JP3672587B2 - Auxiliary steam supply system for combined cycle power plant - Google Patents

Auxiliary steam supply system for combined cycle power plant Download PDF

Info

Publication number
JP3672587B2
JP3672587B2 JP08446894A JP8446894A JP3672587B2 JP 3672587 B2 JP3672587 B2 JP 3672587B2 JP 08446894 A JP08446894 A JP 08446894A JP 8446894 A JP8446894 A JP 8446894A JP 3672587 B2 JP3672587 B2 JP 3672587B2
Authority
JP
Japan
Prior art keywords
axis
steam
auxiliary steam
supply
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08446894A
Other languages
Japanese (ja)
Other versions
JPH07293208A (en
Inventor
昌幸 当房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP08446894A priority Critical patent/JP3672587B2/en
Publication of JPH07293208A publication Critical patent/JPH07293208A/en
Application granted granted Critical
Publication of JP3672587B2 publication Critical patent/JP3672587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【産業上の利用分野】
本発明はガスタ―ビンと排熱回収ボイラと蒸気タ―ビンとを組合わせた発電軸が複数軸設置された複合サイクル発電プラントの補助蒸気供給装置に関するものである。
【0002】
【従来の技術】
複合サイクル発電プラントの起動時には、脱気蒸気や蒸気タ―ビンのグランドシ―ル蒸気が必要であり、排熱回収ボイラから十分な蒸気が供給される前には、このための補助蒸気を他の設備から供給する必要がある。
【0003】
多軸の複合サイクル発電プラントのどれかの軸が運転しているときは、他の軸の起動時に必要とする補助蒸気は運転中の軸から供給される。
図5は、このような従来の補助蒸気供給方法の一例を示すもので、簡単のために4軸の複合サイクル発電プラントの場合を示している。
【0004】
図5において、複合サイクル発電プラントのA軸1は次のようにして起動される。すなわち、補助蒸気管2には補助ボイラ3が接続されており、起動時は流入弁4Aを開にして補助ボイラ3から補助蒸気を供給し、これを脱気蒸気および蒸気タ―ビン9のグランド蒸気として利用しガスタ―ビン5を起動する。
【0005】
ガスタ―ビン5の排ガスは排熱回収ボイラ6に入り、復水器7から給水ポンプ8で送られる給水を加熱して蒸気を発生させ、これで高圧蒸気タ―ビン9を駆動する。高圧蒸気タ―ビン9の排気蒸気(これは低温再熱蒸気と呼ばれる。)は再び排熱回収ボイラ6に入り再熱された後低圧蒸気タ―ビン10を駆動する。発電機11はガスタ―ビン5と高圧蒸気タ―ビン9と低圧蒸気タ―ビン10により駆動され電力を発生する。
【0006】
ガスタ―ビン5の出力が増加すると発生蒸気量も増加し、補助蒸気は必要がなくなるので流入弁4Aを閉める。さらに発生蒸気量が増加すると低温再熱蒸気の圧力も高くなり流出弁12Aの入口部の圧力が高くなっていく。検知器14Aはここの圧力を検知し、所定の圧力に到達したときに、他軸への蒸気供給が可能になったと判断し(この状態を供給蒸気可能と呼ぶ)、流出弁12Aを開にし、その圧力で逆止弁13Aも開して補助蒸気管2に補助蒸気(以後、供給蒸気と呼ぶ)を供給する。供給蒸気を提供している軸を供給軸と呼ぶ。
【0007】
このようにして複合サイクル発電プラントの1つの軸が運転されて供給蒸気を出しはじめると、補助ボイラ3は停止される。
複合サイクル発電プラントのB軸15,C軸16,D軸17を起動するときは、A軸1からの供給蒸気を用いて起動を行ない、他の軸も出力の増加によって同様に流入弁4を閉操作した後、流出弁12と逆止弁13を介して供給蒸気を提供して供給軸となる。補助蒸気管2には、連絡管18が接続されており、ユ―ティリティ設備19に蒸気を供給している。このため、全ての流入弁4が閉止しているときでも(即ち補助蒸気を消費する複合サイクル発電プラントがない場合でも)、補助蒸気管2には供給蒸気を提供する必要がある。
【0008】
その後、A軸1を停止させるときは流出弁12Aを閉にし、流入弁4Aを開にして複合サイクル発電プラントの運転中の他の軸からの供給蒸気を用いて補助蒸気を確保した後にガスタ―ビン5と高圧蒸気タ―ビン9並びに低圧蒸気タ―ビン10を停止させる。
【0009】
【発明が解決しようとする課題】
ところが、従来の補助蒸気方法では、逆止弁13が常に開閉を繰返し、補助蒸気圧力が不安定となり逆止弁の損傷という不都合がある。これを詳述すると、補助蒸気管2の圧力が高圧蒸気タ―ビン9の排気蒸気圧力より高くなった場合、逆止弁13を閉止し、これにより流出弁12を通じて補助蒸気管2の蒸気がA軸1に流入する様な逆流現象を防止する。しかし、A軸1の流出弁12AとB軸14流出弁12Bという様な隣接する軸同志は相手側の圧力の影響を受けやすく、例えばA軸1の流出弁12Aの出口圧力が不安定でハンチング等をおこすと、その影響がB軸14の逆止弁13Bの出口に表われるため、逆止弁13Bは開閉を繰返す。
