JPS6167770A - Plating method of magnesium and magnesium alloy - Google Patents

Plating method of magnesium and magnesium alloy

Info

Publication number
JPS6167770A
JPS6167770A JP18775884A JP18775884A JPS6167770A JP S6167770 A JPS6167770 A JP S6167770A JP 18775884 A JP18775884 A JP 18775884A JP 18775884 A JP18775884 A JP 18775884A JP S6167770 A JPS6167770 A JP S6167770A
Authority
JP
Japan
Prior art keywords
plating
magnesium
alloy
fluoride
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18775884A
Other languages
Japanese (ja)
Other versions
JPH0225430B2 (en
Inventor
Toshinobu Okamura
岡村 敏信
Chiyoko Endo
遠藤 千代子
Yuji Sakata
坂田 勇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kizai KK
Original Assignee
Kizai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kizai KK filed Critical Kizai KK
Priority to JP18775884A priority Critical patent/JPS6167770A/en
Publication of JPS6167770A publication Critical patent/JPS6167770A/en
Publication of JPH0225430B2 publication Critical patent/JPH0225430B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first

Abstract

PURPOSE:To execute Ni plating with high adhesiveness and excellent corrosion resistance by etching chemically Mg or the alloy thereof, treating the same with a fluoride and neutralizing the same with an alkali then subjecting the Mg or the alloy thereof to the electroless Ni plating with the liquid contg. no sulfuric acid and chloride ions. CONSTITUTION:The Mg or the alloy thereof is treated respectively by the chemical etching liquid contg. pyrophosphate, nitrate and sulfate without contg. chromate ions, the alkali neutralizing liquid contg. hypophosphite and aq. ammo nia soln. and the electroless Ni plating contg. nickel oxycarboxylate, pyro phosphate, hypophosphite and fluoride without contg. sulfate ions and chloride ions in the plating method of the Mg or the alloy thereof including stages for etching chemically the Mg or the alloy thereof, treating the same with the fluoride and subjecting the same to the neutralization with the alkali, then to the electroless Ni plating. The Mg and the alloy thereof are thus plated with the high adhesiveness and corrosion resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マグネシウムおよびマグネシウム合金に、密
着性および耐蝕性の良好なめっきを施す方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for plating magnesium and magnesium alloys with good adhesion and corrosion resistance.

〔従来波4ij ) マグネシウムは、比重がアルミニウムの約2/3であり
、軽量化金属利料としてずくれている。
[Conventional wave 4ij] Magnesium has a specific gravity that is about two-thirds that of aluminum, and is used as a lightweight metal.

しかし化学的活性が非常に強く、表面の加工、研磨、化
学的活性化を行っても、ただちに酸化膜が生成するため
、マグネシウム表面に、密着性の良いめっきを施すこと
は極めて困難である。
However, it is highly chemically active, and even if the surface is processed, polished, or chemically activated, an oxide film will immediately form, making it extremely difficult to plate the magnesium surface with good adhesion.

このように、密着性のすくれためっきを得ることが困難
とされているマグネシウムまたはマグネシウム合金の表
面処理法として、ダウケミカル社が開発したいわゆるダ
ウ法が知られている。このダウ法には、前処理、亜鉛置
換、青化銅ストライクを施した後、目的とするめっきを
行う、電気めっき法(ダウめっき法)と、無電解ニッケ
ルめっき法がある。無電解ニッケルめっき法としては、
前記ダウめっき法により青化銅ストライクを施した後に
無電解ニッケルめっぎを行う方法と、叶O3−11NO
3混液による化学エツチング、次いでフッ酸処理した後
、無電解ニッケルめっきをhi!iず方法が提案されて
いる。また、特公昭37−9800号及び特公昭40−
]722号公報にL;I’、 、 CrO3−11NO
a−11F混液によりエツチングし、フッ酸処理し、次
いでアルカリ中和を行った後、無電解ニッケルめっきを
行う方法(GAT法)が開示されている。
As described above, the so-called Dow method developed by the Dow Chemical Company is known as a surface treatment method for magnesium or magnesium alloys in which it is difficult to obtain an adhesive plating. The Dow method includes an electroplating method (Dow plating method) in which the desired plating is performed after pretreatment, zinc substitution, and copper bronze strike, and an electroless nickel plating method. As electroless nickel plating method,
A method of performing electroless nickel plating after applying curing copper strike by the Dow plating method, and Kano O3-11NO
After chemical etching with a mixed solution of 3, followed by hydrofluoric acid treatment, electroless nickel plating is applied to hi! A method has been proposed. Also, Special Publication No. 37-9800 and Special Publication No. 40-
] No. 722 L;I', , CrO3-11NO
A method (GAT method) is disclosed in which the material is etched with a-11F mixed solution, treated with hydrofluoric acid, and then subjected to alkali neutralization, followed by electroless nickel plating.

