JP6492188B2 - 追跡ベース3dモデルのエンハンスメント - Google Patents

追跡ベース3dモデルのエンハンスメント Download PDF

Info

Publication number
JP6492188B2
JP6492188B2 JP2017541963A JP2017541963A JP6492188B2 JP 6492188 B2 JP6492188 B2 JP 6492188B2 JP 2017541963 A JP2017541963 A JP 2017541963A JP 2017541963 A JP2017541963 A JP 2017541963A JP 6492188 B2 JP6492188 B2 JP 6492188B2
Authority
JP
Japan
Prior art keywords
reconstruction
static
tracking
coordinate system
mps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017541963A
Other languages
English (en)
Other versions
JP2018508276A (ja
Inventor
エム. カリフ イタイ
エム. カリフ イタイ
コーエン アミット
コーエン アミット
アイヒラー ウジ
アイヒラー ウジ
コル コビ
コル コビ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
St Jude Medical International Holding SARL
Original Assignee
St Jude Medical International Holding SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by St Jude Medical International Holding SARL filed Critical St Jude Medical International Holding SARL
Publication of JP2018508276A publication Critical patent/JP2018508276A/ja
Application granted granted Critical
Publication of JP6492188B2 publication Critical patent/JP6492188B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/063Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using impedance measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/12Devices for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/023Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4225Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using image intensifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/503Clinical applications involving diagnosis of heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing

Description

関連出願の相互参照
本願は、2015年2月13日に出願された米国特許仮出願第62/116,037号に基づく利益を主張するものである。この仮出願は、本明細書で完全に記載されたのと同様に参照により本明細書に組み込まれる。
本開示は、一般的には内部器官の三次元(3D)再構成を生成する医用イメージングおよび位置決めシステムに関する。詳細には、本開示は、3D再構成モデルに対する機能エンハンスメントの追加に関する。
内部器官の三次元(3D)再構成を生成するための様々な方法が存在する。例えば、コンピュータ・トモグラフィ(CT)、X線、ポジトロン・エミッション・トモグラフィ(PET)、または磁気共鳴画像(MRI)が、蛍光透視画像または何らかの他の二次元(2D)画像の上に投影され得る3Dモダリティを生成するために使用され得る。また、医療処置の最中に医用位置決めシステム(MPS)により追跡されるカテーテルまたはガイド・ワイヤなどの介入医用デバイスのリアルタイム描画を3D再構成上に重畳することが、当技術分野において知られている。
3D再構成は、処置を受ける患者体内の関心体積内での医用デバイスの誘導において医療処置を実施する医療スタッフを支援するためのマップとしての役割を果たす。この重畳が関心体積内における医用デバイスの正しい位置を反映したものとなるようにするためには、MPSに関連する座標系を3D再構成に関連する座標系に位置合わせすることが必要となる。
さらに、医療専門家は、患者体内で医用デバイスを操作して治療を実施する間、3D再構成内においてリアルタイムで医用デバイスを視認することが望ましい。しかしながら、しばしば、患者体内で医用デバイスを操作する間、解剖学的構造体の画像をキャプチャすることが、望ましくないか、またはさらには不可能な場合がある。例えば、一部の身体器官および血管に関連する操作制約により、特に造影剤または特定の染料が使用される場合に、医用デバイスを示す画像と解剖学的構造体の画像とを同時にキャプチャすることが妨げられ得る。
例えば、医用撮像システムは、心臓再同期療法(CRT)植込み手術を支援するために使用される場合がある。かかる手術では、医用デバイス用のリードを、療法を実施するために冠状静脈洞の孔である患者の冠状静脈洞口を通して前進させる。冠状静脈洞の描画を取得するための1つの方法は、蛍光透視撮像システムを用いて解剖学的構造体の静脈造影図を取得することである。造影剤が、撮像システムによる静脈造影図の取得を容易にするために、冠状静脈洞または他の器官もしくは血管の中に注入される場合がある。造影剤は、冠状静脈洞口内にバルーン・カテーテルを位置決めすることにより、冠状静脈洞内で止まってしまう場合もある。造影剤は、静脈造影図上において冠状静脈洞の解剖学的構造を強調する。しかし、バルーン・カテーテルは、ガイド・ワイヤ、カテーテル、およびLVリードなどの医用デバイスが冠状静脈洞口を通して前進される前に、除去されなければならない。その後、造影剤は、冠状静脈洞から分散し得る。したがって、解剖学的構造体を強調する造影剤の有利な効果は、医用デバイスが患者体内を通り標的位置まで誘導される前に、失われてしまう恐れがある。この場合には、医療専門家は、冠状静脈洞の部分的に強調された画像のみを受け取りながら、患者体内に医用デバイスを誘導しなければならない。
先行技術の3D再構成は、Ensite(商標)NavX(商標)またはMediGuide(商標)gMPS(商標)(ガイド型医用位置決めシステム)作動型デバイス(これらは共にSt.Jude Medical,Inc.から市販されている)などの追跡ツールからの履歴情報を含む、蛍光透視上に投影されるCTまたはMRIなどを使用する多数の様々なソースからの画像、モデル、および情報を組み合わせることが可能であるが、かかる3D再構成は、保存された画像データに依拠する。したがって、3D再構成は、患者の呼吸および心臓の活性化により影響され得るような、組織の現時点におけるリアルタイム状況を反映しない。
一実施形態では、追跡スペース内に位置する患者の内部器官の三次元(3D)再構成をエンハンスするための方法は、追跡スペース内に位置する対象の静的3D再構成を表す信号を取得するステップと、3D追跡スペースに3D再構成を整合させるステップと、3D追跡スペース内に位置する追跡ツールからエンハンスメント・データを収集するステップと、エンハンスメント・データを使用して静的3D再構成に対象のリアルタイム特徴を追加するステップとを含む。
別の実施形態では、医用システムから取得されるデータをエンハンスするためのシステムは、器官の静的3D再構成に関する第1の信号を受信し、追跡ツールのための3D追跡スペースに静的3D再構成を整合させ、器官の関心領域内で動作する追跡ツールにより生成されるエンハンスメント・データに関する第2の信号を受信し、エンハンスメント・データを使用して静的3D再構成に関心領域のリアルタイム特徴を追加するように構成された、電子制御ユニット(ECU)を備える。
補強3D再構成を生成および表示画面上に表示するための医用撮像システムの概略図である。
本開示の技術による3D座標系に関連付けられた3D事前取得画像の概略図である。
図2Aの3D事前取得画像から抽出された管状器官の3D画像モデルの概略図である。
本開示の技術による、図1で使用されるものなどの医用デバイスのトレースの概略図である。
図2Bの管状器官の2D描画を含む関心体積の2D画像の概略図である。
図3Aの医用デバイス・トレースおよび図3Bの2D描画から決定された管状器官の推定体積モデルの概略図である。
本開示の技術のプロセスによる、図2Bの抽出された3Dモデルと位置合わせされた図3Cの推定体積モデルの概略図である。
図3Bといった本開示の技術によるリアルタイム追跡ベースのエンハンスメント、図2Bといった2D画像上に重畳された3D再構成モデルの概略図である。
本開示は、3D再構成モデルが初めにどのように生成されたかに関わらず、3D再構成モデルがオペレータによるツールのリアルタイム操作の最中に補助データでエンハンスメントされることを可能にする。このアプローチにより、元々はモデル中に存在しなかった特徴(運動、見えないまたは部分的な分枝等)が、オペレータにとって使用可能になる。
図1は、患者14の器官の3D再構成モデルに対するカテーテル12の位置を決定するための、および表示ユニット16上に追跡ベースのエンハンスメント情報を生成および表示するための医用撮像システム10の概略図である。システム10は、増幅器20およびエミッタ22を備える可動撮像装置18と、位置決めセンサ26および磁界発生器28を備える医用位置決めシステム24とを備える。医用撮像システム10により生成されるモデルに関する電気生理学的マップ情報および心臓機械的活性化データが、患者14の治療および診断を容易にするためにコンピュータ・ディスプレイ16上に表示される。本開示は、システム10が、診断および治療を容易にするために患者14からの生理学的情報を収集することにより3D再構成モデルをエンハンスメントする方法を説明する。例えば、システム10は、カテーテル12を用いて心臓運動および呼吸運動のデータを収集するように、ならびに視覚的フォーマットで3Dモデルにそのデータをさらに一体化するように構成され得る。別の実施形態では、3D再構成モデルは、初めに取得された3D再構成モデル中で欠落していた、カテーテル12により取得された解剖学的特徴でエンハンスメントされる。
可動撮像装置18は、患者14が手術台32の上に横臥する状態において関心領域30の画像を取得するデバイスである。増幅器20およびエミッタ22は、可動機構36を使用して位置決めされるC字形アーム34上に取り付けられる。一実施形態では、可動撮像装置18は、患者14の心臓の二次元(2D)画像を生成する蛍光透視タイプまたはX線タイプの撮像システムを備える。
医用位置決めシステム(MPS)24は、複数の磁界発生器28と、位置決めセンサ26が遠位端部付近に取り付けられたカテーテル12とを備える。MPS24は、位置決めセンサ26の出力に応じて、磁界発生器28により生成される磁界座標系中におけるカテーテル12の遠位部分の位置を決定する。一実施形態では、MPS24は、St.Jude Medical,Inc.から市販されるようなMediguide(商標)gMPS(商標)磁気誘導型医用位置決めシステムを備え、これは、患者14の心臓の三次元(3D)モデルを生成する。他の実施形態では、MPS24は、例えばSt.Jude Medical,Incから市販のEnSite(商標)NavX(商標)技術を利用したEnSite(商標)Velocity(商標)システムなどの、または例えば米国特許第7,263,397号もしくは米国特許出願公開第2007/0060833号などの参照により概ね理解されるようなインピーダンス・ベース・システムを備え得る。これらの特許および出願公開は共に、ここで完全に示されたのと同様に参照によりそれらの全体が本明細書に組み込まれる。さらに、磁気インピーダンス・ベースのハイブリッド・システムが使用され得る。
C字形アーム34は、増幅器20が患者14の上方に位置決めされ、エミッタ22が手術台32の下方に位置決めされるように配向される。ディスプレイ16上に関心領域30の2D画像を生成する例えば放射線場などの撮像場Fを、エミッタ22が生成し、増幅器20が受信する。可動撮像装置18の増幅器20およびエミッタ22は、説明される実施形態では図1を参照として垂直方向に延在する撮像軸Aに沿って患者14の両側部に配設されるように、C字形アーム34により連結される。可動機構36は、説明される実施形態では図1を参照として水平方向に延在する回転軸Aを中心としてC字形アーム34を回転させる。可動機構36および追加の可動機構が、他の配向へとC字形アーム34を移動させるために使用されてもよい。例えば、C字形アーム34は、撮像軸Aが図1の平面中で回転可能となるように、図1の平面中に延在する軸(図示せず)を中心として回転されることが可能である。そのため、可動撮像装置18は、x軸X、y軸Y、およびz軸Zを有する3D光学座標系に関連付けられる。
医用位置決めシステム(MPS)24は、カテーテル12および磁界発生器28が適切な配線または無線技術の利用によりシステム10と連携し得るように位置決めされる。カテーテル12は、位置決めセンサ26が関心領域30に位置するように、患者14の脈管系に挿入される。説明される実施形態では、磁界発生器28は、撮像場Fと同一外延を有する関心領域30内に磁界Fを発生させることが可能となるように増幅器20に取り付けられる。他の実施形態では、磁界発生器28は、手術台32の下などの他の位置に取り付けられてもよい。MPS24は、磁界F内の位置センサ26の存在を検出することが可能である。一実施形態では、位置センサ26は、Strommerらの米国特許第6,233,476号に記載されているように3つの相互に直交するコイルを備えてもよく、この特許は、参照によりその全体が本明細書に事実上組み込まれる。そのため、MPS24は、x軸X、y軸Y、およびz軸Zを有する3D磁気座標系に関連付けられる。
