch from the pipe, bypass the steam turbine STH, and discharge to the low-temperature reheat steam pipes 45 and 46, and installed therein The high pressure turbine bypass valves VB1H and VB2H to be controlled are controlled. Also, pipes P11L and P12L that lead the steam generated from the steam generation facilities SG1 and SG2 to the steam turbine STL, turbine bypass systems P21L and P22L that branch from the pipe, bypass the steam turbine STL, and discharge to the condenser 8 and the like. The low pressure turbine bypass valves VB1L and VB2L to be installed are controlled. As described above, the high pressure steam generators D1H and D2H, the low pressure steam generators D1L and D2L, the high pressure steam turbine STH and the low pressure steam turbine STL are provided, and the generated steam from the high pressure steam generators D1H and D2H is supplied to the high pressure turbine. A high pressure turbine bypass system and a low pressure that bypass the high pressure steam turbine STH and lead to high pressure steam turbine exhaust side steam pipes (low temperature reheat steam pipes) 45 and 46 via the bypass pipes P11H and P12H and the high pressure turbine bypass valves VB1H and VB2H. The steam generated from the steam generators D1L and D2L is configured by a low pressure turbine bypass system that bypasses the low pressure steam turbine STL to the condenser 8 via the low pressure turbine bypass pipes P21L and P22L and the low pressure turbine bypass valves VB1L and VB2L. Of reheat type double pressure steam generator (exhaust heat recovery boiler) It can be applied in the configuration of the formation and the reheating type of triple pressure above the steam generator (heat recovery steam).

本発明における以上の説明では、2台のガスタービンとそれに付随する2台の蒸気発生器(排熱回収ボイラ)とその発生蒸気を導入する蒸気タービンから成る多軸複合サイクル発電プラントを例に挙げたが、複数の蒸気発生器と蒸気タービンを連絡する蒸気配管系から蒸気タービンをバイパスして発生蒸気を復水器(又はその他蒸気設備又は外部)へ排出するタービンバイパス系統に設けたタービンバイパス弁を有する複合サイクル発電プラントおよびその制御に適用できる。   In the above description of the present invention, a multi-shaft combined cycle power plant including two gas turbines, two accompanying steam generators (exhaust heat recovery boilers), and a steam turbine for introducing the generated steam is taken as an example. However, a turbine bypass valve provided in a turbine bypass system that discharges generated steam to a condenser (or other steam equipment or outside) by bypassing the steam turbine from a steam piping system connecting a plurality of steam generators and the steam turbine It can be applied to a combined cycle power plant having

また、コンベンショナル火力発電プラントあるいは燃焼設備と蒸気タービンの複合発電設備の複数の蒸気発生器と蒸気タービンを連絡する蒸気配管系から蒸気タービンをバイパスして発生蒸気を復水器(又はその他蒸気設備又は外部)へ排出するタービンバイパス系統に設けたタービンバイパス弁を有する発電プラントおよびその制御に適用できる。   In addition, by bypassing the steam turbine from the steam piping system connecting the steam generator and the steam generator of the conventional thermal power plant or the combined power generation facility of the combustion facility and the steam turbine, the generated steam is condensed into the condenser (or other steam facility or It can be applied to a power plant having a turbine bypass valve provided in a turbine bypass system that discharges to the outside and its control.

さらに、原子力発電プラントの沸騰水型原子炉、加圧水型原子炉及び高速増殖炉の蒸気発生器の複数と蒸気タービンを連絡する蒸気配管系から蒸気タービンをバイパスして発生蒸気を復水器(又はその他蒸気設備又は外部)へ排出するタービンバイパス系統に設けたタービンバイパス弁を有する発電プラントおよびその制御に適用できる。   Furthermore, the steam generated by bypassing the steam turbine from the steam piping system connecting the steam generators of the boiling water reactor, the pressurized water reactor and the fast breeder reactor of the nuclear power plant to the steam turbine (or It can be applied to a power plant having a turbine bypass valve provided in a turbine bypass system that discharges to other steam equipment or the outside and control thereof.

