JPH0225430B2 - - Google Patents

Info

Publication number
JPH0225430B2
JPH0225430B2 JP18775884A JP18775884A JPH0225430B2 JP H0225430 B2 JPH0225430 B2 JP H0225430B2 JP 18775884 A JP18775884 A JP 18775884A JP 18775884 A JP18775884 A JP 18775884A JP H0225430 B2 JPH0225430 B2 JP H0225430B2
Authority
JP
Japan
Prior art keywords
plating
magnesium
electroless nickel
present
nickel plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18775884A
Other languages
Japanese (ja)
Other versions
JPS6167770A (en
Inventor
Toshinobu Okamura
Choko Endo
Juji Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kizai KK
Original Assignee
Kizai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kizai KK filed Critical Kizai KK
Priority to JP18775884A priority Critical patent/JPS6167770A/en
Publication of JPS6167770A publication Critical patent/JPS6167770A/en
Publication of JPH0225430B2 publication Critical patent/JPH0225430B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、マグネシウムおよびマグネシウム合
金は、密着性および耐蝕性の良好なめつきを施す
方法に関する。 〔従来技術〕 マグネシウムは、比重がアルミニウムの約1/3
であり、軽量化金属材料としてすぐれている。し
かし化学的活性が非常に強く、表面の加工、研
磨、化学的活性化を行つても、ただちに酸化膜が
生成するため、マグネシウム表面に、密着性の良
いめつきを施すことは極めて困難である。 このように、密着性のすぐれためつきを得るこ
とが困難とされているマグネシウムまたはマグネ
シウム合金の表面処理法として、ダウケミカル社
が開発したいわゆるダウ法が知られている。この
ダウ法には、前処理、亜鉛処理、青化銅ストライ
クを施した後、目的とするめつきを行う、電気め
つき法(ダウめつき法)と、無電解ニツケルめつ
き法がある。無電解ニツケルめつき法としては、
前記ダウめつき法により青化銅ストライクを施し
た後に無電解ニツケルめつきを行う方法と、
CrO3−HNO3混液による化学エツチング、次い
でフツ酸処理した後、無電解ニツケルめつきを施
す方法が提案されている。また、特公昭37−9800
号及び特公昭40−1722号公報には、CrO3
HNO3混液によりエツチングし、フツ酸処理し、
次いでアルカリ中和を行つた後、無電解ニツケル
めつきを行う方法(GAT法)が開示されている。
GAT法は、フツ酸処理によつてマグネシウム表
面に形成されたMgF2被膜を、アルカリ中和処理
によりMgHF3およびMg(OH)2に変化せしめ、
無電解ニツケルめつきの密着性を向上させること
を特徴とするものであり、アルカリ性無電解ニツ
ケルめつき浴の用いるため、めつき浴中において
マグネシウムの腐食が起こらないという利点があ
る。 しかしこれら従来の無電解ニツケル法では、密
着性の良好なめつきが得られず、また、化学エツ
チングに酸性クロム酸液を用いているため、マグ
ネシウム表面が浸食されて粗面となり、めつきの
外観が悪くなるだけでなく、6価クロムを多量に
使用しているため、排水公害を起こすおそれがあ
り、好ましくない。またダウ法を、Al−Zn−Mg
ダイカスト合金のめつきに適用したばあい、亜鉛
置換そのものが極めて信頼性に欠け、良好な密着
性を有するめつきが得られない。 〔発明の目的〕 本発明の目的は、マグネシウムおよびマグネシ
ウム合金に、密着性および耐蝕性のすぐれためつ
きを施す方法を提供することである。 〔発明の構成〕 マグネシウムまたはマグネシウム合金にめつき
を施すばあい、その密着性を阻害するものは
MgO、Mg17Al12のような金属間化合物、および
Mgとめつき層の間に生じる電位差と腐食性媒体
(水、酸素、各種の陰イオンなど)である。本発
明者はこれらの点に留意し鋭意研究を進め、本発
明をを完成するに到つた。本発明は、マグネシウ
ムまたはマグネシウム合金を化学エツチングし、
フツ化物で処理し、アルカリで中和し、次いで無
電解ニツケルめつきを行う工程を含むマグネシウ
ムまたはマグネシウム合金のめつき法において、 化学エツチング液が、ピロリン酸塩、硝酸塩お
よび硫酸塩を含み、クロム酸イオンを含まず、 アルカリ中和液が、次亜リン酸塩およびアンモ
ニア水を含み、 無電解ニツケルめつきが、オキシカルボン酸ニ
ツケル、ピロリン酸塩、次亜リン酸塩およびフツ
化物を含み、硫酸イオンおよび塩化物イオンを含
まないこと、 を特徴とする、マグネシウムまたはマグネシウム
合金のめつき法である。 以下、本発明を詳細に説明する。 本発明方法を実施するばあい、必要により、ま
ず表面研磨および表面脱脂を行う。表面研磨は、
素材表面に存在する湯ジワ、巣穴、その他の欠陥
部分を、エメリー羽布研磨などによりできるだけ
除去した後、トリポリ羽布で鏡面仕上げすること
により行う。ブラスト処理により梨地仕上げをし
てもよい。次に、有機溶剤による予備洗浄の後、
アルカリ脱脂剤を用いて表面に付着している汚れ
を十分に除去する。必要に応じて陰極電解脱脂を
併用してもよい。 脱脂処理した後、化学エツチングを行う。本発
明に使用されるエツチング液は、ピロリン酸塩、
硝酸塩、および硫酸塩を含んでいる。塩として
は、ナトリウム塩、カリウム塩、またはアンモニ
ウム塩が好ましい。ピロリン酸塩の濃度は50〜
500g/、好ましくは100〜200g/が適当で
ある。硝酸塩の濃度は20〜300g/、好ましく
は50〜200g/が適当である。硫酸塩の濃度は
5〜100g/、好ましくは、10〜50g/が適
当である。処理温度は50℃〜80℃、好ましくは70
℃〜80℃が適当であり、処理時間は1分〜3分程
度が適当である。この化学エツチング処理によ
り、素材表面に存在する酸化膜(MgO)および、
表面あるいは結晶粒界に偏析するMg17Al12など
の金属間化合物が選択的に溶解除去される。しか
も素材表面は、それほど粗面化されず、表面各部
位間の電位が均一化される。この際、ピロリン酸
塩および硫酸塩はエツチング剤として作用し、硫
酸塩は、マグネシウムの腐食抑制剤として作用す
る。ピロリン酸塩はまた、素材表面に腐食保護膜
としてのリン酸塩被膜を形成した、空気中、およ
び水中における組材の腐食を防止する。 化学エツチングを行い、水洗した素材を、フツ
化物処理する。この処理は、MgO、Mg17Al12
どの不純物をより完全に除去し、フツ化マグネシ
ウム被膜を形成せしめるものである。フツ化物処
理液としては、たとえば、70%HF、あるいは85
%リン酸200g/およびNH4HF2100g/を
含む液が使用される。処理温度は室温で十分であ
り、処理時間は30〜90秒程度が適当である。 次いで水洗後、アルカリ中和処理を行う。本発
明のアルカリ中和液は、次亜リン酸塩およびアン
モニア水を含んでいる。塩としては、ナトリウム
塩、カリウム塩、またはアンモニウム塩が好まし
い。次亜リン酸塩の濃度は5〜50g/、好まし
くは10〜30g/が適当である。アンモニア水の
濃度は、28重量%アンモニア水5〜100ml/、
好ましくは10〜30ml/が適当である。また、さ