GAT法は、フッ酸処理によってマグネシウム表面に形
成されたM[F、被膜を、アルカリ中和処理によりMg
1ll’、およびMg (Oll) z  に変化せし
め、無電解ニッケルめっきの密着性を向」二させる、こ
とを特徴とするものであり、アルカリ性無電解ニッケル
めっき浴を用いるため、めっき浴中においてマグネシウ
ムの腐食が起こらないという利点がある。
In the GAT method, the M[F, film formed on the magnesium surface by hydrofluoric acid treatment is removed from Mg by an alkali neutralization treatment.
1ll', and Mg(Oll)z, improving the adhesion of electroless nickel plating.Since an alkaline electroless nickel plating bath is used, magnesium is It has the advantage that corrosion does not occur.

しかしこれら従来の無電解ニッケル法では、密着性の良
好なめっきが得られず、また、化学エツチングに酸性ク
ロム酸液を用いているため、マグネシウム表面が浸食さ
れて粗面となり、めっきの外観が悪くなるだけてなく、
6価クロムを多量に使用しているため、排水公害を起こ
すおそれがあり、好ましくない。またダウ法を、/l 
(1−Zn−MUダイカフ、1〜金合金めっきに適用し
たばあい、亜鉛間接そのものが極めて信頼性に欠け、良
好な密着性を有するめっきが得られない。
However, with these conventional electroless nickel methods, it is not possible to obtain plating with good adhesion, and because acidic chromic acid solution is used for chemical etching, the magnesium surface becomes rough due to erosion, and the appearance of the plating deteriorates. Not only will it get worse;
Since a large amount of hexavalent chromium is used, there is a risk of causing drainage pollution, which is not desirable. Also, the Dow method, /l
(1-Zn-MU die cuff, 1-When applied to gold alloy plating, the zinc joint itself is extremely unreliable, and plating with good adhesion cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、マグネシウムおよびマグネシウム合金
に、密着性および耐食性のすくれためつきを施す方法を
提供することである。
It is an object of the present invention to provide a method for applying an adhesive and corrosion-resistant undercut to magnesium and magnesium alloys.

〔発明の構成〕[Structure of the invention]

マグネシウムまたはマグネシウム合金にめっきを施すば
あい、その密着性を■害するものはMgO1M1!+J
6.□のような金属間化合物、および向とめっき 層の
間に生じる電位差と腐食性媒体(水、酸素、各種の陰イ
オンなど)である。本発明者はこれらの点に留意し鋭意
研究を進め、本発明を完成するに至った。本発明は、マ
グネシウムまたはマグネシウム合金を化学エツチングし
、フッ化物で処理し、アルカリで中和し、次いでフl(
電解ニッケルめっきを行う工程を含むマグネシウムまた
はマグネシウム合金のめっき法において、化学エツチン
グ液が、ピロリン酸塩、硝酸塩および硫酸塩を含み、ク
ロム酸イオンを含まず、アルカリ中和液が、次亜リン酸
塩およびアンモニア水を含み、 無電解ニッケルめっき液が、オキシカルボン酸ニッケル
、ピロリン酸塩、次亜リン酸塩およびフッ化物を含み、
硫酸イオンおよび塩化物イオンを含まないこと、 を特徴とする、マグネシウムまたはマグネシウム合金の
めっき法である。
When plating magnesium or magnesium alloy, the only thing that impairs its adhesion is MgO1M1! +J
6. These are intermetallic compounds such as □, the potential difference that occurs between the substrate and the plating layer, and corrosive media (water, oxygen, various anions, etc.). The inventor of the present invention has carried out extensive research with these points in mind, and has now completed the present invention. The present invention involves chemically etching magnesium or magnesium alloys, treating them with fluoride, neutralizing them with alkali, and then chemically etching magnesium or magnesium alloys with fluoride.
In a magnesium or magnesium alloy plating method that includes electrolytic nickel plating, the chemical etching solution contains pyrophosphate, nitrate, and sulfate but does not contain chromate ions, and the alkaline neutralization solution contains hypophosphorous acid. The electroless nickel plating solution contains salt and aqueous ammonia, and the electroless nickel plating solution contains nickel oxycarboxylate, pyrophosphate, hypophosphite and fluoride.
A method for plating magnesium or magnesium alloy, characterized by not containing sulfate ions and chloride ions.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明方法を実施するばあい、必要により、まず表面研
磨および表面脱脂を行う。表面研磨は、素材表面に存在
する湯シワ、巣穴、その他の欠陥部分を、エメリー別布
研磨などによりできるだけ除去した後、1−リボリ羽布
で鏡面仕上げすることにより行う。ブラスト処理により
梨地仕」二げをしてもよい。次に、有機溶剤による予備
洗浄の後、アルカリn+h脂剤を用いて表面にイに1着
している汚れを十分に除去する。必要に応して、陰極電
解脱脂を併用してもよい。
When carrying out the method of the present invention, surface polishing and surface degreasing are first performed, if necessary. Surface polishing is performed by removing as much as possible of hot water wrinkles, pores, and other defects existing on the surface of the material by polishing with an emery cloth, etc., and then mirror-finishing the material with a 1-Ribori cloth. A satin finish may be applied by blasting. Next, after preliminary cleaning with an organic solvent, dirt deposited on the surface is thoroughly removed using an alkaline n+h fat agent. If necessary, cathodic electrolytic degreasing may be used in combination.