また本発明の実施例では、切り離し操作時のタービンバイパス弁の規定開度操作を各ガスタービン負荷に基づく規定開度設定部の出力を弁操作量とする規定開度としたが、各ガスタービン燃料投入量、排気温度、ガスタービン設備以外の場合は、蒸気発生器運転負荷や燃料投入量あるいは運転軸と切り離し軸の発生蒸気量を推定、計算できるようなその他の各種プロセス値に基づく規定開度とすることもできる。   In the embodiment of the present invention, the specified opening operation of the turbine bypass valve at the time of the disconnection operation is set to the specified opening with the output of the specified opening setting unit based on each gas turbine load as the valve operation amount. In cases other than fuel input, exhaust temperature, and gas turbine equipment, the specified opening based on various process values that can estimate and calculate the steam generator operating load, the fuel input, or the generated steam from the operating shaft and the disconnected shaft. It can also be a degree.

また本発明の実施例では、タービンバイパス弁の圧力フィードバック制御時の制御設定値を蒸気タービン入口圧力に基づく設定器出力による設定値としたが、運転軸側のガスタービン燃料投入量、排気温度、ガスタービン設備以外の場合は、蒸気発生器運転負荷や燃料投入量あるいはタービン入口の合流部の蒸気圧力を推定、計算できるようなその他の各種プロセス値に基づく設定値とすることもできる。   In the embodiment of the present invention, the control set value at the time of pressure feedback control of the turbine bypass valve is set by the setter output based on the steam turbine inlet pressure, but the gas turbine fuel input amount on the operation shaft side, the exhaust temperature, In the case of other than the gas turbine equipment, a set value based on various other process values that can estimate and calculate the steam generator operating load, the fuel input amount, or the steam pressure at the confluence of the turbine inlet may be used.

以上、本発明を図示の実施例について説明したが、本発明に係る実施例に限定されず、本発明の範囲内でその具体的構造に種々の変更を加えてよいことはいうまでもない。   Although the present invention has been described with reference to the illustrated embodiment, it is needless to say that the present invention is not limited to the embodiment, and various modifications may be made to the specific structure within the scope of the present invention.

GT1、GT2:ガスタービン
SG1、SG2:蒸気発生器(排熱回収ボイラ)
D1、D2:蒸気ドラム
ST:蒸気タービン
8:復水器
P11、P12:第1通路(主蒸気管)
VC1、VC2:逆止弁
VS1、VS2:遮断弁
15:蒸気合流部
P21、P22:第2通路(タービンバイパス管)
VB1、VB2:タービンバイパス弁
PS1、PS2、PS3:圧力検出器
D1H、D2H:高圧蒸気ドラム
D1L、D2L:低圧蒸気ドラム
STH:高圧蒸気タービン
STL:低圧蒸気タービン
P11H、P12H:高圧主蒸気管
15H:高圧蒸気合流部
P21H、P22H:高圧タービンバイパス管
VB1H、VB2H:高圧タービンバイパス弁
45、46:低温再熱蒸気管
P11L、P12L:高温再熱蒸気管
15L:低圧蒸気合流部
P21L、P22L:低圧タービンバイパス管
VB1L、VB2L:低圧タービンバイパス弁
100:圧力設定部
101:比較演算器
102:フィードバック制御部(PI演算器)
103:規定開度設定部
104:弁開度保持部
105、201:切替え器
200:設定器
202:加算器
203:信号発生器(バイアス値)
GT1, GT2: Gas turbine SG1, SG2: Steam generator (exhaust heat recovery boiler)
D1, D2: Steam drum ST: Steam turbine 8: Condenser P11, P12: First passage (main steam pipe)
VC1, VC2: check valve VS1, VS2: shutoff valve 15: steam confluence P21, P22: second passage (turbine bypass pipe)
VB1, VB2: Turbine bypass valves PS1, PS2, PS3: Pressure detectors D1H, D2H: High-pressure steam drum D1L, D2L: Low-pressure steam drum STH: High-pressure steam turbine STL: Low-pressure steam turbine P11H, P12H: High-pressure main steam pipe 15H: High-pressure steam junction P21H, P22H: High-pressure turbine bypass pipe VB1H, VB2H: High-pressure turbine bypass valve 45, 46: Low-temperature reheat steam pipe P11L, P12L: High-temperature reheat steam pipe 15L: Low-pressure steam junction P21L, P22L: Low-pressure turbine Bypass pipes VB1L, VB2L: Low-pressure turbine bypass valve 100: Pressure setting unit 101: Comparison calculator 102: Feedback control unit (PI calculator)
103: prescribed opening setting unit 104: valve opening holding unit 105, 201: switching device 200: setting device 202: adder 203: signal generator (bias value)

