JP6490608B2 - Method for producing Cu-Al-Mn alloy material - Google Patents

Method for producing Cu-Al-Mn alloy material Download PDF

Info

Publication number
JP6490608B2
JP6490608B2 JP2016023306A JP2016023306A JP6490608B2 JP 6490608 B2 JP6490608 B2 JP 6490608B2 JP 2016023306 A JP2016023306 A JP 2016023306A JP 2016023306 A JP2016023306 A JP 2016023306A JP 6490608 B2 JP6490608 B2 JP 6490608B2
Authority
JP
Japan
Prior art keywords
temperature range
mass
content
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016023306A
Other languages
Japanese (ja)
Other versions
JP2017141491A (en
Inventor
美里 藤井
美里 藤井
純男 喜瀬
純男 喜瀬
田中 豊延
豊延 田中
浩司 石川
浩司 石川
貝沼 亮介
亮介 貝沼
大森 俊洋
俊洋 大森
知枝 草間
知枝 草間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Tohoku University NUC
Furukawa Techno Material Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Tohoku University NUC
Furukawa Techno Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Tohoku University NUC, Furukawa Techno Material Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2016023306A priority Critical patent/JP6490608B2/en
Publication of JP2017141491A publication Critical patent/JP2017141491A/en
Application granted granted Critical
Publication of JP6490608B2 publication Critical patent/JP6490608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)

Description

本発明は、繰返し変形を行った場合の耐破断性に優れたCu−Al−Mn系合金材の製造方法に関する。
The present invention relates to a method for producing a Cu-Al-Mn alloy material having excellent fracture resistance when subjected to repeated deformation.

銅合金等の形状記憶合金・超弾性合金は、熱弾性型マルテンサイト変態の逆変態に付随して顕著な形状記憶効果及び超弾性特性を示し、生活環境温度近辺で優れた機能を持つことから、種々の分野で実用化されている。形状記憶合金・超弾性合金の代表的な材料として、TiNi合金と銅(Cu)系の合金がある。銅系の形状記憶合金・超弾性合金(以下、これらを合わせて、単に銅系合金ともいう)は、繰り返し特性、耐食性等の点でTiNi合金よりも特性が劣っているが、一方でコストが安いためのその適用範囲を広げようとする動きがある。しかし、銅系合金は、コスト的には有利であるが、冷間加工性が悪く、超弾性特性も低い。この為、種々の研究がなされているにも関わらず、銅系合金は必ずしも実用化に十分とはいえない状況となっている。   Shape memory alloys and superelastic alloys such as copper alloys show remarkable shape memory effects and superelastic properties accompanying the reverse transformation of the thermoelastic martensitic transformation, and have excellent functions near the living environment temperature. Have been put to practical use in various fields. Typical materials for shape memory alloys and superelastic alloys include TiNi alloys and copper (Cu) alloys. Copper-based shape memory alloys and superelastic alloys (hereinafter also referred to simply as copper-based alloys) are inferior to TiNi alloys in terms of repeatability, corrosion resistance, etc. There is a movement to expand its coverage for cheap. However, the copper-based alloy is advantageous in terms of cost, but has poor cold workability and low superelastic characteristics. For this reason, despite various researches, copper-based alloys are not necessarily sufficient for practical use.

これまで、銅系合金について、種々の検討がなされてきた。例えば、冷間加工性に優れたβ単相構造のCu−Al−Mn系形状記憶合金などが、下記の特許文献1〜4に報告されている。これらの例では、例えば、結晶方位に関して、β単相の金属組織を<101>、<100>等の特定の方向に圧延または伸線などの冷間加工方向に揃えた再結晶集合組織になっている。   So far, various studies have been made on copper-based alloys. For example, the following patent documents 1 to 4 report Cu-Al-Mn shape memory alloys having a β single phase structure excellent in cold workability. In these examples, for example, with respect to the crystal orientation, a recrystallized texture in which the β single-phase metal structure is aligned in a specific direction such as <101>, <100>, etc., in a cold working direction such as rolling or wire drawing. ing.

特開平7−62472号公報Japanese Patent Laid-Open No. 7-62472 特開2000−169920号公報JP 2000-169920 A 特開2001−20026号公報Japanese Patent Laid-Open No. 2001-20026 国際公開WO2011/152009A1号International Publication WO2011 / 152009A1 国際公開WO2015/137283A1号International Publication WO2015 / 137283A1

日本材料学会 学術講演会講演論文集 45、169〜170頁、1996「CuAlMn形状記憶合金単結晶の超弾性繰返し挙動」Proceedings of the Japan Society of Materials Science Lecture 45, pp. 169-170, 1996 “Superelastic cyclic behavior of CuAlMn shape memory alloy single crystals”

特許文献1の方法で製造したCu−Al−Mn系合金は、その特性、特に超弾性特性が十分ではなく、90%以上の形状回復を示す最大与ひずみは2〜3%程度である。その理由として、結晶配向がランダムであることなどに起因して、変形時に結晶粒間に強い拘束力が生じるために転位などの不可逆欠陥が導入されることが考えられる。よって繰返し変形によって蓄積する残留歪みが多く、繰返し変形後には超弾性特性の劣化も著しい。また、繰返し変形を行った場合の耐破断性が低くて制御できないため数十回程度で破断する場合が多い。   The Cu—Al—Mn alloy produced by the method of Patent Document 1 does not have sufficient characteristics, particularly superelasticity, and the maximum strain showing a shape recovery of 90% or more is about 2-3%. The reason is considered to be that irreversible defects such as dislocations are introduced because a strong restraining force is generated between crystal grains during deformation due to random crystal orientation. Therefore, a large amount of residual strain is accumulated due to repeated deformation, and the superelastic characteristics are significantly deteriorated after repeated deformation. In addition, since the fracture resistance when repeatedly deformed is low and cannot be controlled, the fracture often occurs several tens of times.

また、特許文献2の銅系合金は、形状記憶特性及び超弾性特性を有し、実質的にβ単相からなる銅系合金であり、結晶組織は前記β単相の結晶方位がβ単相の<101>、<100>等の特定の結晶方位が圧延または伸線などの冷間加工方向に揃った再結晶集合組織になっている。上記銅系合金では、電子背面散乱回折パターン測定法(Electron BackScatter Diffraction Patterning、以下「EBSP」と省略する場合がある)(あるいは、電子後方散乱回折(Electron BackScatter Diffraction、以下EBSDと略記する)ともいう)によって測定された前記加工方向における前記β単相の特定結晶方位の存在頻度が2.0以上になるような最終焼鈍後の合計加工率で前記冷間加工を行うものである。このような材料であっても、Cu−Al−Mn系合金においては、変態歪量の方位依存性が大きいため、安定的に良好な超弾性特性を精度良く均質に得るためにはなお不十分である。また、繰返し変形によって蓄積する残留歪みが多く、繰返し変形後には超弾性特性の劣化も著しい。これも特許文献1と同様に、繰返し変形を行った場合の耐破断性が低くて制御できず、数十回程度で破断する場合が多い。   Further, the copper-based alloy of Patent Document 2 is a copper-based alloy having shape memory characteristics and superelastic characteristics and substantially composed of β single phase, and the crystal structure of the β single phase is β single phase. <101>, <100>, etc. have a recrystallized texture in which specific crystal orientations are aligned in the cold working direction such as rolling or wire drawing. The copper-based alloy is also referred to as an electron backscatter diffraction patterning method (hereinafter abbreviated as “EBSP”) (or an electron backscatter diffraction (hereinafter abbreviated as EBSD)). The cold working is performed at a total working rate after the final annealing such that the existence frequency of the specific crystal orientation of the β single phase in the working direction is 2.0 or more. Even in such a material, in the Cu-Al-Mn alloy, the orientation dependence of the transformation strain is large, so that it is still insufficient to obtain a stable and excellent superelastic property with high accuracy and uniformity. It is. In addition, there is a large amount of residual strain accumulated by repeated deformation, and the superelastic characteristics are significantly deteriorated after repeated deformation. Similarly to Patent Document 1, the resistance to rupture in the case of repeated deformation is low and cannot be controlled, and the rupture often occurs several tens of times.

さらに特許文献3と特許文献4に記載されている銅系合金では、発現される形状記憶特性及び超弾性特性の性能にムラが大きく、これらの特性が安定しない点で、なお改良の余地があるレベルである。また、形状記憶特性及び超弾性特性を安定させるためには集合組織制御が不可欠であると考えられるが、特許文献3に記載の方法では、Cu−Al−Mn系合金での組織の集積度は低く形状記憶特性及び超弾性特性はまだ十分には安定しない。特許文献3においては、銅系合金の形状記憶特性及び超弾性特性を向上させるために、β単相への結晶配向を制御するとともに、平均結晶粒径を線材であれば線径の半分以上としまたは板材であれば板厚以上とし、かつ、そのような結晶粒径を有する領域を線材の全長または板材の全面積の30%以上とすることを提案している。また、特許文献4においては、銅系合金の形状記憶特性を向上させるとともに、構造物に適用可能な断面サイズが大きい銅系合金とするために、最大結晶粒径を8mm超とした巨大結晶粒組織とすることを提案している。しかし、特許文献3と特許文献4に記載の方法では、Cu−Al−Mn系合金における、所定の大きな結晶粒径を有する結晶粒の粒径分布の制御がなお不十分であるため、形状記憶効果や超弾性特性は安定しない。また、繰返し変形によって蓄積する残留歪みが多く、繰返し変形後には超弾性特性の劣化も著しい。いずれの場合においても、繰返し変形を行った場合の耐破断性が低くて制御できない。   Further, in the copper-based alloys described in Patent Document 3 and Patent Document 4, there is still room for improvement in that the performance of the shape memory characteristics and the superelastic characteristics that are manifested is greatly uneven and these characteristics are not stable. Is a level. In addition, it is considered that texture control is indispensable for stabilizing shape memory characteristics and superelastic characteristics. However, in the method described in Patent Document 3, the degree of organization of the structure in the Cu—Al—Mn alloy is as follows. The low shape memory and superelastic properties are not yet stable enough. In Patent Document 3, in order to improve the shape memory characteristics and superelastic characteristics of a copper-based alloy, the crystal orientation to the β single phase is controlled, and if the average crystal grain size is a wire, it is set to more than half the wire diameter. Alternatively, in the case of a plate material, it is proposed that the thickness be equal to or greater than the plate thickness, and that the region having such a crystal grain size be 30% or more of the entire length of the wire or the total area of the plate material. Further, in Patent Document 4, in order to improve the shape memory characteristics of a copper-based alloy and to make a copper-based alloy having a large cross-sectional size applicable to a structure, a giant crystal grain having a maximum crystal grain size exceeding 8 mm is used. Propose to be an organization. However, in the methods described in Patent Document 3 and Patent Document 4, control of the particle size distribution of crystal grains having a predetermined large crystal grain size in the Cu—Al—Mn-based alloy is still insufficient. The effect and superelastic properties are not stable. In addition, there is a large amount of residual strain accumulated by repeated deformation, and the superelastic characteristics are significantly deteriorated after repeated deformation. In either case, the resistance to fracture when subjected to repeated deformation is low and cannot be controlled.

特許文献5では大きい結晶粒と小さい結晶粒の境界を定義し、さらに小さい結晶粒の存在頻度を求めることで繰返し変形後の残留歪み量を制御することが可能となった。結晶粒径を大きくしたほうが特性に優れるという点で本発明と類似している。しかし、大きく異なるのは本発明では繰返し変形を行った場合の耐破断性が高く制御できる点である。この結果、本発明では、特許文献5よりも高度な結晶粒径の制御が可能となり、特に優れた特性を示すことが明らかとなった。   In Patent Document 5, it is possible to control the residual strain amount after repeated deformation by defining the boundary between large crystal grains and small crystal grains and obtaining the existence frequency of smaller crystal grains. It is similar to the present invention in that the larger the grain size, the better the characteristics. However, a significant difference is that the present invention can control the fracture resistance to a high degree when it is repeatedly deformed. As a result, it has been clarified that the present invention makes it possible to control the crystal grain size higher than that of Patent Document 5, and exhibits particularly excellent characteristics.

非特許文献1では繰返し変形に関する向上を目的としている。ここで、製造方法は、縦型ブリッジマン法という製造時間が多くかかる工業的に難しい方法にて試験片を作製し評価をしている。試験片サイズも2mm×2mm×4mmとかなり小さく、いかに繰返し変形に優れていようとこのサイズでは適用可能な分野が限られてしまうという大きな問題がある。また、縦型ブリッジマン法は抵抗加熱と断熱材でホットゾーンが構成されており、坩堝を引下げることにより、徐々に温度下げて坩堝内で結晶化させる製造方法である。しかし、坩堝から不純物が混入する可能性が高く、これが核となって異なる結晶方位が成長し多結晶化しやすいため、目的の特性が得られない場合が多いという課題がある。さらに、報告されている組成は、製造後に加工ができない組成であるため、本発明で求められる工業用としてのCu−Al−Mn合金とは趣旨が大きく異なる。   Non-Patent Document 1 aims to improve repetitive deformation. Here, as a manufacturing method, a test piece is manufactured and evaluated by an industrially difficult method called a vertical Bridgman method which requires a lot of manufacturing time. The size of the test piece is also as small as 2 mm × 2 mm × 4 mm, and there is a big problem that the applicable field is limited with this size no matter how excellent the repeated deformation is. The vertical Bridgman method is a manufacturing method in which a hot zone is constituted by resistance heating and a heat insulating material, and the temperature is gradually lowered by pulling down the crucible to cause crystallization in the crucible. However, there is a high possibility that impurities are mixed from the crucible, and this causes a different crystal orientation to grow and polycrystallize easily, so that there is a problem that the desired characteristics are often not obtained. Furthermore, since the reported composition is a composition that cannot be processed after production, the gist of the composition differs greatly from the industrial Cu—Al—Mn alloy required in the present invention.

このように、結晶方位の集積もしくは所定の大きな結晶粒径を有することがCu−Al−Mn系合金において超弾性の向上に有効であると考えられている。しかしながら、従来技術では繰返し変形を行った場合の耐破断性が低くて改善がなされていない。ところが、本合金を医療器具や建築部材等として使用する場合、繰返し変形による特性の劣化は大きな問題となり改善が求められている。さらに、車載部品や航空宇宙機器部品等としてCu−Al−Mn系合金材を使用するためには、繰返し変形において高サイクル後でも破断しないことや、超弾性特性の劣化をより一層抑制する効果が求められている。   Thus, it is considered that accumulation of crystal orientations or having a predetermined large crystal grain size is effective in improving superelasticity in a Cu-Al-Mn alloy. However, the prior art has not been improved due to low fracture resistance when repeated deformation is performed. However, when this alloy is used as a medical instrument, a building member, or the like, deterioration of characteristics due to repeated deformation becomes a serious problem and improvement is required. Furthermore, in order to use a Cu-Al-Mn alloy material as a vehicle-mounted part, an aerospace equipment part, etc., there is an effect of further preventing the fracture even after a high cycle in repeated deformation and the deterioration of superelastic characteristics. It has been demanded.

そこで、本発明は、繰返し変形を行った場合の耐破断性が高くて優れたCu−Al−Mn系合金材及びそれを用いた用途を提供することを課題とする。   Then, this invention makes it a subject to provide the Cu-Al-Mn type-alloy material which was excellent in the fracture resistance at the time of repeating a deformation | transformation, and was excellent, and a use using the same.

本発明者らは、前記の問題点を解決するために鋭意検討を行った結果、Cu−Al−Mn系合金材の結晶粒の個数を制御することによって、繰返し変形を行った場合の耐破断性が高くて優れる合金材が得られることを見出した。また、このような結晶粒径を可能とする制御は、所定の中間焼鈍と冷間加工を経て、さらには記憶熱処理の最初の段階でα相析出量を固定した(α+β)相の状態としてから特定の遅い昇温速度でβ単相になる温度域まで加熱した後に、所定の温度で所定の時間保持し、さらにβ単相になる温度域から(α+β)相になる温度域までの特定の遅い降温速度での冷却と(α+β)相になる温度域からβ単相になる温度域までの特定の遅い昇温速度での加熱とを少なくとも4回以上繰返す記憶熱処理を行うこと、及び(α+β)の状態とする際に特に限定的な温度領域にすることの両方の制御によって達成できることを見出した。本発明は、これらの知見に基づいて完成するに至ったものである。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention controlled the number of crystal grains of the Cu-Al-Mn alloy material, thereby preventing fracture when repeated deformation was performed. It has been found that an excellent alloy material can be obtained. In addition, the control that enables such a crystal grain size is performed after a predetermined intermediate annealing and cold working, and also in a state of (α + β) phase in which the α phase precipitation amount is fixed in the first stage of the memory heat treatment. After heating to a temperature range that becomes a β single phase at a specific slow temperature increase rate, hold for a predetermined time at a predetermined temperature, and further, from a temperature range that becomes a β single phase to a temperature range that becomes an (α + β) phase Performing a storage heat treatment in which cooling at a slow temperature-decreasing rate and heating at a specific slow temperature-raising rate from the temperature range of the (α + β) phase to the temperature range of the β single phase are repeated at least four times; and (α It has been found that this can be achieved by controlling both of the temperature range to be particularly limited when the state is + β). The present invention has been completed based on these findings.

本発明によれば、以下の手段が提供される
(1)3.0〜10.0質量%のAl、5.0〜20.0質量%のMn、並びにNi、Co、Fe、Ti、V、Cr、Si、Nb、Mo、W、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B、C、Ag及びミッシュメタルからなる群より選ばれた1種または2種以上を合計で0.000〜10.000質量%を含有し、ここで、Ni及びFeの含有量はそれぞれ0.000〜3.000質量%であり、Coの含有量は0.000〜2.000質量%であり、Tiの含有量は0.000〜2.000質量%であり、V、Nb、Mo、Zrの含有量はそれぞれ0.000〜1.000質量%であり、Crの含有量は0.000〜2.000質量%であり、Siの含有量は0.000〜2.000質量%であり、Wの含有量は0.000〜1.000質量%であり、Snの含有量は0.000〜1.000質量%であり、Mgの含有量は0.000〜0.500質量%であり、Pの含有量は0.000〜0.500質量%であり、Be、Sb、Cd、Asの含有量はそれぞれ0.000〜1.000質量%であり、Znの含有量は0.000〜5.000質量%であり、B、Cの含有量はそれぞれ0.000〜0.500質量%であり、Agの含有量は0.000〜2.000質量%であり、ミッシュメタルの含有量は0.000〜5.000質量%であり、残部がCuと不可避的不純物からなる組成を有するCu−Al−Mn系合金の素材を溶解・鋳造する工程と、
熱間加工する工程と、
400〜680℃で1〜120分の中間焼鈍と、加工率30%以上の冷間加工を少なくとも各1回以上この順に行う工程と、
室温から(α+β)相になる温度域400〜650℃まで加熱した後に該温度域に2〜120分保持し、(α+β)相になる温度域からβ単相になる温度域まで0.1〜20℃/分の昇温速度で加熱し該温度域に5〜480分保持して、その後、β単相になる温度域から(α+β)相になる温度域400〜650℃まで0.1〜20℃/分の降温速度で冷却し該温度域に20〜480分保持して、その後、(α+β)相になる温度域400〜650℃からβ単相になる温度域まで0.1〜20℃/分の昇温速度で加熱し該温度域に5〜480分保持した後に急冷してなり、
ここで、前記β単相になる温度域に保持する工程から、その後の、β単相になる温度域から(α+β)相になる温度域400〜650℃まで0.1〜20℃/分の降温速度で冷却し該温度域に20〜480分保持する工程を経て、さらに、(α+β)相になる温度域からβ単相になる温度域まで0.1〜20℃/分の昇温速度で加熱し該温度域に5〜480分保持する工程までを少なくとも4回以上繰返すことを特徴とする
前記合金材は、圧延方向もしくは伸線方向である加工方向に対して長尺形状を有する合金材であり、
前記合金材の前記加工方向に垂直な方向の結晶粒長aが前記合金材の幅もしくは厚さまたは直径Rに対して同等で、a=Rとなる結晶粒同士の粒界の個数をXとした場合、Xの存在量が1以下であり、
前記合金材に3%の歪みを与える応力の負荷と除荷を繰り返し行なった場合に破断するまでの回数が10 回以上であるCu−Al−Mn系合金材の製造方法
上述した実施形態に関し、下記のCu−Al−Mn系合金材及びその用途についてさらに詳細に説明する。
<1>3.0〜10.0質量%のAl、5.0〜20.0質量%のMn、並びにNi、Co、Fe、Ti、V、Cr、Si、Nb、Mo、W、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B、C、Ag及びミッシュメタルからなる群より選ばれた1種または2種以上を合計で0.000〜10.000質量%を含有し、ここで、Ni及びFeの含有量はそれぞれ0.000〜3.000質量%であり、Coの含有量は0.000〜2.000質量%であり、Tiの含有量は0.000〜2.000質量%であり、V、Nb、Mo、Zrの含有量はそれぞれ0.000〜1.000質量%であり、Crの含有量は0.000〜2.000質量%であり、Siの含有量は0.000〜2.000質量%であり、Wの含有量は0.000〜1.000質量%であり、Snの含有量は0.000〜1.000質量%であり、Mgの含有量は0.000〜0.500質量%であり、Pの含有量は0.000〜0.500質量%であり、Be、Sb、Cd、Asの含有量はそれぞれ0.000〜1.000質量%であり、Znの含有量は0.000〜5.000質量%であり、B、Cの含有量はそれぞれ0.000〜0.500質量%であり、Agの含有量は0.000〜2.000質量%であり、ミッシュメタルの含有量は0.000〜5.000質量%であり、残部がCuと不可避的不純物からなる組成を有するCu−Al−Mn系合金材であって、
前記合金材は、圧延方向もしくは伸線方向である加工方向に対して長尺形状を有する合金材であり、
前記合金材の前記加工方向に垂直な方向の結晶粒長aが前記合金材の幅もしくは厚さまたは直径Rに対して同等で、a=Rとなる結晶粒同士の粒界の個数をXとした場合、Xの存在量が1以下であり、
前記合金材に3%の歪みを与える応力の負荷と除荷を繰り返し行なった場合に破断するまでの回数が10 回以上であることを特徴とするCu−Al−Mn系合金材。
<2>Ni、Co、Fe、Ti、V、Cr、Si、Nb、Mo、W、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B、C、Ag及びミッシュメタルからなる群より選ばれた1種または2種以上を合計で0.001〜10.000質量%含有し、ここで、Ni及びFeの含有量はそれぞれ0.001〜3.000質量%であり、Coの含有量は0.001〜2.000質量%であり、Tiの含有量は0.001〜2.000質量%であり、V、Nb、Mo、Zrの含有量はそれぞれ0.001〜1.000質量%であり、Crの含有量は0.001〜2.000質量%であり、Siの含有量は0.001〜2.000質量%であり、Wの含有量は0.001〜1.000質量%であり、Snの含有量は0.001〜1.000質量%であり、Mgの含有量は0.001〜0.500質量%であり、Pの含有量は0.010〜0.500質量%であり、Be、Sb、Cd、Asの含有量はそれぞれ0.001〜1.000質量%であり、Znの含有量は0.001〜5.000質量%であり、B、Cの含有量はそれぞれ0.001〜0.500質量%であり、Agの含有量は0.001〜2.000質量%であり、ミッシュメタルの含有量は0.001〜5.000質量%である、<1>項に記載のCu−Al−Mn系合金材。
<3>5%ひずみ量に相当する応力の負荷と除荷を100回繰返す繰返し変形において、残留する歪み量が1.5%以下である、<1>または<2>項に記載のCu−Al−Mn系合金材。
<4><1>〜<3>項のいずれか1項に記載のCu−Al−Mn系合金材からなるばね材。
<5><1>〜<3>項のいずれか1項に記載のCu−Al−Mn系合金材からなるダンパー。
<6><1>〜<3>項のいずれか1項に記載のCu−Al−Mn系合金材からなるブレース。
<7><1>〜<3>項のいずれか1項に記載のCu−Al−Mn系合金材からなるネジまたはボルト。
<8>引張と圧縮を繰り返す機構を有している<1>〜<3>項のいずれか1項に記載のCu−Al−Mn系合金材からなる部材。
According to the present invention, the following means are provided .
(1 ) 3.0-10.0 mass% Al, 5.0-20.0 mass% Mn, Ni, Co, Fe, Ti, V, Cr, Si, Nb, Mo, W, Sn, 0.000 to 10.000 mass% in total of one or more selected from the group consisting of Mg, P, Be, Sb, Cd, As, Zr, Zn, B, C, Ag and Misch metal Here, the content of Ni and Fe is 0.000 to 3.000 mass%, the content of Co is 0.000 to 2.000 mass%, and the content of Ti is 0.00. The content of V, Nb, Mo, and Zr is 0.000 to 1.000% by mass, and the content of Cr is 0.000 to 2.000% by mass. , Si content is 0.000 to 2.000 mass%, W content is 0.00 0 to 1.000 mass%, the Sn content is 0.000 to 1.000 mass%, the Mg content is 0.000 to 0.500 mass%, and the P content is 0. The content of Be, Sb, Cd, and As is 0.000 to 1.000 mass%, and the content of Zn is 0.000 to 5.000 mass%. Yes, the contents of B and C are 0.000 to 0.500% by mass, the content of Ag is 0.000 to 2.000% by mass, and the content of misch metal is 0.000 to 5%. A step of melting and casting a material of a Cu-Al-Mn alloy having a composition of 0.000% by mass and the balance of Cu and inevitable impurities;
A hot working process;
A step of performing intermediate annealing at 400 to 680 ° C. for 1 to 120 minutes and cold working at a processing rate of 30% or more at least once each in this order;
After heating from room temperature to a temperature range of 400 to 650 ° C. that becomes an (α + β) phase, hold in the temperature range for 2 to 120 minutes, and from a temperature range that becomes an (α + β) phase to a temperature range that becomes a β single phase 0.1 to Heat at a rate of temperature increase of 20 ° C./min and hold in the temperature range for 5 to 480 minutes, and then change from a temperature range of β single phase to a temperature range of 400 to 650 ° C. of (α + β) phase. Cool at a rate of temperature decrease of 20 ° C./min and hold in the temperature range for 20 to 480 minutes, then 0.1 to 20 from the temperature range 400 to 650 ° C. in which the (α + β) phase is reached to the temperature range in which the β single phase is reached. Heated at a temperature increase rate of ° C./min and held in the temperature range for 5 to 480 minutes, then rapidly cooled,
Here, from the step of maintaining in the temperature range that becomes the β single phase, from the temperature range that becomes the β single phase to the temperature range 400 to 650 ° C. that becomes the (α + β) phase, 0.1 to 20 ° C./min. The temperature is increased at a rate of 0.1 to 20 ° C./min from the temperature range that becomes the (α + β) phase to the temperature range that becomes the β single phase through the process of cooling at the temperature decrease rate and holding in the temperature range for 20 to 480 minutes. The process is repeated at least 4 times or more until it is heated at 5 to 480 minutes in the temperature range.
The alloy material is an alloy material having a long shape with respect to a processing direction which is a rolling direction or a wire drawing direction,
The crystal grain length a of the alloy material in the direction perpendicular to the processing direction is equal to the width or thickness or diameter R of the alloy material, and X is the number of grain boundaries between crystal grains where a = R. The amount of X present is 1 or less,
Method for manufacturing a Cu-Al-Mn-based alloy material number until the fracture is more than 10 twice when performed repeatedly load and unloading of the stress applied 3% strain in the alloy material.
The following Cu—Al—Mn alloy material and its application will be described in more detail with respect to the above-described embodiment.
<1> 3.0 to 10.0% by mass of Al, 5.0 to 20.0% by mass of Mn, Ni, Co, Fe, Ti, V, Cr, Si, Nb, Mo, W, Sn, 0.000 to 10.000 mass% in total of one or more selected from the group consisting of Mg, P, Be, Sb, Cd, As, Zr, Zn, B, C, Ag and Misch metal Here, the content of Ni and Fe is 0.000 to 3.000 mass%, the content of Co is 0.000 to 2.000 mass%, and the content of Ti is 0.00. The content of V, Nb, Mo, and Zr is 0.000 to 1.000% by mass, and the content of Cr is 0.000 to 2.000% by mass. , Si content is 0.000 to 2.000 mass%, W content is 0.00 To 1.000 mass%, the Sn content is 0.000 to 1.000 mass%, the Mg content is 0.000 to 0.500 mass%, and the P content is 0.00. The content of Be, Sb, Cd, and As is 0.000 to 1.000 mass%, and the content of Zn is 0.000 to 5.000 mass%. , B, and C are each 0.000 to 0.500 mass%, Ag is 0.000 to 2.000 mass%, and the misch metal content is 0.000 to 5.0. A Cu-Al-Mn alloy material having a composition consisting of Cu and unavoidable impurities,
The alloy material is an alloy material having a long shape with respect to a processing direction which is a rolling direction or a wire drawing direction,
The crystal grain length a of the alloy material in the direction perpendicular to the processing direction is equal to the width or thickness or diameter R of the alloy material, and X is the number of grain boundaries between crystal grains where a = R. The amount of X present is 1 or less,
Cu-Al-Mn-based alloy material, wherein the number of until breakage when subjected repeatedly load and unloading of the stress applied 3% strain in the alloy material is more than 10 2 times.
<2> From Ni, Co, Fe, Ti, V, Cr, Si, Nb, Mo, W, Sn, Mg, P, Be, Sb, Cd, As, Zr, Zn, B, C, Ag, and Misch Metal 1 to 2 or more kinds selected from the group consisting of 0.001 to 10.000% by mass in total, where the contents of Ni and Fe are 0.001 to 3.000% by mass, The Co content is 0.001 to 2.000 mass%, the Ti content is 0.001 to 2.000 mass%, and the contents of V, Nb, Mo, and Zr are 0.001 to 0.001, respectively. 1.000 mass%, Cr content is 0.001 to 2.000 mass%, Si content is 0.001 to 2.000 mass%, and W content is 0.001. To 1.000 mass%, and the Sn content is 0.001 to 1.000 mass The Mg content is 0.001 to 0.500 mass%, the P content is 0.010 to 0.500 mass%, and the contents of Be, Sb, Cd, and As are each 0. 0.001 to 1.000% by mass, Zn content is 0.001 to 5.000% by mass, B and C contents are 0.001 to 0.500% by mass, respectively. The Cu—Al—Mn based alloy material according to <1>, wherein the content is 0.001 to 2.000 mass%, and the content of misch metal is 0.001 to 5.000 mass%.
<3> In the cyclic deformation in which stress loading and unloading corresponding to a 5% strain amount are repeated 100 times, the remaining strain amount is 1.5% or less, and Cu— according to <1> or <2> Al-Mn alloy material.
<4> A spring material made of the Cu—Al—Mn alloy material according to any one of <1> to <3>.
<5> A damper made of the Cu—Al—Mn alloy material according to any one of <1> to <3>.
<6> A brace made of the Cu—Al—Mn alloy material according to any one of <1> to <3>.
<7> A screw or bolt made of the Cu—Al—Mn alloy material according to any one of <1> to <3>.
<8> A member made of the Cu—Al—Mn alloy material according to any one of <1> to <3>, having a mechanism for repeating tension and compression.

ここで、繰返し変形を行った場合に破断するまでの回数とは、所定の歪み量での負荷と除荷を繰返して、破断するまで変形した場合のその繰返し回数のことをいう。本発明では、この回数が多いほど望ましい。本発明において、繰返し変形を行った場合に破断するまでの優れた回数とは、3%の歪みを与える応力の負荷と除荷を行なった場合に破断するまでの回数が10回以上であることをいう。さらに、この回数にバラつきがないことが好ましい。
ここで、バラつきがないとは、例えば、各製造条件について同等の試験片をN=5回測定した結果、歪みを与える応力の負荷と除荷を行なった場合に破断するまでの回数が全て10回以上(5000回で測定は終了)であれば特に優れており、全て10回以上(N=5の測定で、最低値が971回、最大値が5000回)であれば良好と判断できる。一方、5回の測定の内一部が10回以上で未破断であっても、ひとつでも10回未満で破断した場合は破断に到達する回数のバラツキがあって、劣るとみなされる。
Here, the number of times until fracture when repeated deformation is performed refers to the number of times of repetition when deformation is performed until a fracture occurs by repeating loading and unloading with a predetermined strain amount. In the present invention, the larger the number of times, the better. In the present invention, the excellent times until breakage when performing repeated deformation, the number of until it breaks is not less than 10 2 times the case of performing the load and unloading of the stress giving the distortion of 3% That means. Furthermore, it is preferable that this number does not vary.
Here, the fact that there is no variation is, for example, that N = 5 times of the same test piece for each manufacturing condition. three times or more (measured at 5000 times the end) is excellent especially if, determined over all 10 twice (the measurement of N = 5, the minimum value is 971 times, the maximum value is 5000 times) good if it can. On the other hand, a portion of the 5 measurements be unbroken at least 10 3 times, if you break less than even one 10 2 times if there are variations in the number of times to reach the fracture are considered poor.

Cu−Al−Mn系超弾性合金材は、超弾性特性が要求される種々の用途に用いることができ、例えば、携帯電話のアンテナやメガネフレームの他に、医療製品として歯列矯正ワイヤー、ガイドワイヤー、ステント、巻き爪矯正具(陥入爪矯正具)や外反母趾補装具、その他、コネクタ、アクチュエータへの適用が検討されている。中でも本発明のCu−Al−Mn系超弾性合金材は、繰返し変形を行った場合の耐破断性が高くて優れているため、振動に関する制振または減衰を目的とした部材、ノイズの抑制または減衰を目的とした部材、または自己復元(セルフセンタリング)を目的とした部材に好適である。特に耐繰返し変形特性が必要となる宇宙機器、航空機器、自動車部材、建築部材、電子部品、医療製品等の従来では困難であった分野でも使用が可能となった。例えば、振動についてはバスバーなどの制震材や建築材として好適なものである。また、この制震材や建築材を用いて、制震構造体等を構築することができる。さらに、上記のような振動を吸収する特性を利用して、騒音や振動の公害の防止が可能となる土木建築材としての利用も可能である。さらに、ノイズ減衰の効果を目的とした場合では輸送機器分野での適用もできる。いずれの場合も優れた自己復元力を兼ね備えるため、自己復元材としても使用できる。
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
Cu-Al-Mn superelastic alloy materials can be used for various applications that require superelastic properties. For example, in addition to mobile phone antennas and eyeglass frames, orthodontic wires and guides can be used as medical products. Application to wires, stents, ingrown nail correctors (ingrown nail correctors), hallux valgus prostheses, connectors, and actuators is being studied. Among them, the Cu-Al-Mn superelastic alloy material of the present invention has a high fracture resistance when subjected to repeated deformation, and therefore is excellent in a member intended for damping or damping related to vibration, noise suppression or It is suitable for a member for the purpose of damping or a member for the purpose of self-restoration (self-centering). In particular, it has become possible to use in fields that have been difficult in the past, such as space equipment, aeronautical equipment, automobile parts, building parts, electronic parts, medical products and the like that require resistance to repeated deformation. For example, vibration is suitable as a damping material such as a bus bar or a building material. Moreover, a damping structure or the like can be constructed using this damping material or building material. Furthermore, it can also be used as a civil engineering building material that can prevent noise and vibration pollution by utilizing the characteristics of absorbing vibration as described above. Furthermore, in the case of aiming at the effect of noise attenuation, it can be applied in the field of transportation equipment. In any case, since it has an excellent self-restoring force, it can be used as a self-restoring material.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.

図1は、本発明のCu−Al−Mn系合金棒材(線材)1の模式図であり、本発明で規定する前記合金材の加工方向(RD)に垂直な方向の粒長(a)と合金材の幅または直径(R)との関係、及びaを含む粒同士の境(粒界)(X)の個数を説明する模式図である。FIG. 1 is a schematic view of a Cu—Al—Mn alloy rod (wire) 1 according to the present invention, in which the grain length (a) in a direction perpendicular to the processing direction (RD) of the alloy material defined in the present invention is shown. FIG. 6 is a schematic diagram illustrating the relationship between the width and the diameter (R) of the alloy material and the number of boundaries (grain boundaries) (X) between grains including a. 図2は、本発明の製造方法における全工程を示すフローチャートである。各工程の名称をフローチャートと併せて示した。FIG. 2 is a flowchart showing all the steps in the manufacturing method of the present invention. The name of each process is shown together with the flowchart. 図3は、本発明のCu−Al−Mn系合金材が奏する各物性値の定義を説明する模式図である。図3(a)は3%歪みに相当する応力の負荷と徐荷の繰返しで5000回変形させた場合のS−Sカーブの模式図である。図3(b)は3%歪みに相当する応力での引張と圧縮とを繰り返す試験を1000サイクル行った後の、1サイクル目が完了した時点(図中の実線)と1000サイクル目が完了した時点(図中の点線)での各々のS−Sカーブの模式図である。この1000サイクル目完了時の残留歪みを図中に示した。図3(c)は3%歪みに相当する応力での引張と圧縮とを繰り返す試験後の、1サイクル目が完了した時点(図中の実線)と100サイクル目が完了した時点(図中の点線)での各々のS−Sカーブの模式図である。この1サイクル目、100サイクル目完了時の各々の0.2%耐力に対する3%歪み負荷時の応力値を図中に示した。また、1サイクル目完了時の0.2%耐力(降伏応力)と比較して、100サイクル目完了時の0.2%耐力(降伏応力)の低下率を図中に示した。 ここで、負荷と徐荷の繰返しとは、応力の負荷と除荷を1回ずつ行って1サイクルとして、それらを繰り返す試験方法をいう。FIG. 3 is a schematic diagram illustrating the definition of each physical property value exhibited by the Cu—Al—Mn alloy material of the present invention. FIG. 3A is a schematic diagram of an SS curve when deformed 5000 times by repeated stress loading and slow loading corresponding to 3% strain. FIG. 3 (b) shows the time when the first cycle was completed (solid line in the figure) and the 1000th cycle were completed after 1000 cycles of a test in which tension and compression at a stress equivalent to 3% strain were repeated. It is a schematic diagram of each SS curve at the time (dotted line in a figure). The residual strain at the completion of the 1000th cycle is shown in the figure. FIG. 3 (c) shows the time when the first cycle was completed (solid line in the figure) and the time when the 100th cycle was completed (in the figure) after the test of repeating tension and compression at a stress equivalent to 3% strain. It is a schematic diagram of each SS curve in a dotted line. The stress values at the time of 3% strain loading with respect to the 0.2% proof stress at the completion of the first cycle and the 100th cycle are shown in the figure. In addition, the rate of decrease in 0.2% yield strength (yield stress) at the completion of the 100th cycle is shown in the figure as compared to 0.2% yield strength (yield stress) at the completion of the first cycle. Here, the repetition of loading and unloading refers to a test method in which stress loading and unloading are performed once to make one cycle. 図4は、本発明のCu−Al−Mn系合金材が奏する各物性値の定義を説明する模式図である。図4(a)は5%歪み負荷除荷を100サイクル繰り返す試験後の1サイクル目が完了した時点(図中の実線)と100サイクル目が完了した時点(図中の点線)での各々のS−Sカーブの模式図である。この1回目、100回目完了時の各々の残留歪みを図中に示した。図4(b)は5%歪み負荷除荷試験後のS−Sカーブの模式図である。0.2%耐力に対する5%歪み負荷時の応力値の「応力の差」を図中に示した。FIG. 4 is a schematic diagram illustrating the definition of each physical property value exhibited by the Cu—Al—Mn alloy material of the present invention. FIG. 4 (a) shows the time at which the first cycle after the test in which 5% strain load unloading was repeated 100 cycles was completed (solid line in the figure) and at the time when the 100th cycle was completed (dotted line in the figure). It is a schematic diagram of an SS curve. The residual strains at the completion of the first time and the 100th time are shown in the figure. FIG. 4B is a schematic diagram of the SS curve after the 5% strain load unloading test. The “stress difference” of the stress value at the time of 5% strain loading with respect to 0.2% proof stress is shown in the figure. 図5は『JIS Z2241 金属材料引張試験方法』に記載されているJIS 14号試験片の形状と寸法の模式図である。本発明では、JIS 14号試験片形状に基づき試験片を作製し特性評価を実施した。FIG. 5 is a schematic diagram of the shape and dimensions of a JIS No. 14 test piece described in “JIS Z2241 Metal Material Tensile Test Method”. In this invention, the test piece was produced based on the shape of a JIS No. 14 test piece, and the characteristic evaluation was implemented. 図6(a)は実施例1(工程No.aで製造)、図6(b)は比較例1(工程No.Aで製造)における製造工程を示すフローチャートである。各工程での加工及び熱処理、並びに繰り返し回数の条件を併せて示した。実施例1(工程No.a)では記憶熱処理における徐降温[工程5−5][13]と徐昇温[工程5−7][16]との繰返し数[19]が4回であったのに対して、比較例1(工程No.A)ではこの記憶熱処理において徐降温[工程5−5][13]と徐昇温[工程5−7][16]を繰返し数[19]は2回しか行っていない。また、実施例1(工程No.a)では[工程5−2][8]と[工程5−6][14]の温度が450℃であるのに対して、比較例1(工程No.A)では[工程5−2][8]と[工程5−6][14]の温度が300℃となっている。つまり、繰返し回数[19]と(α+β)相の保持温度[8]と[14]の点でも異なる。6A is a flowchart showing a manufacturing process in Example 1 (manufactured in process No. a) and FIG. 6B is a manufacturing process in Comparative Example 1 (manufactured in process No. A). The conditions of processing and heat treatment in each step and the number of repetitions are also shown. In Example 1 (process No. a), the number of repetitions [19] of the gradual temperature decrease [process 5-5] [13] and the gradual temperature increase [process 5-7] [16] in the memory heat treatment was 4 times. On the other hand, in Comparative Example 1 (Step No. A), the slow temperature decrease [Step 5-5] [13] and the gradually temperature increase [Step 5-7] [16] were repeated only twice in this memory heat treatment [19]. Not. In Example 1 (Step No. a), the temperatures of [Step 5-2] [8] and [Step 5-6] [14] are 450 ° C., whereas Comparative Example 1 (Step No. In A), the temperatures of [Step 5-2] [8] and [Step 5-6] [14] are 300 ° C. That is, the number of repetitions [19] and the (α + β) phase holding temperature [8] and [14] are also different. 図7は、後述の表5の実施例1(工程No.a)で得られる試料を3%歪に相当する引張と圧縮とを繰り返す試験で測定した場合に得られるS−S曲線の模式図である。図7は、実施例1について、左から順に、3%引張サイクル試験及び引張圧縮試験の1サイクル後、100サイクル後、及び1000サイクル後に得られるS−S曲線の模式図である。 ここで、「負荷と徐荷を繰り返す」と「引張と圧縮を繰り返す」は違う試験方法である。前述は応力の負荷(引張)と徐荷(圧縮はしない)を繰り返す試験方法であり、後述は引張負荷と圧縮負荷を繰り返す試験方法である。換言すると、「引張と圧縮を繰り返す」とは、『応力の引張方向の負荷と圧縮方向の負荷を1回ずつ行って1サイクルとして、それらを繰り返す試験方法』である。7 is a schematic diagram of an SS curve obtained when the sample obtained in Example 1 (step No. a) in Table 5 described later is measured by a test in which tension and compression corresponding to 3% strain are repeated. It is. FIG. 7: is a schematic diagram of the SS curve obtained about Example 1 in order from the left after 1 cycle of a 3% tension cycle test and a tension compression test, after 100 cycles, and after 1000 cycles. Here, “repeat load and slow load” and “repeat tension and compression” are different test methods. The foregoing is a test method in which stress load (tensile) and slow load (not compressed) are repeated, and the test method in the following is repeated in tensile load and compressive load. In other words, “repeating tension and compression” is “a test method in which a load in the tensile direction and a load in the compression direction of the stress are performed once to repeat them as one cycle”.

本発明のCu−Al−Mn系合金材は、所定の中間焼鈍と冷間加工を経て、さらには記憶熱処理の最初のβ単相になる温度域までの加熱[工程5−3]前に実施する(α+β)相になる温度域400〜650℃での保持[工程5−2]によってα相析出量を固定された後に、β単相になる温度域から(α+β)相になる温度域400〜650℃までの特定の遅い降温速度での冷却[工程5−5]と(α+β)相になる温度域400〜650℃からβ単相になる温度域までの特定の遅い昇温速度での加熱[工程5−7]とを少なくとも4回以上繰返す記憶熱処理が行われる。これにより、加工方向に垂直な方向の結晶粒長aが合金材の幅あるいは直径Rに対して同等で、a=Rとなる結晶粒同士の粒界の個数をXとした場合のXの存在量の制御が可能となり、繰返し変形を与えても良好な超弾性と高い耐破断性とを奏する合金材となる。   The Cu—Al—Mn alloy material of the present invention is subjected to a predetermined intermediate annealing and cold working, and further heating before the temperature range to become the first β single phase of the memory heat treatment [Step 5-3]. The temperature range 400 where the (α + β) phase is changed from the temperature range where the β phase is changed to the (α + β) phase after the α phase precipitation amount is fixed by holding in the temperature range 400 to 650 ° C. [step 5-2]. Cooling at a specific slow temperature decrease rate to ˜650 ° C. [Step 5-5] and a temperature range from 400 to 650 ° C. to a temperature range becoming a (α + β) phase to a temperature range becoming a β single phase at a specific slow temperature rising rate A storage heat treatment is performed in which the heating [Step 5-7] is repeated at least four times. Thus, the existence of X when the crystal grain length a in the direction perpendicular to the processing direction is equal to the width or diameter R of the alloy material and the number of grain boundaries between the crystal grains where a = R is X. The amount can be controlled, and an alloy material that exhibits good superelasticity and high fracture resistance even when repeatedly deformed.

なお、加工方向(RD、図1参照)とは、伸線加工であれば伸線方向を指し、圧延加工であれば圧延方向を指す。通常、板材等の圧延加工時の圧延方向をRD(Rolling Direction)と称するが、棒材等の伸線加工時の伸線方向も慣用的にRDとして表記することがある。従って、本明細書においてRDと言うときは、圧延方向および伸線方向を総称して、板材、棒材(線材)等の加工方向を意味するものとする。本発明では圧延方向もしくは伸線方向である加工方向に対して長尺形状を有するものとして特性評価を行った。   In addition, a process direction (RD, refer FIG. 1) refers to a wire drawing direction if it is a wire drawing process, and refers to a rolling direction if it is a rolling process. Usually, the rolling direction at the time of rolling processing of a plate material or the like is referred to as RD (Rolling Direction), but the wire drawing direction at the time of wire drawing of a bar material or the like may also be conventionally expressed as RD. Therefore, when it is referred to as RD in the present specification, the rolling direction and the wire drawing direction are collectively referred to and the processing direction of a plate material, a bar material (wire material) or the like is meant. In the present invention, the characteristics were evaluated as having a long shape with respect to the processing direction which is the rolling direction or the wire drawing direction.

<Cu−Al−Mn系合金材の組成>
形状記憶特性及び超弾性を有する本発明の銅系合金は、Al及びMnを含有した合金である。この合金は、高温でβ相(体心立方)単相(本書では、単にβ単相ともいう)になり、低温でβ相とα相(面心立方)の2相組織(本書では、単に(α+β)相ともいう)になる。合金組成により異なるが、β単相となる高温は通常700℃以上であり、(α+β)相となる低温とは通常700℃未満である。
<Composition of Cu-Al-Mn alloy material>
The copper-based alloy of the present invention having shape memory characteristics and superelasticity is an alloy containing Al and Mn. This alloy becomes a β-phase (body-centered cubic) single phase (also referred to simply as a β-single phase in this document) at high temperatures, and a two-phase structure (in this document, simply a β-phase and face-centered cubic) at low temperatures. (Also referred to as (α + β) phase). Although it depends on the alloy composition, the high temperature at which the β single phase is obtained is usually 700 ° C. or higher, and the low temperature at which the (α + β) phase is obtained is usually less than 700 ° C.

本発明のCu−Al−Mn系合金材は、3.0〜10.0質量%のAl、及び5.0〜20.0質量%のMnを含有し、残部Cuと不可避的不純物からなる組成を有する。Al元素の含有量が少なすぎるとβ単相を形成できず、また多すぎると合金材が脆くなる。Al元素の含有量はMn元素の含有量に応じて変化するが、好ましいAl元素の含有量は6.0〜10.0質量%である。Mn元素を含有することにより、β相の存在範囲が低Al側へ広がり、冷間加工性が著しく向上するので、成形加工が容易になる。Mn元素の添加量が少なすぎると満足な加工性が得られず、かつβ単相の領域を形成することができない。またMn元素の添加量が多すぎると、十分な形状回復特性が得られない。好ましいMnの含有量は8.0〜12.0質量%である。上記組成のCu−Al−Mn合金材は熱間加工性及び冷間加工性に富み、冷間で20%〜90%またはそれ以上の加工率が可能になり、棒(線)、板(条)の他に、従来は加工が困難であった極細線、箔、パイプ等にも成形加工することができる。   The Cu—Al—Mn alloy material of the present invention contains 3.0 to 10.0% by mass of Al and 5.0 to 20.0% by mass of Mn, and is composed of the balance Cu and inevitable impurities. Have If the Al element content is too small, a β single phase cannot be formed, and if it is too much, the alloy material becomes brittle. Although content of Al element changes according to content of Mn element, content of preferable Al element is 6.0-10.0 mass%. By containing the Mn element, the existence range of the β phase is expanded to the low Al side, and the cold workability is remarkably improved, so that the forming process is facilitated. If the amount of Mn element added is too small, satisfactory processability cannot be obtained, and a β single phase region cannot be formed. If the amount of Mn element added is too large, sufficient shape recovery characteristics cannot be obtained. A preferable Mn content is 8.0 to 12.0 mass%. The Cu—Al—Mn alloy material having the above composition is rich in hot workability and cold workability, and it is possible to achieve a working rate of 20% to 90% or more in the cold state. In addition, it can be molded into ultrafine wires, foils, pipes and the like that have been difficult to process.

上記必須の添加成分元素以外に、本発明のCu−Al−Mn系合金材はさらに任意の副添加元素として、Ni、Co、Fe、Ti、V、Cr、Si、Nb、Mo、W、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B、C、Ag及びミッシュメタル(Pr、Ndなど)からなる群より選ばれた1種または2種以上を含有することができる。これらの元素は冷間加工性を維持したままCu−Al−Mn系合金材の強度を向上させる効果を発揮する。これらの添加元素の含有量は合計で0.001〜10.000質量%であるのが好ましく、特に0.001〜5.000質量%が好ましい。これら元素の含有量が多すぎるとマルテンサイト変態温度が低下し、β単相組織が不安定になる。   In addition to the above-mentioned essential additive elements, the Cu—Al—Mn alloy material of the present invention further includes Ni, Co, Fe, Ti, V, Cr, Si, Nb, Mo, W, Sn as optional auxiliary additive elements. Mg, P, Be, Sb, Cd, As, Zr, Zn, B, C, Ag, and one or more selected from the group consisting of misch metal (Pr, Nd, etc.) can be contained. . These elements exhibit the effect of improving the strength of the Cu—Al—Mn alloy material while maintaining cold workability. The total content of these additive elements is preferably 0.001 to 10.000% by mass, particularly preferably 0.001 to 5.000% by mass. If the content of these elements is too large, the martensitic transformation temperature decreases and the β single phase structure becomes unstable.

Ni、Co、Fe、Snは基地組織の強化に有効な元素である。CoはCo−Al金属間化合物の形成により結晶粒を粗大化するが、過剰になると合金の靭性を低下させる。Coの含有量は0.001〜2.000質量%である。Ni及びFeの含有量はそれぞれ0.001〜3.000質量%である。Snの含有量は0.001〜1.000質量%である。   Ni, Co, Fe, and Sn are effective elements for strengthening the base structure. Co coarsens crystal grains due to the formation of a Co—Al intermetallic compound, but if excessive, it lowers the toughness of the alloy. The Co content is 0.001 to 2.000 mass%. The contents of Ni and Fe are 0.001 to 3.000% by mass, respectively. Sn content is 0.001-1.000 mass%.

Tiは阻害元素であるN及びOと結合し酸窒化物を形成する。またBとの複合添加によってボライドを形成し、強度を向上させる。Tiの含有量は0.001〜2.000質量%である。   Ti combines with inhibitory elements N and O to form oxynitrides. Moreover, a boride is formed by combined addition with B, and intensity | strength is improved. The Ti content is 0.001 to 2.000 mass%.

V、Nb、Mo、Zrは硬さを高める効果を有し、耐摩耗性を向上させる。またこれらの元素はほとんど基地に固溶しないので、β相(bcc結晶)として析出し、強度を向上させる。V、Nb、Mo、Zrの含有量はそれぞれ0.001〜1.000質量%である。   V, Nb, Mo, and Zr have the effect of increasing the hardness and improve the wear resistance. Moreover, since these elements hardly dissolve in the matrix, they are precipitated as a β phase (bcc crystal) to improve the strength. Content of V, Nb, Mo, and Zr is 0.001-1.000 mass%, respectively.

Crは耐摩耗性及び耐食性を維持するのに有効な元素である。Crの含有量は0.001〜2.000質量%である。Siは耐食性を向上させる効果を有する。Siの含有量は0.001〜2.000質量%である。Wは基地にほとんど固溶しないので、析出強化の効果がある。Wの含有量は0.001〜1.000質量%である。   Cr is an effective element for maintaining wear resistance and corrosion resistance. The Cr content is 0.001 to 2.000 mass%. Si has the effect of improving the corrosion resistance. The Si content is 0.001 to 2.000 mass%. Since W hardly dissolves in the base, there is an effect of precipitation strengthening. Content of W is 0.001-1.000 mass%.

Mgは阻害元素であるN及びOを除去する効果があるとともに、阻害元素であるSを硫化物として固定し、熱間加工性や靭性の向上に効果がある。多量の添加は粒界偏析を招き、脆化の原因となる。Mgの含有量は0.001〜0.500質量%である。   Mg has the effect of removing the inhibitory elements N and O, and fixes the inhibitory element S as a sulfide, which is effective in improving hot workability and toughness. Addition of a large amount causes segregation of grain boundaries and causes embrittlement. The content of Mg is 0.001 to 0.500 mass%.

Pは脱酸剤として作用し、靭性向上の効果を有する。Pの含有量は0.01〜0.50質量%である。Be、Sb、Cd、Asは基地組織を強化する効果を有する。Be、Sb、Cd、Asの含有量はそれぞれ0.001〜1.000質量%である。   P acts as a deoxidizer and has the effect of improving toughness. Content of P is 0.01-0.50 mass%. Be, Sb, Cd, and As have the effect of strengthening the base organization. The contents of Be, Sb, Cd, and As are 0.001 to 1.000 mass%, respectively.

Znは形状記憶処理温度を上昇させる効果を有する。Znの含有量は0.001〜5.000質量%である。B、Cは適量であればピン止め効果が得られより結晶粒が粗大化する効果がある。特にTi、Zrとの複合添加が好ましい。B、Cの含有量はそれぞれ0.001〜0.500質量%である。   Zn has the effect of increasing the shape memory processing temperature. The Zn content is 0.001 to 5.000% by mass. If B and C are suitable amounts, the pinning effect is obtained and the crystal grains are more coarsened. In particular, combined addition with Ti and Zr is preferable. Content of B and C is 0.001-0.500 mass%, respectively.

Agは冷間加工性向上させる効果がある。Agの含有量は0.001〜2.000質量%である。ミッシュメタルは適量であればピン止め効果が得られるので、より結晶粒が粗大化する効果がある。ミッシュメタルの含有量は0.001〜5.000質量%である。なお、ミッシュメタルとは、LaやCe、Ndなど単体分離の難しい希土類元素の合金のことを指す。   Ag has the effect of improving cold workability. The content of Ag is 0.001 to 2.000 mass%. If the amount of misch metal is an appropriate amount, the pinning effect can be obtained, so that the crystal grains are further coarsened. The content of misch metal is 0.001 to 5.000% by mass. Misch metal refers to an alloy of rare earth elements such as La, Ce, and Nd that are difficult to separate.

<Cu−Al−Mn系合金材の金属組織>
本発明のCu−Al−Mn系合金材は、再結晶組織を有する。また、本発明のCu−Al−Mn系合金材は、実質的にβ単相からなる再結晶組織を有する。ここで「実質的にβ単相からなる再結晶組織を有する」とは、再結晶組織中でβ相の占める割合が通常90%以上、好ましくは95%以上であることをいう。
<Metal structure of Cu-Al-Mn alloy material>
The Cu—Al—Mn alloy material of the present invention has a recrystallized structure. Moreover, the Cu—Al—Mn alloy material of the present invention has a recrystallized structure substantially consisting of a β single phase. Here, “having a recrystallized structure consisting essentially of a β single phase” means that the proportion of the β phase in the recrystallized structure is usually 90% or more, preferably 95% or more.

本発明の技術分野においては、Cu−Al−Mn系合金材を所定の結晶粒径に制御することが可能である点が本発明の技術的意義である。本発明によれば、安定して超弾性特性を示すだけでなく、変形回数が多数回(合金材に3%の歪みを与える応力の負荷と除荷を繰り返し行なった場合に破断するまでの回数が10回以上であること。以下、単に前記多数回という。)に及んでも破断に耐えることが可能となった。このように従来の手段からは予想できない顕著な効果が得られる。 In the technical field of the present invention, the technical significance of the present invention is that the Cu—Al—Mn alloy material can be controlled to a predetermined crystal grain size. According to the present invention, not only stably exhibits superelastic properties, but also has a large number of deformations (the number of times until fracture occurs when repeated loading and unloading of a stress that gives a strain of 3% to the alloy material are performed. It is possible to withstand breakage even if it reaches 10 2 times or more (hereinafter simply referred to as the above-mentioned multiple times). Thus, a remarkable effect that cannot be expected from the conventional means is obtained.

なお、従来技術ではバンブー構造が求められていたが、大きい結晶粒のみ制御が可能であり、小さい結晶粒の制御ができなかった。そのため、数回の繰り返しサイクルでは良好な超弾性を示したが、前記多数回では残留歪みが多くなった。これは粒界に残留歪みが蓄積されるためである。そのため、小さい結晶粒を可能な限り少なくする試みが行われており、小さい結晶粒の存在量を制御することで、前記多数回の変形でも残留歪みを少なくすることが可能となっている。しかしながら、小さい結晶粒ではない所謂バンブー組織に値する大きい結晶粒が多く存在すると破断するまでの回数に制限が発生することが明らかとなった。つまり、小さい結晶粒の存在だけでなく、バンブー組織も、その存在量が多い程破断するまでの回数に著しく影響を及ぼし、繰返し変形をさせて場合は早期に破断してしまう。そこで、本発明ではXの存在量を1以下に制御し、これにより前記多数回の繰り返し後における残留歪を小さくすることと前記破断するまでの回数の向上の両立を可能にした。このように従来の手段からは予想できない顕著な効果が得られる。
バンブー構造(組織)について説明する。a=R(図1参照)となる結晶粒同士の粒界の個数をXとした場合、Xの存在量が多いと試験体に粒界が竹の節のように存在することになる。ここで、バンブー構造、バンブー組織とは、試験体の直径を貫いた粒界がいくつも存在している組織状態を、バンブー構造またはバンブー組織という。
In addition, although the bamboo structure was calculated | required by the prior art, only a large crystal grain was controllable and the small crystal grain was not controllable. Therefore, good superelasticity was exhibited in several repeated cycles, but residual strain increased in many cycles. This is because residual strain accumulates at the grain boundaries. For this reason, attempts have been made to reduce the number of small crystal grains as much as possible. By controlling the amount of small crystal grains, it is possible to reduce residual strain even in the above-described many deformations. However, it has been clarified that when there are many large crystal grains that are not small crystal grains and so-called bamboo structure, the number of times until fracture occurs. In other words, not only the presence of small crystal grains but also the bamboo structure has a significant effect on the number of times until it breaks as the amount thereof increases, and when it is repeatedly deformed, it breaks early. Therefore, in the present invention, the abundance of X is controlled to be 1 or less, thereby making it possible to reduce both the residual strain after the numerous repetitions and the increase in the number of times until breakage. Thus, a remarkable effect that cannot be expected from the conventional means is obtained.
The bamboo structure (organization) will be described. Assuming that the number of grain boundaries between crystal grains satisfying a = R (see FIG. 1) is X, if the amount of X present is large, the grain boundaries exist in the test body like bamboo nodes. Here, the bamboo structure or the bamboo structure is a bamboo structure or a bamboo structure in which a number of grain boundaries penetrating the diameter of the specimen exist.

<結晶粒径の定義とその制御>
本発明のCu−Al−Mn系銅合金中には、大きい結晶粒のみ存在する。例えば、棒材であれば、試料直径Rに対して加工方向(RD)に垂直な方向の結晶粒長aがR=aであり、前記結晶粒同士の粒界の個数をXとした場合、Xの存在量が1以下であり、好ましくは0である。なお板材の場合も同様に、試料直径Rに対して加工(圧延)方向(RD)に垂直な方向の結晶粒長aがR=aであり、前記結晶粒同士の粒界の個数をXとした場合、Xの存在量が1以下であり、好ましくは0である。ここで、結晶粒界Xの存在量の測定は、Cu−Al−Mn系合金材の長手方向の表面あるいは断面を4点以上任意で測定した場合の粒界の個数で判断することができる。本発明における結晶粒Xは、加工工程での付加的剪断応力や工具面摩擦の影響で実質的に中心部より加工度が高く、結晶粒が微細になりやすい、Cu−Al−Mn系合金材の表面において評価を行っても良い。あるいは、図5で示される試験片形状に加工後に平行部のXを測定しても良い。本発明では、確認後そのまま特性評価を行ったため図5の状態に加工をして評価を行った。
図5で示される試験片の形状および寸法は、以下のとおりとする。試験片の原標点距離L(mm)=5.66√S、平行部長さL(mm)=5.5d〜7d、肩部の半径R(mm)=15以上とする。
平行部が角形断面の場合はL=5.66d、また、六角断面の場合はL=5.26dとしてもよい。平行部の長さは、できる限りL=7dとする。試験片のつかみ部の径は、平行部の径と同一寸法としてもよい。この場合、つかみの間隔は、L≧8dとする。
<Definition and control of crystal grain size>
Only large crystal grains exist in the Cu—Al—Mn based copper alloy of the present invention. For example, in the case of a bar, when the crystal grain length a in the direction perpendicular to the processing direction (RD) with respect to the sample diameter R is R = a and the number of grain boundaries between the crystal grains is X, The abundance of X is 1 or less, preferably 0. Similarly, in the case of a plate material, the crystal grain length a in the direction perpendicular to the processing (rolling) direction (RD) with respect to the sample diameter R is R = a, and the number of grain boundaries between the crystal grains is X. In this case, the abundance of X is 1 or less, preferably 0. Here, the abundance of the crystal grain boundary X can be determined by the number of grain boundaries when the surface or cross section in the longitudinal direction of the Cu—Al—Mn alloy material is arbitrarily measured at four or more points. The crystal grain X in the present invention has a Cu-Al-Mn alloy material that is substantially higher in processing than the center due to the effects of additional shear stress and tool surface friction in the processing step, and the crystal grains tend to become finer. Evaluation may be performed on the surface. Or you may measure X of a parallel part after processing into the test piece shape shown in FIG. In the present invention, since the characteristic evaluation was performed as it is after the confirmation, it was processed into the state shown in FIG.
The shape and dimensions of the test piece shown in FIG. 5 are as follows. Original test point distance L 0 (mm) = 5.66√S 0 , parallel part length L c (mm) = 5.5d 0 to 7d 0 , shoulder radius R (mm) = 15 or more .
When the parallel part has a square cross section, L c = 5.66d 0 , and when the parallel part has a hexagonal cross section, L c = 5.26d 0 may be set. The length of the parallel portion is set to L c = 7d 0 as much as possible. The diameter of the grip portion of the test piece may be the same as the diameter of the parallel portion. In this case, the interval between the grips is set to L c ≧ 8d 0 .

<Cu−Al−Mn系合金材の製造方法>
本発明のCu−Al−Mn系合金材において、上記のような安定的に良好な超弾性特性を奏して耐繰返し変形特性に優れる超弾性合金材を得るための製造条件としては、下記のような製造工程を挙げることができる。代表的な製造プロセスの一例を図2に示した。また、好ましい製造プロセスの一例を図6(a)に示した。
なお、以下の説明において「(例えば、)」として示した各熱処理での処理温度と処理時間(保持時間)、及び冷間加工での加工率(累積加工率)は、それぞれ実施例1、工程No.aで用いた値を代表的に示したものであり、本発明はこれらに限定されるものではない。
<Method for producing Cu-Al-Mn alloy material>
In the Cu-Al-Mn alloy material of the present invention, the production conditions for obtaining a superelastic alloy material having the above-mentioned stable and excellent superelastic properties and excellent in resistance to repeated deformation are as follows. Can be mentioned. An example of a typical manufacturing process is shown in FIG. An example of a preferable manufacturing process is shown in FIG.
In the following description, the processing temperature and processing time (holding time) in each heat treatment indicated as “(for example)”, and the processing rate (cumulative processing rate) in cold processing are the same as those in Example 1, step. No. The values used in a are representatively shown, and the present invention is not limited to these.

製造工程全体の中で特に、中間焼鈍[工程3]での熱処理温度[3]を400〜680℃の範囲とし、冷間加工(具体的には冷間圧延もしくは冷間伸線)[工程4−1]での冷間圧延率もしくは冷間伸線の加工率[5]を30%以上の範囲とすることにより、安定的に良好な超弾性特性を奏するCu−Al−Mn系合金材が得られる。これに加えて、記憶熱処理[工程5−1]〜[工程5−10]において、(α+β)相になる温度域[8]と[14](合金組成により異なるが400〜650℃、好ましくは450℃〜550℃)からβ単相になる温度域[11]と[17](合金組成により異なるが通常700℃以上、好ましくは750℃以上、さらに好ましくは900℃〜950℃)までの加熱[工程5−3]と[工程5−7]での昇温速度[10]と[16]とを、いずれも0.1〜20℃/分という所定の遅い範囲に制御する。これに加えて、β単相になる温度域[11]から(α+β)相になる温度域[14]までの冷却[工程5−5]での降温速度[13]を、0.1〜20℃/分という所定の遅い範囲に制御する。さらに、前記(α+β)相になる温度域[8]からβ単相になる温度域[11]までの加熱[工程5−3]の後で、β単相になる温度域[11]での所定時間[12]の保持[工程5−4]から、その後の、β単相になる温度域[11]から(α+β)相になる温度域[14]まで0.1〜20℃/分の降温速度[13]で冷却[工程5−5]し、該温度域[14]に所定時間[15]保持[工程5−6]を経て、さらに、(α+β)相になる温度域[14]からβ単相になる温度域[17]まで0.1〜20℃/分の昇温速度[16]で加熱[工程5−7]し、さらに該温度域[17]に所定時間[18]保持[工程5−8]するまでの、[工程5−4]から[工程5−8]までを少なくとも4回繰り返して行う([工程5−9])。この後、最後に急冷[工程5−10]する。   Especially in the whole manufacturing process, the heat treatment temperature [3] in the intermediate annealing [Step 3] is set in the range of 400 to 680 ° C., and cold working (specifically, cold rolling or cold drawing) [Step 4 is performed. Cu-Al-Mn alloy material that stably exhibits good superelastic characteristics by setting the cold rolling ratio or cold drawing ratio [5] in -1] to a range of 30% or more. can get. In addition to this, in the memory heat treatment [Step 5-1] to [Step 5-10], the temperature ranges [8] and [14] (400 to 650 ° C., depending on the alloy composition, which become the (α + β) phase, preferably From 450 ° C. to 550 ° C. to a β single phase [11] and [17] (depending on the alloy composition, usually 700 ° C. or higher, preferably 750 ° C. or higher, more preferably 900 ° C. to 950 ° C.) The heating rates [10] and [16] in [Step 5-3] and [Step 5-7] are both controlled within a predetermined slow range of 0.1 to 20 ° C./min. In addition to this, the cooling rate [13] in the cooling [step 5-5] from the temperature range [11] that becomes the β single phase to the temperature range [14] that becomes the (α + β) phase is 0.1 to 20 Control to a predetermined slow range of ° C / min. Furthermore, after the heating [step 5-3] from the temperature range [8] that becomes the (α + β) phase to the temperature range [11] that becomes the β single phase, in the temperature range [11] that becomes the β single phase. From the holding [step 5-4] for a predetermined time [12] to the subsequent temperature range [11] in which the β single phase is reached to the temperature range [14] in which the (α + β) phase is reached, 0.1 to 20 ° C./min. Cooling at the rate of temperature decrease [13] [step 5-5], passing through the temperature range [14] for a predetermined time [15] [step 5-6], and then the temperature range [14] that becomes the (α + β) phase. To a temperature range [17] from 0 to 0.1 [deg.] C./minute [step 5-7], and further in the temperature range [17] for a predetermined time [18]. The steps [Step 5-4] to [Step 5-8] until the holding [Step 5-8] are repeated at least four times ([Step 5-9]). After this, the final cooling is performed [step 5-10].

さらに、これらの降温[工程5−5]と昇温[工程5−7]を含めて[工程5−4]から[工程5−8]までを少なくとも4回繰り返す[工程5−9]前には、(α+β)相になる温度域[8]へ昇温速度[7]で加熱[工程5−1]した後、この温度域[8]で一定の保持時間[9]保持[工程5−2]することが好ましい。このように、一旦(α+β)相になる温度域[8]に保持[工程5−2]した後にβ単相になる温度域[11]に昇温[工程5−3]することによって、α相の析出量やサイズが一定に小さく保たれるため、記憶熱処理の最後に急冷[工程5−10]によって結晶粒粗大化処理を行う場合に結晶粒が大きくなる効果が得られやすくなる。   Further, including [step 5-5] and temperature increase [step 5-7], [step 5-4] to [step 5-8] are repeated at least four times before [step 5-9]. Is heated to the temperature range [8] that becomes the (α + β) phase at the rate of temperature increase [7] [Step 5-1], and then held at this temperature range [8] for a certain holding time [9] [Step 5- 2] is preferable. As described above, by once maintaining [step 5-2] in the temperature range [8] that becomes the (α + β) phase [step 5-2] and then raising the temperature to the temperature range [11] that becomes the β single phase [step 5-3], α Since the precipitation amount and size of the phase are kept constant, it is easy to obtain an effect of increasing the crystal grains when the crystal grain coarsening process is performed by rapid cooling [Step 5-10] at the end of the memory heat treatment.

そのため、まずα+β相になる温度域[8]まで昇温[工程5−1]し、その後、この(α+β)相になる温度域[8](例えば、450℃)で2〜120分[9]保持する[工程5−2]。前記熱処理[工程5−1]で加熱する際には、(α+β)相になる温度域[8]に昇温により到達すれば良いので、この[工程5−1]での昇温速度[7]には特に制限はなく、本発明における徐昇温とする必要はない。この昇温速度[7]は、例えば、30℃/分とすることができるが、もっと早くても逆に遅くてもよい。前記保持[工程5−2]においては、(α+β)相になる温度域[8]での保持時間[9]は、好ましくは10〜120分である。また、α相の析出量の固定は[工程5−2]で行う。[工程5−2]でα相の析出量を制御できるため、[工程5−1]の昇温速度は規定しなくても問題がない。このため、[工程5−1]の昇温速度を速い速度で行うことができて、製造にかかる全体の時間を短縮することができる。これは本発明の製造方法におけるメリットの1つである。   Therefore, first, the temperature is raised to the temperature range [8] where the α + β phase is obtained [Step 5-1], and then the temperature range [8] where the (α + β) phase is obtained (for example, 450 ° C.) for 2 to 120 minutes [9]. ] [Step 5-2]. When heating in the heat treatment [Step 5-1], it is only necessary to reach the temperature range [8] that becomes the (α + β) phase by raising the temperature, and the rate of temperature rise [7 in this [Step 5-1]. ] Is not particularly limited, and does not need to be gradually increased in the present invention. The rate of temperature increase [7] can be set to, for example, 30 ° C./min, but may be faster or slower. In the holding [Step 5-2], the holding time [9] in the temperature range [8] in which the (α + β) phase is obtained is preferably 10 to 120 minutes. In addition, the precipitation amount of the α phase is fixed in [Step 5-2]. Since the precipitation amount of the α phase can be controlled in [Step 5-2], there is no problem even if the rate of temperature increase in [Step 5-1] is not specified. For this reason, the temperature increase rate of [Step 5-1] can be performed at a high speed, and the entire time required for manufacturing can be shortened. This is one of the merits in the manufacturing method of the present invention.

その後、(α+β)相になる温度域[8](例えば、450℃)からβ単相になる温度域[11](例えば、900℃)まで昇温速度[10]で昇温[工程5−3]し、この温度域[11]で所定時間[12]保持[工程5−4]する。その後、(α+β)相になる温度域[14]まで降温速度[13]で降温[工程5−5]し、この温度域[14]で所定時間[15]保持[工程5−6]し、再度上記と同様に昇温(2回目以降の昇温[工程5−7]では昇温速度[16])する。この[工程5−4]から[工程5−8]までを合計で4回以上[19]繰り返す[工程5−9]。その後、最後に急冷[工程5−10]して溶体化処理を施す。このような全体工程とすることが好ましい。   Thereafter, the temperature is raised at a rate of temperature rise [10] from a temperature range [8] (for example, 450 ° C.) that becomes the (α + β) phase to a temperature range [11] (for example, 900 ° C.) that becomes the β single phase [Step 5- 3] and hold [12] for a predetermined time [step 5-4] in this temperature range [11]. Thereafter, the temperature is lowered [Step 5-5] at the temperature drop rate [13] to the temperature range [14] that becomes the (α + β) phase, [15] is held for a predetermined time [Step 5-6] in this temperature range [14], The temperature is raised again in the same manner as described above (in the second and subsequent temperature increases [step 5-7], the temperature increase rate [16]). This [Step 5-4] to [Step 5-8] is repeated [19] four or more times in total [Step 5-9]. Then, finally, rapid cooling [Step 5-10] and solution treatment is performed. Such an overall process is preferable.

ここで、前記記憶熱処理における昇温速度[10]と[16]と降温速度[13]とを遅くする(本書では、これを徐昇温、徐降温ともいう)とともに、前記降温[工程5−5]と昇温[工程5−7]を4回以上繰り返すことで、所望の良好な超弾性を繰返し変形後であっても得ることができ、さらに耐破断性が向上する。昇温速度[10]と[16]及び降温速度[13]は、いずれも0.1〜20℃/分であり、好ましくは0.1〜10℃/分であり、より好ましくは0.1〜3.3℃/分である。また、記憶熱処理に関しては、前記少なくとも4回以上繰り返して行う徐降温[工程5−5]と徐昇温[工程5−7]の内の最後の加熱処理(図示した例では図中で一番右側の[工程5−7][16])後に、急冷[工程5−10](いわゆる、焼き入れ)によって溶体化処理を施す。この急冷は、例えば、β単相での保持加熱[工程5−8]までの記憶熱処理に付したCu−Al−Mn系合金材を冷却水中に投入する水冷によって行うことができる。   Here, the temperature increase rates [10] and [16] and the temperature decrease rate [13] in the memory heat treatment are slowed (in this document, this is also referred to as gradual temperature increase or gradual decrease temperature) and the temperature decrease [Step 5-5]. And by repeating the temperature rise [Step 5-7] four or more times, desired good superelasticity can be obtained even after repeated deformation, and the fracture resistance is further improved. The heating rates [10] and [16] and the cooling rate [13] are all 0.1 to 20 ° C./min, preferably 0.1 to 10 ° C./min, more preferably 0.1. ~ 3.3 ° C / min. As for the memory heat treatment, the last heat treatment (step 5-5) and the stepwise temperature rise [step 5-7] that are repeated at least four times or more (the rightmost in the figure in the illustrated example). After [Step 5-7] [16]), a solution treatment is performed by rapid cooling [Step 5-10] (so-called quenching). This rapid cooling can be performed, for example, by water cooling in which the Cu—Al—Mn alloy material subjected to the storage heat treatment up to the holding heating [step 5-8] in the β single phase is introduced into the cooling water.

好ましくは、次のような製造工程が挙げられる。
常法によって溶解・鋳造[工程1]と熱間圧延または熱間鍛造の熱間加工[工程2]を行った後、400〜680℃[3]で1〜120分[4]の中間焼鈍[工程3]と、その後に、加工率30%以上[5]の冷間圧延または冷間伸線の冷間加工[工程4−1]とを行う。ここで、中間焼鈍[工程3]と冷間加工[工程4−1]とはこの順で1回ずつ行ってもよく、この順で2回以上の繰り返し回数[6]で繰り返して[工程4−2]行ってもよい。その後、記憶熱処理[工程5−1]〜[工程5−10]を行う。
Preferably, the following manufacturing processes are mentioned.
After performing melting / casting [Step 1] and hot rolling or hot forging [Step 2] by a conventional method, intermediate annealing [4] at 400 to 680 ° C. [3] for 1 to 120 minutes [4] Step 3] is followed by cold rolling or cold drawing [Step 4-1] with a working rate of 30% or more [5]. Here, the intermediate annealing [Step 3] and the cold working [Step 4-1] may be performed once in this order, and repeated in this order with the number of repetitions [6] of two or more [Step 4]. -2] May be performed. Thereafter, memory heat treatment [Step 5-1] to [Step 5-10] is performed.

前記記憶熱処理[工程5−1]〜[工程5−10]は、(α+β相)になる温度域(例えば、450℃)[8]からβ単相になる温度域(例えば、900℃)[11]までを0.1〜20℃/分、好ましくは0.1〜10℃/分、さらに好ましくは0.1〜3.3℃/分の昇温速度[10]で加熱[工程5−3]して、該加熱温度[11]に5分〜480分、好ましくは10〜360分[12]保持[工程5−4]してなり、さらにβ単相になる温度域(例えば、900℃)[11]から(α+β相)になる温度域(例えば、450℃)[14]までを0.1〜20℃/分、好ましくは0.1〜10℃/分、さらに好ましくは0.1〜3.3℃/分の降温速度[13]で冷却[工程5−5]して、該温度[14]に20〜480分、好ましくは30〜360分[15]保持[工程5−6]する。その後、再び(α+β相)になる温度域(例えば、450℃)[14]からβ単相になる温度域(例えば、900℃)[17]まで上記徐昇温の昇温速度[16]で加熱[工程5−7]して、該温度[17]に5分〜480分、好ましくは10〜360分[18]保持[工程5−8]する。このような徐降温[13][工程5−5]と徐昇温[16][工程5−7]を繰り返す[工程5−9]ことを少なくとも4回の繰り返し回数[19]で行う。その後、急冷[工程5−10]、例えば水冷の各工程を有してなる。
α+β単相になる温度域でかつ本発明で定める温度域は400〜650℃、好ましくは450〜550℃とする。
β単相になる温度域は700℃以上、好ましくは750℃以上、さらに好ましくは900〜950℃とする。
The memory heat treatment [Step 5-1] to [Step 5-10] is performed in a temperature range (for example, 450 ° C.) [8] from a temperature range (α + β phase) [8] to a temperature range (for example, 900 ° C.) [β]. 11] up to 0.1-20 ° C./min, preferably 0.1-10 ° C./min, more preferably 0.1-3.3 ° C./min. 3], and the heating temperature [11] is maintained for 5 minutes to 480 minutes, preferably 10 to 360 minutes [12] [Step 5-4], and further becomes a temperature range in which the β single phase is obtained (for example, 900 ° C.) [11] to (α + β phase) temperature range (for example, 450 ° C.) [14] is 0.1 to 20 ° C./min, preferably 0.1 to 10 ° C./min, more preferably 0. Cooling at a temperature drop rate [13] of 1 to 3.3 ° C./min [Step 5-5], and the temperature [14] is set to 20 to 480 minutes, preferably 3 360 min [15] held to [Step 5-6]. Thereafter, heating is performed at a rate of temperature increase [16] of the above-mentioned slow temperature increase from a temperature range (for example, 450 ° C.) [14] that becomes (α + β phase) again to a temperature range (for example, 900 ° C.) [17] that becomes the β single phase [17]. Step 5-7] and hold [18] [Step 5-8] at the temperature [17] for 5 minutes to 480 minutes, preferably 10 to 360 minutes. [Step 5-9] of repeating the slow temperature decrease [13] [Step 5-5] and the gradual temperature increase [16] [Step 5-7] is performed at least four times [19]. Thereafter, rapid cooling [Step 5-10], for example, water cooling steps are included.
The temperature range that becomes α + β single phase and the temperature range defined by the present invention is 400 to 650 ° C, preferably 450 to 550 ° C.
The temperature range for the β single phase is 700 ° C. or higher, preferably 750 ° C. or higher, more preferably 900 to 950 ° C.

前記記憶熱処理[工程5−1]〜[工程5−10]の後には、100〜200℃[21]で5〜120分[22]の時効熱処理[工程6]を施すことが好ましい。時効温度[21]が低すぎるとβ相は不安定であり、室温に放置しているとマルテンサイト変態温度が変化することがある。逆に時効温度[21]がやや高いとベイナイト(金属組織)、高すぎるとα相の析出が起こる。特にα相の析出は形状記憶特性や超弾性を著しく低下させる傾向がある。   After the memory heat treatment [Step 5-1] to [Step 5-10], it is preferable to perform an aging heat treatment [Step 6] at 100 to 200 ° C. [21] for 5 to 120 minutes [22]. If the aging temperature [21] is too low, the β phase is unstable, and if left at room temperature, the martensitic transformation temperature may change. On the other hand, when the aging temperature [21] is slightly high, bainite (metal structure) occurs, and when it is too high, precipitation of α phase occurs. In particular, the precipitation of α phase tends to significantly reduce shape memory characteristics and superelasticity.

中間焼鈍[工程3]と冷間加工[工程4−1]を繰り返し行う[工程4−2]ことで、結晶方位をより好ましく集積させることができる。中間焼鈍[工程3]と冷間加工[工程4−1]の繰り返し数[6]は、1回でも良いが、好ましくは2回以上、さらに好ましくは3回以上である。前記中間焼鈍[工程3]と前記加工[工程4−1]の繰り返し回数[6]が多いほど特性が向上するためである。   By repeating the intermediate annealing [Step 3] and the cold working [Step 4-1] [Step 4-2], the crystal orientations can be accumulated more preferably. The number of repetitions [6] of the intermediate annealing [Step 3] and the cold working [Step 4-1] may be one time, but is preferably two times or more, more preferably three times or more. This is because as the number of repetitions [6] of the intermediate annealing [Step 3] and the processing [Step 4-1] increases, the characteristics improve.

(各工程の好ましい条件)
中間焼鈍[工程3]は、400〜680℃[3]で1分〜120分[4]とする。この中間焼鈍温度[3]はより低い温度とすることが好ましく、好ましくは400〜550℃とする。
冷間加工[工程4−1]は加工率30%以上[5]とする。ここで、加工率は次の式で定義される値である。
加工率(%)={(A−A)/A}×100
は冷間加工(冷間圧延もしくは冷間伸線)前の試料の断面積であり、Aは冷間加工後の試料の断面積である。
(Preferred conditions for each step)
The intermediate annealing [Step 3] is performed at 400 to 680 ° C. [3] for 1 minute to 120 minutes [4]. The intermediate annealing temperature [3] is preferably set to a lower temperature, preferably 400 to 550 ° C.
The cold working [Step 4-1] is a working rate of 30% or more [5]. Here, the processing rate is a value defined by the following equation.
Processing rate (%) = {(A 1 −A 2 ) / A 1 } × 100
A 1 is the cross-sectional area of the samples before cold working (cold rolling or cold drawing), A 2 is the cross-sectional area of the sample after cold working.

この中間焼鈍[工程3]と冷間加工[工程4−1]とを2回以上繰り返し行う場合の累積加工率([6])は30%以上とすることが好ましく、さらに好ましくは45%以上である。累積加工率の上限値には特に制限はないが、通常95%以下である。
前記記憶熱処理[工程5−1]〜[工程5−10]においては、まず[工程5−1]では、前記冷間加工後に室温から昇温速度[7](例えば、30℃/分)で(α+β相)になる温度域(例えば、450℃)[8]まで昇温する。その後、(α+β相)になる温度域(例えば、450℃)[8]で2〜120分、好ましくは10〜120分[9]保持[工程5−2]する。その後、(α+β相)になる温度域(例えば、450℃)[8]からβ単相になる温度域(例えば、900℃)[11]まで加熱[工程5−3]する際には、昇温速度[10]を前記徐昇温の0.1〜20℃/分、好ましくは0.1〜10℃/分、さらに好ましくは0.1〜3.3℃/分とする。その後、この温度域[11]に5〜480分、好ましくは10〜360分[12]保持[工程5−4]する。その後、β単相になる温度域(例えば、900℃)[11]から(α+β相)になる温度域(例えば、450℃)[14]まで0.1〜20℃/分、好ましくは0.1〜10℃/分、さらに好ましくは0.1〜3.3℃/分の降温速度[13]で冷却[工程5−5]し、この温度域[14]で20〜480分、好ましくは30〜360分[15]保持[工程5−6]する。その後、再び(α+β相)になる温度域(例えば、450℃)[14]からβ単相になる温度域(例えば、900℃)[17]まで前記徐昇温の昇温速度[16]で加熱[工程5−7]し、この温度域[17]に5〜480分、好ましくは10〜360分[18]保持[工程5−8]する。このような[工程5−4]〜[工程5−8](条件[11]〜[18])を繰り返し[工程5−9]少なくとも4回[19]行う。
急冷[工程5−10]時の冷却速度[20]は、通常30℃/秒以上、好ましくは100℃/秒以上、さらに好ましくは1000℃/秒以上とする。
最後の任意の時効熱処理[工程6]は、通常100〜200℃[21]で5〜120分[22]、好ましくは120〜200℃[21]で5〜120分[22]行う。
The cumulative working rate ([6]) when the intermediate annealing [Step 3] and the cold working [Step 4-1] are repeated twice or more is preferably 30% or more, more preferably 45% or more. It is. Although there is no restriction | limiting in particular in the upper limit of a cumulative machining rate, Usually, it is 95% or less.
In the memory heat treatment [Step 5-1] to [Step 5-10], first, in [Step 5-1], the temperature is increased from room temperature to [7] (for example, 30 ° C./min) after the cold working. The temperature is raised to a temperature range (for example, 450 ° C.) [8] that becomes (α + β phase). Then, hold [9] [step 5-2] for 2 to 120 minutes, preferably 10 to 120 minutes [8] in a temperature range (for example, 450 ° C.) that becomes (α + β phase). Then, when heating [step 5-3] from the temperature range (for example, 450 ° C.) [8] that becomes the (α + β phase) to the temperature range (for example, 900 ° C.) [11] that becomes the β single phase, the temperature rises. The temperature rate [10] is set to 0.1 to 20 ° C./min, preferably 0.1 to 10 ° C./min, more preferably 0.1 to 3.3 ° C./min of the above-mentioned slow temperature increase. Then, hold [12] [step 5-4] in this temperature range [11] for 5 to 480 minutes, preferably 10 to 360 minutes. Thereafter, the temperature range from the temperature range (for example, 900 ° C.) [11] to the β single phase to the temperature range (for example, 450 ° C.) [14] to the (α + β phase) 0.1 to 20 ° C./min, preferably 0. 1 to 10 ° C./minute, more preferably 0.1 to 3.3 ° C./minute at a rate of temperature decrease [13] [Step 5-5], and this temperature range [14] for 20 to 480 minutes, preferably Hold [15] for 30 to 360 minutes [Step 5-6]. Thereafter, heating is performed at a temperature increase rate [16] of the gradual temperature increase from a temperature range (for example, 450 ° C.) [14] that becomes (α + β phase) again to a temperature range (for example, 900 ° C.) [17] that becomes a β single phase [17]. Step 5-7] and hold in this temperature range [17] for 5 to 480 minutes, preferably 10 to 360 minutes [18] [Step 5-8]. [Step 5-4] to [Step 5-8] (Conditions [11] to [18]) are repeated [Step 5-9] at least four times [19].
The cooling rate [20] during the rapid cooling [Step 5-10] is usually 30 ° C./second or more, preferably 100 ° C./second or more, more preferably 1000 ° C./second or more.
The last optional aging heat treatment [Step 6] is usually performed at 100 to 200 ° C. [21] for 5 to 120 minutes [22], preferably 120 to 200 ° C. [21] for 5 to 120 minutes [22].

<物性>
本発明の超弾性Cu−Al−Mn系合金材は、以下の物性(特性)を有する。
<Physical properties>
The superelastic Cu—Al—Mn alloy material of the present invention has the following physical properties (characteristics).

本発明のCu−Al―Mn系合金材は3%歪量に相当する応力の負荷と徐荷を繰り返す変形(例えば、図3(a)参照)を行った場合においては、10回以上の繰返し変形に耐えることができる。好ましく10回以上(ただし繰返し変形回数は5000回で試験終了とする。)破断するまで繰返し変形に耐えることができる。
上記の特性に加えて、本発明のCu−Al―Mn系合金材は、従来で目標とされている特性(下記の残留歪み量)も達成することが確認されている。例えば、5%ひずみ量に相当する応力の負荷と除荷を100回繰返す繰返し変形(例えば、図4(a)参照)において、残留する歪み量が2%以下である。この残留歪み量は、好ましくは1.5%以下である。この残留歪み量の下限値には特に制限はないが、通常0.1%以上である。
さらに、0.2%耐力の応力値と5%の歪みを負荷した場合に示す応力値の差を応力の差(例えば、図4(b)参照)とした場合、その差が50MPa以下であることが好ましい。この応力の差は、さらに好ましくは30MPa以下である。この応力の差の下限値には特に制限はないが、通常0.1MPa以上である。この応力の差は、形状記憶合金の応力−歪み曲線において歪みの増加に対して応力がほぼ一定値を示す領域(プラトー領域)の変化量を示している。この応力の差を所定の範囲内に小さくすると、大きな力を受けた場合でも歪みの割には一定の力しか伝達されないため、例えば建築材として使用した場合、建築物への影響を小さくすることができる。またこの応力の差が小さいと、母相とマルテンサイト相との変態・逆変態が容易であるため繰返しの変形や振動に耐えられる良好な超弾性を示す。
また、本発明のCu−Al―Mn系合金材は通常の応力の負荷と除荷を繰り返す変形とは異なり、引張と圧縮を繰り返す評価で3%ひずみ量に相当する応力の引張と圧縮を1000回繰返す繰返し変形(例えば、図3(b)参照)において、残留する歪み量が1%未満である。この残留歪み量の下限値には特に制限はないが、通常0.1%以上である。
このように通常の応力の負荷と除荷を繰り返す変形とは異なり、引張と圧縮を繰り返す評価では、本合金の特性の安定性は素晴しく、3%ひずみ量に相当する応力の引張と圧縮を100サイクル変形させる場合では残留歪みだけではなく降伏応力の低下率(例えば、図3(c)参照)の抑制にも効果があることが確認された。この低下率は元の降伏応力と比較して50%未満が好ましいが、さらに好ましくは30%未満である。
In the case where the Cu-Al-Mn alloy material of the present invention is subjected to deformation (for example, see FIG. 3 (a)) in which stress load corresponding to 3% strain amount and slow load are repeated, it is 10 2 times or more. Can withstand repeated deformation. More preferably 10 3 times (although repeated deformation number is. The end of the study in 5000 times) can withstand repeated deformation until rupture.
In addition to the above characteristics, it has been confirmed that the Cu—Al—Mn alloy material of the present invention also achieves the conventionally targeted characteristics (the following residual strain amount). For example, in repeated deformation (for example, see FIG. 4A) in which stress loading and unloading corresponding to a 5% strain amount are repeated 100 times, the remaining strain amount is 2% or less. This amount of residual strain is preferably 1.5% or less. Although there is no restriction | limiting in particular in the lower limit of this residual distortion amount, Usually, it is 0.1% or more.
Further, when the difference between the stress value of 0.2% proof stress and the stress value shown when 5% strain is applied is the difference in stress (for example, see FIG. 4B), the difference is 50 MPa or less. It is preferable. The difference in stress is more preferably 30 MPa or less. Although there is no restriction | limiting in particular in the lower limit of the difference of this stress, Usually, it is 0.1 Mpa or more. This difference in stress indicates the amount of change in the region (plateau region) where the stress shows a substantially constant value with respect to the increase in strain in the stress-strain curve of the shape memory alloy. If this stress difference is reduced within a specified range, even if a large force is applied, only a certain force is transmitted for the strain. For example, when used as a building material, the effect on the building should be reduced. Can do. If the difference in stress is small, the transformation between the parent phase and the martensite phase is easy, so that excellent superelasticity that can withstand repeated deformation and vibration is exhibited.
In addition, the Cu—Al—Mn alloy material of the present invention is different from the usual repeated stress loading and unloading deformation, and the tensile and compressive stress equivalent to 3% strain is 1000 In repetitive deformation (for example, see FIG. 3B), the remaining strain amount is less than 1%. Although there is no restriction | limiting in particular in the lower limit of this residual distortion amount, Usually, it is 0.1% or more.
In this way, unlike deformation that repeats normal stress loading and unloading, the evaluation of repeated tensile and compression results in excellent stability of the properties of this alloy, and tensile and compressive stress equivalent to 3% strain. In the case of deforming 100 cycles, it was confirmed that not only the residual strain but also the yield stress reduction rate (for example, see FIG. 3C) is effective. The rate of decrease is preferably less than 50% compared to the original yield stress, but more preferably less than 30%.

上記の通り本発明材は引張と圧縮を繰り返すことで、その効果がより一層著しいものとなる。本発明では、各試料片に3%ひずみ量に相当する応力の引張と圧縮を1000回繰返す繰返し変形と、従来の測定方法である歪み量3%に相当する応力の負荷と徐荷を1000回繰り返す評価を行い、それぞれ特性の変化を確認した。その結果、残留する歪み量については1000回後の値を比較するとその差が顕著であり、降伏応力の低下率については100回後の値を比較するとその差が顕著であることを見出した。そのため、本発明ではそれぞれの特性について繰返し変形1000回後と100回後の値を比較することとした。   As described above, the effect of the present invention material becomes even more remarkable by repeating tension and compression. In the present invention, each sample piece is repeatedly deformed by repeating the tension and compression of stress corresponding to 3% strain 1000 times, and the load and slow load of stress corresponding to 3% strain, which is a conventional measurement method, are 1000 times. Repeated evaluation was performed to confirm changes in characteristics. As a result, it was found that the difference was remarkable when the value after 1000 times was compared for the remaining strain amount, and the difference was remarkable when the value after 100 times was compared for the yield stress reduction rate. Therefore, in the present invention, the values after 1000 times and 100 times after repeated deformation are compared for each characteristic.

<超弾性Cu−Al−Mn系合金材のサイズと形状>
本発明のCu−Al−Mn系合金材は、加工方向(RD)に対して伸長された形状体である。先述の通り、加工方向(RD)とは、合金材が板材であれば圧延加工の圧延方向であるし、棒材であれば伸線加工の伸線方向である。本発明の合金材は加工方向(RD)に対して伸長しているが、必ずしも合金材の長手方向と加工方向とが一致している必要はない。長尺状体である本発明のCu−Al−Mn系合金材を切断・曲げ加工等した場合は、合金材のもともとの加工方向がどの向きであったのかを考慮して、本発明に含まれるものであるか否かを判断する。なお、本発明のCu−Al−Mn系合金材の具体的な形状には特に制限はなく、例えば棒(線)、板(条)など種々の形状とすることができる。これらのサイズにも特に制限はないが、例えば、棒材であれば直径0.1〜50mmあるいは用途によっては直径8〜16mmのサイズと、それぞれすることができる。また、板材であれば、その厚さが1mm以上、例えば1〜15mmであってもよい。本発明の上記製造方法において、伸線加工に代えて圧延加工を行うことで、板材(条材)を得ることができる。ここで、長さについては400mm以上のものでX=0が製造可能であることを確認している。ただし、本発明では図5JIS 14号試験片形状に基づいてd=10(mm)、L=70(mm)の試験におけるXの存在量を評価した。
<Size and shape of superelastic Cu-Al-Mn alloy material>
The Cu—Al—Mn alloy material of the present invention is a shape that is elongated in the processing direction (RD). As described above, the processing direction (RD) is the rolling direction of rolling if the alloy material is a plate material, and the drawing direction of wire drawing if the alloy material is a bar material. Although the alloy material of this invention is extended | stretched with respect to the process direction (RD), the longitudinal direction of an alloy material does not necessarily need to correspond. When cutting or bending the Cu-Al-Mn alloy material of the present invention which is a long body, it is included in the present invention in consideration of the original processing direction of the alloy material. To determine whether or not In addition, there is no restriction | limiting in particular in the specific shape of the Cu-Al-Mn type alloy material of this invention, For example, it can be set as various shapes, such as a stick | rod (wire) and a board | plate (strip). Although there is no restriction | limiting in particular also in these sizes, For example, if it is a rod, it can be set as the diameter of 0.1-50 mm in diameter, or the size of 8-16 mm depending on a use, respectively. Moreover, if it is a board | plate material, the thickness may be 1 mm or more, for example, 1-15 mm. In the manufacturing method of the present invention, a plate material (strip material) can be obtained by performing a rolling process instead of the wire drawing process. Here, it is confirmed that X = 0 can be manufactured with a length of 400 mm or more. However, in the present invention, the abundance of X in the test of d 0 = 10 (mm) and L C = 70 (mm) was evaluated based on FIG. 5 JIS No. 14 test piece shape.

また、本発明の棒材は、丸棒(丸線)に限らず、角棒(角線)や平角棒(平角線)の形状であってもよい。ここで、角棒(角線)を得るには、上記方法によって予め得た丸棒(丸線)に、常法に従って、例えば、加工機による冷間加工、カセットローラーダイスによる冷間加工、プレス、引抜加工等の平角線加工を施せばよい。また、平角線加工において得られる断面形状を適宜調整すれば、断面形状が正方形である角棒(角線)と断面形状が長方形である平角棒(平角線)を作り分けることができる。さらに、本発明の棒材(線材)は、中空状で管壁を有する管などの形状であってもよい。   Further, the bar of the present invention is not limited to a round bar (round wire), but may be a square bar (square wire) or a flat bar (flat wire). Here, in order to obtain a square bar (square wire), the round bar (round wire) obtained in advance by the above method is subjected to a conventional method, for example, cold working with a processing machine, cold working with a cassette roller die, press Then, rectangular wire processing such as drawing processing may be performed. Moreover, if the cross-sectional shape obtained in the flat wire processing is appropriately adjusted, a square bar (square wire) having a square cross-sectional shape and a rectangular bar (flat wire) having a rectangular cross-sectional shape can be separately formed. Furthermore, the rod (wire) of the present invention may be in the shape of a hollow tube having a tube wall.

<制震材・建築材>
本発明のCu−Al−Mn系合金材は振動に関する制振・減衰を目的とした部材や、ノイズの抑制または減衰を目的とした部材、自己復元(セルフセンタリング)を目的とした部材に好適に用いることができる。これらの部材は、前記棒材や板材から構成されてなるものである。制震材や建築材の例としては、特に制限されるものではないが、例えば、ブレース、ファスナー、アンカーボルトなどを挙げることができる。さらに、特に耐繰返し変形特性が必要となる宇宙機器、航空機器、自動車部材、建築部材、電子部品、医療製品等従来では困難であった分野でも使用が可能となった。振動を吸収する特性を利用して、騒音や振動の公害の防止が可能となる土木建築材としての利用も可能である。さらに、ノイズ減衰の効果を目的とした場合では輸送機器分野での適用もできる。いずれの場合も優れた自己復元力を兼ね備えるため、自己復元材としても使用できる。
<制震構造体>
本発明のCu−Al−Mn系合金材は制震構造体として好適に用いることができる。この制震構造体は、前記制震材から構築されてなるものである。制震構造体の例としては、特に制限されるものではなく、前記のブレース、ファスナー、アンカーボルトなどを用いて構成された構造体であればいかなる構造体であってもよい。
<土木建築材>
本発明のCu−Al−Mn系合金材は騒音や振動の公害の防止が可能となる土木建築材としての利用も可能である。例えば、コンクリートと共に複合材料を形成して使用することができる。
<その他>
本発明のCu−Al−Mn系合金材は宇宙機器や航空機、自動車などの振動吸収部材、自己復元材として使用も可能である。ノイズ減衰の効果を目的とした輸送機器分野への適用もできる。
<Vibration control materials and building materials>
The Cu-Al-Mn alloy material of the present invention is suitable for a member for vibration suppression / damping, a member for noise suppression or damping, or a member for self-restoration (self-centering). Can be used. These members are composed of the bar or plate material. Examples of the damping material and the building material are not particularly limited, and examples thereof include a brace, a fastener, and an anchor bolt. Furthermore, it can be used in fields that have been difficult in the past, such as space equipment, aeronautical equipment, automobile parts, building parts, electronic parts, medical products and the like that particularly require repeated deformation resistance. It can also be used as a civil engineering building material that can prevent noise and vibration pollution by utilizing the characteristics of absorbing vibration. Furthermore, in the case of aiming at the effect of noise attenuation, it can be applied in the field of transportation equipment. In any case, since it has an excellent self-restoring force, it can be used as a self-restoring material.
<Seismic control structure>
The Cu—Al—Mn alloy material of the present invention can be suitably used as a damping structure. This damping structure is constructed from the damping material. Examples of the vibration control structure are not particularly limited, and any structure may be used as long as the structure is configured using the braces, fasteners, anchor bolts, and the like.
<Civil engineering materials>
The Cu—Al—Mn alloy material of the present invention can also be used as a civil engineering building material capable of preventing noise and vibration pollution. For example, a composite material can be formed and used with concrete.
<Others>
The Cu—Al—Mn alloy material of the present invention can also be used as a vibration absorbing member and a self-restoring material for space equipment, aircraft and automobiles. It can also be applied to the field of transportation equipment for the purpose of noise attenuation.

以下に、本発明を実施例に基づき、さらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1〜43、比較例1〜31、34、36、37、39〜41)
棒材(線材)のサンプル(供試材)は以下の条件で作製した。
表1に示す組成を与えるCu−Al−Mn系合金の素材として、純銅、純Mn、純Al、及び必要により他の副添加元素の原料を高周波誘導炉で溶解した。溶製したCu−Al−Mn系合金を冷却し、外径80mm×長さ300mmの鋳塊(インゴット)を得た。得られた鋳塊を800℃で熱間押出した後、本発明の実施例1では表2に示した工程No.a(図6(a)にフローチャートを示した。)、比較例1では表2に示した工程No.A(図6(b)にフローチャートを示した。)にそれぞれ示した加工プロセスに従ってJIS14号試験片の棒材を作製した。これら以外の各々の実施例と比較例は、表2に示した各加工プロセスに変更した以外は前記実施例1および比較例1と同様にして調製した。
なお、表2と他に後述の表3、表4−1、表4−2、表5に示した各加工プロセスにおける各工程は、図2および図6(a)と図6(b)に示した括弧付の番号([工程#])に対応し、合金組成は表1の番号に対応する。また、表2に示した以外の各種製造条件(括弧付の番号([#]))は以下の通りであり、表2、表3で特に記載がないものについては全ての実施例と比較例で同一条件とした。
(Examples 1-43 , Comparative Examples 1-31, 34, 36, 37, 39-41 )
A sample (test material) of a bar (wire) was produced under the following conditions.
Pure copper, pure Mn, pure Al, and, if necessary, raw materials for other sub-addition elements were melted in a high-frequency induction furnace as a material for the Cu—Al—Mn alloy giving the composition shown in Table 1. The melted Cu-Al-Mn alloy was cooled to obtain an ingot having an outer diameter of 80 mm and a length of 300 mm. After the obtained ingot was hot extruded at 800 ° C., in Example 1 of the present invention, the process No. shown in Table 2 was performed. a (a flowchart is shown in FIG. 6A), and in Comparative Example 1, the process No. shown in Table 2 was performed. A bar material of a JIS No. 14 test piece was prepared according to the processing processes shown in A (the flowchart was shown in FIG. 6B). Each of the Examples and Comparative Examples other than these was prepared in the same manner as in Example 1 and Comparative Example 1 except that the processing processes shown in Table 2 were changed.
In addition to Table 2, each step in each processing process shown in Table 3, Table 4-1, Table 4-2, and Table 5 described later is shown in FIG. 2, FIG. 6 (a), and FIG. 6 (b). Corresponding to the parenthesized numbers shown ([Step #]), the alloy composition corresponds to the numbers in Table 1. Further, various production conditions (numbers in parentheses ([#])) other than those shown in Table 2 are as follows, and all examples and comparative examples are not particularly described in Tables 2 and 3. The same conditions were used.

[1]の溶解・鋳造条件は、前記のとおり大気溶解後に所定のサイズの鋳型で冷却して鋳造した。
[2]の熱間加工温度は800℃とした。
[3]の中間焼鈍温度は550℃とした。
[4]の中間焼鈍時間は100分とした。
[5]の冷間加工率は30%とした。
[6]の[3]〜[5]の繰返し回数は3回、累積冷間加工率は65%とした。
[7]の室温から(α+β)相となる温度域への昇温速度は30℃/分とした。
[8]の(α+β)相となる温度域での保持温度は450℃とした。
[9]の(α+β)相となる温度域での保持時間は60分とした。
[11]のβ単相となる温度域での保持温度は900℃とした。
[12]のβ単相となる温度域での保持時間は120分とした。
[14]の(α+β)相となる温度域での保持温度は450℃とした。
[15]の(α+β)相となる温度域での保持時間は60分とした。
[16]の(α+β)相となる温度域からβ単相となる温度域への昇温速度は[10]と同一とした。
[17]のβ単相となる温度域での保持温度は900℃とした。
[18]のβ単相となる温度域での保持時間は120分とした。
[20]のβ単相となる温度域からの急冷速度は50℃/秒とした。
[21]の時効温度は150℃とした。
[22]の時効時間は20分とした。
As described above, the melting and casting conditions of [1] were as follows.
The hot working temperature of [2] was 800 ° C.
The intermediate annealing temperature of [3] was 550 ° C.
The intermediate annealing time of [4] was 100 minutes.
The cold working rate of [5] was 30%.
[6] [3] to [5] were repeated three times, and the cumulative cold working rate was 65%.
The rate of temperature increase from room temperature in [7] to the temperature range of the (α + β) phase was 30 ° C./min.
The holding temperature in the temperature range of [8] in the (α + β) phase was 450 ° C.
The holding time in the temperature range of [9] in the (α + β) phase was 60 minutes.
[11] The holding temperature in the temperature range where the β single phase is obtained was set to 900 ° C.
[12] The holding time in the temperature range where the β single phase is obtained was 120 minutes.
[14] The holding temperature in the temperature range of the (α + β) phase was 450 ° C.
The holding time in the temperature range of [15] in the (α + β) phase was 60 minutes.
The temperature increase rate from the temperature range of [16] in the (α + β) phase to the temperature range of the β single phase was the same as in [10].
[17] The holding temperature in the temperature range where the β single phase is obtained was set to 900 ° C.
[18] The holding time in the temperature range where the β single phase is obtained was 120 minutes.
The rapid cooling rate from the temperature range in which [20] is the β single phase was 50 ° C./second.
The aging temperature of [21] was 150 ° C.
The aging time of [22] was 20 minutes.

超弾性特性の評価は、引張試験による応力の負荷と除荷を繰返し5000回または、応力引張方向に印加−圧縮方向に印加を1000回行って、応力−歪曲線(S−Sカーブ)を求め、残留歪みや降伏応力の低下率、破断するまでの回数を求めて評価した。引張試験は、1つの供試材から5本(N=5)の試験片を切り出して試験した。以下の試験結果で、残留ひずみは5本の平均値である。
表3、表4−1、表4−2、表5に本発明の実施例、比較例の試験及び評価の結果を、合金材料の種類(表1参照)と加工プロセス条件(表2、表3参照)と併せてまとめて示す。
以下に各試験及び評価の方法について詳述する。
The evaluation of the superelastic property is performed by repeating stress loading and unloading by a tensile test 5000 times or applying in the stress tension direction and applying 1000 times in the compression direction to obtain a stress-strain curve (SS curve). The residual strain and yield stress reduction rate, and the number of times until breakage were determined and evaluated. In the tensile test, five (N = 5) test pieces were cut out from one specimen and tested. In the following test results, the residual strain is an average value of five.
Table 3, Table 4-1, Table 4-2, and Table 5 show the results of tests and evaluations of Examples and Comparative Examples of the present invention, the types of alloy materials (see Table 1), and processing process conditions (Tables 2 and Tables). 3)).
Hereinafter, each test and evaluation method will be described in detail.

a.再結晶組織の結晶粒径
後述の超弾性の耐繰返し変形特性の評価のための引張試験の前に、試験片の表面を塩化第二鉄水溶液でエッチングし、結晶粒径を確認した。確認する試験片の全長は特に定めないが、後述する引張試験の標点距離と同等以上の長さが必要と考えられる。そのため本発明では、L=70mmの部分について確認を行った。結晶粒径の測定方法の模式図は図1に示したとおりである。本発明においては、加工方向(長尺方向)に垂直な方向の結晶粒長aが前記合金材の幅もしくは厚さまたは直径Rに対して同等で、a=Rであることが必要である。このようにa=Rとなる結晶粒同士の粒界の個数をXとした場合、Xの存在量についてカウントし、Xがいくつとなったかを測定、評価した。
a. Crystal grain size of recrystallized structure Before the tensile test for evaluation of the superelastic repeated deformation resistance described later, the surface of the test piece was etched with an aqueous ferric chloride solution to confirm the crystal grain size. Although the total length of the test piece to be confirmed is not particularly defined, it is considered necessary to have a length equal to or greater than the gauge distance of the tensile test described later. Therefore, in the present invention, it was confirmed for the portion of the L C = 70 mm. The schematic diagram of the method for measuring the crystal grain size is as shown in FIG. In the present invention, it is necessary that the crystal grain length a in the direction perpendicular to the working direction (longitudinal direction) is equal to the width or thickness or diameter R of the alloy material, and a = R. In this way, when the number of grain boundaries between crystal grains satisfying a = R is X, the abundance of X is counted and the number of X is measured and evaluated.

b.耐繰返し変形特性[5%歪み負荷除荷−100サイクル後の残留歪み]
5%の歪みを与える応力の負荷と除荷を繰返し行って、応力−歪曲線(S−Sカーブ)を求め、1サイクル後の残留歪から100サイクル後の残留歪まで求めた(図4(a)参照)。
各供試材から20個の試験片を切り出して試験に供した。5%歪み負荷除荷−100サイクル後の残留歪みを応力−歪曲線(S−Sカーブ)から求めた。各表中には、100サイクル後の残留ひずみを「サイクル後残留歪み」として示した。
b. Cyclic deformation resistance [5% strain load unloading-residual strain after 100 cycles]
A stress-strain curve (SS curve) was obtained by repeatedly performing stress loading and unloading giving a strain of 5% to obtain a residual strain after one cycle to a residual strain after 100 cycles (FIG. 4 ( a)).
Twenty test pieces were cut out from each test material and used for the test. 5% strain load unloading—residual strain after 100 cycles was determined from a stress-strain curve (SS curve). In each table, the residual strain after 100 cycles was shown as “post-cycle residual strain”.

試験条件は、標点距離70mmで、歪量5%を得る応力の負荷と除荷とを交互に繰り返す引張試験を、試験速度5%/分で100回行った。以下の基準で評価した。
残留歪が1.5%以下であった場合を超弾性特性が優れるとして「◎」、残留歪が1.5%を越えかつ2.0%以下であった場合を超弾性特性が良好であるとして「○」、残留歪が2.0%を超えて大きかった場合を超弾性特性が不合格であったとして「×」と判断し、各表に示した。
The test condition was a tensile test of 100 times at a test speed of 5% / min, with a test mark distance of 70 mm and alternately repeating stress loading and unloading to obtain a strain amount of 5%. Evaluation was made according to the following criteria.
If the residual strain is 1.5% or less, the superelastic property is excellent, “◎”, and if the residual strain exceeds 1.5% and 2.0% or less, the superelastic property is good. As “◯”, and the case where the residual strain was larger than 2.0% was judged as “X” because the superelastic property was rejected, and is shown in each table.

c.5%歪みと0.2%歪みにおける応力の差
5%の歪みを与える応力の負荷と除荷を行って、応力−歪曲線(S−Sカーブ)から0.2%耐力の応力値と5%の歪みを負荷した場合に示す応力値の差を「応力の差」として求めた(図4(b)参照)。上記の「応力の差」は、例えば加工が不十分となった場合などに、適正に制御できなくなると、この「応力の差」が発生する。この応力の差は、例えば建築材として使用する場合、建物に伝達する応力の値は小さい方が望まれるため、応力の差が小さいほど優れた特性であると言える。そのため、上記方法で「応力の差」を計測した場合、30MPa以下のものを優れるとして「◎」、30MPaを超えて50MPa以下のもの良好として「○」、50MPaを超えるものを劣るとして「×」と判断し、各表に示した。
c. Stress difference between 5% strain and 0.2% strain The stress value giving 5% strain and unloading were performed. From the stress-strain curve (SS curve), the stress value of 0.2% proof stress and 5 The difference of the stress value shown when% strain was loaded was calculated | required as "stress difference" (refer FIG.4 (b)). The “stress difference” is generated when the “stress difference” cannot be properly controlled, for example, when the processing becomes insufficient. For example, when the difference in stress is used as a building material, it is desired that the value of the stress transmitted to the building is small. Therefore, it can be said that the smaller the difference in stress, the better the characteristic. Therefore, when “stress difference” is measured by the above method, “◎” indicates that 30 MPa or less is excellent, “◯” indicates that the pressure exceeds 30 MPa and 50 MPa or less, and “×” indicates that the value exceeding 50 MPa is inferior. Are shown in each table.

d.3%歪み引張サイクル試験5000回
3%の歪みを与える応力の負荷と除荷を行って、破断するまでの回数を求めた(図3(a)参照)。破断するまでの回数が多ければ多いほど繰返し変形に耐えられるため、建物の崩壊や部材の破壊を抑制できると言える。そのため、上記方法同様の製造条件で作製したもの5本について「破断までの繰返し耐久回数」を計測した場合、全てが10回以上であって測定上限の5000回であったものを優れるとして「◎」、全てが10回以上、但し、最低回数が900回以上のものを良好として「○」、10回未満または最低回数が10〜10回までバラツキが大きく制御ができないものを劣るとして「×」と判断し、各表に示した。
d. 3% Strain Tensile Cycle Test 5000 times Stress was applied to give 3% strain and unloading was performed to determine the number of times until fracture (see FIG. 3 (a)). It can be said that the greater the number of times until breakage, the more it can withstand repeated deformation, the more it can suppress the collapse of buildings and the destruction of members. Therefore, when measuring the "repetition endurance to failure" for five those prepared in the above process the same manufacturing conditions, as excellent ones everything was 5000 measurements limit be more than 10 2 times " ◎ ", all 10 twice or more, however, as good as a minimum number of more than 900 times" ○ ", those or minimum number less than 10 2 times is unable variation greater control to 10 1 to 10 3 times It was judged as “x” as inferior, and is shown in each table.

e.3%引張サイクル試験及び引張圧縮試験1000サイクル後残留歪み
3%の歪みを与える応力の負荷除荷試験もしくは引張負荷と圧縮負荷の繰返し変形を行って、応力−歪曲線(S−Sカーブ)から1000サイクル後の残留歪みを求めた(図3(b)参照)。上記の「1000サイクル後残留歪み」は、残留歪みが小さい程、自己復元能力に優れており元の形状に戻りやすいと言える。そのため、上記方法で「1000回後の残留歪み」を計測した場合、1.0%未満のものを優れるとして「◎」、1.0%以上2.0%未満ものを良好として「○」、2.0%を超えるものを劣るとして「×」と判断し、各表に示した。
なお、引張圧縮試験の場合はこの残留歪み量が引張側と圧縮側で異なる場合が多い。これは、初期の中心軸がずれている場合と考えられる。従って、引張側の残留歪みaと圧縮側の残留歪みa´を引いて2で割った値の平均値を残留歪みとした(図3(b)参照)。
e. Residual strain after 1000 cycles of 3% tensile cycle test and tensile compression test From the stress-strain curve (SS curve) by performing a load unloading test of stress giving 3% strain or repeated deformation of tensile load and compression load Residual strain after 1000 cycles was obtained (see FIG. 3B). The above-mentioned “residual strain after 1000 cycles” can be said to be more excellent in self-restoring ability and easier to return to the original shape as the residual strain is smaller. Therefore, when “residual strain after 1000 times” is measured by the above method, “と し て” indicates that the one less than 1.0% is excellent, and “◯” indicates that one that is 1.0% or more and less than 2.0% is good. Those exceeding 2.0% were judged as “x” as inferior, and are shown in each table.
In the case of a tension / compression test, the residual strain is often different between the tension side and the compression side. This is considered to be a case where the initial central axis is deviated. Accordingly, the average value of the values obtained by subtracting the residual strain a on the tension side and the residual strain a ′ on the compression side and dividing by 2 was defined as the residual strain (see FIG. 3B).

f.3%引張サイクル試験及び引張圧縮試験100サイクル後降伏応力の低下率
3%の歪みを与える応力の負荷除荷試験もしくは引張負荷と圧縮負荷の繰返し変形を行って、応力−歪曲線(S−Sカーブ)から1回目の0.2%耐力の応力値と100回目の0.2%耐力の応力値を求め、繰返し変形による降伏応力の低下率を求めた(図3(c)参照)。上記の「降伏応力の低下率」は自己復元能力の特性の安定性を示す指標のひとつとなる。低下率は小さい方が望まれるため、小さいほど優れた特性であると言える。そのため、上記方法で「降伏応力の低下率」を計測した場合、10%以下のものを優れるとして「◎」、10%を越え50%以下のもの良好として「○」、50%を越えるものを劣るとして「×」と判断し、各表に示した。なお、降伏応力の低下率(%)は1回目の応力‐歪曲線から求められる0.2%耐力の応力値と100回目の0.2%耐力の応力値の差を、1回目の応力‐歪曲線から求められる0.2%耐力の応力値で割った値×100で求めることができる(図3(c)参照)。
f. 3% tensile cycle test and tensile compression test Yield stress reduction rate after 100 cycles Stress-strain curve (SS) by performing unloading test of stress giving 3% strain or repeated deformation of tensile load and compressive load The first 0.2% proof stress value and the 100th 0.2% proof stress value were determined from the curve), and the yield stress reduction rate due to repeated deformation was determined (see FIG. 3C). The above “yield stress reduction rate” is one of the indices indicating the stability of the self-restoring ability characteristic. Since a smaller reduction rate is desired, it can be said that the smaller the decrease rate, the better the characteristics. Therefore, when the “yield stress reduction rate” is measured by the above method, “◎” indicates that 10% or less is excellent, “◎” indicates that 10% or more exceeds 50%, and “◯” indicates that 50% or less is exceeded. It was judged as “x” as inferior, and is shown in each table. The yield stress reduction rate (%) is the difference between the stress value of 0.2% proof stress obtained from the first stress-strain curve and the stress value of 0.2% proof stress of the 100th time. It can be determined by a value obtained by dividing by a stress value of 0.2% proof stress determined from a strain curve × 100 (see FIG. 3C).

g.5%引張サイクル試験
5%の歪みを与える応力の負荷除荷試験を行って、応力−歪曲線(S−Sカーブ)から1回目の0.2%耐値と5%歪を与えた応力値を求め、この差を「応力の差」として求めた(図4(b)参照)。上記の「応力の差」が小さいことは本合金の応力−歪み曲線において歪みの増加に対して応力がほぼ一定値を示す領域(プラトー領域)の変化量が小さいということを示している。すなわち、超弾性合金における自己復元能力の特性の安定性を示す指標の1つとなる。プラトー領域の傾きは小さい方が望まれるため、小さいほど優れた特性であるといえる。そのため、上記方法で「応力の差」を計測した場合、30%以下のものを優れるとして「◎」、30%を越え50%以下のもの良好として「○」、50%を越えるものを劣るとして「×」と判断し、各表に示した。
g. 5% Tensile Cycle Test Stress value that gave a 0.2% resistance value and 5% strain for the first time from a stress-strain curve (SS curve) after performing an unloading test of stress giving 5% strain This difference was determined as a “stress difference” (see FIG. 4B). The small “stress difference” indicates that the amount of change in the region (plateau region) where the stress shows a substantially constant value with respect to the increase in strain in the stress-strain curve of this alloy is small. That is, it becomes one of the indexes indicating the stability of the self-restoring ability characteristic in the superelastic alloy. Since it is desired that the inclination of the plateau region is small, it can be said that the smaller the plateau region, the better the characteristics. Therefore, when the “stress difference” is measured by the above method, “◎” indicates that 30% or less is excellent, “Good” indicates that 30% or more exceeds 50%, and “◯” indicates that it is inferior if 50% or less. It was judged as “x” and shown in each table.

Figure 0006490608
Figure 0006490608

Figure 0006490608
Figure 0006490608

Figure 0006490608
Figure 0006490608

Figure 0006490608
Figure 0006490608

Figure 0006490608
Figure 0006490608

Figure 0006490608
Figure 0006490608

以上に示した結果から明らかとなり、実施例1〜43は、本発明で規定する結晶粒径を満たすことにより繰返し変形を行った場合の耐破断性に優れる。さらに、本合金の使用条件の見直しによって、通常の負荷除荷方法よりも、引張負荷と圧縮負荷を繰り返す使用方法では特性の向上が著しく向上することが確認され、1000サイクル後での残留歪みが低下し、100サイクル後での降伏応力の劣化を防ぐことが可能であることを確認できた。   It becomes clear from the results shown above, and Examples 1 to 43 are excellent in fracture resistance when subjected to repeated deformation by satisfying the crystal grain size defined in the present invention. Furthermore, by reviewing the usage conditions of this alloy, it has been confirmed that the improvement in characteristics is remarkably improved in the usage method in which tensile load and compression load are repeated rather than the normal load unloading method, and the residual strain after 1000 cycles is confirmed. It was confirmed that it was possible to prevent the yield stress from being deteriorated after 100 cycles.

一方、各比較例は、いずれかの特性に劣った結果となった。
この内、表3に示した比較例1〜17は本発明で規定する結晶粒径を満たすことができず、劣っていた。
On the other hand, each comparative example resulted in inferior properties.
Among these, Comparative Examples 1 to 17 shown in Table 3 were inferior because they could not satisfy the crystal grain size defined in the present invention.

また、表4−2に示した比較例18〜31、34、36、37及び39〜41は、いずれも本発明で規定する所定の合金組成を満たさないか、あるいは、本発明で規定する製造条件を満たさないために、それぞれ製造自体が不可能であったかあるいは、本発明の奏する超弾性の耐繰返し変形特性(5%歪みに相当する応力の負荷と徐荷を100サイクル繰り返した後の残留歪み)に劣っていた。 In addition, Comparative Examples 18 to 31, 34, 36, 37, and 39 to 41 shown in Table 4-2 do not satisfy the predetermined alloy composition defined by the present invention, or are manufactured according to the present invention. Each of the production itself was not possible because the conditions were not satisfied, or the super-elastic cyclic deformation resistance characteristic of the present invention (residual strain after repeating 100 cycles of stress loading and slow loading corresponding to 5% strain) ).

また、試験結果の記載は省略するが、表1に記載した以外の本発明の好ましい合金組成としたCu−Al−Mn系合金材の場合や、棒材(線材)に代えて板材(条材)とした場合にも、前記の実施例と同様の結果が得られた。   In addition, although the description of the test results is omitted, in the case of a Cu—Al—Mn alloy material having a preferable alloy composition of the present invention other than those described in Table 1, a plate material (strip material) instead of a bar material (wire material) ), The same results as in the previous example were obtained.

本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。   While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.

1 本発明のCu−Al−Mn系合金棒材(線材)
a 加工方向に垂直な方向の結晶粒長
X 結晶粒界
R 合金材の幅あるいは棒材(線材)の直径
RD 合金材の加工方向(棒材(線材)の伸線方向)
1 Cu-Al-Mn alloy rod of the present invention (wire)
a Grain length in the direction perpendicular to the machining direction X Grain boundary R Width of alloy material or diameter of rod (wire) RD Processing direction of alloy material (drawing direction of rod (wire))

Claims (1)

3.0〜10.0質量%のAl、5.0〜20.0質量%のMn、並びにNi、Co、Fe、Ti、V、Cr、Si、Nb、Mo、W、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B、C、Ag及びミッシュメタルからなる群より選ばれた1種または2種以上を合計で0.000〜10.000質量%を含有し、ここで、Ni及びFeの含有量はそれぞれ0.000〜3.000質量%であり、Coの含有量は0.000〜2.000質量%であり、Tiの含有量は0.000〜2.000質量%であり、V、Nb、Mo、Zrの含有量はそれぞれ0.000〜1.000質量%であり、Crの含有量は0.000〜2.000質量%であり、Siの含有量は0.000〜2.000質量%であり、Wの含有量は0.000〜1.000質量%であり、Snの含有量は0.000〜1.000質量%であり、Mgの含有量は0.000〜0.500質量%であり、Pの含有量は0.000〜0.500質量%であり、Be、Sb、Cd、Asの含有量はそれぞれ0.000〜1.000質量%であり、Znの含有量は0.000〜5.000質量%であり、B、Cの含有量はそれぞれ0.000〜0.500質量%であり、Agの含有量は0.000〜2.000質量%であり、ミッシュメタルの含有量は0.000〜5.000質量%であり、残部がCuと不可避的不純物からなる組成を有するCu−Al−Mn系合金の素材を溶解・鋳造する工程と、
熱間加工する工程と、
400〜680℃で1〜120分の中間焼鈍と、加工率30%以上の冷間加工を少なくとも各1回以上この順に行う工程と、
室温から(α+β)相になる温度域400〜650℃まで加熱した後に該温度域に2〜120分保持し、(α+β)相になる温度域からβ単相になる温度域まで0.1〜20℃/分の昇温速度で加熱し該温度域に5〜480分保持して、その後、β単相になる温度域から(α+β)相になる温度域400〜650℃まで0.1〜20℃/分の降温速度で冷却し該温度域に20〜480分保持して、その後、(α+β)相になる温度域400〜650℃からβ単相になる温度域まで0.1〜20℃/分の昇温速度で加熱し該温度域に5〜480分保持した後に急冷してなり、
ここで、前記β単相になる温度域に保持する工程から、その後の、β単相になる温度域から(α+β)相になる温度域400〜650℃まで0.1〜20℃/分の降温速度で冷却し該温度域に20〜480分保持する工程を経て、さらに、(α+β)相になる温度域からβ単相になる温度域まで0.1〜20℃/分の昇温速度で加熱し該温度域に5〜480分保持する工程までを少なくとも4回以上繰返すことを特徴とする
前記合金材は、圧延方向もしくは伸線方向である加工方向に対して長尺形状を有する合金材であり、
前記合金材の前記加工方向に垂直な方向の結晶粒長aが前記合金材の幅もしくは厚さまたは直径Rに対して同等で、a=Rとなる結晶粒同士の粒界の個数をXとした場合、Xの存在量が1以下であり、
前記合金材に3%の歪みを与える応力の負荷と除荷を繰り返し行なった場合に破断するまでの回数が10 回以上であるCu−Al−Mn系合金材の製造方法
3.0-10.0 mass% Al, 5.0-20.0 mass% Mn, Ni, Co, Fe, Ti, V, Cr, Si, Nb, Mo, W, Sn, Mg, P , Be, Sb, Cd, As, Zr, Zn, B, C, Ag, and one or two or more selected from the group consisting of misch metal in a total amount of 0.000 to 10.000% by mass, Here, the content of Ni and Fe is 0.000 to 3.000% by mass, the content of Co is 0.000 to 2.000% by mass, and the content of Ti is 0.000 to 2%. 0.000% by mass, the contents of V, Nb, Mo and Zr are 0.000 to 1.000% by mass, the Cr content is 0.000 to 2.000% by mass, Content is 0.000-2.000 mass%, content of W is 0.000-1 000 mass%, Sn content is 0.000 to 1.000 mass%, Mg content is 0.000 to 0.500 mass%, and P content is 0.000 to 0. .500 mass%, the contents of Be, Sb, Cd, and As are 0.000 to 1.000 mass%, the Zn content is 0.000 to 5.000 mass%, B, The C content is 0.000 to 0.500% by mass, the Ag content is 0.000 to 2.000% by mass, and the misch metal content is 0.000 to 5.000% by mass. A process of melting and casting a Cu-Al-Mn alloy material having a composition consisting of Cu and inevitable impurities in the balance,
A hot working process;
A step of performing intermediate annealing at 400 to 680 ° C. for 1 to 120 minutes and cold working at a processing rate of 30% or more at least once each in this order;
After heating from room temperature to a temperature range of 400 to 650 ° C. that becomes an (α + β) phase, hold in the temperature range for 2 to 120 minutes, and from a temperature range that becomes an (α + β) phase to a temperature range that becomes a β single phase 0.1 to Heat at a rate of temperature increase of 20 ° C./min and hold in the temperature range for 5 to 480 minutes, and then change from a temperature range of β single phase to a temperature range of 400 to 650 ° C. of (α + β) phase. Cool at a rate of temperature decrease of 20 ° C./min and hold in the temperature range for 20 to 480 minutes, then 0.1 to 20 from the temperature range 400 to 650 ° C. in which the (α + β) phase is reached to the temperature range in which the β single phase is reached. Heated at a temperature increase rate of ° C./min and held in the temperature range for 5 to 480 minutes, then rapidly cooled,
Here, from the step of maintaining in the temperature range that becomes the β single phase, from the temperature range that becomes the β single phase to the temperature range 400 to 650 ° C. that becomes the (α + β) phase, 0.1 to 20 ° C./min. The temperature is increased at a rate of 0.1 to 20 ° C./min from the temperature range that becomes the (α + β) phase to the temperature range that becomes the β single phase through the process of cooling at the temperature decrease rate and holding in the temperature range for 20 to 480 minutes. The process is repeated at least 4 times or more until it is heated at 5 to 480 minutes in the temperature range.
The alloy material is an alloy material having a long shape with respect to a processing direction which is a rolling direction or a wire drawing direction,
The crystal grain length a of the alloy material in the direction perpendicular to the processing direction is equal to the width or thickness or diameter R of the alloy material, and X is the number of grain boundaries between crystal grains where a = R. The amount of X present is 1 or less,
Method for manufacturing a Cu-Al-Mn-based alloy material number until the fracture is more than 10 twice when performed repeatedly load and unloading of the stress applied 3% strain in the alloy material.
JP2016023306A 2016-02-10 2016-02-10 Method for producing Cu-Al-Mn alloy material Active JP6490608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016023306A JP6490608B2 (en) 2016-02-10 2016-02-10 Method for producing Cu-Al-Mn alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016023306A JP6490608B2 (en) 2016-02-10 2016-02-10 Method for producing Cu-Al-Mn alloy material

Publications (2)

Publication Number Publication Date
JP2017141491A JP2017141491A (en) 2017-08-17
JP6490608B2 true JP6490608B2 (en) 2019-03-27

Family

ID=59627723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016023306A Active JP6490608B2 (en) 2016-02-10 2016-02-10 Method for producing Cu-Al-Mn alloy material

Country Status (1)

Country Link
JP (1) JP6490608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913764A (en) * 2019-04-10 2019-06-21 四川大学 A method of improving ferrimanganic alumel memory performance stability
CN110527934A (en) * 2019-10-14 2019-12-03 河北工业大学 A kind of preparation method of high-intensity high-damping CuAlMn marmem

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107893167A (en) * 2017-11-14 2018-04-10 浙江力博实业股份有限公司 A kind of electron tube corronil and preparation method thereof
CN108950294A (en) * 2018-07-20 2018-12-07 赵云飞 A kind of preparation method of albronze material
JP6941842B2 (en) * 2018-09-03 2021-09-29 株式会社古河テクノマテリアル Copper-based alloy material and its manufacturing method, and members or parts made of copper-based alloy material
JP7103588B2 (en) 2019-01-31 2022-07-20 株式会社古河テクノマテリアル Cu—Al—Mn-based shape memory alloy molded product having a threaded portion and its manufacturing method
CN110106393B (en) * 2019-05-14 2021-04-16 中国兵器科学研究院宁波分院 High-manganese wear-resistant aluminum bronze alloy and preparation method thereof
JP7479029B2 (en) 2020-05-14 2024-05-08 国立大学法人宇都宮大学 Residual strain suppression structure for RC columnar structure and method for repairing plastic hinge part of RC columnar structure
CN113718130B (en) * 2020-05-26 2023-03-31 沈阳铸造研究所有限公司 As-cast high-strength manganese-aluminum bronze alloy and preparation method thereof
CN113373342B (en) * 2021-05-28 2022-07-22 上海理工大学 Preparation method of high-superelasticity CuAlMn shape memory alloy wire
CN114196863B (en) * 2021-11-14 2022-07-12 中国长江三峡集团有限公司 Alloy powder material, preparation method thereof and application of alloy powder material in seawater corrosion resistant laser cladding material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3300684B2 (en) * 1999-07-08 2002-07-08 清仁 石田 Copper-based alloy having shape memory characteristics and superelasticity, member made of the same, and method of manufacturing the same
JP5837487B2 (en) * 2010-05-31 2015-12-24 一般社団法人日本銅センター Copper-based alloy and structural material using the same
JP5912094B2 (en) * 2013-05-10 2016-04-27 国立大学法人東北大学 Cu-Al-Mn bar and plate manufacturing method exhibiting stable superelasticity
EP3118338B1 (en) * 2014-03-14 2020-12-02 Furukawa Electric Co. Ltd. Rod made of cu-al-mn-based alloy and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913764A (en) * 2019-04-10 2019-06-21 四川大学 A method of improving ferrimanganic alumel memory performance stability
CN110527934A (en) * 2019-10-14 2019-12-03 河北工业大学 A kind of preparation method of high-intensity high-damping CuAlMn marmem
CN110527934B (en) * 2019-10-14 2020-08-04 河北工业大学 Preparation method of high-strength high-damping CuAlMn shape memory alloy

Also Published As

Publication number Publication date
JP2017141491A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6490608B2 (en) Method for producing Cu-Al-Mn alloy material
JP6109329B2 (en) Cu-Al-Mn alloy material, method for producing the same, and bar or plate material using the same
CN112639144B (en) Copper alloy material, method for producing same, and member or component made of copper alloy material
JP5912094B2 (en) Cu-Al-Mn bar and plate manufacturing method exhibiting stable superelasticity
KR102237789B1 (en) Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor
KR100612538B1 (en) Magnesium base alloy wire and method for production thereof
WO2014042160A1 (en) Cu-al-mn based alloy material exhibiting stable superelasticity and manufacturing process therefor
KR102509847B1 (en) High strength low thermal expansion alloy wire
JP6860235B2 (en) Magnesium-based alloy wrought material and its manufacturing method
US11953047B2 (en) Formed body of Cu—Al—Mn-based shape-memory alloy and method for producing same
JP6258644B2 (en) Cu-Al-Mn alloy material excellent in elongation at break and vibration damping member using the same
KR20180006861A (en) TiNiNb ALLOY AND FOR IT USED THERMAL CONTRACTION RING FIXING COUPLING
JP5512145B2 (en) Shape memory alloy
JP6812460B2 (en) High-strength low thermal expansion alloy
JP2003138330A (en) Copper-base alloy and its manufacturing method
JP2016153532A (en) Cu-Al-Mn-BASED BAR MATERIAL AND SHEET MATERIAL EXHIBITING STABLE SUPER ELASTICITY, EARTHQUAKE-PROOF MEMBER USING THE SAME AND EARTHQUAKE-PROOF STRUCTURE USING THE EARTHQUAKE-PROOF MEMBER
JP4863241B2 (en) Structural material made of ultra-high purity iron with excellent ductility
JP2003096552A (en) METHOD OF PRODUCING NiTiCu SHAPE MEMORY ALLOY
JP2005023426A (en) High strength nonmagnetic low thermal expansion alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180529

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190227

R150 Certificate of patent or registration of utility model

Ref document number: 6490608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250