脱脂処理した後、化学エツチングを行う。本発明に使用
されるエツチング液は、ピロリン酸塩、硝酸塩、および
硫酸塩を含んでいる。塩としては、ナトリウム塩、カリ
ウム塩、またはアンモニラJ、塩が好ましい。ピロリン
酸塩のン農度は50〜500g/C1好ましくは100
〜200 g/β力く適当である。硝酸塩の濃度は20
〜300g/ff、好)Eしくは50〜200 g/I
fが適当である。硫酸塩の濃度は5〜100g/x、好
ましくは、10〜50 g / (!が適当である。処
理温度は50℃〜80℃、好ましくは70℃〜80℃が
適当であり、処理時間は1分〜3分程度が適当である。
After degreasing, chemical etching is performed. The etching solution used in the present invention contains pyrophosphate, nitrate, and sulfate. As the salt, sodium salt, potassium salt, or ammonia J salt is preferred. The yield of pyrophosphate is 50 to 500 g/C1, preferably 100
~200 g/β is very suitable. The concentration of nitrate is 20
~300g/ff, good)E or 50-200g/I
f is appropriate. The concentration of sulfate is 5 to 100 g/x, preferably 10 to 50 g/ Approximately 1 minute to 3 minutes is appropriate.

この化学エツチング処理により、素材表面に存在する酸
除去される。しかも素材表面は、それほど粗面化されず
、表面各部付量の電位が均一化される。この際、ピロリ
ン酸塩および硫酸塩はエツチング剤として作用し、硝酸
塩は、マグネシウムの腐食抑制剤として作用する。ピロ
リン酸塩はまた、素(イ表面に腐食保護膜としてのリン
酸塩被膜を形成し、空気中、および水中における素材の
腐食を防止する。
This chemical etching process removes the acid present on the surface of the material. Furthermore, the surface of the material is not so roughened, and the potential of each portion of the surface is made uniform. At this time, pyrophosphate and sulfate act as etching agents, and nitrate acts as a corrosion inhibitor for magnesium. Pyrophosphate also forms a phosphate film as a corrosion protection film on the surface of the material, preventing corrosion of the material in air and water.

化学エソヂングを行い、水洗した素材を、フッ化物処理
する。この処理は、恥0 、Mg+7Aff 12など
の不純物をより完全に除去し、フッ化マグネシウム被膜
を形成せしめるものである。フッ化物処理液としては、
たとえば、70%■■F、あるいLJ85%リン酸20
0g/βおよびN11411F2 100g/lを含む
液が使用される。処理温度は室温で十分であり、処理時
間は30〜90秒程度が適当である。
After chemical etching and washing with water, the material is treated with fluoride. This treatment is to more completely remove impurities such as Shi0, Mg+7Aff12, and form a magnesium fluoride film. As a fluoride treatment liquid,
For example, 70%■■F, or LJ85% phosphoric acid 20
A solution containing 0 g/β and 100 g/l of N11411F2 is used. A treatment temperature of room temperature is sufficient, and a treatment time of approximately 30 to 90 seconds is appropriate.