Claims (12)

複数の蒸気発生器と、該複数の蒸気発生器に接続される第1の通路と、該複数の第1の通路を逆流可能に合流する合流部と、蒸気タービンと、前記複数の第1の通路の夫々に設けられた遮断弁と、該遮断弁の前記蒸気発生器側から分岐されて前記蒸気タービン後流に至る第2の通路と、該第2の通路に設けられたタービンバイパス弁、前記複数の蒸気発生器のうち第1の蒸気発生器からの蒸気が前記合流部を介して前記蒸気タービンに導かれている状態において、第2の蒸気発生器側の蒸気圧力を前記蒸気タービン入口圧力に制御した後、一定値に保持する前記タービンバイパス弁の制御回路と、前記タービンバイパス弁が一定値に保持された状態で前記遮断弁を開かせる遮断弁の制御回路とを有して、前記第2の蒸気発生器側の繋ぎ込みを行うことを特徴とする複合サイクル発電プラント。 A plurality of steam generators, a first passage connected to the plurality of steam generators, a merging section that joins the plurality of first passages so as to be able to flow backward, a steam turbine, and the plurality of first a shut-off valve provided in each passageway s, a second passage leading to the steam turbine downstream is branched from the steam generator side of the shut-off valve, a turbine bypass valve provided in the path of the second In the state where the steam from the first steam generator among the plurality of steam generators is led to the steam turbine through the junction, the steam pressure on the second steam generator side is changed to the steam turbine. A control circuit for the turbine bypass valve that maintains a constant value after controlling to the inlet pressure, and a control circuit for the shut-off valve that opens the shut-off valve in a state where the turbine bypass valve is maintained at a constant value. , Splicing on the second steam generator side Combined cycle power plant, which comprises carrying out. 請求項1に記載の複合サイクル発電プラントであって、
前記タービンバイパス弁の制御回路は、前記遮断弁の開放後に、前記タービンバイパス弁を全閉に移行せしめることを特徴とする複合サイクル発電プラント。
The combined cycle power plant according to claim 1,
The combined circuit power plant according to claim 1, wherein the turbine bypass valve control circuit shifts the turbine bypass valve to a fully closed state after the shutoff valve is opened.
請求項1または請求項2に記載の複合サイクル発電プラントであって、
前記タービンバイパス弁の制御回路は、前記複数の蒸気発生器のうち第1の蒸気発生器と第2の蒸気発生器からの蒸気が前記合流部を介して前記蒸気タービンに導かれている状態において、前記第2の蒸気発生器側についてそのタービンバイパス弁を開方向に移行させ、規定開度に至った時点でタービンバイパス弁を当該規定開度に固定し、
前記遮断弁の制御回路は、前記タービンバイパス弁を規定開度に固定している期間中に前記遮断弁を閉成せしめることで前記第2の蒸気発生器側の切離しを行うことを特徴とする複合サイクル発電プラント。
The combined cycle power plant according to claim 1 or 2,
In the turbine bypass valve control circuit, the steam from the first steam generator and the second steam generator among the plurality of steam generators is led to the steam turbine through the junction. The turbine bypass valve is shifted in the opening direction for the second steam generator side, and when the specified opening is reached, the turbine bypass valve is fixed at the specified opening,
The control circuit for the shutoff valve performs the disconnection on the second steam generator side by closing the shutoff valve during a period in which the turbine bypass valve is fixed at a specified opening. Combined cycle power plant.
請求項3に記載の複合サイクル発電プラントであって、
前記タービンバイパス弁の制御回路は、前記遮断弁の全閉後に前記タービンバイパス弁を規定開度に固定した処理を解除することを特徴とする複合サイクル発電プラント。
The combined cycle power plant according to claim 3,
The turbine bypass valve control circuit releases the process of fixing the turbine bypass valve at a specified opening after the shut-off valve is fully closed.
前記蒸気発生器はガスタービンの排熱を用いて蒸気を得るようにされた請求項3または請求項4に記載の複合サイクル発電プラントであって、
前記規定開度は、前記第1の蒸気発生器のガスタービン負荷と前記第2の蒸気発生器のガスタービン負荷を用いて定めることを特徴とする複合サイクル発電プラント。