3D光学座標系および3D磁気座標系は、相互から独立したものであり、すなわち異なる尺度、原点、および配向を有する。可動機構36を介したC字形アーム34の移動により、撮像場Fおよび磁界Fは、それらの各座標系内において関心領域30に対して移動することが可能となる。しかし、磁界発生器28は、可動撮像装置18およびMPS24に関連する座標系を位置合わせするために増幅器20上に位置する。磁界発生器28が増幅器20上に取り付けられない実施形態では、磁界Fと撮像場Fとの間の位置合わせは、他の既知の方法を利用して維持される。したがって、各座標系内で生成される画像は、表示ユニット16上に示される単一画像へと一体化され得る。可動撮像装置18およびMPS24は、Strommerらの米国特許出願公開第2008/0183071号に記載されているように共に機能してもよい。この出願公開は、参照によりその全体が本明細書に事実上組み込まれる。
表示ユニット16は、増幅器20に結合される。エミッタ22は、患者14を通過する放射線を伝播する。この放射線は、増幅器20により関心領域30の解剖学的構造体の描画として検出される。関心領域30を描画する画像が、カテーテル12の画像を含む表示ユニット16上に生成される。C字形アーム34は、関心領域30の複数の2D画像を取得するために移動され得る。これらの2D画像はそれぞれ、表示ユニット16上に2D画像として示され得る。
表示ユニット16は、MPS24に結合される。磁界発生器28は、3D磁気座標系の軸に対応して相互に直行する磁界を伝播する。位置センサ26は、磁界発生器28により生成された磁界を検出する。検出された信号は、例えば当技術において既知であるビオ・サバールの法則などによりカテーテル12の遠位端部の位置および配向に関連付けられる。したがって、カテーテル12の遠位端部の正確な位置が、MPS24により取得され、表示ユニット16にて関心領域30の2D画像との組合せにおいて示され得る。さらに、位置センサ26からのデータが、Strommerの米国特許第7,386,339号に記載されているように、関心領域30の3Dモデルを生成するために使用され得る。この米国特許は、ここで参照によりその全体が本明細書に事実上組み込まれる。
一実施形態では、システム10は、例えばSt.Jude Medical,Incから市販のEnSite(商標)NavX(商標)技術を利用したEnSite(商標)Velocity(商標)システムなどを含む、または例えば米国特許第7,263,397号もしくは米国特許出願公開第2007/0060833号などの参照により概ね理解されるようなインピーダンス・ベース・マッピングおよび誘導システムと一体化される。これらの特許および出願公開は共に、ここで参照によりその全体が本明細書に事実上組み込まれる。かかるインピーダンス・ベース・システムからの情報は、図1のMPS24からのデータと共に整合され、組み合わされる。MPS24およびインピーダンス・ベース・システムは、Olsonの米国特許出願公開第20012/0265054号に記載されているように構造的に一体化され得るものであり、この出願公開は、ここで参照によりその全体が本明細書に事実上組み込まれる。
システム10により生成される3Dモデルおよびデータは、様々な医療手術を容易にするために使用され得る。例えば、例えば心臓壁筋の変位などの機械的活性化データが電気マッピングデータと組み合わされて使用されることにより、心臓再同期療法(CRT)手術のためのリードの配置を最適化し得ることが判明している。ここで参照によりその全体が本明細書に事実上組み込まれるRosenbergらの米国特許第8,195,292号は、電極運動追跡を利用してCRTを最適化するための例示の方法を説明している。
典型的な撮像システムでは、解剖学的構造体からのリアルタイム・データを監視、理解、および評価することは、3Dモデルが静的であり解剖学的構造体のリアルタイム運動を反映していない場合には、困難となり得る。これらの典型的なシステムにより生成される3Dモデルは、オペレータまたは医師が、静的3Dモデルに対してリアルタイム運動を頭の中で一致させることが必要となる。したがって、患者の診断および治療は、医師の技量によって妨げられる恐れがある。
本開示は、システム10が、カテーテルまたは何らかの他の追跡デバイスを使用して医療手術の最中に収集されたリアルタイム・データ点と共に3Dモデルを取得および表示することを可能にする。特に、リアルタイム・データ点は、心臓壁運動イメージング(例えば変位およびタイミング)、呼吸移動、ならびに派生的な解剖学的特徴として静的3Dモデルに追加され得る。これらのデータ点からのリアルタイム特徴は、本願全体を通じて説明されるように、リアルタイム位置データおよびリアルタイム生理学的データを含む。本技術のシステムおよび方法により、システム10は、三次元(3D)事前取得医用画像に関連付けられた座標系(「3D座標系」)をMPS(「MPS座標系」)に関連付けられた3D座標系(「MPS座標系」)におよび2D画像に関連付けられた2D座標系(「2D座標系」)に位置合わせし、呼吸および心臓運動について3D事前取得医用画像および2D画像を補償し、リアルタイム追跡データで位置合わせされた画像をエンハンスメントして補助的解剖学的情報を生成し、全ての画像、モデル、およびデータを単独または相互の組合せにおいてリアルタイムで同時に表示するための方法ならびにシステムを提供することによって、先行技術の欠点の解消することができる。MPS座標系は、3D座標系である点を指摘しておく。
本開示の技術によるシステム10は、関心体積の3D画像(図2A)を事前取得し、関心体積内の少なくとも1つの管状器官(例えば心臓の冠状血管)の3D画像から3D画像モデル(図2B)を抽出する。システム10は、同一の管状器官の推定体積モデル(図3C)をさらに取得する。システム10は、管状器官に挿入される医用デバイスのトレース(図3A)(すなわち医用デバイスの軌道を表す位置セット)と、同一の器官の少なくとも1つの2D画像(図3B)とを使用してこの推定体積モデルを取得する。医用デバイスは、トレースを生成するためにMPSセンサに嵌着される。システム10は、これらのモデルおよび上述の座標系を使用することにより、より高い精度での画像およびモデルの位置合わせを実現する(図4)。かかる位置合わせ手順は、Strommerらの米国特許第8,238,625号に記載されており、この米国特許は、ここで参照によりその全体が本明細書に事実上組み込まれる。「位置合わせ」という用語は、1つの座標系中の各点の座標を別の座標系中の同一点の座標に関連付ける変換式を見出すことを指す。
さらに、本開示の技術によるシステム10は、Cohenの米国特許出願公開第2013/0172730号に記載されているように、心臓運動および呼吸運動の両方について位置合わせされる座標系を補償する。この出願公開は、ここで参照によりその全体が本明細書に事実上組み込まれる。
さらに、本明細書において説明される技術により、システム10は、図3Aのトレースを生成するために使用されるものなどの追跡ツールで取得されたリアルタイム情報を使用することにより、共にまたは個別に表示するかに関わらず図3Bの2D画像または図3Cの推定体積モデルなどの位置合わせされた画像(図5)をエンハンスメントすることが可能である。
図2Aは、本開示の技術による3D座標系104に関連する3D事前取得画像100の概略図である。3D事前取得画像100は、例えばCT、MRI、PET、3D超音波等の任意の適切なシステムを利用して取得され得る。画像100は、管状器官102を含む関心体積の3D画像である。3D事前取得画像100は、関心体積中で図1のカテーテル12などの低侵襲性医用デバイスを誘導するための3D基準ロードマップとしての役割を果たす。MPS座標系中で動作しMPSセンサに嵌着された低侵襲性医用デバイスを3D事前取得画像100に重畳することは、3D座標系をMPS座標系に位置合わせすることを必要とする。
図2Bは、3D事前取得画像100(図2A)から抽出された管状器官102の3D画像モデル106の概略図である。一実施形態では、管状器官は、分枝108を有する冠状静脈洞を含む。また、抽出された画像モデル106は、3D座標系104に関連付けられる。医療手術前にこの位置合わせを実現するために、本開示の技術によるシステム10は、3D事前取得画像100を処理(例えば分割)し、管状器官102の3Dモデル106を抽出する。管状器官102は、撮像された関心体積内に位置する。
図3Aは、本開示の技術による医用デバイス(例えば図1のカテーテル12)のトレース122の概略図である。トレース122は、医用デバイスに嵌着されたMPSセンサ(例えば図1のセンサ26)の位置を表すMPS点120などの複数のMPS点から構成される。医療手術(例えば低侵襲性手術)の最中に、医療スタッフは、MPSセンサを取り付けられたカテーテル(例えば図1のカテーテル12)を管状器官102に挿入し、管状器官102に沿ってカテーテルを移動する(すなわち管状器官102に向かって押されるまたは管状器官102内で引き戻される)ことにより点120を取得する。MPS(例えば図1の医用位置決めシステム24)は、複数のMPS点(すなわち管状器官内および管状器官に沿ったMPSセンサの複数の位置)を取得し、管状器官102の形状の3D MPSトレース122を決定する。これらのMPS点は、MPS座標系118中の座標により表される。本明細書では、「トレース」および「中心線」という用語は共に、医用デバイスの軌道を表す位置セットを指す。
図3Bは、関心体積の2D画像112の概略図である。2D画像112は、管状器官102の2D描画114と、管状器官102内部の医用デバイスの軌道116とを含む。2D画像112は、2D座標系110に関連付けられる。医療スタッフが、管状器官102内にMPSセンサを取り付けられた医用デバイスを挿入すると、システム10は、その器官の2Dリアルタイム画像を個別に取得し、それにより描画114および軌道116の両方を共にキャプチャする。2D画像112は、X線、2D超音波等の任意の適切な方法を利用して取得され得る。本開示の技術によるシステム10が、2D画像112を取得するために図1の可動撮像装置18などの静脈造影図を生成するためのX線撮像装置を使用する場合には、造影剤流体(例えば染料)を管状器官に注入して、画像112内における管状器官の2D描画114の明瞭性を高めることが望ましい。
MPS座標系118が2D座標系110に位置合わせされることにより、MPS点120などの各MPS点は、2D座標系110内で対応する点を有する。分割またはエッジ検出などの画像処理技術を利用して、システム10は、各MPS点についての管状器官102の2D描画114の幅を決定する。システム10は、医用デバイスのトレース122と共にこの幅を利用して(すなわち必ずしも管状器官102の中心線ではない)、管状器官102の推定体積モデルを決定する。例えば、各MPS点における管状器官102の2D描画114の幅は、その点を丸く囲む円の直径を決定する。
図3Cは、トレース122(図3A)および2D描画114(図3B)から決定される管状器官102の推定体積モデル124の概略図である。推定体積モデル124は、MPS座標系118および2D座標系110に関連付けられる。MPS座標系118は、2D座標系110に位置合わせされる(例えば図1を参照として上述したようにMPSトランスミッタ/磁界発生器28を可動撮像装置18と機械的に結合することにより)。3D MPSトレース122および少なくとも1つの2D画像を使用して、システム10は、管状器官102の体積モデル124を推定する。一実施形態では、体積モデル124は、MediGuide(商標)Technologyを利用して生成されるAngio Survey(商標)3Dモデルを含む。Angio Survey(商標)は、異なる投影にて記録された、造影剤が使用される2つのシネループから脈管解剖学的構造体の3Dモデルを再構成する能力を特徴として備える。この再構成されたモデルは、3Dで表示され、ライブのおよび事前記録された蛍光透視に投影される。一実施形態では、MediGuide(商標)CPS Courier 0.014インチ(約0.3556mm)ガイド・ワイヤが、Angio Surveyモデルと共に使用される。