【0010】
また、全ての流入弁4が全閉し、ユ―ティリティ設備19のみが補助蒸気を消費する状態では、このユ―ティリティ設備19が消費する蒸気量は微少な量であり、これを全軸から供給すると、相対的に微少な量を更に4分割することになり、逆止弁13を流れる蒸気量が小さくなり、逆止弁13の出入口の差圧が少なくなり、逆止弁13が開閉を繰返すことになる。これらの不都合は何れも複数軸が供給蒸気を提供することに、起因する問題である。
【0011】
【課題を解決するための手段】
本発明は、各軸の流出弁の開/閉を統括的に判断し、制御を行なう補助蒸気供給装置として、それぞれガスタービン、蒸気タービン、発電機および排熱回収ボイラを主構成要素とする複数の発電軸から成る複合サイクル発電プラントの各蒸気タービンの低温再熱蒸気がそれぞれの流出弁と逆止弁を介して共通の補助蒸気母管に接続され、それぞれの発電軸間で補助蒸気母管を通じて補助蒸気を供給する複合サイクル発電プラントの補助蒸気供給装置において、発電軸が補助蒸気の供給が可能か否かを前記低温再熱蒸気の圧力を用いて判断する判断手段を設けたことを特徴とする補助蒸気供給装置を提供することを特徴とする。
【0012】
【作用】
この補助蒸気供給装置は、好適な一例として、供給蒸気可能な軸のうち一番最初に供給蒸気可能な状態に達した軸を供給軸として選択し、その軸の流出弁と逆止弁のみが開するように設定することが考えられる。また、補助蒸気の供給軸として選ばれた発電軸が事故等で緊急停止となり供給蒸気能力を喪失したことを検出したとき、速やかに他の一軸を供給軸として選択する供給軸の切替を行なうように設定することが考えられる。
この様に本発明では、一軸のみを供給軸として選択する様にしたので、軸間の圧力相互干渉や過少の補助蒸気消費量に伴なう逆止弁の不安定動作を回避し、安定した補助蒸気供給が可能となる。また供給軸が緊急事故で停止した場合でも、他の一軸を供給軸として速かに切替る様にしたので補助蒸気源喪失に至ることがない。
【0013】
【実施例】
本発明の一実施例を図1に示す。図1において補助蒸気供給装置20は各軸の流出弁12に対して開操作と閉操作を行なう。補助蒸気供給装置20には、検知器14Aからの信号と流出弁12Aの全開状態を検知する検知器21Aからの信号が入力されている。図1には図示されていないが、B軸15,C軸16,D軸17も同様の信号が入力されている。
【0014】
補助蒸気供給装置20の内部に構成される制御回路の一例を図2と図3に示す。この制御回路は供給蒸気可能な軸のうち、最初に供給蒸気可能な状態に達した軸を供給軸として、選択しその流出弁12を開操作する様に働く。また供給軸が緊急停止となった場合は、供給蒸気可能な軸のうちA軸を最優先として選択し、A軸が供給蒸気可能な状態ではないときは、順にB軸,C軸,D軸の順で供給軸を1軸のみ選択し、その軸の流出弁12を開けて、緊急停止した軸の流出弁を閉める様に働く。
【0015】
図2に於て、判断回路22には、検知器14A,14B,14C,14Dからの流出弁12の入口圧力が入力されており、比較器23Aは検出機14Aの圧力信号が所定の値以上のときA軸供給可能信号1aを出力する。比較器23B,23C,23Dも同様に働く。
【0016】
判断回路22から出力されたA軸供給可能信号1aは先着優先回路24に入力され、B軸選択信号3b,C軸選択信号3c,D軸選択信号3dが選ばれていないときにA軸先着信号2aを出力する先着優先選択が行なわれる。B軸,C軸,D軸に対しても同様にして働き、B軸先着信号2b,C軸先着信号2c,D軸先着信号2dが出力される。これらは一軸選択回路25に入力され、A軸,B軸,C軸,D軸の順で優先選択が行なわれ、その結果A軸選択信号3a,B軸選択信号3b,C軸選択信号3c,D軸選択信号3dのうち1個のみを出力する。
【0017】
図3において流出弁開閉回路26は一軸選択回路25からのA軸選択信号3a,B軸選択信号3b,C軸選択信号3c,D軸選択信号3dが入力されており、A軸選択信号3aが成立していれば、流出弁12Aを開操作する流出弁12A開指令4aを出力する。流出弁開閉回路26は検出器21A,21B,21C,21Dの信号が入力されて、各々の流出弁全開の信号5a,5b,5c,5dが作られている。A軸選択信号3aが不成立の場合は、A軸以外の他軸の流出弁全開信号5b,5c,5dの何れかが成立していることを確認した上で流出弁12A閉指令6aを出力する。B軸,C軸,D軸もA軸と同様な回路が構成されている。まず、最初に供給蒸気可能な状態に達した軸が供給軸として選択される先着優先機能が判断回路22と先着優先回路24と一軸選択回路25でどの様に実現されるかを詳述する。
【0018】
C軸が先行軸として最初に起動されて、低温再熱蒸気圧力が所定の値に達すると、判断回路22はC軸が供給蒸気可能となったことを比較器23Cで判断し、C軸供給可能信号1cを出力する。
【0019】
C軸供給可能信号1cは先着優先回路24に入力される。C軸以外の軸は未だ供給蒸気可能な状態ではないので、A軸供給可能信号1a,B軸供給可能信号1b,D軸供給可能信号1dは不成立であり、従って後述する一軸選択回路25より出力されるA軸選択信号3a,B軸選択信号3b,D軸選択信号3dは不成立である。よって、先着優先回路24の中では、C軸先着信号2cが成立し、それ以外のA軸先着信号2a,B軸先着信号2b,D軸先着信号2dは不成立である。C軸先着信号2cは一軸選択回路25に入力される。一軸選択回路25の中では、C軸に優先するA軸とB軸の入力信号、即ちA軸先着信号2aとB軸先着信号2bとは不成立なので、C軸選択信号3cが成立する。