らにオキシカルボン酸塩をを含有させてもよく、
その濃度は5〜50g/、好ましくは10〜30g/
が適当である。オキシカルボン酸としては、ク
エン酸、リンゴ酸、乳酸、グリコール酸、コハク
酸などを使用することができる。オキシカルボン
酸の塩としては、ナトリウム塩、カリウム塩、ア
ンモニウム塩などが好ましい。このように、中和
液にオキシカルボン酸塩を含有させ、次工程の無
電解ニツケルめつき液の組成に近ずけておくこと
により、めつきの開始を円滑に行うことができ
る。処理温度は室温で十分であり、処理時間は、
30〜120秒程度が適当である。 本発明のアルカリ中和液は、還元剤を含んでい
るため、表材表面に残存するフツカ物処理液成分
を中和するだけでなく、表材表面の酸化が有効に
防止される。 次いで水洗を行うことなく、無電解ニツケルめ
つき処理を行う。水洗工程を省略することによ
り、通常おこりやすい空中帯在時あるいは水洗時
における表材表面の酸化あるいは腐食の発生が著
しく低減する。 本発明に使用する無電解ニツケルめつき液は、
オキシカルボン酸ニツケル、ピロリン酸塩、次亜
リン酸塩およびフツ化物を含んでいる。オキシカ
ルボン酸としては、前述のオキシカルボン酸を使
用することができる。ピロリン酸塩、次亜リン酸
塩およびフツ化物としては、ナトリウム塩、カリ
ウム塩、アンモニウム塩などが好ましい。本発明
に使用する無電解ニツケルめつき液は、マグネシ
ウムに対して強い腐食性を有する、硫酸イオンや
塩化物イオンような陰イオンを実質的に含んでい
ない。オキシカルボン酸ニツケルの濃度は15〜35
g/、好ましくは20〜30g/が適当である。
ピロリン酸塩の濃度は30〜100g/、好ましく
は30〜70g/が適当である。次亜リン酸塩の濃
度は15〜35g/、好ましくは20〜30g/が適
当である。フツ化物の濃度は2〜20g/、好ま
しくは5〜10g/が適当である。本発明におい
て、無電解ニツケルめつき液のPHは、アルカリ側
であることが好ましく、特にPH9.5〜10.5の範囲
が好ましい。処理浴温は50〜65℃、処理時間は2
〜10分が適当である。 無電解ニツケルめつき処理を行つた後、水洗す
る。本発明方法にしたがつてこのようなめつきを
施した素材はそのままめつき製品として使用する
ことができるし、あるいはこれを下地として、さ
らに他のめつき、たとえば酸性無電解めつき、電
気めつきなどを施すこともできる。 次に実施例を示し、本発明を更に詳細に説明す
る。以下の実施例で使用した素材の成分は次のと
おりである。
[Industrial Application Field] The present invention relates to a method for plating magnesium and magnesium alloys with good adhesion and corrosion resistance. [Prior art] Magnesium has a specific gravity that is approximately 1/3 that of aluminum.
Therefore, it is excellent as a lightweight metal material. However, it is highly chemically active, and even if the surface is processed, polished, or chemically activated, an oxide film will immediately form, making it extremely difficult to apply plating with good adhesion to the magnesium surface. . As described above, the so-called Dow method developed by the Dow Chemical Company is known as a surface treatment method for magnesium or magnesium alloys in which it is difficult to obtain excellent adhesion. The Dow method includes an electroplating method (Dow plating method) and an electroless nickel plating method, in which the desired plating is performed after pretreatment, zinc treatment, and copper bronze strike. As an electroless nickel plating method,
A method of performing electroless nickel plating after applying a copper cyanide strike by the down plating method;
A method has been proposed in which chemical etching is performed using a CrO 3 -HNO 3 mixture, followed by treatment with hydrofluoric acid, followed by electroless nickel plating. In addition, special public service 37-9800
CrO 3
Etched with HNO 3 mixture, treated with hydrofluoric acid,
A method (GAT method) in which electroless nickel plating is then performed after alkali neutralization is disclosed.
In the GAT method, the MgF 2 film formed on the magnesium surface by hydrofluoric acid treatment is changed into MgHF 3 and Mg(OH) 2 by alkali neutralization treatment.
It is characterized by improving the adhesion of electroless nickel plating, and since it uses an alkaline electroless nickel plating bath, it has the advantage that corrosion of magnesium does not occur in the plating bath. However, with these conventional electroless nickel methods, it is not possible to obtain plating with good adhesion, and because acidic chromic acid solution is used for chemical etching, the magnesium surface is eroded and becomes rough, resulting in poor plating appearance. Not only does it deteriorate, but since a large amount of hexavalent chromium is used, there is a risk of causing drainage pollution, which is not preferable. In addition, the Dow method is applied to Al−Zn−Mg