システム10は、推定体積モデル124を抽出された画像モデル106に合致させることにより、推定体積モデル124、MPS座標系118、および3D座標系104を位置合わせする。システム10は、高精度でこの位置合わせを実現する(すなわち、管状器官内のMPSセンサの軌道の単純なトレースよりも高い精度にて体積モデルが管状器官を描画することにより)。2D座標系110がMPS座標系118と位置合わせされ、MPS座標系118が3D座標系104と位置合わせされることにより、2D座標系110は、3D座標系104とも位置合わせされる。
図4は、本開示の技術による位置合わせプロセスの概略図である。システム10は、例えば推定体積モデル124を抽出され3Dモデル106に合致させることにより、3D座標系104にMPS座標系118を位置合わせする。この位置合わせの結果として、2D座標系110もまた座標系104に位置合わせされる。したがって、座標系110、118、および104のそれぞれの中の各点が、他の座標系のそれぞれの中に対応する点を有する。座標系110、118、および104の間におけるこの位置合わせにより、3D画像上のそれらの各位置にて関心MPS点を重畳させることが可能となる。例えば、この場合には、3D事前取得画像100は、医療手術(例えば器質的心疾患、経皮弁の展開、アブレーション、マッピング、薬物送達、ICD/CRTリード配置、ステント展開および他のPCI手術、外科、生検)の最中に例えば医療スタッフ用のロードマップとしての役割を果たし得る。この3D基準ロードマップでは、システム10は、管状器官102内の医用デバイスの3Dトレース122を重畳する。さらに、この位置合わせにより、2D画像112上のそれらの各位置にて3D画像100中に含まれる関心点を重畳することが可能となる。さらなる一例としては、管状器官102の3D画像モデル106が、2D画像112上に投影され得る。したがって、投影された3D画像は、2D画像112の取得前に管状器官102に蛍光透視染料を注入する代わりに、バーチャル染料としての役割を果たし得る。
医療手術の最中に、患者14の位置および配向は変化し得る。結果として、関心体積の2Dリアルタイム描画もまた変化し得る。これらの変化は、3D座標系104と2D座標系110との間の位置合わせに影響し得る。したがって、医療手術中に患者14に対して配置されるMPS基準センサが、患者の位置および配向のこれらの変化を検出するように動作する。これらの変化に関する情報は、位置合わせプロセスの開始のためかまたはかかる位置合わせプロセス用の入力として使用され得る。本明細書において説明される全ての位置合わせプロセスは、Strommerらの前述の米国特許第8,238,625号においてさらに詳細に説明されている。
さらに、画像の位置合わせ後に、患者の呼吸および心臓の拍動などの生態力学的影響による各画像の移動が、前述のCohenの米国特許出願公開第2013/0172730号の技術の利用について補償され、その概要を以下に示す。例えば、動き補償のための1つの技術は、システム10が異なる座標系からのデータ同士を関連付けるための共通位置/配向マーカとしての役割を果たす、MPSセンサを備え得る物理アンカーの使用を含む。同様に、Cohenらの米国特許出願公開第2011/0054308号に記載されているように、バーチャル・アンカーが、動き補償を実施するために使用されてもよい。この出願公開は、ここで参照によりその全体が本明細書に事実上組み込まれる。さらに、Cohenらの米国特許出願公開第2011/0158488号に記載されているように、内部位置基準センサが、患者が動いた場合の内部位置基準センサのベクトルに基づいて動き補償機能を生じさせるために使用され得る。この出願公開は、ここで参照によりその全体が本明細書に事実上組み込まれる。別の例としては、Shmarakらの米国特許出願公開第2009/0182224号に記載されているように、動き補償のための1つの技術は、第1の期間周期および第2の期間周期の最中に患者の身体と共に位置決めされる場合のMPSセンサの位置の継続的モニタリングを含み、これによりシステム10は、解剖学的構造体の特定の点の周期を学習することが可能となり、それにより画像またはモデルが取得された瞬間の様々な座標系内におけるそれらの点の位置によって、システム10は患者の身体の心臓のおよび呼吸の位相を決定することが可能となる。この出願公開は、ここで参照によりその全体が本明細書に事実上組み込まれる。
最後に、本開示を参照すると、図5を参照として論じたように、位置合わせされ補償されたモデルおよび/または画像は、以前に生成された3D再構成モデルの境界を延長するまたは以前に生成された3D再構成モデル上に組織運動視覚化をもたらすために外挿され得るリアルタイム追跡データによりエンハンスメントされ得る。
図5は、本技術のリアルタイム追跡ベースのエンハンスメントと共に2D画像128上に重畳された3D再構成モデル126の概略図である。2D画像128は、冠状静脈洞130および分枝132がはっきりと見えるように、解剖学的構造体の造影剤流体エンハンスメント部分をさらに含む。カテーテル134は、先端部136が分枝132の1つから延在するように、冠状静脈洞130に挿入されるのが示される。説明される実施形態では、リアルタイム追跡ベースのエンハンスメントは、トレース138およびトレース140を含む。
一実施形態では、2D画像128は、図3Bを参照として説明されるものなどのX線を利用して生成される。一実施形態では、3D再構成モデル126は、カテーテル134の先端部136により生成される追跡情報を利用して生成され、この先端部136は、図1を参照として説明されるようにMediGuide作動型先端部を備え得る。別の実施形態では、3D再構成モデル126は、図3Cを参照として論じられるように推定体積モデルを利用して生成され得る。他の実施形態では、3D再構成モデル126は、撮像(血管造影法、CT、MRI、超音波等)および3D追跡データの組合せを利用して生成され得る。
カテーテル134が、冠状静脈洞130を通されるにつれて、先端部136は、リアルタイム位置データおよびリアルタイム生理学的データを生成する。位置データは、解剖学的構造体内におけるその位置により影響を被る。したがって、先端部136が各分枝132に沿って移動するにつれて、各分枝132の位置は、様々な座標系内における組織ガイド先端部136としてトレースされる。しかし、座標系内の各分枝132の位置は、患者14が呼吸するおよび患者14の心臓が拍動するとき静止したままにならない。さらに、冠状静脈洞130を示すために使用される造影剤流体が、時間の経過と共に消散することにより分枝132の視認性が認識困難になるか、または造影剤流体が、各分枝132の端部にまで十分に行きわたらない場合がある。そのため、冠状静脈洞130および分枝132に対するカテーテル134および先端部136の実際の位置を知ることが困難となり得る。
本開示の技術は、冠状静脈洞の体積内で操縦されている間における先端部136の3D追跡データの収集によりその器官の3D再構成モデル126をエンハンスメントする。上述のように、3D再構成モデル126は、3D追跡スペースに整合される。具体的には、3D再構成モデル126の座標系が、カテーテル134の座標系と整合され、例えば3D座標系104が、MPS座標系118と整合される。そのため、追跡データは、3D再構成モデル126、2D画像128、3D画像モデル106、推定体積モデル124、および2D画像112のいずれかに関連付けられ得る。追跡データは、各座標系内の例えば座標などの位置データと、生理学的データ(例えば心臓血管データおよび/またはインピーダンス、抵抗、導電性等の電気的データ)とを含み得る。
一実施形態では、カテーテル134は、元々再構成されたような境界を越えて、3D再構成モデル126の既存部分を延長させるために使用されるエンハンスメント・データを収集する。例えば、複数の血管造影図を使用して生成され得る3D再構成モデル126は、分枝132全体にわたり完全には延長しないことなどにより冠状静脈洞130を完全には描画しなくてもよい。特に、2D画像128と共に使用される造影剤流体は、いくつかの分枝132の領域中への行き渡り具合が低く、したがって、3D再構成モデル126の生成を困難にする場合がある。したがって、カテーテル134などの追跡されたツールが、分枝132の中の1つを通り3D再構成モデル126のエッジを越えて操作されると、延長した解剖学的構造体のスケルトンが、先端部136からのトレース140に基づいて再構成され得る。そのため、3D再構成モデル126の形状は、その元の境界を越えて延長され、モデルが、さらに増築される。これにより、システム10のオペレータは、特に他の場合であれば蛍光透視法により見えない領域内において、解剖学的構造体に対するカテーテル134の配向をより良好に理解することが可能となる。
モデルの増築または延長は、MPS座標系118内の三次元においてカテーテル134を追跡するためにシステム10を使用することにより始められる。カテーテル134が、例えば分枝132などの再構成された解剖学的構造体の端部に到達すると、システム10は、カテーテル134の記録された位置を利用して再構成モデル126に部分を付加する。造影剤流体が、カテーテル134の記録された位置から構成された分枝132に到達していないことにより、追加された分枝の「中心線」のみが、ルーメン輪郭を伴わずに再構成モデルに付加される。以下で論じられるように、様々な座標系およびカテーテル134の画像とモデルとの間の整合ならびに動き補償により、カテーテル134の実際の位置との再構成モデル126の、ならびに再構成モデル126との例えば管状器官102などの解剖学的構造体の心臓状況および呼吸状況の合致を共に実現する様式で、システム10による追加分枝の付加が補助される。
別の実施形態では、カテーテル134は、3D再構成モデル126に動き補償を追加するために使用されるエンハンスメント・データを収集する。動き補償は、冠状静脈洞130の内部に位置する間にカテーテル134などの追跡ツールにより感知された解剖学的構造体の実際の動きに基づく。例えば、実運動データは、各座標系内における組織壁の局所的移動を含む。したがって、患者14が各座標系に対して静止したままであり得る場合でも、先端部136は、心臓が鼓動するとき、または肺が呼吸し収縮するときに動く場合がある。収集された実運動データを、静的3D再構成モデル126を生成するために使用されるデータと組み合わせ、単に関心領域内でカテーテル134を操作することにより3D再構成モデル126にリアルタイム・ダイナミクスを追加することができる。この動きは、冠状静脈洞130などの解剖学的構造体の動きと同期されて、リアルタイムで動く「4Dモデル」を生成する。したがって、3D再構成モデル126は、心拍、筋収縮、呼吸等により動きを与えられ得る。心拍による3D再構成モデル126の動き付与の場合には、心拍運動は、拡張終期などの心周期の特定の持続的時間に対して選択され得る。4Dモデルは、単独で与えられる、他の画像もしくはモデルと組み合わされる、ディスプレイ16上に示される(図1)、蛍光透視画上に投影される等が可能である。例えば、冠状静脈洞130の4D動的モデルは、機械的心臓壁運動パターンを理解することが望ましいCRT植込み手術において使用する場合に有利である。