【0020】
先着優先回路24の中では、C軸選択信号3cが成立したので、A軸先着信号3a,B軸先着信号3b,D軸先着信号3dは、例えA軸供給可能信号1a,B軸供給可能信号1b,D軸供給可能信号1dが後から成立したとしても、成立することはない。
【0021】
即ちC軸が先行して供給蒸気可能になった後は、後続軸が供給蒸気可能となってもそれを排除する先着優先回路24が働くので、後続軸が供給蒸気可能になる毎に、毎回供給軸の切替が発生する不都合が生じない様になっている。
【0022】
次に、供給軸が緊急停止となり、供給蒸気能力を喪失した場合、残りの3軸のうち1軸が選択されて次の供給軸となる一軸選択機能が、判断回路22と先着優先回路24と一軸選択回路25とでどの様に実現されるかを詳述する。
【0023】
C軸選択信号3cが成立した後、A軸,B軸,D軸が供給蒸気可能となり、A軸供給可能信号1a,B軸供給可能信号1b,D軸供給可能信号1dが成立しているとする。この状態からC軸が緊急停止した場合、低温再熱蒸気がなくなるので、検出器14Cは圧力が喪失したことを検知し、判断回路22の中の比較器23Cは、C軸供給可能信号1cを不成立にする。C軸供給可能1cが不成立になると、先着優先回路24の出力であるC軸先着2cが不成立となり、その結果一軸選択回路25の出力であるC軸選択信号3cも不成立となる。この瞬間先着優先回路24のなかではA軸先着信号2a,B軸先着信号2b,D軸先着信号2dが成立し、各々一軸選択回路25に入力される。
【0024】
一軸選択回路25のなかでは、A軸,B軸,D軸の順番に優先選択が働くので、A軸選択信号3aのみが成立し、B軸選択信号3b,D軸選択信号3dは不成立のままである。この様に、供給軸が緊急停止した場合は、複数の供給蒸気可能な軸のうちから、速やかに次の供給軸を選択する一軸選択機能が実現出来る。
【0025】
次に、流出弁開閉回路26の作用を述べる。上記の過程でC軸が緊急停止すると、C軸選択信号3cが不成立となりA軸選択信号3aが成立して流出弁開閉回路26に入力される。A軸選択信号3aが成立すると、A軸の流出弁12A開指令4aが出力され、流出弁12Aが開いてその圧力で逆止弁13Aも開いてA軸が供給軸となる。C軸選択信号3cが不成立になったので、C軸の流出弁12Cに対しては流出弁12C閉指令6cが出力される様に働く。
【0026】
しかし、流出弁12Aの開動作は時間を要し、全開するまでの間に蒸気切れとならない様に、C軸の流出弁12Cを閉操作が許可されるのは、即ち流出弁12C閉指令6cが出力されるのは、A軸の流出弁12Aの全開信号5aが成立した後に行なわれる。この間は、C軸の配管内に保有されている残留蒸気を利用してA軸の流出弁12Aが全開するまでの間、蒸気を供給する。
【0027】
この様にして、供給軸の切替時にも供給蒸気が途切れない様にして常に1軸のみが供給蒸気を提供する補助蒸気制御装置が可能となる。
以上説明したように、この実施例によれば、判断回路22を設けたので、緊急事故停止等で、供給能力が喪失された事態を的確に判断し、供給軸の切替が可能になる。また先着優先回路24を設けたので、一番先行して起動した軸のみが供給軸となって、流出弁12と逆止弁13を開けるので、後続軸が供給可能となる毎に、供給軸の切替が発生する煩わしさがなく、安定した補助蒸気供給を行なうことが出来る。
【0028】
更には、一軸選択回路25を設けたので、供給軸が緊急停止した場合でも速やかに次の供給軸を選択することが出来るので、供給蒸気源の喪失に至ることなく、供給軸の切替が可能である。更に流出弁開閉回路26を設けて、流出弁の開操作と閉操作を行なうが、閉操作は他軸の流出弁の全開条件を確認してから行なう回路としたので、供給軸の切替に伴なう供給蒸気切れを回避することが出来る。
【0029】
本発明による他の実施例を図4に示す。この実施例は供給可能検出回路22の中にA軸除外スイッチ27Aを設け、このスイッチを作動させることで、A軸供給可能信号1aを手動で不成立にする様にしたものである。B軸,C軸,D軸にも同様に供給除外スイッチ27B,27C,27Dを設ける。
【0030】
この様にすることで、予めA軸を運用停止させることがわかっている場合は、A軸除外スイッチ27Aを作動させて、供給軸を切替えた後に、A軸を停止させることが出来る。
【0031】
この実施例の利点としては、A軸が供給可能である状態で、切替を行なうので、切替時に伴なう蒸気切れの虞れが更に少ない確実な補助蒸気供給が可能となる。
【0032】
【発明の効果】
以上説明したように、本発明によれば補助蒸気供給装置によって、1軸のみが補助蒸気供給軸として選択される様にしたのて、他軸との圧力干渉等の不都合がない。
【0033】
また、補助蒸気供給軸が緊急停止した場合でも、次の補助蒸気供給軸を速かに選択する様にしたので、補助蒸気供給喪失に至ることはなくひいては補助蒸気の安定供給が図れる。
【図面の簡単な説明】
【図1】本発明の補助蒸気供給装置を複合サイクル発電プラントに適用した構成図
【図2】本発明の実施例を示すブロック構成図
【図3】本発明の補助蒸気供給装置における流出弁開閉回路の構成図
【図4】本発明の他の実施例を示すブロック構成図
【図5】従来例を示す構成図
【符号の説明】
20 補助蒸気供給装置
21 検出器
22 判断回路
23 比較器
24 先着優先回路
25 一軸選択回路
26 流出弁開閉回路
27 除外スイッチ
[0001]
[Industrial application fields]
The present invention relates to an auxiliary steam supply device for a combined cycle power plant in which a plurality of power generation shafts in which gas turbines, exhaust heat recovery boilers, and steam turbines are combined are installed.