The combined cycle power plant according to claim 3 or 4, wherein the steam generator is configured to obtain steam using exhaust heat of a gas turbine.
The specified opening is determined using a gas turbine load of the first steam generator and a gas turbine load of the second steam generator.
請求項1または請求項2に記載の複合サイクル発電プラントであって、
前記タービンバイパス弁の制御回路は、前記複数の蒸気発生器のうち第1の蒸気発生器と第2の蒸気発生器からの蒸気が前記合流部を介して前記蒸気タービンに導かれている状態において、前記第2の蒸気発生器側についてそのタービンバイパス弁の制御設定値を前記蒸気タービン前の合流部運転圧力以上とし、制御による全閉状態としたまま前記第2の蒸気発生器側から前記蒸気タービンへ蒸気導入する状態とし、
前記遮断弁の制御回路は、前記蒸気導入する状態において前記遮断弁を閉成せしめることで前記第2の蒸気発生器側の切離しを行うことを特徴とする複合サイクル発電プラント。
The combined cycle power plant according to claim 1 or 2,
In the turbine bypass valve control circuit, the steam from the first steam generator and the second steam generator among the plurality of steam generators is led to the steam turbine through the junction. The control setting value of the turbine bypass valve on the second steam generator side is equal to or higher than the operating pressure at the junction before the steam turbine, and the steam from the second steam generator side is kept in a fully closed state by control. The steam is introduced into the turbine,
The combined cycle power plant is characterized in that the control circuit of the shut-off valve performs disconnection on the second steam generator side by closing the shut-off valve in a state where the steam is introduced.
複数の蒸気発生器と、該複数の蒸気発生器に接続される第1の通路と、該複数の第1の通路を逆流可能に合流する合流部と、蒸気タービンと、前記複数の第1の通路の夫々に設けられた遮断弁と、該遮断弁の前記蒸気発生器側から分岐されて前記蒸気タービン後流に至る第2の通路と、該第2の通路に設けたタービンバイパス弁とを備えた複合サイクル発電プラントの制御方法であって、
前記複数の蒸気発生器のうち第1の蒸気発生器からの蒸気が前記合流部を介して前記蒸気タービンに導かれている状態において、前記複数の蒸気発生器のうち第2の蒸気発生器側についての蒸気発生器側の蒸気圧力を前記蒸気タービン入口圧力に制御した後、その前記タービンバイパス弁の開度を一定に保持した状態でその遮断弁を開放して前記合流部における蒸気の合流を行うことで繋ぎ込みを行うことを特徴とする複合サイクル発電プラントの制御方法。
A plurality of steam generators, a first passage connected to the plurality of steam generators, a merging section that joins the plurality of first passages so as to be able to flow backward, a steam turbine, and the plurality of first A shut-off valve provided in each of the passages, a second passage that branches from the steam generator side of the shut-off valve and reaches the downstream of the steam turbine, and a turbine bypass valve provided in the second passage. A combined cycle power plant control method comprising:
In the state where the steam from the first steam generator among the plurality of steam generators is led to the steam turbine through the junction, the second steam generator side of the plurality of steam generators After the steam pressure on the steam generator side is controlled to the steam turbine inlet pressure , the shutoff valve is opened in a state where the opening of the turbine bypass valve is kept constant, and the steam merging in the merging section is performed. The control method of the combined cycle power plant characterized by performing connection by performing.
請求項7に記載の複合サイクル発電プラントの制御方法であって、
前記遮断弁の開放後に、前記タービンバイパス弁を全閉に移行せしめることを特徴とする複合サイクル発電プラントの制御方法。
A method for controlling a combined cycle power plant according to claim 7,
The combined cycle power plant control method, wherein the turbine bypass valve is fully closed after the shutoff valve is opened.
請求項7または請求項8に記載の複合サイクル発電プラントの制御方法であって、