様々な座標系およびカテーテル134の画像とモデルとの間の整合ならびに動き補償は、カテーテル134のリアルタイム運動と、静的3D再構成モデル126の撮像により示される解剖学的構造体の整定木描画との間のギャップを埋める。カテーテル134は、典型的には解剖学的構造体内で移動される間にぎくしゃくした動きを被る一方で、撮像は、静止画として描画される。本明細書において説明される技術を利用すると、再構成モデル126中の特定の位置が、カテーテル134の現在位置に対して関連付けされ得る。1つの好例は、分枝132中のある分枝へのカテーテル134の配置または一時的配置である。整合および動き補償により、再構成モデル126上における先端部136の位置は、カテーテル134がデバイスの動作中に継続的に被るかなりの動きにもかかわらず、その分枝上に固定されることになる。この場合に、カテーテル134が操作または移動されない場合には、運動成分は、解剖学的構造体の心臓運動および呼吸運動のみとなる。Medi Guide(商標)システムの固有の動き補償機能は、先端部136が追跡される場合の運動を描画する。最後に、心臓運動および呼吸運動は、3D再構成モデル126中の特定の分枝を描画するジオメトリに対して適用され、したがって解剖学的構造体すなわち管状器官102の実運動に対して合致される様式で3D再構成モデル126を「動態化」または3D再構成モデル126に「動きを与える」。解剖学的構造体の複数の点が、このように追跡されることにより、解剖学的構造体の実運動に相当する動きで再構成モデル126(またはその一部)をエンハンスメントすることが可能となる。患者の心臓活動または呼吸活動における変化は、この4Dモデル中に自動的に反映される。したがって、総体的には、MediGuide(商標)システムなどのシステムは、電気生理学的データ、呼吸データ、患者動きデータ等の追跡を継続し、整合能力および動き補償能力によりそのデータを3D再構成モデルに対してリアルタイムで適用することが可能である。
本開示の技術は、呼吸運動および心臓運動について正確に補償され、異なる座標系間において正確に整合されたリアルタイム追跡データを活用することにより、追跡ツールの実際の操作中に収集されるエンハンスメント・データが3D再構成モデルと共に同時に表示されるのを可能にする。このエンハンスメント・データは、解剖学的構造体の現在状況を反映しない場合がある解剖学的構造体の静的履歴レンダリングを典型的には含む、3D再構成モデル中に生成され得ない特徴を示す。MediGuide(商標)gMPS(商標)技術により実現可能となるものなどの補償プロセスおよび位置合わせプロセスの精度により、エンハンスメント・データは、医師が情報を必要とする可能性が最も高い場合にリアルタイムで3D再構成モデル上に正確に位置決めされ得る。そのため、医師が手術の途中である場合に、造影剤流体エンハンスX線静脈造影図が、関心領域を不十分に示す場合には、手術は、追跡ツールでより多くのデータを単に収集することにより継続され得る。さらに、左心室リード配置は、解剖学的構造体内に追跡ツールを単に含むことにより心臓壁運動の視覚化を医師に与えることによって最適化され得る。
本明細書では、様々な装置、システム、および方法に関して様々な実施形態が説明される。明細書に説明され添付の図面に図示されるような実施形態の全体的構造、機能、製造、および使用の十分な理解をもたらすために、多数の具体的詳細が示される。しかし、これらの実施形態は、かかる具体的詳細を伴わずに実施され得る点が、当業者には理解されよう。他の例では、本明細書中に説明される実施形態を曖昧にしないために、周知の動作、構成要素、および要素が、詳細には説明されない。本明細書において説明および図示される実施形態は、非限定的な例であり、したがって本明細書に開示される具体的な構造的および機能的詳細は、代表的なものであり、それらの実施形態の範囲を必ずしも限定しないと理解され得る点が、当業者には理解されよう。
複数の実施形態が、特定の特定性の度合いで上述されたが、当業者は、本開示の精神または範囲から逸脱することなく本開示の実施形態に対して多数の変更を行い得る。例えば、あらゆる接合の言及(例えば装着された、結合された、および連結された等)は、広く解釈されるべきであり、要素の連結間の中間部材および要素間の相対移動を含み得る。そのため、接合への言及は、2つの要素が直接的に連結され相互に固定関係にあることを必ずしも意味しない。上述の中に含まれるまたは添付の図面に示される全ての事項は、もっぱら例示としておよび非限定的なものとして解釈されるものとして意図される。細部または構造における変更は、本開示の精神から逸脱することなく行われ得る。
参照により本明細書に組み込まれると述べられた任意の特許、刊行物、または他の開示材料は、その全体または部分において、組み込まれる材料が本開示に示される既存の定義、陳述、または他の開示材料と矛盾しない限りにおいて本明細書に組み込まれる。そのため、および必要な程度において、本明細書に明確に示されるような本開示は、参照により本明細書に組み込まれるいかなる矛盾材料に対しても優先される。
本明細書全体を通じた「様々な実施形態」、「いくつかの実施形態」、「one embodiment(一実施形態)」または「an embodiment(一実施形態)」等の言及は、その実施形態との関連で説明される特定の特徴、構造、または特性が、少なくとも1つの実施形態に含まれることを意味する。したがって、本明細書全体の所々における「様々な実施形態において」、「いくつかの実施形態において」、または「一実施形態において」等の表現の出現は、いずれも同一の実施形態を必ずしも指すわけではない。さらに、特定の特徴、構造、または特性が、1つまたは複数の実施形態において任意の適切な様式で組み合わされてもよい。したがって、一実施形態との関連で図示または説明される特定の特徴、構造、または特性は、全体としてまたは部分として、組合せが非論理的または非機能的でない場合には1つまたは複数の他の実施形態の特徴構造、または特性と無制限に組み合わされてもよい。
「以下の項目は、国際出願時の特許請求の範囲に記載の要素である。
(項目1)
追跡スペース内に位置する患者の内部器官の三次元(3D)再構成をエンハンスするための方法であって、
3D追跡スペース内に位置する対象の静的3D再構成を表す信号を取得するステップと、
前記3D追跡スペースに前記3D再構成を整合させるステップと、
前記3D追跡スペース内に位置する追跡ツールからエンハンスメント・データを収集するステップと、
前記エンハンスメント・データを使用して前記静的3D再構成に前記対象のリアルタイム特徴を追加するステップと、
を含む、方法。
(項目2)
前記3D追跡スペースは、医用位置決めシステム(MPS)座標系内に位置し、前記静的3D再構成は、3D座標系内に位置する、項目1に記載の方法。
(項目3)
前記リアルタイム特徴は、前記対象の動きを含む、項目2に記載の方法。
(項目4)
前記静的3D再構成は、前記対象に係合された前記追跡ツールのリアルタイムの動きに基づいて前記対象の動きと同期して動きを与えられる、項目3に記載の方法。
(項目5)
前記対象は、心臓を含み、前記動きは、前記心臓の拍動から生じる心臓壁運動を含む、項目3に記載の方法。
(項目6)
前記リアルタイム特徴は、前記静的3D再構成の境界の延長を含む、項目2に記載の方法。
(項目7)
前記静的3D再構成の前記境界の前記延長は、前記3D座標系内の前記静的3D再構成に整合された前記MPS座標系内の前記追跡ツールからのトレースを含む、項目6に記載の方法。
(項目8)
前記対象は、心臓を含み、前記境界の前記延長は、冠状静脈洞の分枝の延長を含む、項目6に記載の方法。
(項目9)
前記冠状静脈洞の前記分枝は、造影剤流体を使用して前記静的3D再構成中にマッピングされ、前記境界の前記延長は、前記造影剤流体の終わりの箇所を越えて延長する、項目8に記載の方法。
(項目10)
整合する前記ステップは、前記追跡ツールにより生成される推定体積モデルに前記静的3D再構成を合致させるステップを含む、項目2に記載の方法。
(項目11)
前記推定体積モデルは、前記対象の2D描画に前記追跡ツールからのトレースを合致させることにより決定される、項目10に記載の方法。
(項目12)
前記2D描画は、前記対象のX線画像を含む、項目11に記載の方法。
(項目13)
前記対象の動きを補償するステップをさらに含む、項目2に記載の方法。
(項目14)
前記対象の動きが、前記患者の呼吸を含む、項目13に記載の方法。
(項目15)
前記補償するステップは、前記3D再構成および前記エンハンスメント・データの周期周波数を同期させるステップを含む、項目14に記載の方法。
(項目16)
前記対象の動きは、前記内部器官の筋肉運動を含む、項目13に記載の方法。
(項目17)
補償する前記ステップは、前記MPS座標系内の前記3D追跡スペースおよび前記3D座標系内の前記静的3D再構成にアンカーを関連付けるステップを含む、項目16に記載の方法。
(項目18)
医用システムから取得されるデータをエンハンスするためのシステムであって、
器官の静的3D再構成に関する第1の信号を受信し、
追跡ツールのための3D追跡スペースに前記静的3D再構成を整合させ、
前記器官の関心領域内で動作する前記追跡ツールにより生成されるエンハンスメント・データに関する第2の信号を受信し、
前記エンハンスメント・データを使用して前記静的3D再構成に前記関心領域のリアルタイム特徴を追加するように構成された、電子制御ユニット(ECU)を備える、システム。
(項目19)
前記ECUと通信して、前記第2の信号を供給する追跡ツールをさらに備える、項目18に記載のシステム。
(項目20)
前記3D再構成は、前記器官内の前記追跡ツールのリアルタイムの動きに基づいて前記器官の動きと同期して動きを与えられる、項目19に記載のシステム。
(項目21)
前記リアルタイム特徴は、前記静的3D再構成の境界の延長を含む、項目19に記載のシステム。
(項目22)
前記静的3D再構成の前記境界の前記延長は、前記3D座標系内の前記3D再構成に整合された医用位置決めシステム(MPS)座標系内の前記追跡ツールからのトレースを含む、項目21に記載のシステム。
(項目23)
前記整合は、前記追跡ツールにより生成される推定体積モデルに前記静的3D再構成を合致させることを含む、項目18に記載のシステム。
(項目24)
前記推定体積モデルは、前記器官の2D描画に前記追跡ツールからのトレースを合致させることにより決定される、項目23に記載のシステム。
(項目25)
前記ECUは、前記器官の患者の呼吸を補償するようにさらに構成される、項目18に記載のシステム。
(項目26)
前記ECUは、前記3D再構成および前記エンハンスメント・データの周期周波数を同期させることにより前記器官の前記患者の呼吸を補償するように構成される、項目25に記載のシステム。
(項目27)
前記ECUは、前記器官の筋肉運動を補償するようにさらに構成される、項目18に記載のシステム。
(項目28)
前記ECUは、前記3D再構成におよび既知の位置に位置する前記3D追跡スペースにアンカーを関連付けることにより、前記器官の筋肉運動を補償するようにさらに構成される、項目27に記載のシステム。