[0002]
[Prior art]
At the start of the combined cycle power plant, degassing steam and ground seal steam for the steam turbine are required. Before sufficient steam is supplied from the exhaust heat recovery boiler, auxiliary steam for this purpose must be added. It is necessary to supply from the facility.
[0003]
When any shaft of a multi-shaft combined cycle power plant is operating, the auxiliary steam required when starting the other shaft is supplied from the operating shaft.
FIG. 5 shows an example of such a conventional auxiliary steam supply method, and shows a case of a four-shaft combined cycle power plant for the sake of simplicity.
[0004]
In FIG. 5, the A-axis 1 of the combined cycle power plant is started as follows. That is, an auxiliary boiler 3 is connected to the auxiliary steam pipe 2, and at the time of start-up, the inflow valve 4A is opened to supply auxiliary steam from the auxiliary boiler 3, and this is degassed steam and the ground of the steam turbine 9 The gas turbine 5 is activated using steam.
[0005]
The exhaust gas from the gas turbine 5 enters the exhaust heat recovery boiler 6 and heats the feed water sent from the condenser 7 by the feed water pump 8 to generate steam, which drives the high-pressure steam turbine 9. The exhaust steam from the high-pressure steam turbine 9 (which is called low-temperature reheated steam) enters the exhaust heat recovery boiler 6 and is reheated, and then drives the low-pressure steam turbine 10. The generator 11 is driven by a gas turbine 5, a high pressure steam turbine 9, and a low pressure steam turbine 10 to generate electric power.
[0006]
When the output of the gas turbine 5 increases, the amount of generated steam also increases, and auxiliary steam is no longer necessary, so the inflow valve 4A is closed. As the amount of generated steam further increases, the pressure of the low-temperature reheated steam increases and the pressure at the inlet of the outflow valve 12A increases. The detector 14A detects the pressure here, and when it reaches a predetermined pressure, determines that steam supply to the other shaft is possible (this state is called supply steam possible), and opens the outflow valve 12A. The check valve 13A is also opened by the pressure to supply auxiliary steam (hereinafter referred to as supply steam) to the auxiliary steam pipe 2. The shaft providing the supply steam is called the supply shaft.