When applied to plating die-cast alloys, zinc substitution itself is extremely unreliable, and plating with good adhesion cannot be obtained. [Object of the Invention] An object of the present invention is to provide a method for applying a glaze to magnesium and magnesium alloys with excellent adhesion and corrosion resistance. [Structure of the Invention] When plating magnesium or magnesium alloy, what inhibits the adhesion?
intermetallic compounds such as MgO, Mg 17 Al 12 , and
These are the potential difference created between Mg and the plating layer and corrosive media (water, oxygen, various anions, etc.). The inventor of the present invention has carried out intensive research with these points in mind, and has now completed the present invention. The present invention chemically etches magnesium or magnesium alloy,
In a process for plating magnesium or magnesium alloys that involves treatment with fluoride, neutralization with alkali, and electroless nickel plating, the chemical etching solution contains pyrophosphates, nitrates, and sulfates, and chromium does not contain acid ions, the alkaline neutralizing solution contains hypophosphite and aqueous ammonia, the electroless nickel plating contains nickel oxycarboxylate, pyrophosphate, hypophosphite and fluoride, A method for plating magnesium or magnesium alloys, characterized by not containing sulfate ions and chloride ions. The present invention will be explained in detail below. When carrying out the method of the present invention, surface polishing and surface degreasing are first performed, if necessary. Surface polishing is
This is done by removing as much as possible of wrinkles, holes, and other defects on the surface of the material by polishing with an emery cloth, and then giving it a mirror finish with a Tripoli cloth. A satin finish may be achieved by blasting. Next, after preliminary cleaning with an organic solvent,
Thoroughly remove dirt adhering to the surface using an alkaline degreaser. If necessary, cathodic electrolytic degreasing may be used in combination. After degreasing, chemical etching is performed. The etching solution used in the present invention includes pyrophosphate,
Contains nitrates and sulfates. As the salt, sodium salt, potassium salt, or ammonium salt is preferred. The concentration of pyrophosphate is 50~
A suitable amount is 500g/, preferably 100-200g/. The appropriate concentration of nitrate is 20 to 300 g/, preferably 50 to 200 g/. The appropriate concentration of sulfate is 5 to 100 g/, preferably 10 to 50 g/. Processing temperature is 50℃~80℃, preferably 70℃
C. to 80.degree. C. is suitable, and the processing time is suitably about 1 minute to 3 minutes. This chemical etching process removes the oxide film (MgO) on the surface of the material.
Intermetallic compounds such as Mg 17 Al 12 that segregate on the surface or grain boundaries are selectively dissolved and removed. Furthermore, the surface of the material is not so roughened, and the potential between the various parts of the surface is made uniform. At this time, the pyrophosphate and sulfate act as etching agents, and the sulfate acts as a corrosion inhibitor for magnesium. Pyrophosphate also prevents corrosion of the assembly in air and water, forming a phosphate coating on the surface of the material as a corrosion protection film. After chemical etching and washing with water, the material is treated with fluoride. This treatment removes impurities such as MgO and Mg 17 Al 12 more completely and forms a magnesium fluoride film. Examples of fluoride treatment liquids include 70% HF or 85% HF.
A solution containing 200 g/% phosphoric acid and 100 g/NH 4 HF 2 is used. A treatment temperature of room temperature is sufficient, and a treatment time of about 30 to 90 seconds is appropriate. Next, after washing with water, alkali neutralization treatment is performed. The alkaline neutralization solution of the present invention contains hypophosphite and aqueous ammonia. As the salt, sodium salt, potassium salt, or ammonium salt is preferred. The appropriate concentration of hypophosphite is 5 to 50 g/, preferably 10 to 30 g/. The concentration of ammonia water is 28% by weight ammonia water 5-100ml/,
Preferably, 10 to 30 ml is appropriate. In addition, an oxycarboxylic acid salt may be further contained,
Its concentration is 5-50g/, preferably 10-30g/
is appropriate. As the oxycarboxylic acid, citric acid, malic acid, lactic acid, glycolic acid, succinic acid, etc. can be used. As the salt of oxycarboxylic acid, sodium salt, potassium salt, ammonium salt, etc. are preferable. In this way, plating can be started smoothly by containing an oxycarboxylic acid salt in the neutralizing solution and keeping the composition close to that of the electroless nickel plating solution in the next step. Room temperature is sufficient for the processing temperature, and the processing time is
Approximately 30 to 120 seconds is appropriate. Since the alkaline neutralizing liquid of the present invention contains a reducing agent, it not only neutralizes the stubble treatment liquid components remaining on the surface of the surface material, but also effectively prevents oxidation of the surface of the surface material. Next, electroless nickel plating treatment is performed without washing with water. By omitting the water-washing step, the occurrence of oxidation or corrosion on the surface of the surface material, which normally tends to occur during airborne distribution or water-washing, is significantly reduced. The electroless nickel plating solution used in the present invention is
Contains nickel oxycarboxylate, pyrophosphate, hypophosphite and fluoride. As the oxycarboxylic acid, the aforementioned oxycarboxylic acids can be used. As the pyrophosphate, hypophosphite and fluoride, sodium salt, potassium salt, ammonium salt and the like are preferred. The electroless nickel plating solution used in the present invention does not substantially contain anions such as sulfate ions and chloride ions, which are highly corrosive to magnesium. The concentration of nickel oxycarboxylate is 15-35
g/, preferably 20 to 30 g/.
The appropriate concentration of pyrophosphate is 30 to 100 g/, preferably 30 to 70 g/. The appropriate concentration of hypophosphite is 15 to 35 g/, preferably 20 to 30 g/. The appropriate concentration of fluoride is 2 to 20 g/, preferably 5 to 10 g/. In the present invention, the pH of the electroless nickel plating solution is preferably on the alkaline side, particularly preferably in the range of PH9.5 to 10.5. Processing bath temperature is 50-65℃, processing time is 2
~10 minutes is appropriate. After electroless nickel plating treatment, wash with water. The material plated according to the method of the present invention can be used as a plated product as it is, or it can be used as a base for further other plating, such as acid electroless plating or electroplating. etc. can also be applied. EXAMPLES Next, the present invention will be explained in more detail by showing examples. The ingredients of the materials used in the following examples are as follows.

【表】 残部はマグネシウムである。
実施例 1 オーデイオピツクアツプ用AZ−91.B素材(JIS
−MDC・1B−ホツトチヤンバ−ダイカスト)
に、表1に示すダウ法、GAT法ならびに本発明
による方法を用いてめつきを施した。 この結果、次のことが明らかとなつた。 (1) ダウ法によると、羽布研磨を施して平滑にし
た表面が、化学エツチングに於いてあれてしま
い素材の表面欠陥が露呈される。更に次工程の
フツ酸処理によつて表面に形成された不溶性被
膜(MgF2)のために、無電解ニツケルめつき
の反応開始が遅く(60〜120秒経過後反応開
始)、不均一なめつきとなり易いだけでなく良
好なめつきの密着が得られなかつた。 (2) GAT法に於いては、ダウ法と同時に化学エ
ツチングによつて素材表面があふれてしまう
が、無電解ニツケルめつき反応開始は早く、均
一である。しかし、反応の初期(30〜60秒)に
素材表面がめつき液によつて侵され、めつき後
200℃、1時間のベーキング処理(めつきの密
着力を向上させるために行う)を施しても、一
部に密着不良によるフクレを生じた。 (3) 本発明による方法を用いためつきは、エツチ
ングによる素材表面のあれが無く、美麗な外観
を有するだけでなく、密着及び耐食性もも良好
であつた。 実施例 2 サンドキヤスト(砂型鋳物)AZ−92.A(JIS−
MC−3)に、表1に示した本発明によるめつき
方法を用いてめつきを施した結果、良好な密着及
び耐食性を有するめつきが得られた。このサンド
キヤストは、結晶粒径が大きく、偏析部も多いた
め化学エツチングとフツ化物処理をくり返し行わ
ないと、均一な表面状態が得られ難い。 実施例 3 AZ−63(JIS−MC−1)及びZK−61(JIS−
MC−7)に、表1に示した本発明による方法を
用いめつきを施した結果、外観、密着及び耐蝕性
の良好なめつきが得られた。 なお、実施例中に於いて良好な耐食性とは、無
電解ニツケルめつきを施したテストピース(ダウ
法)および無電解ニツケルめつきを施したのち、
酸性無電解ニツケルめつき(10μ厚)を施したテ
ストピース(GAT法および本発明方法)が、塩
水噴霧試験に150時間以上耐えるものを云う。
[Table] The remainder is magnesium.
Example 1 AZ-91.B material for audio pickup (JIS
−MDC・1B−Hot chamber die casting)
Plating was performed using the Dow method, the GAT method, and the method according to the present invention shown in Table 1. As a result, the following became clear. (1) According to the Dow method, the surface smoothed by cloth polishing becomes rough during chemical etching, exposing surface defects in the material. Furthermore, due to the insoluble film (MgF 2 ) formed on the surface by the hydrofluoric acid treatment in the next step, the start of the electroless nickel plating reaction is slow (the reaction starts after 60 to 120 seconds), resulting in uneven plating. Not only easy, but also good plating adhesion could not be obtained. (2) In the GAT method, the surface of the material is flooded due to chemical etching at the same time as the Dow method, but the electroless nickel plating reaction starts quickly and uniformly. However, the surface of the material is attacked by the plating solution during the initial stage of the reaction (30 to 60 seconds), and after plating
Even after baking at 200°C for 1 hour (performed to improve plating adhesion), some blisters occurred due to poor adhesion. (3) When the method of the present invention was used, the material surface did not have any roughness due to etching, and not only did it have a beautiful appearance, but it also had good adhesion and corrosion resistance. Example 2 Sandcast (sand mold casting) AZ-92.A (JIS-
As a result of plating MC-3) using the plating method according to the present invention shown in Table 1, plating with good adhesion and corrosion resistance was obtained. Since this sandcast has large crystal grains and many segregated areas, it is difficult to obtain a uniform surface condition unless chemical etching and fluoride treatment are repeated. Example 3 AZ-63 (JIS-MC-1) and ZK-61 (JIS-MC-1)
As a result of plating MC-7) using the method according to the present invention shown in Table 1, plating with good appearance, adhesion, and corrosion resistance was obtained. In addition, in the examples, good corrosion resistance refers to a test piece that has been subjected to electroless nickel plating (Dow method) and a test piece that has been subjected to electroless nickel plating.
Test pieces with acidic electroless nickel plating (10 μm thickness) (GAT method and method of the present invention) that can withstand a salt spray test for 150 hours or more.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば、マグネシウムおよびマグネシ
ウム合金表面に、密着性および耐食性のすぐれた
めつき被膜を形成することができる。本発明の最
終工程に使用する無電解ニツケルめつき液は、PH
がアルカリ側であるため、析出物のP含有量が酸
性浴を用いたばあいにくらべて小さい。このた
め、本発明方法により得られるめつき被膜は、次
に施すめつき被膜との密着性がすぐれている。本
発明方法は、電解工程を含んでいないので、被処
理部材の裏面、ネジ穴、引掛部などにも均一に、
被覆力の強いめつき被膜を形成することができ、
特に、ダイカスト鋳物上に、直接めつきを施すこ
とができる。 本発明方法により得られるめつき被膜を、他の
酸性無電解めつき、電気めつきの下地として、使
用目的に応じて、密着性、耐食性、耐磨耗性にす
ぐれた各種めつき被膜を得ることができる。
According to the present invention, it is possible to form a sticky coating with excellent adhesion and corrosion resistance on the surface of magnesium and magnesium alloys. The electroless nickel plating solution used in the final step of the present invention has a pH of
Since it is on the alkaline side, the P content of the precipitate is smaller than when an acidic bath is used. Therefore, the plating film obtained by the method of the present invention has excellent adhesion to the plating film to be applied next. Since the method of the present invention does not include an electrolytic process, it can be applied uniformly to the back surface of the workpiece, screw holes, hook parts, etc.
Can form a plating film with strong covering power,
In particular, plating can be applied directly onto die castings. To use the plating film obtained by the method of the present invention as a base for other acidic electroless plating or electroplating to obtain various plating films with excellent adhesion, corrosion resistance, and abrasion resistance depending on the purpose of use. Can be done.

Claims (1)

【特許請求の範囲】 1 マグネシウムまたはマグネシウム合金を化学
エツチングし、フツ化物で処理し、アルカリで中
和し、次いで無電解ニツケルめつきを行う工程を
含むマグネシウムまたはマグネシウム合金のめつ
き法において、 化学エツチング液が、ピロリン酸塩、硝酸塩お
よび硫酸塩を含み、クロム酸イオンを含まず、 アルカリ中和液が、次亜リン酸塩およびアンモ
ニア水を含み、 無電解ニツケルめつき液が、オキシカルボン酸
ニツケル、ピロリン酸塩、次亜リン酸塩およびフ
ツ化物を含み、硫酸イオンおよび塩化物イオンを
含まないこと、 を特徴とする、マグネシウムまたはマグネシウム
合金のめつき法。
[Claims] 1. A method for plating magnesium or a magnesium alloy, which comprises the steps of chemically etching magnesium or a magnesium alloy, treating it with a fluoride, neutralizing it with an alkali, and then performing electroless nickel plating, comprising: The etching solution contains pyrophosphate, nitrate, and sulfate but does not contain chromate ions, the alkaline neutralizing solution contains hypophosphite and aqueous ammonia, and the electroless nickel plating solution contains oxycarboxylic acid. A method for plating magnesium or a magnesium alloy, characterized in that it contains nickel, pyrophosphate, hypophosphite and fluoride, and does not contain sulfate ions and chloride ions.
JP18775884A 1984-09-07 1984-09-07 Plating method of magnesium and magnesium alloy Granted JPS6167770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18775884A JPS6167770A (en) 1984-09-07 1984-09-07 Plating method of magnesium and magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18775884A JPS6167770A (en) 1984-09-07 1984-09-07 Plating method of magnesium and magnesium alloy

Publications (2)

Publication Number Publication Date
JPS6167770A JPS6167770A (en) 1986-04-07
JPH0225430B2 true JPH0225430B2 (en) 1990-06-04

Family

ID=16211684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18775884A Granted JPS6167770A (en) 1984-09-07 1984-09-07 Plating method of magnesium and magnesium alloy

Country Status (1)

Country Link
JP (1) JPS6167770A (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654715B2 (en) * 1990-07-12 1997-09-17 上村工業 株式会社 Electroless tin and tin-lead alloy plating bath and plating method
KR100431125B1 (en) * 2001-11-16 2004-05-12 주식회사 에이치 제이 텍 Double electroless nikel plating method by pre-treatment process of magnesium and magnesium alloy
KR100453994B1 (en) * 2002-03-14 2004-10-26 주식회사 에이치 제이 텍 Two layer non-electrolysis nickel coating method by dynamic etching of magnesium and magnesium alloy
CA2378993C (en) 2002-03-26 2007-12-18 National Research Council Of Canada Acousto-immersion coating and process for magnesium and its alloys
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
JP6083020B2 (en) * 2012-10-24 2017-02-22 株式会社正信 Surface treatment method of magnesium or magnesium alloy, acid detergent and chemical conversion treatment agent, and chemical conversion treatment structure of magnesium or magnesium alloy
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
EP3299493B1 (en) * 2015-10-01 2019-12-25 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Coating structure, impeller, compressor, metal part manufacturing method, impeller manufacturing method, and compressor manufacturing method
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CN112941494B (en) * 2021-03-10 2022-08-30 宿辉 A kind of (SiC) with lotus leaf effect P Preparation method of super-hydrophobic membrane layer

Also Published As

Publication number Publication date
JPS6167770A (en) 1986-04-07

Similar Documents

Publication Publication Date Title
JPH0225430B2 (en)
US5895563A (en) Etchant for aluminum alloys
US4707191A (en) Pickling process for heat-resistant alloy articles
US4444628A (en) Process for treating Al alloy casting and die casting
JP2001288580A (en) Surface treating method for magnesium alloy and magnesium alloy member
US2428749A (en) Surface treatment of magnesium alloys
JP2713334B2 (en) Method of forming phosphate film
US3943270A (en) Aqueous flux for hot dip galvanising process
JPS60181282A (en) Surface treatment of aluminum alloy
JPH03236476A (en) Manufacture of aluminium memory disk finished by flat and smooth metal plating
JP3660912B2 (en) Magnesium alloy chemical conversion treatment method and magnesium alloy product
JP2607549B2 (en) Method of forming phosphate film
US3524817A (en) Method and compositions for chemically polishing zinc
JP3828446B2 (en) Magnesium alloy surface cleaning method
JPS59113199A (en) Surface treatment of aluminum alloy casting or aluminum alloy die casting
JP3941649B2 (en) Aluminum substrate and surface treatment method thereof
JPH0237436B2 (en) ARUMIDAIKASUTOSEIHINNOARUMAITOSHORIHO
US2760890A (en) Composition for and method of producing corrosion resistant metal coating
JP2003286582A (en) Method for forming chemical conversion-treated film of magnesium alloy
JPH04218681A (en) Treatment of surface on formed material combining aluminum and steel material and treating solution
JP3102664B2 (en) Surface treatment method for magnesium alloy products
JPH0759755B2 (en) Method for manufacturing A-l alloy coated plate for automobiles having excellent system rust resistance
JPS6043439B2 (en) Method for manufacturing wear-resistant zinc articles
JP2962496B2 (en) Magne-based alloy plating method
JP3102663B2 (en) Pre-painting method and painting method for magnesium alloy products