Claims (17)

  1. 医用システムから取得されるデータをエンハンスするためのシステムであって、
    患者の内部器官の静的3D再構成に関する第1の信号を受信し、
    追跡ツールのための3D追跡スペースに前記静的3D再構成を整合させ、
    前記内部器官の関心領域内で動作する前記追跡ツールにより生成されるエンハンスメント・データに関する第2の信号を受信し、
    前記エンハンスメント・データを使用して前記静的3D再構成に前記関心領域のリアルタイム特徴を追加するように構成された、電子制御ユニット(ECU)を備え
    前記3D追跡スペースは、医用位置決めシステム(MPS)座標系内に位置し、前記静的3D再構成は、3D座標系内に位置し、
    前記リアルタイム特徴は、前記静的3D再構成の境界の延長を含む、システム。
  2. 前記ECUと通信して、前記第2の信号を供給する追跡ツールをさらに備える、請求項に記載のシステム。
  3. 前記リアルタイム特徴は、前記内部器官の動きを含む、請求項1又は2に記載のシステム。
  4. 前記3D再構成は、前記内部器官内の前記追跡ツールのリアルタイムの動きに基づいて前記内部器官の動きと同期して動きを与えられる、請求項に記載のシステム。
  5. 前記内部器官は、心臓を含み、前記動きは、前記心臓の拍動から生じる心臓壁運動を含む、請求項に記載のシステム。
  6. 前記内部器官は、心臓を含み、前記境界の前記延長は、冠状静脈洞の分枝の延長を含む、請求項1から5のいずれか一項に記載のシステム。
  7. 前記冠状静脈洞の前記分枝は、造影剤流体を使用して前記静的3D再構成中にマッピングされ、前記境界の前記延長は、前記造影剤流体の終わりの箇所を越えて延長する、請求項に記載のシステム。
  8. 前記静的3D再構成の前記境界の前記延長は、前記3D座標系内の前記3D再構成に整合された医用位置決めシステム(MPS)座標系内の前記追跡ツールからのトレースを含む、請求項1から7のいずれか一項に記載のシステム。
  9. 前記整合は、前記追跡ツールにより生成される推定体積モデルに前記静的3D再構成を合致させることを含む、請求項1からのいずれか一項に記載のシステム。
  10. 前記推定体積モデルは、前記内部器官の2D描画に前記追跡ツールからのトレースを合致させることにより決定される、請求項に記載のシステム。
  11. 前記2D描画は、前記内部器官のX線画像を含む、請求項10に記載のシステム。
  12. 前記内部器官の動きを補償するステップをさらに含む、請求項に記載のシステム。
  13. 前記ECUは、前記患者の呼吸を補償するようにさらに構成される、請求項12に記載のシステム。
  14. 前記補償するステップは、前記3D再構成および前記エンハンスメント・データの周期周波数を同期させるステップを含む、請求項13に記載のシステム。
  15. 前記内部器官の動きは、前記内部器官の筋肉運動を含む、請求項12から14のいずれか一項に記載のシステム。
  16. 補償する前記ステップは、前記MPS座標系内の前記3D追跡スペースおよび前記3D座標系内の前記静的3D再構成にアンカーを関連付けるステップを含む、請求項15に記載のシステム。
  17. 追跡スペース内に位置する患者の内部器官の三次元(3D)再構成をエンハンスするためのシステムの作動方法であって、
    3D追跡スペース内に位置する対象の静的3D再構成を表す信号を取得するステップと、
    前記3D追跡スペースに前記3D再構成を整合させるステップと、
    前記3D追跡スペース内に位置する追跡ツールからエンハンスメント・データを収集するステップと、
    前記エンハンスメント・データを使用して前記静的3D再構成に前記対象のリアルタイム特徴を追加するステップと、
    を含み、
    前記3D追跡スペースは、医用位置決めシステム(MPS)座標系内に位置し、前記静的3D再構成は、3D座標系内に位置し、
    前記リアルタイム特徴は、前記静的3D再構成の境界の延長を含む、方法。
JP2017541963A 2015-02-13 2016-02-12 追跡ベース3dモデルのエンハンスメント Active JP6492188B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562116037P 2015-02-13 2015-02-13
US62/116,037 2015-02-13
PCT/IB2016/000339 WO2016128839A1 (en) 2015-02-13 2016-02-12 Tracking-based 3d model enhancement