[0007]
In this way, when one shaft of the combined cycle power plant is operated and starts to supply steam, the auxiliary boiler 3 is stopped.
When starting the B-axis 15, C-axis 16, and D-axis 17 of the combined cycle power plant, start using the supply steam from the A-axis 1, and the other shafts will similarly turn on the inflow valve 4 as the output increases. After the closing operation, supply steam is provided through the outflow valve 12 and the check valve 13 to serve as a supply shaft. A communication pipe 18 is connected to the auxiliary steam pipe 2, and steam is supplied to the utility equipment 19. For this reason, it is necessary to provide supply steam to the auxiliary steam pipe 2 even when all the inflow valves 4 are closed (that is, even when there is no combined cycle power plant that consumes auxiliary steam).
[0008]
Thereafter, when the A shaft 1 is stopped, the outflow valve 12A is closed and the inflow valve 4A is opened to secure auxiliary steam using steam supplied from another shaft during operation of the combined cycle power plant, and then the gas turbine. Bin 5, high-pressure steam turbine bin 9 and low-pressure steam turbine bin 10 are stopped.
[0009]
[Problems to be solved by the invention]
However, the conventional auxiliary steam method has the disadvantage that the check valve 13 is constantly opened and closed, the auxiliary steam pressure becomes unstable, and the check valve is damaged. More specifically, when the pressure in the auxiliary steam pipe 2 becomes higher than the exhaust steam pressure in the high-pressure steam turbine 9, the check valve 13 is closed, so that the steam in the auxiliary steam pipe 2 passes through the outflow valve 12. The backflow phenomenon that flows into the A-axis 1 is prevented. However, adjacent shafts such as the A-axis 1 outflow valve 12A and the B-axis 14 outflow valve 12B are easily affected by the pressure on the other side. For example, the outlet pressure of the A-axis 1 outflow valve 12A is unstable and hunting occurs. If this occurs, the effect appears at the outlet of the check valve 13B of the B-shaft 14, so that the check valve 13B repeats opening and closing.
[0010]
In addition, when all the inflow valves 4 are fully closed and only the utility equipment 19 consumes auxiliary steam, the amount of steam consumed by the utility equipment 19 is very small. When supplied, the relatively small amount is further divided into four parts, the amount of steam flowing through the check valve 13 is reduced, the differential pressure at the inlet and outlet of the check valve 13 is reduced, and the check valve 13 opens and closes. It will be repeated. All of these disadvantages are caused by the fact that multiple shafts provide the supply steam.
[0011]
[Means for Solving the Problems]
The present invention is a plurality of auxiliary steam supply devices that comprehensively determine the opening / closing of the outflow valve of each shaft and perform control , and each of which includes a gas turbine, a steam turbine, a generator, and an exhaust heat recovery boiler as main components. The low-temperature reheat steam of each steam turbine of the combined cycle power plant consisting of multiple power generation shafts is connected to the common auxiliary steam mother pipe through the respective outflow valve and check valve, and the auxiliary steam mother pipe is connected between the respective power generation shafts. In the auxiliary steam supply device of the combined cycle power plant that supplies auxiliary steam through, a determination means is provided for determining whether or not the power generation shaft can supply auxiliary steam using the pressure of the low-temperature reheated steam. An auxiliary steam supply device is provided.
[0012]
[Action]
In this auxiliary steam supply device, as a preferred example, the first shaft that has reached the state where supply steam can be supplied is selected as the supply shaft among the shafts that can supply steam, and only the outlet valve and the check valve of the shaft are selected. It is possible to set it to open. In addition, when it is detected that the power generation shaft selected as the auxiliary steam supply shaft is in an emergency stop due to an accident or the like and the supply steam capacity is lost, the supply shaft that promptly selects the other shaft as the supply shaft is switched. It is conceivable to set to
As described above, in the present invention, since only one shaft is selected as the supply shaft, unstable operation of the check valve due to pressure mutual interference between the shafts and excessive auxiliary steam consumption is avoided and stable. Auxiliary steam can be supplied. Even when the supply axis stops due to an emergency accident, the auxiliary steam source is not lost because the other axis is switched quickly as the supply axis.
[0013]
【Example】
An embodiment of the present invention is shown in FIG. In FIG. 1, the auxiliary steam supply device 20 opens and closes the outflow valve 12 of each shaft. A signal from the detector 14A and a signal from the detector 21A for detecting the fully opened state of the outflow valve 12A are input to the auxiliary steam supply device 20. Although not shown in FIG. 1, similar signals are input to the B-axis 15, the C-axis 16, and the D-axis 17.
[0014]
An example of a control circuit configured inside the auxiliary steam supply device 20 is shown in FIGS. This control circuit operates so as to select the shaft that first reaches a state where steam can be supplied from among the shafts capable of supplying steam as the supply shaft, and to open the outflow valve 12 thereof. When the supply axis is in an emergency stop, the A axis is selected as the highest priority among the axes capable of supplying steam. When the A axis is not in a state where supply steam is possible, the B axis, C axis, and D axis are sequentially selected. In this order, only one supply shaft is selected, the outflow valve 12 of that shaft is opened, and the outflow valve of the emergency stop shaft is closed.