前記複数の蒸気発生器のうち第1の蒸気発生器と第2の蒸気発生器からの蒸気が前記合流部を介して前記蒸気タービンに導かれている状態において、前記第2の蒸気発生器側についてそのタービンバイパス弁を開方向に移行させ、規定開度に至った時点でタービンバイパス弁を規定開度に固定し、当該固定期間中に前記遮断弁を閉成せしめることで切離しを行うことを特徴とする複合サイクル発電プラントの制御方法。
A method for controlling a combined cycle power plant according to claim 7 or claim 8, comprising:
In the state where the steam from the first steam generator and the second steam generator among the plurality of steam generators is led to the steam turbine through the junction, the second steam generator side The turbine bypass valve is shifted in the opening direction, and when the specified opening is reached, the turbine bypass valve is fixed at the specified opening, and the shut-off valve is closed during the fixed period to perform separation. A control method for a combined cycle power plant.
前記蒸気発生器はガスタービンの排熱を用いて蒸気を得るようにされた請求項9に記載の複合サイクル発電プラントの制御方法であって、
前記規定開度は、前記第1の蒸気発生器のガスタービン負荷と前記第2の蒸気発生器のガスタービン負荷を用いて定めることを特徴とする複合サイクル発電プラントの制御方法。
The combined cycle power plant control method according to claim 9, wherein the steam generator is configured to obtain steam using exhaust heat of a gas turbine,
The control method for a combined cycle power plant, wherein the specified opening is determined using a gas turbine load of the first steam generator and a gas turbine load of the second steam generator.
前記蒸気発生器はガスタービンの排熱を用いて蒸気を得るようにされた請求項9または請求項10に記載の複合サイクル発電プラントの制御方法であって、
前記規定開度は、前記第1の蒸気発生器のガスタービン負荷と前記第2の蒸気発生器のガスタービン負荷を用いて定めることを特徴とする複合サイクル発電プラントの制御方法。
The combined steam power plant control method according to claim 9 or 10 , wherein the steam generator obtains steam using exhaust heat of a gas turbine,
The control method for a combined cycle power plant, wherein the specified opening is determined using a gas turbine load of the first steam generator and a gas turbine load of the second steam generator.
請求項7または請求項8に記載の複合サイクル発電プラントの制御方法であって、
前記複数の蒸気発生器のうち第1の蒸気発生器と第2の蒸気発生器からの蒸気が前記合流部を介して前記蒸気タービンに導かれている状態において、前記第2の蒸気発生器側についてそのタービンバイパス弁の制御設定値を前記蒸気タービン前の合流部運転圧力以上とし、制御による全閉状態としたまま前記第2の蒸気発生器側から前記蒸気タービンへ蒸気導入する状態とし、該蒸気導入する状態において前記遮断弁を閉成せしめることで前記第2の蒸気発生器側の切離しを行うことを特徴とする複合サイクル発電プラントの制御方法。
A method for controlling a combined cycle power plant according to claim 7 or claim 8, comprising:
In the state where the steam from the first steam generator and the second steam generator among the plurality of steam generators is led to the steam turbine through the junction, the second steam generator side The control setting value of the turbine bypass valve is set to be equal to or higher than the operating pressure at the merging portion before the steam turbine, and the steam is introduced into the steam turbine from the second steam generator side while being fully closed by the control, A control method for a combined cycle power plant, characterized in that the second steam generator side is disconnected by closing the shut-off valve in a state where steam is introduced.
JP2015151750A 2015-07-31 2015-07-31 Combined cycle power plant and control method thereof Active JP6495137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015151750A JP6495137B2 (en) 2015-07-31 2015-07-31 Combined cycle power plant and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015151750A JP6495137B2 (en) 2015-07-31 2015-07-31 Combined cycle power plant and control method thereof