次いで水洗後、アルカリ中和処理を行う。本発明のアル
カリ中和液は、次亜リン酸塩およびアンモニア水を含ん
でいる。塩としては、ナトリウム塩、カリウム塩、また
はアンモニウム塩が好ましい。次亜リン酸塩の?農度は
5〜50 g / /!、好まL < i;i ] 0
〜30 g/(lが適当である。アンモニア水の濃度し
11.28重量%アンモニア水5,100m 1 / 
i2 、好ましくは10〜30 m (1/ 1.が適
当である。また、さらにオキシカルボン酸塩を含有させ
てもよく、その深度は5〜50g/ff、好ましくは1
0〜30 g / 7!が適当である。オキシカルボン
酸としてシ;1、クエン酸、リンゴ酸、乳酸、グリコー
ル酸、コハク酸などを使用することができる。オキシカ
ルボン酸の塩としては、ナトリウム塩塩、カリウム塩、
アンモニウム塩などが好ましい。このように、中和液に
オキシカルボン酸塩を含有させ、次工程の無電解ニッケ
ルめっき液のS、l成に近すけておくことにより、めっ
きの開始を円滑に行うことができる。処理温度6才室温
で十分であり、処理時間は、30〜120秒程度が適当
である。
Next, after washing with water, alkali neutralization treatment is performed. The alkaline neutralization solution of the present invention contains hypophosphite and aqueous ammonia. As the salt, sodium salt, potassium salt, or ammonium salt is preferred. Of hypophosphite? Agricultural degree is 5-50 g//! , preferred L <i; i ] 0
〜30 g/(l is appropriate.The concentration of ammonia water is 11.28% by weight. 5,100 m 1 /
i2, preferably 10 to 30 m (1/1.
0-30g/7! is appropriate. As the oxycarboxylic acid, citric acid, malic acid, lactic acid, glycolic acid, succinic acid, etc. can be used. Salts of oxycarboxylic acids include sodium salts, potassium salts,
Ammonium salts and the like are preferred. In this way, plating can be started smoothly by containing an oxycarboxylic acid salt in the neutralizing solution and keeping it close to the S and I compositions of the electroless nickel plating solution in the next step. A treatment temperature of 6 years old and room temperature is sufficient, and a treatment time of about 30 to 120 seconds is appropriate.

本発明のアルカリ中和液は、還元剤を含んでいるため、
素材表面に残存するフッ化物処理液成分を中和するだけ
でなく、素材表面の酸化が有効に防1にされる。
Since the alkaline neutralization liquid of the present invention contains a reducing agent,
Not only does it neutralize the fluoride treatment liquid components remaining on the surface of the material, but it also effectively prevents oxidation on the surface of the material.

次いで水洗を行うことなく、無電解ニッケルめつき処理
を行う。水洗工程を省略することにより、通常おこりや
すい空中滞在時あるいは水洗時における素材表面の酸化
あるいは腐食の発生が著しく低減する。
Next, electroless nickel plating treatment is performed without washing with water. By omitting the water washing step, the occurrence of oxidation or corrosion on the surface of the material, which normally tends to occur during airborne stay or water washing, is significantly reduced.

本発明に使用する無電解ニッケルめっき液は、オキシカ
ルボン酸ニッケル、ピロリン酸塩、次亜リン酸塩および
フッ化物を含んでいる。オキシカルボン酸としては、前
述のオキシカルボン酸を使用することができる。ピロリ
ン酸塩、次亜リン酸塩およびフッ化物としては、ナトリ
ウム塩、カリウム塩、アンモニウム塩などが好ましい。
The electroless nickel plating solution used in the present invention contains nickel oxycarboxylate, pyrophosphate, hypophosphite, and fluoride. As the oxycarboxylic acid, the aforementioned oxycarboxylic acids can be used. As the pyrophosphate, hypophosphite and fluoride, sodium salt, potassium salt, ammonium salt and the like are preferred.