[0015]
In FIG. 2, the judgment circuit 22 is supplied with the inlet pressure of the outflow valve 12 from the detectors 14A, 14B, 14C, 14D, and the comparator 23A has a pressure signal of the detector 14A exceeding a predetermined value. At this time, the A-axis supply enable signal 1a is output. The comparators 23B, 23C and 23D work in the same way.
[0016]
The A-axis supply enable signal 1a output from the determination circuit 22 is input to the first-arrival priority circuit 24. When the B-axis selection signal 3b, the C-axis selection signal 3c, and the D-axis selection signal 3d are not selected, the A-axis first arrival signal. First-come-first-served selection for outputting 2a is performed. The same applies to the B-axis, C-axis, and D-axis, and the B-axis first signal 2b, the C-axis first signal 2c, and the D-axis first signal 2d are output. These signals are input to a single axis selection circuit 25, where priority selection is performed in the order of A axis, B axis, C axis, and D axis. As a result, A axis selection signal 3a, B axis selection signal 3b, C axis selection signal 3c, Only one of the D-axis selection signals 3d is output.
[0017]
In FIG. 3, the outflow valve opening / closing circuit 26 receives the A axis selection signal 3a, the B axis selection signal 3b, the C axis selection signal 3c, and the D axis selection signal 3d from the single axis selection circuit 25, and the A axis selection signal 3a If established, an outflow valve 12A opening command 4a for opening the outflow valve 12A is output. The outflow valve opening / closing circuit 26 receives the signals of the detectors 21A, 21B, 21C and 21D, and generates the respective outflow valve fully open signals 5a, 5b, 5c and 5d. When the A-axis selection signal 3a is not established, it is confirmed that any of the outflow valve full-open signals 5b, 5c, 5d of the other shafts other than the A-axis is established, and then the outflow valve 12A close command 6a is output. . The B-axis, C-axis, and D-axis have the same circuit as the A-axis. First, it will be described in detail how the first-come-first-served function in which the first shaft that has reached the state where the supply steam can be supplied is selected as the supply shaft is realized by the determination circuit 22, the first-priority priority circuit 24, and the one-axis selection circuit 25.
[0018]
When the C-axis is first activated as the preceding axis and the low-temperature reheat steam pressure reaches a predetermined value, the determination circuit 22 determines that the C-axis can be supplied with the comparator 23C and supplies the C-axis. The enable signal 1c is output.
[0019]
The C-axis supply enable signal 1c is input to the first priority circuit 24. Since the axes other than the C axis are not yet ready for supply steam, the A axis supply enable signal 1a, the B axis supply enable signal 1b, and the D axis supply enable signal 1d are not established. The A-axis selection signal 3a, the B-axis selection signal 3b, and the D-axis selection signal 3d are not established. Therefore, in the first priority circuit 24, the C-axis first signal 2c is established, and the other A-axis first signal 2a, B-axis first signal 2b, and D-axis first signal 2d are not established. The C-axis first arrival signal 2c is input to the one-axis selection circuit 25. In the one-axis selection circuit 25, the A-axis and B-axis input signals having priority over the C-axis, that is, the A-axis first arrival signal 2a and the B-axis first arrival signal 2b are not established, and therefore the C-axis selection signal 3c is established.
[0020]
Since the C-axis selection signal 3c is established in the first-arrival priority circuit 24, the A-axis first-arrival signal 3a, the B-axis first-arrival signal 3b, and the D-axis first-arrival signal 3d are, for example, the A-axis supply enable signal 1a and the B-axis supply enable signal. Even if the 1b, D-axis supply enable signal 1d is established later, it is not established.
[0021]
In other words, after the C-axis is allowed to supply steam, the first priority circuit 24 that eliminates the supply-steam can be supplied even if the succeeding axis becomes possible to supply steam. There is no inconvenience that the supply axis is switched.
[0022]
Next, when the supply shaft is brought to an emergency stop and the supply steam capacity is lost, one of the remaining three axes is selected and the one-axis selection function to become the next supply axis is performed by the determination circuit 22 and the first priority circuit 24. How it is realized with the single axis selection circuit 25 will be described in detail.
[0023]
After the C-axis selection signal 3c is established, the supply of the A-axis, B-axis, and D-axis becomes possible, and the A-axis supply enable signal 1a, the B-axis supply enable signal 1b, and the D-axis supply enable signal 1d are established. To do. When the C-axis emergency stop from this state, the low temperature reheat steam disappears, so the detector 14C detects the loss of pressure, and the comparator 23C in the judgment circuit 22 outputs the C-axis supply enable signal 1c. Not established. When the C-axis supplyable 1c is not established, the C-axis first arrival 2c that is the output of the first-priority priority circuit 24 is not established, and as a result, the C-axis selection signal 3c that is the output of the one-axis selection circuit 25 is also not established. In the instantaneous first-arrival priority circuit 24, an A-axis first-arrival signal 2a, a B-axis first-arrival signal 2b, and a D-axis first-arrival signal 2d are established and are input to the one-axis selection circuit 25, respectively.