Publications (2)

Publication Number Publication Date
JP2018508276A JP2018508276A (ja) 2018-03-29
JP6492188B2 true JP6492188B2 (ja) 2019-03-27

Family

ID=55661485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017541963A Active JP6492188B2 (ja) 2015-02-13 2016-02-12 追跡ベース3dモデルのエンハンスメント

Country Status (5)

Country Link
US (1) US10163204B2 (ja)
EP (1) EP3236854B1 (ja)
JP (1) JP6492188B2 (ja)
CN (1) CN107205780B (ja)
WO (1) WO2016128839A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3236854B1 (en) * 2015-02-13 2019-11-06 St. Jude Medical International Holding S.à r.l. Tracking-based 3d model enhancement
CN108633312B (zh) * 2015-11-18 2022-11-08 光学实验室成像公司 一种在x射线图像中的造影云检测方法
CA3052626A1 (en) * 2017-02-06 2018-08-09 The Cleveland Clinic Foundation Characterizing behavior of anatomical structures
CN106963383A (zh) * 2017-04-21 2017-07-21 南京大学 一种基于呼吸状态空间重构的体内组织呼吸运动估计方法
US10699448B2 (en) * 2017-06-29 2020-06-30 Covidien Lp System and method for identifying, marking and navigating to a target using real time two dimensional fluoroscopic data
KR20200101334A (ko) * 2017-12-18 2020-08-27 아우리스 헬스, 인코포레이티드 관강내 조직망 내 기구 추적 및 항행을 위한 방법 및 시스템
US11116420B2 (en) * 2017-12-26 2021-09-14 Biosense Webster (Israel) Ltd. Monitoring distance to selected anatomical structures during a procedure
JP7245226B2 (ja) * 2018-03-15 2023-03-23 テルモ株式会社 画像処理装置、画像処理方法、計算方法およびプログラム
US11132830B2 (en) * 2018-03-29 2021-09-28 Biosense Webster (Israel) Ltd. Static virtual camera positioning
JP7195868B2 (ja) * 2018-10-19 2022-12-26 キヤノンメディカルシステムズ株式会社 医用画像処理装置、x線診断装置及び医用画像処理プログラム
EP3643238A1 (en) * 2018-10-25 2020-04-29 Koninklijke Philips N.V. Image based guiding of an interventional device
US11478301B2 (en) 2018-11-15 2022-10-25 Centerline Biomedical, Inc. Modeling anatomical structures using an anatomical measurement wire
WO2020102549A1 (en) * 2018-11-15 2020-05-22 Centerline Biomedical, Inc. Systems and methods for registration using an anatomical measurement wire
CN111150490B (zh) * 2020-01-15 2021-01-29 陈挺 基于ar和ai技术的心脏射频消融手术智能助手系统
DE102020205091A1 (de) * 2020-04-22 2021-10-28 Siemens Healthcare Gmbh Verfahren zum Erzeugen eines Steuersignals
US20220015841A1 (en) * 2020-07-15 2022-01-20 Orthosoft Ulc Robotic device and sterilization unit for surgical instrument
CN113855239B (zh) * 2021-09-24 2023-10-20 深圳高性能医疗器械国家研究院有限公司 一种血管介入手术中导丝导航系统及方法
DE102022203162A1 (de) 2022-03-31 2023-10-05 Siemens Healthcare Gmbh Bereitstellen eines Ergebnisdatensatzes

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7263397B2 (en) 1998-06-30 2007-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for catheter navigation and location and mapping in the heart
US7343195B2 (en) * 1999-05-18 2008-03-11 Mediguide Ltd. Method and apparatus for real time quantitative three-dimensional image reconstruction of a moving organ and intra-body navigation
US9833167B2 (en) 1999-05-18 2017-12-05 Mediguide Ltd. Method and system for superimposing virtual anatomical landmarks on an image
US7778688B2 (en) * 1999-05-18 2010-08-17 MediGuide, Ltd. System and method for delivering a stent to a selected position within a lumen
US7386339B2 (en) 1999-05-18 2008-06-10 Mediguide Ltd. Medical imaging and navigation system
US6233476B1 (en) 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US8442618B2 (en) * 1999-05-18 2013-05-14 Mediguide Ltd. Method and system for delivering a medical device to a selected position within a lumen
US7840252B2 (en) * 1999-05-18 2010-11-23 MediGuide, Ltd. Method and system for determining a three dimensional representation of a tubular organ
US9572519B2 (en) 1999-05-18 2017-02-21 Mediguide Ltd. Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors
US6597936B1 (en) * 2000-11-14 2003-07-22 Koninklijke Philips Electronics, N.V. Focused point oversampling for temporally and spatially resolving dynamic studies
US6931093B2 (en) * 2001-05-16 2005-08-16 Koninklijke Philips Electronics N.V. Method and apparatus for visualizing a 3D data set
US6597938B2 (en) * 2001-08-16 2003-07-22 Koninklijke Philips Electronics, N.V. System for assistance of parameter determination and diagnosis in MRI dynamic uptake studies
US7697972B2 (en) * 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7505809B2 (en) * 2003-01-13 2009-03-17 Mediguide Ltd. Method and system for registering a first image with a second image relative to the body of a patient
US7026623B2 (en) * 2004-01-07 2006-04-11 Jacob Oaknin Efficient single photon emission imaging
DE102004004620A1 (de) * 2004-01-29 2005-08-25 Siemens Ag Verfahren zur Registrierung und Überlagerung von Bilddaten bei Serienaufnahmen in der medizinischen Bildgebung
DE102004048209B3 (de) * 2004-09-30 2005-09-01 Siemens Ag Verfahren und Vorrichtung zur Erzeugung eines dreidimensionalen Bilddatensatzes eines bewegten Objekts mittels Röntgentomographie
DE102005002950B4 (de) * 2005-01-21 2007-01-25 Siemens Ag Verfahren zur automatischen Bestimmung der Position und Orientierung des linken Ventrikels und/oder angrenzender Bereiche in 3D-Bilddatensätzen des Herzens
US8295577B2 (en) * 2005-03-31 2012-10-23 Michael Zarkh Method and apparatus for guiding a device in a totally occluded or partly occluded tubular organ
WO2006116134A2 (en) * 2005-04-21 2006-11-02 William Marsh Rice University Method and apparatus for compressive imaging device
US7604601B2 (en) * 2005-04-26 2009-10-20 Biosense Webster, Inc. Display of catheter tip with beam direction for ultrasound system
US8870779B2 (en) * 2005-04-26 2014-10-28 Biosense Webster, Inc. Display of two-dimensional ultrasound fan
US10143398B2 (en) * 2005-04-26 2018-12-04 Biosense Webster, Inc. Registration of ultrasound data with pre-acquired image
US20060241445A1 (en) * 2005-04-26 2006-10-26 Altmann Andres C Three-dimensional cardial imaging using ultrasound contour reconstruction
US20060253024A1 (en) * 2005-04-26 2006-11-09 Altmann Andres C Software product for three-dimensional cardiac imaging using ultrasound contour reconstruction
US7885707B2 (en) 2005-09-15 2011-02-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Method of scaling navigation signals to account for impedance drift in tissue
US8676300B2 (en) * 2006-09-18 2014-03-18 Mediguide Ltd. Method and system for navigating through an occluded tubular organ
IL188262A (en) 2007-01-10 2011-10-31 Mediguide Ltd System and method for superimposing a representation of the tip of a catheter on an image acquired by a moving imager
IL188569A (en) * 2007-01-17 2014-05-28 Mediguide Ltd Method and system for coordinating a 3D image coordinate system with a medical position coordinate system and a 2D image coordinate system
US8195292B2 (en) 2007-02-16 2012-06-05 Pacestter, Inc. Cardiac resynchronization therapy optimization using parameter estimation from realtime electrode motion tracking
JP5639764B2 (ja) * 2007-03-08 2014-12-10 シンク−アールエックス,リミティド 運動する器官と共に使用するイメージング及びツール
US9757036B2 (en) * 2007-05-08 2017-09-12 Mediguide Ltd. Method for producing an electrophysiological map of the heart
WO2008136008A2 (en) * 2007-05-08 2008-11-13 Mediguide Ltd. Method for producing an electrophysiological map of the heart
US8428690B2 (en) * 2007-05-16 2013-04-23 General Electric Company Intracardiac echocardiography image reconstruction in combination with position tracking system
FR2927794B1 (fr) 2008-02-21 2011-05-06 Gen Electric Procede et dispositif de guidage d'un outil chirurgical dans un corps assiste par un dispositif d'imagerie medicale.
EP2348982B1 (en) * 2008-12-03 2020-03-25 St. Jude Medical, Atrial Fibrillation Division, Inc. System for determining the positioin of the tip of a medical catheter within the body of a patient
EP2448512B1 (en) * 2009-06-29 2021-10-27 Koninklijke Philips N.V. Apparatus for tracking in a medical procedure
US8180130B2 (en) * 2009-11-25 2012-05-15 Imaging Sciences International Llc Method for X-ray marker localization in 3D space in the presence of motion
US9445745B2 (en) * 2009-12-31 2016-09-20 Mediguide Ltd. Tool shape estimation
US10069668B2 (en) 2009-12-31 2018-09-04 Mediguide Ltd. Compensation of motion in a moving organ using an internal position reference sensor
US20110160569A1 (en) * 2009-12-31 2011-06-30 Amit Cohen system and method for real-time surface and volume mapping of anatomical structures
JP5795599B2 (ja) * 2010-01-13 2015-10-14 コーニンクレッカ フィリップス エヌ ヴェ 内視鏡手術のための画像統合ベースレジストレーション及びナビゲーション
US9820695B2 (en) * 2010-03-29 2017-11-21 St. Jude Medical International Holding S.àr.l. Method for detecting contact with the wall of a region of interest
EP2563816B1 (en) * 2010-04-27 2014-11-12 National Research Council of Canada Anti-icam-1 single domain antibody and uses thereof
EP2605693B1 (en) * 2010-08-20 2019-11-06 Veran Medical Technologies, Inc. Apparatus for four dimensional soft tissue navigation
US8270561B2 (en) * 2010-10-13 2012-09-18 Kabushiki Kaisha Toshiba Motion weighting in computed tomography (CT) with cone angle
US8463363B2 (en) * 2011-01-11 2013-06-11 General Electric Company SPECT image reconstruction methods and systems
RU2013143160A (ru) * 2011-02-24 2015-03-27 Конинклейке Филипс Электроникс Н.В. Нежесткая трансформация изображения сосуда с использованием формы внутрисосудистого устройства
US9901303B2 (en) 2011-04-14 2018-02-27 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for registration of multiple navigation systems to a common coordinate frame
US20130172730A1 (en) * 2011-12-29 2013-07-04 Amit Cohen Motion-Compensated Image Fusion
US9351782B2 (en) * 2012-11-09 2016-05-31 Orthosensor Inc. Medical device motion and orientation tracking system
EP3148441B1 (en) * 2014-05-26 2018-07-11 St. Jude Medical International Holding S.à r.l. Control of the movement and image acquisition of an x-ray system for a 3d/4d co-registered rendering of a target anatomy
US10105107B2 (en) * 2015-01-08 2018-10-23 St. Jude Medical International Holding S.À R.L. Medical system having combined and synergized data output from multiple independent inputs
EP3236854B1 (en) * 2015-02-13 2019-11-06 St. Jude Medical International Holding S.à r.l. Tracking-based 3d model enhancement

Also Published As

Publication number Publication date
CN107205780A (zh) 2017-09-26
EP3236854A1 (en) 2017-11-01
JP2018508276A (ja) 2018-03-29
US20160239963A1 (en) 2016-08-18
CN107205780B (zh) 2020-09-29
EP3236854B1 (en) 2019-11-06
US10163204B2 (en) 2018-12-25
WO2016128839A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6492188B2 (ja) 追跡ベース3dモデルのエンハンスメント
US11553968B2 (en) Apparatuses and methods for registering a real-time image feed from an imaging device to a steerable catheter
US20210137351A1 (en) Apparatus and Method for Airway Registration and Navigation
US10617324B2 (en) Apparatuses and methods for endobronchial navigation to and confirmation of the location of a target tissue and percutaneous interception of the target tissue
JP2022059084A (ja) 手術中の位置調整および誘導を容易にするシステム
US11224394B2 (en) Signaling of an aortic valve state
US20100061611A1 (en) Co-registration of coronary artery computed tomography and fluoroscopic sequence
JP5896737B2 (ja) 呼吸測定器、呼吸測定器の作動方法、及び呼吸測定コンピュータプログラム
US9445745B2 (en) Tool shape estimation
US20130172730A1 (en) Motion-Compensated Image Fusion
JP2014509895A (ja) 血管インターベンションプロシージャにおいてインターベンション装置の正確な誘導を支援する画像表示を提供する画像診断システム及び方法
CN105520716A (zh) 荧光镜图像的实时模拟
KR101458585B1 (ko) 심혈관 진단 및 치료영상의 실시간 정합을 위한 방사선 불투과성 반구형 표지
KR101485899B1 (ko) 방사선 불투과성 반구형 입체 표지를 기반으로 하는 ct 혈관 조영 영상과 x-선 혈관 조영 영상 간의 정합 방법
US20080306378A1 (en) Method and system for images registration
CN111403017B (zh) 医学辅助设备、系统、和用于确定对象的变形的方法
KR20140120157A (ko) 방사선 불투과성 반구형 입체 표지를 기반으로 하는 ct 혈관 조영 영상과 x-선 혈관 조영 영상 간의 정합 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6492188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250