本発明に使用する無電解ニッケルめっき液は、マグネシ
ウムに対して強い腐食性を有する、硫酸イオンや塩化物
イオンのような陰イオンを実質的に含んでいない。オキ
シカルボン酸ニッケルの濃度は15〜35g/A、好ま
しくは20〜30 g / IIが適当である。ピロリ
ン酸塩の濃度は30〜100g/l好ましくは30〜7
0 g/7!が適当であり る。次亜リン酸塩の濃度は15〜35 g/l、好まし
く Bat 20〜30g/7!が適当である。フッ化
物の濃度&;l: 2〜20g/1..好ましくは5〜
10g/pが適当である。本発明において、無電解ニッ
ケルめっき?夜のpl+は、アルカリイ則であることが
好ましくぐ特にpl+9.5〜10.5の範囲が好まし
い。処理浴温ば50〜65℃、処理時間へよ2〜10分
が適当である。
The electroless nickel plating solution used in the present invention does not substantially contain anions such as sulfate ions and chloride ions, which are highly corrosive to magnesium. The appropriate concentration of nickel oxycarboxylate is 15 to 35 g/A, preferably 20 to 30 g/II. The concentration of pyrophosphate is 30-100 g/l, preferably 30-7
0g/7! is appropriate. The concentration of hypophosphite is 15-35 g/l, preferably Bat 20-30 g/7! is appropriate. Fluoride concentration &;l: 2-20g/1. .. Preferably 5~
10 g/p is appropriate. In the present invention, electroless nickel plating? It is preferable that pl+ at night conforms to Alkaline's law, and particularly preferably a range of pl+ of 9.5 to 10.5. It is appropriate that the temperature of the treatment bath is 50 to 65°C and the treatment time is 2 to 10 minutes.

無電解ニッケルめっき処理を行った後、水洗する。本発
明方法にしたがってこのようにめっきを施した素材はそ
のままめっき製品として使用することができるし、ある
いはこれを下地として、さらに他のめっき、たとえば酸
性無電解めっき、電気めっきなどを施すこともできる。
After electroless nickel plating, wash with water. The material thus plated according to the method of the present invention can be used as it is as a plated product, or it can be used as a base for further other plating, such as acidic electroless plating or electroplating. .

次に実施例を示し、本発明を更に詳細に説明する。以下
の実施例で使用した素材の成分は次のとおりである。
EXAMPLES Next, the present invention will be explained in more detail by showing examples. The ingredients of the materials used in the following examples are as follows.

弓  1 1 1  g 実施例1 オーディオピックアップ用AZ−91,8素月(J I
 S−MDC・IB−ボソトチャンハーダイカスト)に
、表1に示すダウ法、GAT法ならびに本発明による方
法を用いてめっきを施した。
Bow 1 1 1 g Example 1 AZ-91,8 Sogetsu (J I
Plating was applied to S-MDC/IB-bosotochanhard die casting) using the Dow method, the GAT method, and the method according to the present invention shown in Table 1.

この結果、次のことが明らかとなった。As a result, the following became clear.

■) ダウ法によると、調布研磨を施して平滑ζこした
表面が、化学エツチングに於いてあれてしまい素材の表
面欠陥が露呈される。更に次工程のフッ酸処理によって
表面に形成された不溶性被膜(MgF2)のために、無
電解ニッケルめっきの反応開始が近く (60〜120
秒経過後反応開始)、不均一なめっきとなり易いだけで
なく良好なめっきの密着が得られなかった。
(2) According to the Dow method, the surface that has been smoothed by Chofu polishing is roughened by chemical etching, exposing surface defects in the material. Furthermore, due to the insoluble film (MgF2) formed on the surface by the hydrofluoric acid treatment in the next step, the electroless nickel plating reaction will start soon (60-120
(reaction started after a few seconds had elapsed), not only was it likely to result in non-uniform plating, but also good adhesion of the plating could not be obtained.

2)  GAT法に於いては、ダウ法と同時に化学エツ
チングによって素材表面があれでしまうが、無電解ニッ
ケルめっき反応開始は早く、均一である。しかし、反応
の初期(30〜60秒)に素材表面がめつき液によって
侵され、めっき後200℃、1時間のヘーキング処理(
めっきの密着力を向上させるために行う)を施しても、
一部に密着不良によるフクレを生じた。
2) In the GAT method, the surface of the material is roughened due to chemical etching at the same time as the DOW method, but the electroless nickel plating reaction starts quickly and uniformly. However, the surface of the material was attacked by the plating solution during the initial stage of the reaction (30 to 60 seconds), and after plating, it was subjected to a haking process at 200°C for 1 hour.
Even if the coating is applied to improve the adhesion of the plating,
Blisters occurred in some areas due to poor adhesion.

3) 本発明による方法を用いためっきは、エツチング
による素材表面のあれが無く、美麗な外観を有するだけ
でなく、密着及び師1食性も良好であった。
3) The plating using the method according to the present invention not only had a beautiful appearance without any roughness on the surface of the material due to etching, but also had good adhesion and porosity.

実施例2 ザンドキャス1−(砂型鋳物)AZ−92,A(J l
5−MC−3)に、表1に示した本発明によるめっき方
法を用いてめっきを施した結果、良好な密着及び耐食性
を有するめっきが得られた。
Example 2 Zandocath 1- (sand casting) AZ-92, A (J l
As a result of plating 5-MC-3) using the plating method according to the present invention shown in Table 1, a plating having good adhesion and corrosion resistance was obtained.

このサントキャストは、結晶粒径が大きく、偏析部も多
いため化学エツチングとフッ化物処理をくり返し行わな
いと、均一な表面状態が得られ難い。
Since Santocast has large crystal grains and many segregated areas, it is difficult to obtain a uniform surface condition unless chemical etching and fluoride treatment are repeated.

実施例3 AZ−63(JIS−MC−1)及びZK−61(JI
S−MC−7)に、表1に示した本発明による方法を用
いてめっきを施した結果、外観、密着及び耐食性の良好
なめっきが得られた。
Example 3 AZ-63 (JIS-MC-1) and ZK-61 (JIS-MC-1)
As a result of plating S-MC-7) using the method according to the present invention shown in Table 1, plating with good appearance, adhesion, and corrosion resistance was obtained.

なお、実施例中に於いて良好な而・1食性とは、無】3 電解ニッケルめっきを施したテストピース(ダウ法)お
よび無電解ニッケルめっきを施したのち、酸性無電解ニ
ッケルめっき(10μ厚)を施したテス(・ピース(G
AT法および本発明方法)が、塩水噴霧試験に150時
間以上耐えるものを云う。
In addition, in the examples, good and mono-edible properties refer to test pieces with electrolytic nickel plating (Dow method) and acidic electroless nickel plating (10μ thick) after electroless nickel plating. ) with Tess(・Peace(G)
(AT method and method of the present invention) that can withstand a salt spray test for 150 hours or more.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、マグネシウムまたはマグネシウム合金
表面に、密着性および耐食性のすくれためっき被膜を形
成することができる。本発明の最終工程に使用する無電
解ニッケルめっき液は、pl+がアルカリ側であるため
、析出物のP含有量が酸性浴を用いたばあいにくらべて
小さい。このため、本発明方法により得られるめっき被
膜は、次に施すめっき被膜との密着性がずくれている。
According to the present invention, it is possible to form a transparent plating film with good adhesion and corrosion resistance on the surface of magnesium or a magnesium alloy. Since pl+ of the electroless nickel plating solution used in the final step of the present invention is on the alkaline side, the P content of the precipitate is smaller than when an acid bath is used. For this reason, the plating film obtained by the method of the present invention has poor adhesion to the plating film to be applied next.

本発明方法は、電解工程を含んでいないので、被処理部
材の裏面、ネジ穴、引掛部などにも均一に、被覆力の強
いめっき被膜を形成することができ、特に、ダイカスト
鋳物上に、直接めっきを施すことができる。
Since the method of the present invention does not include an electrolytic process, it is possible to uniformly form a plating film with strong coating power on the back surface of the member to be treated, screw holes, hook parts, etc. Can be directly plated.

本発明方法により得られるめっき被膜を、他の酸性無電
解めっき、電気めっきの下地として、使用目的に応して
、密着性、耐食性、耐磨耗性にずくれた各種めっき被膜
を得ることができる。
The plating film obtained by the method of the present invention can be used as a base for other acidic electroless plating or electroplating to obtain various plating films with poor adhesion, corrosion resistance, and abrasion resistance, depending on the purpose of use. can.

Claims (1)

【特許請求の範囲】 マグネシウムまたはマグネシウム合金を化学エッチング
し、フッ化物で処理し、アルカリで中和し、次いで無電
解ニッケルめっきを行う工程を含むマグネシウムまたは
マグネシウム合金のめっき法において、 化学エッチング液が、ピロリン酸塩、硝酸塩および硫酸
塩を含み、クロム酸イオンを含まず、アルカリ中和液が
、次亜リン酸塩およびアンモニア水を含み、 無電解ニッケルめっき液が、オキシカルボン酸ニッケル
、ピロリン酸塩、次亜リン酸塩およびフッ化物を含み、
硫酸イオンおよび塩化物イオンを含まないこと、 を特徴とする、マグネシウムまたはマグネシウム合金の
めっき法。
[Claims] A method for plating magnesium or a magnesium alloy, which includes the steps of chemically etching magnesium or a magnesium alloy, treating it with a fluoride, neutralizing it with an alkali, and then performing electroless nickel plating, wherein the chemical etching solution is , pyrophosphate, nitrate and sulfate, but no chromate ions; the alkaline neutralizing solution contains hypophosphite and aqueous ammonia; the electroless nickel plating solution contains nickel oxycarboxylate, pyrophosphate Contains salt, hypophosphite and fluoride;
A method for plating magnesium or magnesium alloy, characterized by not containing sulfate ions and chloride ions.
JP18775884A 1984-09-07 1984-09-07 Plating method of magnesium and magnesium alloy Granted JPS6167770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18775884A JPS6167770A (en) 1984-09-07 1984-09-07 Plating method of magnesium and magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18775884A JPS6167770A (en) 1984-09-07 1984-09-07 Plating method of magnesium and magnesium alloy

Publications (2)

Publication Number Publication Date
JPS6167770A true JPS6167770A (en) 1986-04-07
JPH0225430B2 JPH0225430B2 (en) 1990-06-04

Family

ID=16211684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18775884A Granted JPS6167770A (en) 1984-09-07 1984-09-07 Plating method of magnesium and magnesium alloy

Country Status (1)

Country Link
JP (1) JPS6167770A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472071A (en) * 1990-07-12 1992-03-06 C Uyemura & Co Ltd Electroless tin and tin-lead alloy plating bath and plating method
US6669997B2 (en) 2002-03-26 2003-12-30 National Research Council Of Canada Acousto-immersion coating and process for magnesium and its alloy
KR100431125B1 (en) * 2001-11-16 2004-05-12 주식회사 에이치 제이 텍 Double electroless nikel plating method by pre-treatment process of magnesium and magnesium alloy
KR100453994B1 (en) * 2002-03-14 2004-10-26 주식회사 에이치 제이 텍 Two layer non-electrolysis nickel coating method by dynamic etching of magnesium and magnesium alloy
JP2014084500A (en) * 2012-10-24 2014-05-12 Knowledge Management Technology Co Ltd Method of treating surface of magnesium or magnesium alloy, acid cleaning agent, conversion treatment agent and conversion-treated structure of magnesium or magnesium alloy
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US9926766B2 (en) 2012-01-25 2018-03-27 Baker Hughes, A Ge Company, Llc Seat for a tubular treating system
US9926763B2 (en) 2011-06-17 2018-03-27 Baker Hughes, A Ge Company, Llc Corrodible downhole article and method of removing the article from downhole environment
JPWO2017056290A1 (en) * 2015-10-01 2018-05-31 三菱重工業株式会社 Coating structure, impeller, compressor, metal part manufacturing method, impeller manufacturing method, and compressor manufacturing method
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US10301909B2 (en) 2011-08-17 2019-05-28 Baker Hughes, A Ge Company, Llc Selectively degradable passage restriction
US10335858B2 (en) 2011-04-28 2019-07-02 Baker Hughes, A Ge Company, Llc Method of making and using a functionally gradient composite tool
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
CN112941494A (en) * 2021-03-10 2021-06-11 宿辉 A kind of (SiC) with lotus leaf effectPPreparation method of super-hydrophobic membrane layer

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472071A (en) * 1990-07-12 1992-03-06 C Uyemura & Co Ltd Electroless tin and tin-lead alloy plating bath and plating method
KR100431125B1 (en) * 2001-11-16 2004-05-12 주식회사 에이치 제이 텍 Double electroless nikel plating method by pre-treatment process of magnesium and magnesium alloy
KR100453994B1 (en) * 2002-03-14 2004-10-26 주식회사 에이치 제이 텍 Two layer non-electrolysis nickel coating method by dynamic etching of magnesium and magnesium alloy
US6669997B2 (en) 2002-03-26 2003-12-30 National Research Council Of Canada Acousto-immersion coating and process for magnesium and its alloy
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US10669797B2 (en) 2009-12-08 2020-06-02 Baker Hughes, A Ge Company, Llc Tool configured to dissolve in a selected subsurface environment
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US10335858B2 (en) 2011-04-28 2019-07-02 Baker Hughes, A Ge Company, Llc Method of making and using a functionally gradient composite tool
US9631138B2 (en) 2011-04-28 2017-04-25 Baker Hughes Incorporated Functionally gradient composite article
US9926763B2 (en) 2011-06-17 2018-03-27 Baker Hughes, A Ge Company, Llc Corrodible downhole article and method of removing the article from downhole environment
US10697266B2 (en) 2011-07-22 2020-06-30 Baker Hughes, A Ge Company, Llc Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US10092953B2 (en) 2011-07-29 2018-10-09 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US10301909B2 (en) 2011-08-17 2019-05-28 Baker Hughes, A Ge Company, Llc Selectively degradable passage restriction
US11090719B2 (en) 2011-08-30 2021-08-17 Baker Hughes, A Ge Company, Llc Aluminum alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US10737321B2 (en) 2011-08-30 2020-08-11 Baker Hughes, A Ge Company, Llc Magnesium alloy powder metal compact
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9925589B2 (en) 2011-08-30 2018-03-27 Baker Hughes, A Ge Company, Llc Aluminum alloy powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9802250B2 (en) 2011-08-30 2017-10-31 Baker Hughes Magnesium alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9926766B2 (en) 2012-01-25 2018-03-27 Baker Hughes, A Ge Company, Llc Seat for a tubular treating system
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US10612659B2 (en) 2012-05-08 2020-04-07 Baker Hughes Oilfield Operations, Llc Disintegrable and conformable metallic seal, and method of making the same
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
JP2014084500A (en) * 2012-10-24 2014-05-12 Knowledge Management Technology Co Ltd Method of treating surface of magnesium or magnesium alloy, acid cleaning agent, conversion treatment agent and conversion-treated structure of magnesium or magnesium alloy
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
JPWO2017056290A1 (en) * 2015-10-01 2018-05-31 三菱重工業株式会社 Coating structure, impeller, compressor, metal part manufacturing method, impeller manufacturing method, and compressor manufacturing method
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CN112941494A (en) * 2021-03-10 2021-06-11 宿辉 A kind of (SiC) with lotus leaf effectPPreparation method of super-hydrophobic membrane layer

Also Published As

Publication number Publication date
JPH0225430B2 (en) 1990-06-04

Similar Documents

Publication Publication Date Title
JPS6167770A (en) Plating method of magnesium and magnesium alloy
US4707191A (en) Pickling process for heat-resistant alloy articles
JP2680618B2 (en) Metal phosphate treatment method
JPH0125831B2 (en)
JPH03501502A (en) How to plate on titanium
JPS5815555B2 (en) Treatment method before electroplating metal on titanium or titanium alloys
US2462196A (en) Protective phosphate coatings for metal surfaces
US2835630A (en) Treatment of metals prior to electro-plating
JPH01259180A (en) Formation of phosphate film
JPS60181282A (en) Surface treatment of aluminum alloy
US3065154A (en) Method of plating chromium and the like to titanium, its alloys, and the like
JP2607549B2 (en) Method of forming phosphate film
US3524817A (en) Method and compositions for chemically polishing zinc
JP2002275668A (en) Surface treatment method for molded goods of magnesium alloy
JP3845328B2 (en) Method for forming a chemical conversion coating on magnesium alloy
JPS59113199A (en) Surface treatment of aluminum alloy casting or aluminum alloy die casting
JP2962496B2 (en) Magne-based alloy plating method
JPH02232395A (en) Production of resin coated rustproof steel sheet having superior suitability to coating by electrodeposition
JPH0759755B2 (en) Method for manufacturing A-l alloy coated plate for automobiles having excellent system rust resistance
JP3102664B2 (en) Surface treatment method for magnesium alloy products
JPH07173635A (en) Method for surface treatment of metal
JP3102663B2 (en) Pre-painting method and painting method for magnesium alloy products
JPH116078A (en) Chemical treating agent for aluminum and chemical treatment
JPS605896A (en) Treatment of aluminum and its alloy as substrate
US2836548A (en) Surface treatment of metallic uranium