[0024]
In the single axis selection circuit 25, priority selection works in the order of the A axis, B axis, and D axis, so only the A axis selection signal 3a is established, and the B axis selection signal 3b and D axis selection signal 3d are not established. It is. As described above, when the supply shaft is stopped urgently, it is possible to realize a single axis selection function for quickly selecting the next supply shaft from a plurality of supply steam capable shafts.
[0025]
Next, the operation of the outflow valve opening / closing circuit 26 will be described. If the C-axis is urgently stopped in the above process, the C-axis selection signal 3c is not established and the A-axis selection signal 3a is established and input to the outflow valve opening / closing circuit 26. When the A-axis selection signal 3a is established, an A-axis outflow valve 12A open command 4a is output, the outflow valve 12A is opened, the check valve 13A is also opened by the pressure, and the A-axis becomes the supply shaft. Since the C-axis selection signal 3c is not established, the C-axis outflow valve 12C operates so that the outflow valve 12C close command 6c is output.
[0026]
However, the opening operation of the outflow valve 12A takes time, and the operation of closing the C-axis outflow valve 12C is permitted, that is, the outflow valve 12C close command 6c so that the steam does not run out until the outflow valve 12A is fully opened. Is output after the fully open signal 5a of the A-axis outflow valve 12A is established. During this time, steam is supplied until the A-axis outflow valve 12A is fully opened using the residual steam retained in the C-axis piping.
[0027]
In this way, an auxiliary steam control device is provided in which only one shaft provides supply steam at all times so that the supply steam is not interrupted even when the supply shaft is switched.
As described above, according to this embodiment, since the determination circuit 22 is provided, it is possible to accurately determine a situation in which the supply capability is lost due to an emergency accident stop or the like, and to switch the supply axis. In addition, since the first-priority priority circuit 24 is provided, only the axis that is activated first is the supply axis, and the outflow valve 12 and the check valve 13 are opened, so that each time the subsequent axis can be supplied, the supply axis Therefore, the auxiliary steam can be supplied stably.
[0028]
Furthermore, since the single axis selection circuit 25 is provided, the next supply axis can be selected promptly even if the supply axis stops in an emergency, so the supply axis can be switched without losing the supply steam source. It is. In addition, an outflow valve opening / closing circuit 26 is provided to open and close the outflow valve. The closing operation is performed after confirming the fully open condition of the outflow valve of the other shaft. It is possible to avoid running out of supply steam.
[0029]
Another embodiment according to the present invention is shown in FIG. In this embodiment, an A-axis exclusion switch 27A is provided in the supply enable detection circuit 22, and the A-axis supply enable signal 1a is manually disabled by operating this switch. Similarly, supply exclusion switches 27B, 27C, and 27D are provided for the B, C, and D axes.
[0030]
In this way, when it is known that the operation of the A axis is to be stopped in advance, the A axis can be stopped after the supply axis is switched by operating the A axis exclusion switch 27A.
[0031]
As an advantage of this embodiment, since the switching is performed in a state where the A-axis can be supplied, it is possible to reliably supply auxiliary steam with less possibility of steam breakage at the time of switching.
[0032]
【The invention's effect】
As described above, according to the present invention, only one shaft is selected as the auxiliary steam supply shaft by the auxiliary steam supply device, so there is no inconvenience such as pressure interference with the other shaft.
[0033]
Further, even when the auxiliary steam supply shaft is urgently stopped, the next auxiliary steam supply shaft is selected quickly, so that the auxiliary steam supply is not lost and stable supply of the auxiliary steam can be achieved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram in which an auxiliary steam supply device of the present invention is applied to a combined cycle power plant. FIG. 2 is a block configuration diagram showing an embodiment of the present invention. FIG. 4 is a block diagram showing another embodiment of the present invention. FIG. 5 is a block diagram showing a conventional example.