Publications (2)

Publication Number Publication Date
JP2017031859A JP2017031859A (en) 2017-02-09
JP6495137B2 true JP6495137B2 (en) 2019-04-03

Family

ID=57988152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015151750A Active JP6495137B2 (en) 2015-07-31 2015-07-31 Combined cycle power plant and control method thereof

Country Status (1)

Country Link
JP (1) JP6495137B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153498B2 (en) * 2018-08-08 2022-10-14 川崎重工業株式会社 Combined cycle power plant
JP7330612B2 (en) * 2019-04-05 2023-08-22 川崎重工業株式会社 boiler system
CN113027545B (en) * 2021-03-25 2022-09-27 西安热工研究院有限公司 Bypass control method for stabilizing steam drum liquid level of gas-steam combined cycle unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179310A (en) * 1981-04-28 1982-11-04 Mitsubishi Heavy Ind Ltd Boiler change-over system for additional switching-in and disconnection in combined plant
JP6122775B2 (en) * 2013-12-26 2017-04-26 株式会社東芝 Control device and activation method

Also Published As

Publication number Publication date
JP2017031859A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
US9845710B2 (en) Start-up method of steam turbine plant
JP6495137B2 (en) Combined cycle power plant and control method thereof
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
EP2865853B1 (en) Combined cycle plant
CN101074615B (en) Steam turbine plant
JP2002004807A (en) Stam control device for turbine
JP5524923B2 (en) Low pressure turbine bypass control device and power plant
JP3615077B2 (en) Operation method of steam turbine plant
JP6603526B2 (en) Steam turbine equipment and operation method of steam turbine equipment
JP2018031328A (en) Pump system, its operational method and power-generating plant
JP2017072101A (en) Steam turbine system and its control method
JP4014948B2 (en) Multi-axis combined cycle plant and control method thereof
JP3780789B2 (en) Steam turbine equipment
JP3144440B2 (en) Multi-shaft combined cycle power plant
JP6440479B2 (en) Reactor heat utilization system
JP2024009646A (en) Control device, control method and control progra mfor steam power generation plant
CN105041393A (en) Structure for preventing steam crossing between drain pipes of steam guiding pipes
JP3672587B2 (en) Auxiliary steam supply system for combined cycle power plant
JPS6056110A (en) Control method of ventilator
JPS63117106A (en) Stoppage controlling method and device for turbine plant
JP2934984B2 (en) Steam motor plant
JPH02271004A (en) Low pressure turbine bypass valve controller
JPS5922041B2 (en) Boiler feed water pump drive turbine control device
JPH04342806A (en) Steam turbine control device for combined power plant
JPH08121112A (en) Single-shaft combined-cycle power generating equipment

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190306

R150 Certificate of patent or registration of utility model

Ref document number: 6495137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350