JP6491512B2 - 水素ジェネレータ兼用発電システム - Google Patents

水素ジェネレータ兼用発電システム Download PDF

Info

Publication number
JP6491512B2
JP6491512B2 JP2015069299A JP2015069299A JP6491512B2 JP 6491512 B2 JP6491512 B2 JP 6491512B2 JP 2015069299 A JP2015069299 A JP 2015069299A JP 2015069299 A JP2015069299 A JP 2015069299A JP 6491512 B2 JP6491512 B2 JP 6491512B2
Authority
JP
Japan
Prior art keywords
power generation
generation unit
unit
anode
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015069299A
Other languages
English (en)
Other versions
JP2016189287A (ja
Inventor
孝司 松岡
孝司 松岡
康太 三好
康太 三好
大島 伸司
伸司 大島
佐藤 康司
康司 佐藤
重徳 光島
重徳 光島
喜晴 内本
喜晴 内本
達郎 春木
達郎 春木
長寿 福原
長寿 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Kyoto University
Yokohama National University NUC
Eneos Corp
Original Assignee
Shizuoka University NUC
Kyoto University
JXTG Nippon Oil and Energy Corp
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, Kyoto University, JXTG Nippon Oil and Energy Corp, Yokohama National University NUC filed Critical Shizuoka University NUC
Priority to JP2015069299A priority Critical patent/JP6491512B2/ja
Publication of JP2016189287A publication Critical patent/JP2016189287A/ja
Application granted granted Critical
Publication of JP6491512B2 publication Critical patent/JP6491512B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、有機ハイドライドを原料として、水素の生成と発電を同時に行う技術に関する。
近年、エネルギーキャリアとして、効率的な水素の貯蔵・輸送・製造が可能な有機ハイドライドが注目されており、有機ハイドライドを脱水素することによって水素を取り出すいわゆる水素ステーションの実現に向けた開発が進められている。水素ステーション内の機器に電力を供給しつつ、水素を取り出す装置として、たとえば、特許文献1に記載の有機ハイドライド脱水素システムがある。
特開2011−251916
特許文献1に記載のシステムでは、有機ハイドライドの脱水素に伴う吸熱による温度低下を防ぐために、脱水素反応器とは別に熱を供給するため熱電供給機器や得られるガスが水素と有機ハイドライドの混合体であるため、その分離設備が必要であり、システムの複雑化が避けられないという問題が生じていた。
本発明はこうした課題に鑑みてなされたものであり、その目的は、有機ハイドライドを原料として、簡便な構成にて高純度の水素生成と発電を同時に行うことができる技術の提供にある。
本発明のある態様は、水素ジェネレータ兼用発電システムである。当該水素ジェネレータ兼用発電システムは、150℃以上300℃以下の温度範囲でプロトン伝導性を有する第1電解質膜と、前記第1電解質膜の一方の面に設けられ、少なくとも白金を含む触媒を有し、有機ハイドライドが供給される第1アノードと、前記第1電解質膜の他方の面に設けられ、少なくとも白金を含む触媒を有し、酸化剤が供給される第1カソードと、を有する発電部と、150℃以上300℃以下の温度範囲でプロトン伝導性を有する第2電解質膜と、第2電解質膜の一方の面に設けられ、少なくとも白金を含む触媒を有し、有機ハイドライドが供給される第2アノードと、前記第2電解質膜の他方の面に設けられ、少なくとも白金を含む触媒を有する第2カソードと、を有し、前記発電部と熱的に接続している脱水素化部と、を備え、前記第2アノードと前記第2カソードとの間に、前記発電部で起電された電力の少なくとも一部が印加され、前記第2カソードにおいて、前記第2電解質膜を通過したプロトン、前記発電部から供給される熱、および前記第2アノードと前記第2カソードとの間に印加された電力を用いて吸熱反応により水素が生成されることを特徴とする。