20 Auxiliary steam supply device
21 Detector
22 Judgment circuit
23 Comparator
24 First priority circuit
25 Single axis selection circuit
26 Outflow valve switching circuit
27 Exclusion switch

Claims (5)

それぞれガスタービン、蒸気タービン、発電機および排熱回収ボイラを主構成要素とする複数の発電軸から成る複合サイクル発電プラントの各蒸気タービンの低温再熱蒸気がそれぞれの流出弁と逆止弁を介して共通の補助蒸気母管に接続され、それぞれの発電軸間で補助蒸気母管を通じて補助蒸気を供給する複合サイクル発電プラントの補助蒸気供給装置において、発電軸が補助蒸気の供給が可能か否かを前記低温再熱蒸気の圧力を用いて判断する判断手段設けたことを特徴とする補助蒸気供給装置。The low-temperature reheat steam of each steam turbine of a combined cycle power plant consisting of a plurality of power generation shafts each consisting mainly of a gas turbine, a steam turbine, a generator, and an exhaust heat recovery boiler passes through respective outflow valves and check valves. Whether or not the power generation shaft can supply auxiliary steam in an auxiliary steam supply device of a combined cycle power plant that is connected to a common auxiliary steam mother pipe and supplies auxiliary steam through the auxiliary steam mother pipe between the power generation shafts. The auxiliary steam supply device is provided with a determination means for determining the temperature using the pressure of the low-temperature reheated steam. 一番最初に補助蒸気の供給が可能になった発電軸のみを選択する先着優先回路を設け、ここで選択された先行軸の流出弁と逆止弁のみを開操作し残りの後続軸の流出弁と逆止弁は開けないことを特徴とする請求項1に記載の補助蒸気供給装置。  A first-priority priority circuit is provided to select only the power generation shaft for which auxiliary steam can be supplied at the very beginning. The auxiliary steam supply device according to claim 1, wherein the valve and the check valve cannot be opened. 前記判断手段が運転中の発電軸における補助蒸気の供給が可能ではなくなったことを検出したとき、その発電軸の流出弁と逆止弁を閉止し、他の発電軸のうち一軸のみを選択してその発電軸の流出弁と逆止弁を開ける様に選択を行う一軸選択回路を設けことを特徴とする請求項1に記載の補助蒸気供給装置。When the determination means detects that the supply of auxiliary steam on the operating power generation shaft is no longer possible, closes the outflow valve and check valve of the power generation shaft and selects only one of the other power generation shafts. auxiliary steam supply device according to claim 1, characterized in that a single selection circuit for selecting as opening the outlet valve and the check valve of the power shaft Te. 前記一軸選択回路より流出弁を閉する様に選択された信号と他の発電軸の流出弁のいずれかが開していることを検出する検出手段を設けたことを特徴とする請求項3記載の補助蒸気供給装置。 According to claim 3, characterized in that a detecting means for detecting that one of the outlet valve of said selected signal as that closes the outlet valve from the uniaxial selection circuit and another power shaft is open auxiliary steam supply device. 前記判断手段は、補助蒸気を供給する発電軸を切替えるスイッチ回路を有することを特徴とする請求項1ないし4のいずれかに記載の補助蒸気供給装置。The judgment unit may, auxiliary steam supply device according to any one of claims 1, characterized in that a switch circuit for switching the power shaft for supplying auxiliary steam 4.
JP08446894A 1994-04-22 1994-04-22 Auxiliary steam supply system for combined cycle power plant Expired - Fee Related JP3672587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08446894A JP3672587B2 (en) 1994-04-22 1994-04-22 Auxiliary steam supply system for combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08446894A JP3672587B2 (en) 1994-04-22 1994-04-22 Auxiliary steam supply system for combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH07293208A JPH07293208A (en) 1995-11-07
JP3672587B2 true JP3672587B2 (en) 2005-07-20

Family

ID=13831472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08446894A Expired - Fee Related JP3672587B2 (en) 1994-04-22 1994-04-22 Auxiliary steam supply system for combined cycle power plant

Country Status (1)

Country Link
JP (1) JP3672587B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8250848B2 (en) * 2009-05-05 2012-08-28 General Electric Company Steam turbine power system and method of assembling the same

Also Published As

Publication number Publication date
JPH07293208A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
JP4764255B2 (en) Small once-through boiler power generation system and operation control method thereof
JP3774487B2 (en) Combined cycle power plant
JP2015124710A (en) Control device and activation method
JP3672587B2 (en) Auxiliary steam supply system for combined cycle power plant
JP6495137B2 (en) Combined cycle power plant and control method thereof
JP3029440B2 (en) Steam turbine for power generation
JP4776413B2 (en) Auxiliary steam supply device
JPS6239653B2 (en)
JP2509631B2 (en) Pump controller
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JP3040029B2 (en) Auxiliary steam supply method for combined cycle power plant
JPH04298602A (en) Steam turbine starting equipment
JP2000088209A (en) Power generating system
JP4014948B2 (en) Multi-axis combined cycle plant and control method thereof
JP2024009646A (en) Control device, control method and control progra mfor steam power generation plant
JP2001193416A (en) Steam turbine device
JPH02309102A (en) Hot banking device for boiler
JPS63117106A (en) Stoppage controlling method and device for turbine plant
JPH0336123B2 (en)
JPH0610619A (en) Supply water heating device
JPH01203604A (en) Auxiliary steam control device for feed water pump driving turbine
JPH0399101A (en) Controller of exhaust heat recovering heat exchanger
JPH108912A (en) Turbine bypass valve control device
JPH04342806A (en) Steam turbine control device for combined power plant
JPS6239654B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050308

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees