JP6489720B2 - Coating structure, impeller, compressor, metal part manufacturing method, impeller manufacturing method, and compressor manufacturing method - Google Patents

Coating structure, impeller, compressor, metal part manufacturing method, impeller manufacturing method, and compressor manufacturing method Download PDF

Info

Publication number
JP6489720B2
JP6489720B2 JP2017542637A JP2017542637A JP6489720B2 JP 6489720 B2 JP6489720 B2 JP 6489720B2 JP 2017542637 A JP2017542637 A JP 2017542637A JP 2017542637 A JP2017542637 A JP 2017542637A JP 6489720 B2 JP6489720 B2 JP 6489720B2
Authority
JP
Japan
Prior art keywords
impeller
manufacturing
magnesium
base material
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017542637A
Other languages
Japanese (ja)
Other versions
JPWO2017056290A1 (en
Inventor
崇 南部
崇 南部
秉一 安
秉一 安
貴 新井
貴 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Original Assignee
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Engine and Turbocharger Ltd filed Critical Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Publication of JPWO2017056290A1 publication Critical patent/JPWO2017056290A1/en
Application granted granted Critical
Publication of JP6489720B2 publication Critical patent/JP6489720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/266Rotors specially for elastic fluids mounting compressor rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/95Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/125Magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2108Phosphor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

この発明は、コーティング構造、インペラ、圧縮機、金属部品の製造方法、インペラの製造方法、および、圧縮機の製造方法に関する。   The present invention relates to a coating structure, an impeller, a compressor, a metal part manufacturing method, an impeller manufacturing method, and a compressor manufacturing method.

エンジンやタービン等、各種の機械等を構成する部材において、軽量化を図るため、部材の材質を、アルミニウム合金からマグネシウム合金に切り換えることが行われている。
マグネシウム合金で部材を形成する場合、アルミニウム合金で部材を形成する場合よりも腐食量が多くなる。そこで、マグネシウム合金からなる母材の耐食性を高めるため、化成処理等によって母材の表面を覆っている。さらに、母材の表面を、樹脂でコーティングすることも行われている。
In a member constituting various machines such as an engine and a turbine, the material of the member is switched from an aluminum alloy to a magnesium alloy in order to reduce the weight.
When a member is formed from a magnesium alloy, the amount of corrosion is greater than when a member is formed from an aluminum alloy. Therefore, in order to improve the corrosion resistance of the base material made of a magnesium alloy, the surface of the base material is covered by chemical conversion treatment or the like. Furthermore, the surface of the base material is also coated with a resin.

しかし、例えばエンジンで排気再循環(EGR:Exhaust Gas Recirculation)を行う部品をマグネシウム合金で形成する場合、排気再循環行程で凝縮される水分によって化成処理や樹脂コーティングが侵されてしまうことがある。その結果、部品にエロージョンや腐食が生じる。
そこで、マグネシウム合金で形成する部品において、耐食性をさらに高めることが望まれている。
However, for example, when a part that performs exhaust gas recirculation (EGR) in an engine is formed of a magnesium alloy, chemical conversion treatment or resin coating may be affected by moisture condensed in the exhaust gas recirculation process. As a result, erosion and corrosion occur in the parts.
Therefore, it is desired to further improve the corrosion resistance of the parts formed of the magnesium alloy.

例えば特許文献1には、マグネシウム合金からなる母材に、ニッケル基メッキを施す構成が開示されている。表面にメッキを施すことで、化成処理や樹脂コーティングに比較し、より高い耐食性が得られる。
ここで、特許文献1に開示された構成では、母材にニッケル基メッキ処理を施すに先立ち、化学エッチング等の前処理を行っている。このような前処理は、母材とメッキ膜との密着性を高めるために行われている。
For example, Patent Document 1 discloses a configuration in which a nickel base plating is applied to a base material made of a magnesium alloy. By plating the surface, higher corrosion resistance can be obtained compared to chemical conversion treatment or resin coating.
Here, in the configuration disclosed in Patent Document 1, pretreatment such as chemical etching is performed before the nickel base plating treatment is performed on the base material. Such pretreatment is performed in order to improve the adhesion between the base material and the plating film.

特開2003−73843号公報JP 2003-73843 A

ところで、母材となるマグネシウム合金にあっては、更なる強度向上のため、添加物を加える等してマグネシウム合金の組成を変えることが行われている。しかし、強度を高めるためにマグネシウム合金に加える添加物の成分等によっては、化学エッチング等の前処理を行っても、母材とメッキ膜との十分な密着性が得られない場合がある。
この発明は、マグネシウム合金からなる母材とニッケル基合金からなるメッキ層との密着性を高めて、高い耐食性および耐エロージョン性を得るとともに信頼性を向上することのできるコーティング構造、インペラ、圧縮機、金属部品の製造方法、インペラの製造方法、および、圧縮機の製造方法を提供することを目的とする。
By the way, in the magnesium alloy used as a base material, the composition of the magnesium alloy is changed by adding an additive or the like in order to further improve the strength. However, depending on the component of the additive added to the magnesium alloy in order to increase the strength, sufficient adhesion between the base material and the plating film may not be obtained even if a pretreatment such as chemical etching is performed.
The present invention provides a coating structure, an impeller, and a compressor capable of improving the adhesion between a base material made of a magnesium alloy and a plating layer made of a nickel-based alloy to obtain high corrosion resistance and erosion resistance and improve reliability. An object of the present invention is to provide a metal part manufacturing method, an impeller manufacturing method, and a compressor manufacturing method.

この発明に係る第一態様によれば、コーティング構造は、マグネシウムを主成分として含有し、ガドリニウム、テルビウム、ツリウム及びルテチウムからなる群から選択される少なくとも1種の元素を含有したマグネシウム合金からなる母材の表面を覆うように形成されたリン酸塩被膜からなる化成層を備える。このコーティング構造は、前記化成層を覆うように形成されたニッケル基合金からなるメッキ層を更に備える。
このような構成によれば、リン酸塩被膜からなる化成層によりニッケル基合金からなるメッキ層が良好に密着するため、信頼性を向上することができる。このようなメッキ層を備えることで、高い耐食性および耐エロージョン性を得ることができる。
According to the first aspect of the present invention, the coating structure is composed of a magnesium alloy containing magnesium as a main component and containing at least one element selected from the group consisting of gadolinium, terbium, thulium, and lutetium. A conversion layer comprising a phosphate coating formed to cover the surface of the base material is provided. The coating structure further includes a plating layer made of a nickel-based alloy formed so as to cover the chemical conversion layer.
According to such a configuration, since the plating layer made of the nickel-based alloy adheres well due to the chemical conversion layer made of the phosphate coating, the reliability can be improved. By providing such a plating layer, high corrosion resistance and erosion resistance can be obtained.

この発明に係る第二態様によれば、コーティング構造は、第一態様のコーティング構造におけるメッキ層が、ニッケル−リン合金により形成されていてもよい。
このように化成層を設けることで、マグネシウム合金とメッキ層との密着性を、特に有効に高めることができる。
According to the second aspect of the present invention, in the coating structure, the plating layer in the coating structure of the first aspect may be formed of a nickel-phosphorus alloy.
By providing the chemical conversion layer in this manner, the adhesion between the magnesium alloy and the plating layer can be particularly effectively increased.

この発明に係る第三態様によれば、コーティング構造は、第一又は第二態様のコーティング構造における母材が、亜鉛をa原子%含有し、ガドリニウム、テルビウム、ツリウム及びルテチウムからなる群から選択される少なくとも1種の元素を合計でb原子%含有する。このコーティング構造は、残部がマグネシウムからなる。aとbは下記式(1)〜(3)を満たす。更にコーティング構造は、マグネシウムと希土類元素の化合物、マグネシウムと亜鉛の化合物、亜鉛と希土類元素の化合物及びマグネシウムと亜鉛と希土類元素の化合物からなる析出物群から選択される少なくとも1種類の析出物を有するようにしてもよい。
(1)0.2≦a≦5.0
(2)0.5≦b≦5.0
(3)0.5a−0.5≦b
このような合金からなる母材においては、母材をメッキ層で直接被覆しようとしても、密着性が劣る。この場合、化成処理による化成層を介在させることで、母材とメッキ層との密着性を有効に高めることができるため、信頼性を向上できる。さらに、化成処理層によって耐食性を向上できる。加えて、メッキ層によって耐食性及び耐エロージョン性も向上できる。
According to the third aspect of the present invention, the coating structure is selected from the group consisting of gadolinium, terbium, thulium and lutetium, wherein the base material in the coating structure of the first or second aspect contains zinc at a% by atom. A total of at least one element selected from the group consisting of b atom%. In this coating structure, the balance is made of magnesium. a and b satisfy the following formulas (1) to (3). Further, the coating structure has at least one kind of precipitate selected from the group consisting of magnesium and rare earth compound, magnesium and zinc compound, zinc and rare earth compound and magnesium, zinc and rare earth compound. You may do it.
(1) 0.2 ≦ a ≦ 5.0
(2) 0.5 ≦ b ≦ 5.0
(3) 0.5a-0.5 ≦ b
In a base material made of such an alloy, even if an attempt is made to directly coat the base material with a plating layer, the adhesion is poor. In this case, since the adhesion between the base material and the plating layer can be effectively increased by interposing a chemical conversion layer formed by chemical conversion treatment, the reliability can be improved. Furthermore, corrosion resistance can be improved by the chemical conversion treatment layer. In addition, corrosion resistance and erosion resistance can be improved by the plating layer.

この発明に係る第四態様によれば、インペラは、第一から第三態様の何れか一つのコーティング構造を有する。
これにより、マグネシウム合金の耐食性、耐エロージョン性を高めることができる。したがって、インペラをマグネシウム合金で形成して軽量なものとして、インペラを用いる圧縮機の作動レスポンスを有効に高めることができる。
According to the fourth aspect of the present invention, the impeller has the coating structure according to any one of the first to third aspects.
Thereby, the corrosion resistance and erosion resistance of the magnesium alloy can be enhanced. Therefore, it is possible to effectively increase the operation response of the compressor using the impeller by forming the impeller with a magnesium alloy and making it lightweight.

この発明に係る第五態様によれば、圧縮機は、第四態様のインペラを備える。
これにより、インペラをマグネシウム合金で形成した場合に、インペラの耐食性、耐エロージョン性を高めることができる。したがって、インペラを軽量なものとして、インペラを用いる圧縮機の作動レスポンスを有効に高めることができる。
According to the fifth aspect of the present invention, the compressor includes the impeller of the fourth aspect.
Thereby, when an impeller is formed with a magnesium alloy, the corrosion resistance and erosion resistance of an impeller can be improved. Therefore, it is possible to effectively increase the operation response of the compressor using the impeller by making the impeller lightweight.

この発明に係る第六態様によれば、金属部品の製造方法は、マグネシウムを主成分として含有し、ガドリニウム、テルビウム、ツリウム及びルテチウムからなる群から選択される少なくとも1種の元素を含有したマグネシウム合金からなる母材の表面を覆うように化成処理を行うことでリン酸塩被膜からなる化成層を形成する工程を含む。この金属部品の製造方法は、前記化成層を覆うようにニッケル基合金からなるメッキ層を形成する工程を更に含む。
これにより、ニッケル基合金からなるメッキ層が良好に母材に密着するため、信頼性を向上することができる。さらに、メッキ層を備えることで、高い耐食性および耐エロージョン性を得ることができる。
According to the sixth aspect of the present invention, the metal part manufacturing method contains magnesium as a main component, and contains at least one element selected from the group consisting of gadolinium, terbium, thulium, and lutetium. It includes a step of forming a chemical conversion layer made of a phosphate coating by performing chemical conversion treatment so as to cover the surface of the base material made of an alloy. The method for manufacturing a metal part further includes a step of forming a plating layer made of a nickel-based alloy so as to cover the chemical conversion layer.
Thereby, since the plating layer which consists of a nickel base alloy adheres to a base material favorably, reliability can be improved. Furthermore, by providing a plating layer, high corrosion resistance and erosion resistance can be obtained.

この発明に係る第七態様によれば、インペラの製造方法は、第六態様における金属部品の製造方法を含む。
これにより、マグネシウム合金の耐食性、耐エロージョン性を高めることができる。そのため、インペラをマグネシウム合金で形成し軽量なものとして、インペラを用いる圧縮機の作動レスポンスを有効に高めることができる。
According to the seventh aspect of the present invention, the impeller manufacturing method includes the metal part manufacturing method according to the sixth aspect.
Thereby, the corrosion resistance and erosion resistance of the magnesium alloy can be enhanced. Therefore, the operational response of the compressor using the impeller can be effectively enhanced by forming the impeller with a magnesium alloy and making it lightweight.

この発明に係る第八態様によれば、圧縮機の製造方法は、第七態様におけるインペラの製造方法を含む。
これにより、インペラを軽量化できるため、インペラを用いる圧縮機の作動レスポンスを有効に高めることができる。
According to the eighth aspect of the present invention, the compressor manufacturing method includes the impeller manufacturing method according to the seventh aspect.
Thereby, since an impeller can be reduced in weight, the operation response of the compressor using an impeller can be improved effectively.

上述したコーティング構造、インペラ、圧縮機によれば、マグネシウム合金からなる母材とニッケル基合金からなるメッキ層との密着性を高めて、高い耐食性および耐エロージョン性を得るとともに信頼性を向上することが可能となる。   According to the above-described coating structure, impeller, and compressor, the adhesion between the base material made of a magnesium alloy and the plating layer made of a nickel-based alloy is improved to obtain high corrosion resistance and erosion resistance and improve reliability. Is possible.

この発明の実施形態における圧縮機の概略構成を示す図である。It is a figure which shows schematic structure of the compressor in embodiment of this invention. この発明の実施形態におけるコーティング構造を示す断面図である。It is sectional drawing which shows the coating structure in embodiment of this invention. この発明の実施形態におけるインペラの製造方法のフローである。It is a flow of the manufacturing method of the impeller in embodiment of this invention.

図1は、この発明の実施形態における圧縮機の概略構成を示す図である。
この実施形態における圧縮機は、例えば、内燃機関に対して過給する過給機に設けられた遠心圧縮機である。
図1に示すように、例えばエンジンに用いられる圧縮機1は、ハウジング2内でインペラ(金属部品)3が回転することで、ハウジング2内に送り込まれる流体ARを圧縮する。ここで、インペラ3の形状や圧縮機1の構成については、何ら限るものではない。
FIG. 1 is a diagram showing a schematic configuration of a compressor in an embodiment of the present invention.
The compressor in this embodiment is, for example, a centrifugal compressor provided in a supercharger that supercharges an internal combustion engine.
As shown in FIG. 1, for example, a compressor 1 used in an engine compresses a fluid AR fed into the housing 2 by rotating an impeller (metal part) 3 within the housing 2. Here, the shape of the impeller 3 and the configuration of the compressor 1 are not limited at all.

インペラ3は、ハウジング2内に配置されて、圧縮対象となるガス等の流体ARを圧縮する。インペラ3は、ハウジング2内に設けられた軸受6に回転自在に支持された回転軸4と一体に設けられている。回転軸4は、排気ガスGにより回転するタービン5により、その中心軸回りに回転駆動される。これにより、インペラ3は、回転軸4とともに回転し、ハウジング2内を流れる流体ARを圧縮する。
この実施形態における圧縮機1は、排気再循環(EGR:Exhaust Gas Recirculation)を行うシステムに組み込まれており、凝縮水分を含む排気ガスを含む空気が吸気される場合がある。
The impeller 3 is disposed in the housing 2 and compresses a fluid AR such as a gas to be compressed. The impeller 3 is provided integrally with a rotating shaft 4 that is rotatably supported by a bearing 6 provided in the housing 2. The rotary shaft 4 is driven to rotate around its central axis by a turbine 5 that is rotated by exhaust gas G. Thereby, the impeller 3 rotates together with the rotating shaft 4 and compresses the fluid AR flowing in the housing 2.
The compressor 1 in this embodiment is incorporated in a system that performs exhaust gas recirculation (EGR), and air containing exhaust gas containing condensed moisture may be taken in.

図2は、この発明の実施形態におけるコーティング構造を示す断面図である。図3は、この発明の実施形態におけるインペラの製造方法のフローである。
図2に示すように、インペラ3は、インペラ本体(母材)10と、化成層11と、メッキ層12と、を備える。図3に示すように、このインペラ3の製造方法は、まずインペラ本体10を形成する工程(ステップS01)を行い、その後、化成層11を形成する工程(ステップS02)を行った後に、メッキ層12を形成する工程(ステップS03)を行う。
FIG. 2 is a cross-sectional view showing a coating structure in the embodiment of the present invention. FIG. 3 is a flow of the method for manufacturing the impeller in the embodiment of the present invention.
As shown in FIG. 2, the impeller 3 includes an impeller body (base material) 10, a chemical conversion layer 11, and a plating layer 12. As shown in FIG. 3, in the method for manufacturing the impeller 3, first, the step of forming the impeller body 10 (step S01) is performed, and then the step of forming the chemical conversion layer 11 (step S02) is performed. 12 is performed (step S03).

インペラ本体10は、マグネシウム合金からなる。このインペラ本体10を形成するマグネシウム合金は、亜鉛(Zn)と、ガドリニウム(Gd)、テルビウム(Tb)、ツリウム(Tm)及びルテチウム(Lu)からなる群から選択される少なくとも1種の元素と、を含有し、残部がマグネシウム(Mg)からなる。
ここで、亜鉛(Zn)の含有量a(原子%)は、0.2≦a≦3.0とするのが好ましい。さらに、ガドリニウム(Gd)、テルビウム(Tb)、ツリウム(Tm)及びルテチウム(Lu)からなる群から選択される少なくとも1種の元素の含有量b(原子%)は、0.5≦b≦5.0とするのが好ましい。ここで、さらには、0.5a−0.5≦bという関係を満足するのが好ましい。
The impeller body 10 is made of a magnesium alloy. The magnesium alloy forming the impeller body 10 includes zinc (Zn), at least one element selected from the group consisting of gadolinium (Gd), terbium (Tb), thulium (Tm), and lutetium (Lu), The balance is made of magnesium (Mg).
Here, the content a (atomic%) of zinc (Zn) is preferably 0.2 ≦ a ≦ 3.0. Furthermore, the content b (atomic%) of at least one element selected from the group consisting of gadolinium (Gd), terbium (Tb), thulium (Tm), and lutetium (Lu) is 0.5 ≦ b ≦ 5. 0.0 is preferred. Here, it is further preferable that the relationship of 0.5a−0.5 ≦ b is satisfied.

ガドリニウム(Gd)を添加する場合、さらに好ましい上限含有量は、3原子%未満である。さらに、ガドリニウム(Gd)の含有量と亜鉛(Zn)の含有量の比は、2:1又はそれに近い比であることが特に好ましい。
このような含有量の比にすることより高強度高靭性を特に向上させることができる。
When gadolinium (Gd) is added, the more preferable upper limit content is less than 3 atomic%. Furthermore, the ratio of the gadolinium (Gd) content to the zinc (Zn) content is particularly preferably 2: 1 or a ratio close thereto.
High strength and high toughness can be particularly improved by using such a content ratio.

インペラ本体10を形成するには、上記組成からなるマグネシウム合金を溶解し、金型に鋳込むことで、マグネシウム合金鋳造物を形成する。
このマグネシウム合金鋳造物には、マグネシウム(Mg)と希土類元素の化合物、マグネシウム(Mg)と亜鉛(Zn)の化合物、亜鉛(Zn)と希土類元素の化合物及びマグネシウム(Mg)と亜鉛(Zn)と希土類元素の化合物からなる析出物群から選択される少なくとも1種類の析出物が析出されている。
In order to form the impeller body 10, a magnesium alloy having the above composition is melted and cast into a mold to form a magnesium alloy casting.
This magnesium alloy casting includes magnesium (Mg) and rare earth element compound, magnesium (Mg) and zinc (Zn) compound, zinc (Zn) and rare earth element compound, and magnesium (Mg) and zinc (Zn). At least one type of precipitate selected from the group of precipitates made of rare earth element compounds is deposited.

次いで、マグネシウム合金鋳造物に溶体化処理を施す。この溶体化処理では、上記の少なくとも1種類の析出物を残存させる。   Next, the magnesium alloy casting is subjected to a solution treatment. In the solution treatment, at least one kind of precipitate is left.

この後、マグネシウム合金鋳造物を機械加工し、所定形状のインペラ本体10を得る。
この機械加工としては、例えば押出し、ECAE(equal−channel−angular−extrusion)加工法、圧延、引抜及び鍛造、これらの繰り返し加工、FSW(摩擦攪拌溶接)などの塑性変形を伴う加工を用いることができる。
この塑性加工は、圧延、押出し、ECAE、引抜加工及び鍛造のうち単独でも組み合わせでも可能である。
Thereafter, the magnesium alloy casting is machined to obtain an impeller body 10 having a predetermined shape.
As this machining, for example, extrusion, ECAE (equal-channel-angular-extrusion) processing method, rolling, drawing and forging, repetitive processing thereof, processing with plastic deformation such as FSW (friction stir welding) may be used. it can.
This plastic working can be performed alone or in combination among rolling, extrusion, ECAE, drawing and forging.

化成層11は、インペラ本体10の表面を覆うように形成されている。化成層11は、例えば、リン酸塩被膜からなる。リン酸塩被膜は、リン酸鉄、リン酸マンガン、リン酸亜鉛等のリン酸塩からなる。このようなリン酸塩被膜は、インペラ本体10を洗浄した後、リン酸塩を含む水溶液に母材となるインペラ本体10を所定時間浸漬することで形成される。   The chemical conversion layer 11 is formed so as to cover the surface of the impeller body 10. The conversion layer 11 is made of, for example, a phosphate coating. The phosphate coating is made of a phosphate such as iron phosphate, manganese phosphate, or zinc phosphate. Such a phosphate coating is formed by immersing the impeller body 10 serving as a base material in an aqueous solution containing a phosphate for a predetermined time after washing the impeller body 10.

リン酸塩被膜からなる化成層11は、少なくとも、母材10の表面に微細な凹凸等がある場合に、これらを完全に覆う程度に厚く形成しても良い。このようなリン酸塩被膜からなる化成層11は、その膜厚が大きすぎると、重量増となり、インペラ3の回転時におけるレスポンスに悪影響を及ぼす。
そこで、リン酸塩被膜からなる化成層11は、その膜厚が、0.5μm以上5μm以下、より好ましくは2μm以上5μm以下で形成するのが好ましい。
このような化成層11は、リン酸塩被膜を形成する処理を複数回繰り返し、リン酸塩被膜を複数層に積層して形成してもよい。
The chemical conversion layer 11 made of a phosphate coating may be formed thick enough to completely cover at least the surface of the base material 10 when there are fine irregularities. When the film thickness of the chemical conversion layer 11 made of such a phosphate coating is too large, the chemical conversion layer 11 increases in weight and adversely affects the response when the impeller 3 rotates.
Therefore, the chemical conversion layer 11 made of a phosphate coating is preferably formed with a film thickness of 0.5 μm or more and 5 μm or less, more preferably 2 μm or more and 5 μm or less.
Such a chemical conversion layer 11 may be formed by repeating the treatment for forming the phosphate coating a plurality of times and laminating the phosphate coating in a plurality of layers.

メッキ層12は、化成層11を覆うように形成されている。メッキ層12は、無電解メッキ処理により形成されたニッケル基合金からなるメッキ膜である。具体例を挙げると、メッキ層12を形成するニッケル基合金としては、ニッケル−リン合金を用いるのが好ましい。   The plating layer 12 is formed so as to cover the chemical conversion layer 11. The plating layer 12 is a plating film made of a nickel-based alloy formed by electroless plating. As a specific example, it is preferable to use a nickel-phosphorus alloy as the nickel-based alloy for forming the plating layer 12.

ニッケル−リン合金からなるメッキ層12は、その膜厚が、10μm以上30μm以下、より好ましくは15μm以上30μm以下で形成する。
このようなニッケル基合金からなるメッキ層12は、メッキ液に、化成層11を表面に形成した母材であるインペラ本体10を所定時間浸漬して無電解メッキを施すことで形成される。
The plating layer 12 made of a nickel-phosphorous alloy is formed with a film thickness of 10 μm to 30 μm, more preferably 15 μm to 30 μm.
The plating layer 12 made of such a nickel-based alloy is formed by immersing an impeller body 10 which is a base material having the chemical conversion layer 11 formed on the surface thereof in a plating solution for a predetermined time and performing electroless plating.

上述した実施形態によれば、マグネシウム合金からなるインペラ本体10の表面を覆うよう、化成処理により形成され、予め定められた範囲内の膜厚を有する化成層11と、化成層11を覆うように形成されたメッキ層12と、を備える。このような構成によれば、化成層11によりメッキ層12が良好に密着する。このようなメッキ層12を備えることで、高い耐食性を有することができる。
このようなコーティング構造を有したインペラ3、及びインペラ3を備えた圧縮機1においては、インペラ3をマグネシウム合金で形成することによって、高い密着性、耐食性を有しつつ、インペラ3および圧縮機1の作動レスポンスを高めることができる。
According to the embodiment described above, the chemical conversion layer 11 formed by chemical conversion treatment so as to cover the surface of the impeller body 10 made of a magnesium alloy and having a film thickness within a predetermined range, and the chemical conversion layer 11 are covered. And a formed plating layer 12. According to such a configuration, the plating layer 12 adheres well due to the chemical conversion layer 11. By providing such a plating layer 12, it can have high corrosion resistance.
In the impeller 3 having such a coating structure and the compressor 1 provided with the impeller 3, the impeller 3 and the compressor 1 have high adhesion and corrosion resistance by forming the impeller 3 from a magnesium alloy. The operating response can be improved.

さらに、化成層11は、リン酸塩被膜であり、メッキ層12は、ニッケル−リン合金により形成されている。
これにより、マグネシウム合金とメッキ層12との密着性を、特に有効に高めることができる。
Furthermore, the chemical conversion layer 11 is a phosphate coating, and the plating layer 12 is formed of a nickel-phosphorus alloy.
Thereby, the adhesiveness of a magnesium alloy and the plating layer 12 can be improved especially effectively.

さらに、インペラ本体10は、亜鉛(Zn)と、ガドリニウム(Gd)、テルビウム(Tb)、ツリウム(Tm)及びルテチウム(Lu)からなる群から選択される少なくとも1種の元素と、を含有し、残部がマグネシウム(Mg)からなる。さらに、インペラ本体10は、マグネシウム(Mg)と希土類元素の化合物、マグネシウム(Mg)と亜鉛(Zn)の化合物、亜鉛(Zn)と希土類元素の化合物及びマグネシウム(Mg)と亜鉛(Zn)と希土類元素の化合物からなる析出物群から選択される少なくとも1種類の析出物を有する。
このような合金からなるインペラ本体10においては、インペラ本体10にメッキ層12で直接被覆しようとしても、耐食性が劣る。この場合、化成処理による化成層11を介在させることで、インペラ本体10とメッキ層12との密着性を有効に高めることができる。
Furthermore, the impeller body 10 contains zinc (Zn) and at least one element selected from the group consisting of gadolinium (Gd), terbium (Tb), thulium (Tm), and lutetium (Lu), The balance consists of magnesium (Mg). Further, the impeller body 10 includes a magnesium (Mg) and rare earth element compound, a magnesium (Mg) and zinc (Zn) compound, a zinc (Zn) and rare earth element compound, and a magnesium (Mg), zinc (Zn) and rare earth element. It has at least one type of precipitate selected from the group of precipitates made of elemental compounds.
In the impeller body 10 made of such an alloy, even if the impeller body 10 is directly covered with the plating layer 12, the corrosion resistance is inferior. In this case, the adhesion between the impeller body 10 and the plating layer 12 can be effectively enhanced by interposing the chemical conversion layer 11 formed by chemical conversion treatment.

次に、上記したようなコーティング構造について、耐食性とエロージョンの発生の有無を確認したので、その結果を示す。   Next, regarding the coating structure as described above, it was confirmed whether or not corrosion resistance and erosion occurred, and the results are shown below.

[母材]
まず、Gdを2原子%、Znを1原子%含有し、残部がMgと不可避的不純物からなるマグネシウム合金を真空溶解炉に投入して溶解を行った。
次に、加熱溶解した材料を金型に入れて鋳造し、マグネシウム合金からなる
150mm× 60mmの長方形状の母材を作製した。
[Base material]
First, a magnesium alloy containing 2 atomic% Gd and 1 atomic% Zn and the balance being Mg and inevitable impurities was charged into a vacuum melting furnace for melting.
Next, the heat-dissolved material was placed in a mold and cast to prepare a 150 mm × 60 mm rectangular base material made of a magnesium alloy.

[表面処理]
作成した母材を、洗浄した後、以下のような表面処理を施した。
(実施例1)
母材の表面に、リン酸塩被膜を製膜した後、ニッケル−リン合金によるメッキを施した。
リン酸塩被膜は、リン酸塩処理液に、母材を所定時間浸漬し、膜厚3μmのリン酸塩被膜を得た。
ニッケル−リン合金によるメッキは、メッキ浴を用い、メッキ処理を施した。これにより、膜厚15μmのメッキ層を得た。
(比較例1)
母材に表面処理を施さず、母材のまま試験片とした。
(比較例2)
母材に、実施例と同様の条件でリン酸塩被膜のみを形成した。
(比較例3)
母材に、樹脂コーティングを施した。
樹脂コーティングには、Si系樹脂を用い、塗装により、母材表面に樹脂コート層を形成した。
(比較例4)
母材に、実施例と同様の条件でリン酸塩被膜を形成した後、比較例3と同様の条件で樹脂コーティングを施した。
(比較例5)
母材に、実施例と同様の条件でニッケル−リン合金によるメッキ処理のみを施した。
(比較例6)
母材に、比較例3と同様の条件で樹脂コーティングを施した後、実施例と同様の条件でニッケル−リン合金によるメッキ処理を施した。
[surface treatment]
The prepared base material was washed and then subjected to the following surface treatment.
Example 1
A phosphate coating was formed on the surface of the base material, and then plated with a nickel-phosphorus alloy.
The phosphate coating was obtained by immersing the base material in a phosphate treatment solution for a predetermined time to obtain a phosphate coating with a thickness of 3 μm.
Plating with a nickel-phosphorus alloy was performed using a plating bath. Thereby, a plating layer having a film thickness of 15 μm was obtained.
(Comparative Example 1)
The base material was not subjected to surface treatment, and the base material was used as a test piece.
(Comparative Example 2)
Only the phosphate coating was formed on the base material under the same conditions as in the example.
(Comparative Example 3)
A resin coating was applied to the base material.
For the resin coating, a Si-based resin was used, and a resin coat layer was formed on the surface of the base material by painting.
(Comparative Example 4)
A phosphate film was formed on the base material under the same conditions as in the example, and then a resin coating was applied under the same conditions as in Comparative Example 3.
(Comparative Example 5)
The base material was only plated with a nickel-phosphorus alloy under the same conditions as in the example.
(Comparative Example 6)
The base material was coated with a resin under the same conditions as in Comparative Example 3, and then plated with a nickel-phosphorus alloy under the same conditions as in the example.

[膜の密着性]
上記のように用意した実施例1、および比較例1〜6の試験片について、まず、表面処理により形成した膜の母材に対する密着性について、目視により確認した。
その結果を、表1に示す。
[Membrane adhesion]
About the test piece of Example 1 prepared as mentioned above and Comparative Examples 1-6, first, the adhesiveness with respect to the base material of the film | membrane formed by surface treatment was confirmed visually.
The results are shown in Table 1.

Figure 0006489720
Figure 0006489720

その結果、実施例1、および比較例2〜5については、母材にそれぞれの表面処理による膜が形成された。
これに対し、母材に樹脂コーティングを施した後、ニッケル−リン合金によるメッキ処理を施した比較例6は、樹脂コーティングを施した母材に対し、メッキ処理を行う際に、生成されるメッキ層の剥がれが確認された。
As a result, about Example 1 and Comparative Examples 2-5, the film | membrane by each surface treatment was formed in the base material.
On the other hand, in Comparative Example 6 in which the base material was resin-coated and then plated with a nickel-phosphorus alloy, the plating generated when the base material coated with the resin was plated Peeling of the layer was confirmed.

[耐食性]
次に、膜が良好に形成された実施例1、比較例1〜5について、JIS規格の「H 8502」に準拠する塩水噴霧サイクル試験をベースとした塩水噴霧試験を行い、耐食性を検証した。
実施例1、比較例1〜5のそれぞれについて、塩水噴霧試験後の評価は、試験片表面に発生した腐食欠陥の状況を目視及び腐食減量を計測することで確認することで行った。
[Corrosion resistance]
Next, the salt spray test based on the salt spray cycle test based on JIS standard "H8502" was performed on Example 1 and Comparative Examples 1 to 5 in which the film was satisfactorily formed, and the corrosion resistance was verified.
About each of Example 1 and Comparative Examples 1-5, the evaluation after a salt spray test was performed by confirming the condition of the corrosion defect which generate | occur | produced on the test piece surface by measuring visually and corrosion weight loss.

その結果、表1に示すように、実施例1では、腐食の発生は特に認められなかった。
これに対し、母材そのものである比較例1では、全体に腐食が認められた。さらに、リン酸塩被膜のみを設けた比較例2では、比較例1よりも腐食量が多いことが確認された。樹脂コーティングのみによる比較例3でも、比較例1よりも腐食量が多いことが確認された。
リン酸塩被膜と、樹脂コーティングを設けた比較例4では、塩水噴霧試験による腐食は認められなかった。
Ni−P合金によるメッキのみを施した比較例5では、塩水噴霧試験によりメッキ膜の剥がれが確認された。
As a result, as shown in Table 1, no corrosion was particularly observed in Example 1.
On the other hand, in Comparative Example 1, which is the base material itself, corrosion was recognized throughout. Furthermore, it was confirmed that in Comparative Example 2 in which only the phosphate coating was provided, the amount of corrosion was greater than in Comparative Example 1. It was confirmed that the amount of corrosion was larger in Comparative Example 3 using only the resin coating than in Comparative Example 1.
In Comparative Example 4 in which the phosphate coating and the resin coating were provided, no corrosion by the salt spray test was observed.
In Comparative Example 5 in which only plating with the Ni-P alloy was performed, peeling of the plating film was confirmed by the salt spray test.

[耐エロージョン性]
次に、塩水噴霧試験で膜の剥がれが認められていない実施例1、比較例1〜4について、コンプレッサの入口に水滴を入れる等の耐エロージョン試験を行い、水滴量をコントロールしながら、エロージョンの発生の有無を検証した。
実施例1、比較例1〜4のそれぞれについて、エロージョンの発生の有無の評価は、試験片表面を目視で確認することで行った。
[Erosion resistance]
Next, with respect to Example 1 and Comparative Examples 1 to 4 in which peeling of the film was not observed in the salt spray test, an erosion test such as putting water droplets into the inlet of the compressor was performed, and the amount of water droplets was controlled while controlling the amount of water droplets. Existence of occurrence was verified.
About each of Example 1 and Comparative Examples 1-4, evaluation of the presence or absence of erosion generation | occurrence | production was performed by confirming the test piece surface visually.

その結果、表1に示すように、実施例1では、エロージョンの発生は認められなかった。
これに対し、比較例1〜4では、それぞれ、エロージョンの発生が認められた。
As a result, as shown in Table 1, in Example 1, no erosion was observed.
In contrast, in Comparative Examples 1 to 4, generation of erosion was observed.

このようにして、リン酸塩被膜と、Ni−P合金によるメッキ層とを設けた実施例1のみが、膜の密着性、耐食性、耐エロージョン性が高いことが確認された。   Thus, only Example 1 which provided the phosphate film and the plating layer by a Ni-P alloy was confirmed that the adhesiveness of a film | membrane, corrosion resistance, and erosion resistance are high.

(その他の実施形態)
この発明は、上述した実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、設計変更可能である。
例えば、上述した実施形態においては、コーティング構造を有する金属部品として、圧縮機1用のインペラ3を例に示した。しかし、インペラに限らず、マグネシウム合金を母材として備える他の様々な金属部材に用いることが可能である。
さらに、上述した実施形態においては過給機の圧縮機を例に示したが、過給機以外の圧縮機のインペラにも適用可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and design changes can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the impeller 3 for the compressor 1 is shown as an example of the metal part having the coating structure. However, the present invention is not limited to the impeller, and can be used for various other metal members including a magnesium alloy as a base material.
Further, in the above-described embodiment, the compressor of the supercharger is shown as an example, but the present invention can also be applied to an impeller of a compressor other than the supercharger.

さらに、上述した実施形態においては、リン酸塩被膜にニッケル−リン合金により形成されたメッキ層を1層だけ積層する場合を例示した。しかし、ニッケル−リン合金によるメッキ層は、1層に限られず複数層設けるようにしても良い。例えば、リン酸塩被膜にニッケル−リン合金からなる第一メッキ層を積層した後に、同じくニッケル−リン合金からなる第二メッキ層を積層するようにしても良い。
このように第一メッキ層と第二メッキ層とを設けた場合、1層でニッケル−リン合金のメッキ層を形成する場合と比較して、第一メッキ層の膜厚を薄くできる。そのため、リン酸塩被膜に対する第一メッキ層の密着性を向上できる。
さらに、第一メッキ層と第二メッキ層とを形成するニッケル−リン合金の組成は、同一組成のニッケル−リン合金に限られない。例えば、第一メッキ層に、第二メッキ層よりもリン酸塩被膜に対する密着性の高いニッケル−リン合金を用いるようにしても良い。
Furthermore, in embodiment mentioned above, the case where only one layer of the plating layer formed of the nickel-phosphorus alloy was laminated | stacked on the phosphate film was illustrated. However, the nickel-phosphorus alloy plating layer is not limited to one layer, and a plurality of layers may be provided. For example, after a first plating layer made of a nickel-phosphorus alloy is laminated on the phosphate coating, a second plating layer also made of a nickel-phosphorus alloy may be laminated.
Thus, when the 1st plating layer and the 2nd plating layer are provided, the film thickness of a 1st plating layer can be made thin compared with the case where the plating layer of a nickel- phosphorus alloy is formed in one layer. Therefore, the adhesion of the first plating layer to the phosphate coating can be improved.
Furthermore, the composition of the nickel-phosphorus alloy that forms the first plating layer and the second plating layer is not limited to the nickel-phosphorus alloy having the same composition. For example, a nickel-phosphorus alloy having higher adhesion to the phosphate coating than the second plating layer may be used for the first plating layer.

マグネシウム合金からなる母材の表面を覆うよう、化成処理により形成され、予め定められた範囲内の膜厚を有する化成層を設けることで、メッキ層の密着性、耐食性を高めることができる。   By providing a chemical conversion layer formed by chemical conversion treatment so as to cover the surface of the base material made of magnesium alloy and having a film thickness within a predetermined range, the adhesion and corrosion resistance of the plating layer can be enhanced.

1 圧縮機
2 ハウジング
3 インペラ
4 回転軸
5 タービン
10 インペラ本体
11 化成層
12 メッキ層
DESCRIPTION OF SYMBOLS 1 Compressor 2 Housing 3 Impeller 4 Rotating shaft 5 Turbine 10 Impeller body 11 Chemical conversion layer 12 Plating layer

Claims (8)

マグネシウムを主成分として含有し、ガドリニウム、テルビウム、ツリウム及びルテチウムからなる群から選択される少なくとも1種の元素を含有したマグネシウム合金からなる母材の表面を覆うように形成されたリン酸塩被膜からなる化成層と、
前記化成層を覆うように形成されたニッケル基合金からなるメッキ層と、
を備えるコーティング構造。
From a phosphate coating formed so as to cover the surface of a base material made of a magnesium alloy containing magnesium as a main component and containing at least one element selected from the group consisting of gadolinium, terbium, thulium and lutetium The formation stratification
A plating layer made of a nickel-based alloy formed so as to cover the chemical conversion layer;
Coating structure comprising.
前記メッキ層は、ニッケル−リン合金により形成されている、請求項1に記載のコーティング構造。   The coating structure according to claim 1, wherein the plating layer is formed of a nickel-phosphorus alloy. 前記母材は、
亜鉛をa原子%含有し、ガドリニウム、テルビウム、ツリウム及びルテチウムからなる群から選択される少なくとも1種の元素を合計でb原子%含有し、残部がマグネシウムからなり、aとbは下記式(1)〜(3)を満たすとともに、
マグネシウムと希土類元素の化合物、マグネシウムと亜鉛の化合物、亜鉛と希土類元素の化合物及びマグネシウムと亜鉛と希土類元素の化合物からなる析出物群から選択される少なくとも1種類の析出物を有する、請求項1又は2に記載のコーティング構造。
(1)0.2≦a≦5.0
(2)0.5≦b≦5.0
(3)0.5a−0.5≦b
The base material is
It contains a atom% of zinc, contains at least one element selected from the group consisting of gadolinium, terbium, thulium and lutetium in total, and contains b atom%, with the balance being magnesium, and a and b are represented by the following formula (1 ) To (3),
The compound of magnesium and rare earth elements, the compound of magnesium and zinc, the compound of zinc and rare earth elements, and at least one kind of precipitate selected from the precipitate group consisting of compounds of magnesium, zinc and rare earth elements, or 3. The coating structure according to 2.
(1) 0.2 ≦ a ≦ 5.0
(2) 0.5 ≦ b ≦ 5.0
(3) 0.5a-0.5 ≦ b
請求項1〜3のいずれか一項に記載のコーティング構造を有するインペラ。   An impeller having the coating structure according to any one of claims 1 to 3. 請求項4に記載のインペラを備える圧縮機。   A compressor provided with the impeller according to claim 4. マグネシウムを主成分として含有し、ガドリニウム、テルビウム、ツリウム及びルテチウムからなる群から選択される少なくとも1種の元素を含有したマグネシウム合金からなる母材の表面を覆うように化成処理を行うことでリン酸塩被膜からなる化成層を形成する工程と、
前記化成層を覆うようにニッケル基合金からなるメッキ層を形成する工程と、
を含む金属部品の製造方法。
Phosphorus conversion is performed by covering the surface of a base material made of a magnesium alloy containing magnesium as a main component and containing at least one element selected from the group consisting of gadolinium, terbium, thulium and lutetium. Forming a conversion layer comprising an acid salt film ;
Forming a plating layer made of a nickel-based alloy so as to cover the chemical conversion layer;
A method for manufacturing metal parts including
請求項6に記載の金属部品の製造方法を含むインペラの製造方法。   An impeller manufacturing method including the metal part manufacturing method according to claim 6. 請求項7に記載のインペラの製造方法を含む圧縮機の製造方法。   A method for manufacturing a compressor including the method for manufacturing an impeller according to claim 7.
JP2017542637A 2015-10-01 2015-10-01 Coating structure, impeller, compressor, metal part manufacturing method, impeller manufacturing method, and compressor manufacturing method Active JP6489720B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/077940 WO2017056290A1 (en) 2015-10-01 2015-10-01 Coating structure, impeller, compressor, metal part manufacturing method, impeller manufacturing method, and compressor manufacturing method

Publications (2)

Publication Number Publication Date
JPWO2017056290A1 JPWO2017056290A1 (en) 2018-05-31
JP6489720B2 true JP6489720B2 (en) 2019-03-27

Family

ID=58423155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017542637A Active JP6489720B2 (en) 2015-10-01 2015-10-01 Coating structure, impeller, compressor, metal part manufacturing method, impeller manufacturing method, and compressor manufacturing method

Country Status (5)

Country Link
US (1) US20180171483A1 (en)
EP (1) EP3299493B1 (en)
JP (1) JP6489720B2 (en)
CN (1) CN107709616A (en)
WO (1) WO2017056290A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638652B2 (en) * 2013-01-30 2017-05-02 Giatec Scientific Inc. Electrical methods and systems for concrete testing
US11225876B2 (en) * 2019-12-19 2022-01-18 Raytheon Technologies Corporation Diffusion barrier to prevent super alloy depletion into nickel-CBN blade tip coating

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167770A (en) * 1984-09-07 1986-04-07 Kizai Kk Plating method of magnesium and magnesium alloy
JP2962496B2 (en) * 1991-08-12 1999-10-12 三井金属鉱業株式会社 Magne-based alloy plating method
JPH05271996A (en) * 1992-03-30 1993-10-19 Nippon Parkerizing Co Ltd Surface treatment of magnesium alloy material
JP3715743B2 (en) * 1997-04-15 2005-11-16 株式会社神戸製鋼所 Manufacturing method of Mg alloy member
JP3307882B2 (en) * 1998-09-18 2002-07-24 ミリオン化学株式会社 Low electrical resistance coating of magnesium-containing metal and surface treatment method
CN1219110C (en) * 2003-04-29 2005-09-14 中国科学院金属研究所 Method for preventing magnesium and its alloy parts from corrosion and wearing
JP4736084B2 (en) * 2005-02-23 2011-07-27 オーエム産業株式会社 Manufacturing method of product made of magnesium or magnesium alloy
JP4668062B2 (en) * 2005-12-27 2011-04-13 セイコークロック株式会社 Timepiece for watch, timepiece having the same, and method for manufacturing timepiece for timepiece
JP2011012293A (en) * 2009-06-30 2011-01-20 Daiwa Fine Chemicals Co Ltd (Laboratory) Plating method for magnesium or magnesium alloy
IT1397705B1 (en) * 2009-07-15 2013-01-24 Nuovo Pignone Spa PRODUCTION METHOD OF A COATING LAYER FOR A COMPONENT OF A TURBOMACCHINA, THE SAME COMPONENT AND THE RELATED MACHINE
JP2012097309A (en) * 2010-10-29 2012-05-24 Sanden Corp Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member

Also Published As

Publication number Publication date
EP3299493A1 (en) 2018-03-28
JPWO2017056290A1 (en) 2018-05-31
EP3299493A4 (en) 2018-03-28
CN107709616A (en) 2018-02-16
EP3299493B1 (en) 2019-12-25
WO2017056290A1 (en) 2017-04-06
US20180171483A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5412462B2 (en) Corrosion-resistant alloy coating film for metal material and method for forming the same
JP5213308B2 (en) Metal surface treatment agent
TWI326313B (en)
US20090166204A1 (en) Corrosion-resistant layered coatings
JP2006319286A (en) Copper foil for printed circuit board with taking environmental conservation into consideration
JPH01188666A (en) Laminated vapor-deposition plated steel sheet
US3859061A (en) Corrosion resistant coating system for ferrous metal articles having brazed joints
JP6489720B2 (en) Coating structure, impeller, compressor, metal part manufacturing method, impeller manufacturing method, and compressor manufacturing method
CN101922514B (en) Bearing bush with vacuum sputtering plating layer and production method thereof
JP4510079B2 (en) Surface-treated metal material
US7291401B2 (en) Non-hexavalent-chromium type corrosion resistant coating film structure having a resin layer and a metal layer that is superior in terms of adhesion to the resin layer
JP2006158012A (en) Method of manufacturing permanent magnet for use in ipm-type motor for automobile
US20180312976A1 (en) Coated article resistant to corrosion with nano-crystalline layer
Makoto et al. Effects of zincate treatment on adhesion of electroless Ni-P coating onto various aluminum alloys
CN105624658B (en) A kind of active element modified aluminide coating and its preparation technology
CN107699758A (en) A kind of robot firm banking
KR20170107476A (en) METHOD OF MANUFACTURING METAL PARTS, METAL PARTS AND TURBO CHAR
CN114481012B (en) Multielement alloy co-permeation agent for steel member and corrosion prevention process thereof
JP3640688B2 (en) Zn-Mg alloy plated steel sheet and manufacturing method
JP2003166078A (en) Metal tube having corrosion resistant coating layer
JPH02274851A (en) Zinc alloy for hot dip plating
JP6813692B2 (en) Film laminate and its manufacturing method
US10844492B2 (en) Coating for a nickel-base superalloy
TWI826270B (en) hot-dip steel plate
CN115770719B (en) Zinc-aluminum-magnesium surface coating treatment process capable of preventing coating from falling off during stamping

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under section 19 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20171226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R150 Certificate of patent or registration of utility model

Ref document number: 6489720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150