上記態様の水素ジェネレータ兼用発電システムにおいて、前記発電部と前記脱水素化部の間にプロトン伝導パスを有さず、前記発電部および前記脱水素化部がそれぞれ独立に、電気化学反応を行ってもよい。電力または水素の需要量に応じて、前記発電部における電熱比、および前記発電部において起電された電力から前記脱水素化部に分配される電力の割合が制御されてもよい。
また、前記第1アノードと第2アノードに共通の供給源から有機ハイドライドが供給されてもよい。また、前記発電部と前記脱水素化部とが積層されたスタック構造を有し、前記スタック構造内において発電と脱水素の双方を行ってもよい。
なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。
本発明によれば、有機ハイドライドを原料として、簡便な構成にて水素の生成と発電を同時に行うことができる。
実施形態1に係る水素ジェネレータ兼用発電システムの概略構成図である。 実施形態1に係る水素ジェネレータ兼用発電システムにおけるエネルギー収支を示す図である。 実施形態2に係る水素ジェネレータ兼用発電システムの概略構成図である。 発電部、脱水素化部をそれぞれ2つ有するスタック構造の簡略断面図である。
以下、本発明の実施形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(実施形態1)
図1は、実施形態1に係る水素ジェネレータ兼用発電システム10の概略構成図である。水素ジェネレータ兼用発電システム10は、発電部20、脱水素化部30、セパレータ40、電力分配部200、および制御部400を有する。
発電部20は、第1アノード22、第1電解質24および第1カソード26がこの順で積層されたMEA(膜電極接合体)を有する。
第1アノード22は、第1電解質24の一方の面に設けられており、少なくとも白金を含む触媒を有する。たとえば、第1アノード22に用いられる触媒として、白金が絶縁性酸化物に担持されたものを用いることができる。担体となる絶縁性酸化物としては、AlやTiOなどが挙げられる。第1アノード22には、貯留タンク50から有機ハイドライドが供給される。第1アノード22への有機ハイドライドの供給量は、第1アノード22に接続された配管に設けられたポンプ60により調節される。当該有機ハイドライドとしては、メチルシクロヘキサン(MCH)、シクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、デカリン、メチルデカリン、ジメチルデカリン、エチルデカリン、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、グリセリンなどが挙げられる。なお、以下の説明では、有機ハイドライドの代表例としてMCHを取り上げる。
第1アノード22にMCHが供給される場合には、触媒の働きにより以下の反応が進行する。
MCH→6H+6e+トルエン
上記の反応により生じたプロトンの一部は、第1電解質24を通過して第1カソード26に到達し、発電に寄与する。
第1電解質24は、150℃以上300℃以下の温度範囲でプロトン伝導性を有する材料で形成されている。たとえば、第1電解質24として、CsH(POとSiPの混合物(モル比1:2)、リン酸ドープポリベンゾイミダゾール、ポリリン酸、リン酸スズなどが挙げられる。MCHを含む有機ハイドライドの電気化学的酸化反応は150℃未満では反応速度が著しく低下する。一方で、300℃より高い温度では第1アノード22上で脱水素反応が優勢に進行するため、第1アノード22で消費する水素量を超えて余剰な水素が発電部20で発生するとともに、吸熱反応である脱水素反応によって発電部20の熱量が奪われ、脱水素化部30への熱供給が減少し、脱水素化部30で得られる水素量が減少する。この場合、発電部20から余剰な水素を取り出すことができるが、この水素はトルエンとの混合物になるため、燃料電池用の水素として利用するためには相応の精製手段を要し、システムが複雑となる。また、第1アノード22で発生した水素を全て消費するために電流密度を増加させた場合、電圧低下によって発電効率が低下するだけでなく、発生熱量の増加が起こるため、システムの熱自立が困難になる。第1電解質24は、200℃以上290℃以下の温度範囲でプロトン伝導性を有することがより好ましい。200℃以上290℃以下にすることで、電気化学的酸化反応を円滑に進めつつ、発電部20での水素発生を著しく減少させることができる。
第1カソード26は、第1電解質24の他方の面に設けられており、少なくとも白金を含む触媒を有する。第1カソード26には、空気などの酸化剤が供給される。第1カソード26では上述した触媒の下、第1電解質24を透過したプロトンと酸化剤とが以下式に従って反応する。
1/2O+2H+2e→H
脱水素化部30は、第2アノード32、第2電解質34および第2カソード36がこの順で積層されたセルを有する。
第2アノード32は、第1アノード22と同様な材料で構成される。第2アノード32には、貯留タンク50から有機ハイドライドが供給される。第2アノード32への有機ハイドライドの供給量は、第2アノード32に接続された配管に設けられたポンプ62により調節される。このように、本実施形態では、第1アノード22と第2アノード32に共通の貯留タンク50から有機ハイドライドが供給される。さらに、貯留タンク50に接続された共通配管52を経由した後、第1アノード22と第2アノード32にそれぞれ接続する配管に分岐することが好ましい。
第2電解質34は、第1電解質24と同様な材料で構成される。また、第2カソード36は、第1カソード26と同様な材料で構成される。
セパレータ40は、発電部20と脱水素化部30との間に設置されている。セパレータ40の一方の主面は、発電部20の第1カソード26に当接し、セパレータ40の他方の主面は、脱水素化部30の第2アノード32に当接している。セパレータ40の一方の主面には、酸化剤を流通させるための溝状の流路(図示せず)が形成されている。また、セパレータ40の他方の主面には、有機ハイドライドを流通させるための溝状の流路(図示せず)が形成されている。
セパレータ40は、絶縁性を有し、かつ熱伝導率が高い材料、たとえば、アルミナ、窒化アルミニウム、窒化ケイ素、窒化ホウ素、酸化亜鉛などで形成される。これにより、発電部20と脱水素化部30とが熱的に接続されるが、発電部20と脱水素化部30との間にプロトン伝導パスが形成されず、発電部20および脱水素化部30において、それぞれ独立に、電気化学反応が進行する。セパレータ40の材料は、20W/m・K以上の熱伝導率を有する必要があり、100W/m・K以上の材料であることが望ましい。熱伝導率が20W/m・K未満の物質を用いた場合、セパレータ40を十分に薄くしても、脱水素化部30に熱が十分に供給されず水素発生量が減少するだけでなく、発電部20の温度が上昇し発電部での水素発生が起こる。100W/m・K以上の熱伝導率が得られる物質として、窒化ケイ素(200W/m・K)や窒化アルミニウム(150W/m・K)やこれらの材料を含む樹脂材料が挙げられる。さらに、絶縁性を有し、かつ熱伝導率が高い材料も存在するが、コスト面での制約を受ける。
電力分配部200は、第1アノード22、第1カソード26とそれぞれ電気的に接続されたアノード側入力部210、カソード側入力部212を有する。また、電力分配部200は、第2アノード32、第2カソード36とそれぞれ電気的に接続されたアノード側出力220、カソード側出力222を有する。さらに、電力分配部200は、負荷300の正極、負極にそれぞれ接続された正極側出力端子230、負極側出力端子232を有する。電力分配部200は、発電部20で起電された電力を、負荷300と脱水素化部30とに所定の分配比で分配して供給する周知の電力分配回路を有し、脱水素化部30の第2アノード32と第2カソード36との間に、発電部20で起電された電力の少なくとも一部が印加されるように構成されている。
上述したように、脱水素化部30には、セパレータ40を介して発電部20で発生した熱が供給される。また、第2アノード32と第2カソード36との間に、発電部20で起電された電力の少なくとも一部が印加される。このように供給される熱、電力および第2電解質34を通過したプロトンを利用することで、脱水素化部30において以下の電気化学反応が進行し、過電圧の小さい反応にて水素が得られる。
アノード反応:MCH→6H+6e+トルエン(TL)
カソード反応:2H+2e→H
制御部400は、電力または水素の需要量に応じて、エネルギー収支に関して以下に説明する関係が成り立つように、発電部20における電熱比および電力分配部200における電力の分配比を制御する。ここで、電力の需要量とは、発電部20に接続された負荷300で消費される電力量である。また、水素の需要量とは、水素ジェネレータ兼用発電システム10から供給された水素を燃料電池自動車など、当該水素ジェネレータ兼用発電システム10以外の水素消費機器に提供することを目的とした要求量である。電熱比とは、発電部20で生成する電力と熱量の割合(ジュール換算における、(熱量/(熱量+電力))×100で算出される値)である。
図2は、実施形態1に係る水素ジェネレータ兼用発電システムにおけるエネルギー収支を示す図である。発電部20に供給される有機ハイドライドの量は一定で、脱水素化部30には水素の需要量に応じた量の有機ハイドライドが供給されるものとする。図2に示すように、本システムではエネルギーに関して、次の関係が満たされるように電熱比および分配比が調整される。
<発電部20によって得られる総エネルギー>=<ポンプなどの補機用のエネルギー(電力)>+<負荷300用のエネルギー(電力)>+<脱水素化部30に供給されるエネルギー(電力)>+<脱水素化反応用のエネルギー(熱)>
発電部20の発電に伴って生じる熱エネルギーは、本システムの熱自立を保つ(外部から熱の供給を受けずに発電部20で発電を行う)ために必要な最小エネルギー(熱)と、脱水素化を促進するためのエネルギー(熱)との和である。脱水素化反応用のエネルギーは、脱水素化を促進するためのエネルギー(熱)と脱水素化部30に供給されるエネルギー(電力)との和である。
図2に示すように、負荷300用のエネルギー(電力)と、脱水素化部30用のエネルギー(電力+熱)は、一方が増加すると他方が減少する関係にある。この関係は、上述した電熱比および分配比を調節することにより維持される。
電熱比は、発電部20の電圧(または電流)により調節される。発電部20の電圧を下げる(電流を上げる)と発電部20の発熱量が増加、すなわち電熱比が増加し、脱水素化が促進される。逆に、発電部20の電圧を上げる(電流を下げる)と発電部20の発熱量が減少、すなわち電熱比が減少し、脱水素化が鈍化する。
分配比に関しては、上記の関係から自ずと定まる<負荷300用のエネルギー(電力)>と<脱水素化部30に供給されるエネルギー(電力)>とのバランスに応じて、電力分配部200により調節される。
以下、水素需要量、電力需要量に応じた制御の例について説明する。発電部20には一定量の有機ハイドライドが供給され、発電部20で得られる総エネルギーは一定量で推移するものとする。
(水素需要量に応じた制御)
まず、水素需要量が制御部400に入力される。この水素需要量に必要な脱水素化用の有機ハイドライドの量が算出される。水素需要量を得るために必要な脱水素化用のエネルギー(熱+電力)が算出され、電熱比が決定される。また、負荷300用のエネルギー(電力)が発電部20の総エネルギーから脱水素化反応用のエネルギー(熱+電力)および補機用のエネルギー(電力)を除いた量として定まり、分配比が求まる。制御部400は、以上のように決定された電熱比および分配比を用いて発電および水素の供給を行う。
(電力需要量に応じた制御)
まず、電力需要量が制御部400に入力され、この電力需要量が負荷300用のエネルギー(電力)とされる。総エネルギーから負荷300用のエネルギー(電力)、熱自立に必要な最小エネルギー(熱)および補機用のエネルギー(電力)を除いた量が脱水素化部30に供給されるエネルギー(電力)と脱水素化反応用のエネルギー(熱)との和とされ、脱水素化部30で脱水素可能な有機ハイドライドの量と電熱比が算出される。また、負荷300用のエネルギー(電力)と脱水素化部30に供給されるエネルギー(電力)の関係から分配比が定められる。制御部400は、以上のように決定された電熱比および分配比を用いて発電および水素の供給を行う。
以上説明した水素ジェネレータ兼用発電システム10によれば、脱水素化部30の第2アノード32における有機ハイドライドの脱水素反応による吸熱が、発電部20の発電に伴う発熱によって補われ、脱水素化部30では高純度の水素を得ることができる。このため、有機ハイドライドの脱水素に伴う吸熱を補うための熱供給装置を別途設置する必要がなく、トルエンと水素の分離装置を設ける必要がなく簡便な構成にて水素の生成と発電を行うことができる。
さらに、発電部20と脱水素化部30に同一の有機ハイドライドを用いる場合には、第1アノード22および第2アノード32への有機ハイドライドの供給源を共通の貯留タンク50とすることや、貯留タンク50に上述した共通配管52を接続することにより、システムのさらなる簡素化を図ることができる。
また、本実施形態では、第1アノード22への有機ハイドライドの供給量、発電部20における電熱比および電力分配部200における分配比を調節することにより、その場の需要に応じた電力量と水素量の供給が可能となる。
また、セパレータ40を介して発電部20と脱水素化部30とを積層することで、同一スタック内において有機ハイドライドの脱水素と発電とを進行させることができるため、水素ジェネレータ兼用発電システム10のコンパクト化を図ることができる。
(実施形態2)
図3は、実施形態2に係る水素ジェネレータ兼用発電システム10の概略構成図である。本実施形態の水素ジェネレータ兼用発電システム10は、発電部20、脱水素化部30、セパレータ40、および負荷300を有する。以下、実施形態1と同様な構成については説明を省略する。
本実施形態のセパレータ40は、いわゆるバイポーラ・プレートであり、導電性を有し、かつ熱伝導率が高い材料、たとえば、グラファイト粉に導電性有機樹脂分を加えて射出成形した後に高温焼成したバイポーラ・プレート、チタン製のバイポーラ・プレート、チタンコートをしたステンレス材を用いたバイポーラ・プレートなどである。これにより、発電部20と脱水素化部30とが熱的に接続されるだけでなく、発電部20の第1カソード26と脱水素化部30の第2アノード32とが電気的に接続される。
本実施形態では、発電部20の第1アノード22と脱水素化部30の第2カソード36との間に負荷300が接続されており、発電部20で起電された電力の一部が脱水素化部30で利用され、残りの電力が負荷300に供給される。貯留タンク50に接続された共通配管52にポンプ64が設けられており、第1アノード22と第2アノードに所定の割合で有機ハイドライドが供給される。
電力の需要量および水素の需要量が予め定められており、実施形態1で説明した電力についての関係式(1)および熱量についての関係式(2)が成り立つように、発電部20における電熱比および第1アノード22への有機ハイドライドの供給量が調節される。
本実施形態では、実施形態1に示した電力分配部を持たないためシステム構成をより一層、簡便化することができる。また、セパレータ(バイポーラ・プレート)40で発電部20と脱水素化部30との間の熱および電気の接続を行うため、スタック構成を簡便化することができる。
(スタック構造)
発電部20と脱水素化部30に同一の有機ハイドライドを用いる場合のスタック構造の具体例について説明する。図4は、発電部20、脱水素化部30をそれぞれ2つ有するスタック構造の簡略断面図である。端部用のセパレータ40c、発電部20a、セパレータ40a、脱水素化部30a、セパレータ40b、発電部20b、セパレータ40a、脱水素化部30b、端部用のセパレータ40dがこの順で積層されている。各セパレータ40の面内の大きさは、発電部20、脱水素化部30より大きく、発電部20、脱水素化部30の周囲において隣接するセパレータ40同士が当接するように設計される。
各セパレータ40に設けられた貫通穴が連通することにより、マニホールドが形成される。具体的には、有機ハイドライドが流通するマニホールド500、酸化剤が流通するマニホールド510、芳香族化合物が流通するマニホールド520、水素が流通するマニホールド530、および酸化剤オフガスが流通するマニホールド540がそれぞれ形成される。
マニホールド500から、各発電部20の第1アノード22、および各脱水素化部30の第2アノード32に有機ハイドライドが分配される。第1アノード22、第2アノード32への有機ハイドライドの供給量は、それぞれ、マニホールド500に連通する第1アノード22入口の流路幅、第2アノード32入口の流路幅によって調節される。なお、実施形態1のように有機ハイドライドの供給量を適宜調節する必要がある場合には、実施形態1のポンプ60、62に代えて、マニホールド500と第1アノード22入口、第2アノード32入り口との間にそれぞれ電磁弁を設置し、有機ハイドライドの流量を調節可能としてもよい。
マニホールド510から各発電部20の第1カソード26に酸化剤が分配される。マニホールド520には、各発電部20の第1アノード22、および各脱水素化部30の第2アノード32から芳香族化合物(と未反応の有機ハイドライド)が排出される。マニホールド530には、各脱水素化部30の第2カソード36で生成した純度の高い水素が流通する。また、マニホールド540には、各発電部20の第1カソード26から酸化剤オフガスが排出される。
このように、複数のマニホールドが形成されたスタック構造とし、特に、各発電部20の第1アノード22、および各脱水素化部30の第2アノード32に共通のマニホールド500から有機ハイドライドを供給することにより、スタックをよりコンパクトにすることができる。
本発明は、上述の各実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうるものである。
例えば、上述の各実施形態では、発電部20および脱水素化部30が積層されたスタック化されているが、発電部20の熱が脱水素化部30に供給される形態であればよく、発電部20が脱水素化部30に積層されずに、離れた位置にあり、発電部20と脱水素化部30とが熱伝導性の高い材料によって熱的に接続された構造を採用してもよい。
発電部20で得られる総エネルギーは、第1アノード22の供給量の増減に応じて増減するため、第1アノード22の供給量によって発電部20で得られる総エネルギーを適宜調節可能である。
10 水素ジェネレータ兼用発電システム、20 発電部、22 第1アノード、24 第1電解質、26 第1カソード、30 脱水素化部、32 第2アノード、34 第2電解質、36 第2カソード、40 セパレータ、200 電力分配部、300 負荷、400 制御部、500 マニホールド、510 マニホールド、520 マニホールド、530 マニホールド、540 マニホールド

Claims (5)

  1. 150℃以上300℃以下の温度範囲でプロトン伝導性を有する第1電解質膜と、
    前記第1電解質膜の一方の面に設けられ、少なくとも白金を含む触媒を有し、有機ハイドライドが供給される第1アノードと、
    前記第1電解質膜の他方の面に設けられ、少なくとも白金を含む触媒を有し、酸化剤が供給される第1カソードと、
    を有する発電部と、
    150℃以上300℃以下の温度範囲でプロトン伝導性を有する第2電解質膜と、
    第2電解質膜の一方の面に設けられ、少なくとも白金を含む触媒を有し、有機ハイドライドが供給される第2アノードと、
    前記第2電解質膜の他方の面に設けられ、少なくとも白金を含む触媒を有する第2カソードと、
    を有し、前記発電部と熱的に接続している脱水素化部と、
    を備え、
    前記第2アノードと前記第2カソードとの間に、前記発電部で起電された電力の少なくとも一部が印加され、
    前記第2カソードにおいて、前記第2電解質膜を通過したプロトン、前記発電部から供給される熱、および前記第2アノードと前記第2カソードとの間に印加された電力を用いて吸熱反応により水素が生成され
    前記第1アノードと第2アノードに共通の供給源から有機ハイドライドが供給されることを特徴とする水素ジェネレータ兼用発電システム。
  2. 前記発電部と前記脱水素化部の間にプロトン伝導パスを有さず、前記発電部および前記脱水素化部がそれぞれ独立に、電気化学反応を行う請求項1に記載の水素ジェネレータ兼用発電システム。
  3. 電力または水素の需要量に応じて、前記発電部における電熱比、および前記発電部において起電された電力から前記脱水素化部に分配される電力の割合が制御されることを特徴とする請求項1または2に記載の水素ジェネレータ兼用発電システム。
  4. 前記発電部と前記脱水素化部の間が絶縁されている請求項3に記載の水素ジェネレータ兼用発電システム。
  5. 前記発電部と前記脱水素化部とが積層されたスタック構造を有し、前記スタック構造内において発電と脱水素の双方が行われる請求項1乃至のいずれか1項に記載の水素ジェネレータ兼用発電システム。
JP2015069299A 2015-03-30 2015-03-30 水素ジェネレータ兼用発電システム Active JP6491512B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015069299A JP6491512B2 (ja) 2015-03-30 2015-03-30 水素ジェネレータ兼用発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015069299A JP6491512B2 (ja) 2015-03-30 2015-03-30 水素ジェネレータ兼用発電システム

Publications (2)

Publication Number Publication Date
JP2016189287A JP2016189287A (ja) 2016-11-04
JP6491512B2 true JP6491512B2 (ja) 2019-03-27

Family

ID=57240502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015069299A Active JP6491512B2 (ja) 2015-03-30 2015-03-30 水素ジェネレータ兼用発電システム

Country Status (1)

Country Link
JP (1) JP6491512B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198047B2 (ja) * 2018-11-02 2022-12-28 千代田化工建設株式会社 脱水素反応装置及び脱水素反応方法
JP7198048B2 (ja) * 2018-11-02 2022-12-28 千代田化工建設株式会社 脱水素反応方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070184311A1 (en) * 2003-06-30 2007-08-09 Shuichi Ohkubo Fuel cell with reformer
JP2005240064A (ja) * 2004-02-24 2005-09-08 Seiko Epson Corp 改質器、燃料電池システムおよび機器
WO2007051010A2 (en) * 2005-10-28 2007-05-03 Andrei Leonida Fuel cell system suitable for complex fuels and a method of operation of the same
US20100266929A1 (en) * 2005-12-28 2010-10-21 Hiroshi Kanemoto Catalyst having a dehydrogenation function or hydrogenation function, fuel cell using the catalyst and hydrogen storage/supply device
WO2012070487A1 (ja) * 2010-11-24 2012-05-31 コニカミノルタホールディングス株式会社 2次電池型燃料電池システム

Also Published As

Publication number Publication date
JP2016189287A (ja) 2016-11-04

Similar Documents

Publication Publication Date Title
KR0123727B1 (ko) 연료전지의 적층체
AU2011244435B2 (en) Device for storing and restoring electrical energy
EP2320504B1 (en) Method of operating a fuel cell/battery passive hybrid power supply
EP2529440B1 (en) Management of the operation of a system for producing electric power from hydrogen and hydrogen from electrical power
JP6263638B2 (ja) セルシステムに関する組立方法及び配置
US11108058B2 (en) Bipolar plate and fuel cell
EP3595067B1 (en) Multi-stack fuel cell systems and heat exchanger assemblies
JP6491512B2 (ja) 水素ジェネレータ兼用発電システム
TW201417384A (zh) 燃料電池電堆裝置以及膜電極組之製作方法
WO2004068671A2 (en) Fuel cell h2 exhaust conversion
EP3654431B1 (en) Unmanned aerial vehicle with multi-voltage fuel cell
US20160204461A1 (en) Fuel cell system including multiple fuel cell stacks
CN216712260U (zh) 电解池、电解装置堆和电解系统
CN103415949A (zh) 用于改进高温燃料电池系统的可操作性的方法和装置
Syampurwadi et al. Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate
US20220246949A1 (en) Fuel cell stack comprising variable bipolar plates
KR20130027245A (ko) 연료 전지용 분리판 및 이를 포함하는 연료 전지 스택
EP2681349B1 (en) Method and arrangement for improved heating of a high temperature fuel cell system
CN219032399U (zh) 水电解装置
JP2010123374A (ja) 燃料電池システムの運転方法
EP2652829B1 (en) Method and arrangement for avoiding earth fault currents in fuel cell systems
KR102082942B1 (ko) 고체산화물 전기분해셀과 고체산화물 연료전지스택을 이용한 하이브리드 발전시스템
US20060051645A1 (en) Fuel cell stack with high output current and low output voltage
Mustafa et al. Conceptual Reduced Cost PEM Fuel Cell Design for Domestic Applications
US20180248212A1 (en) Fuel cell for optimising air humidification

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190301

R150 Certificate of patent or registration of utility model

Ref document number: 6491512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250