JP6489366B2 - A battery pack monitoring device and battery pack capacity equalization method. - Google Patents

A battery pack monitoring device and battery pack capacity equalization method. Download PDF

Info

Publication number
JP6489366B2
JP6489366B2 JP2015106588A JP2015106588A JP6489366B2 JP 6489366 B2 JP6489366 B2 JP 6489366B2 JP 2015106588 A JP2015106588 A JP 2015106588A JP 2015106588 A JP2015106588 A JP 2015106588A JP 6489366 B2 JP6489366 B2 JP 6489366B2
Authority
JP
Japan
Prior art keywords
capacity
power storage
difference
storage element
storage elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015106588A
Other languages
Japanese (ja)
Other versions
JP2016220504A (en
Inventor
賢一 瀬島
賢一 瀬島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2015106588A priority Critical patent/JP6489366B2/en
Publication of JP2016220504A publication Critical patent/JP2016220504A/en
Application granted granted Critical
Publication of JP6489366B2 publication Critical patent/JP6489366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、組電池の容量を均等化する技術に関する。   The present invention relates to a technique for equalizing the capacity of assembled batteries.

複数の蓄電素子を直列に接続した組電池に対して充放電を繰り返すと、各蓄電素子の自己放電等の差により、各蓄電素子の容量にばらつきが生じる場合がある。蓄電素子の容量にばらつきが生じると、充電時に過電圧になる恐れや、組電池の使用可能容量が少なくなる恐れがある。そのため、従来から、蓄電素子を充放電することにより、容量を均等化する均等化制御を行っている。   When charging / discharging is repeated for an assembled battery in which a plurality of power storage elements are connected in series, the capacity of each power storage element may vary due to differences in self-discharge of each power storage element. If the capacities of the storage elements vary, there is a risk of overvoltage during charging and the usable capacity of the assembled battery may be reduced. Therefore, conventionally, equalization control for equalizing the capacity is performed by charging and discharging the power storage elements.

ところで、蓄電素子には、リチウムイオン二次電池など、SOC(充電状態)に対するOCV(開放電圧)の変化率が小さいプラトー領域を有する特性の素子がある。プラトー領域内では、OCVの計測値からSOCを推定することが困難であることから、SOCの推定精度が高い、満充電付近で均等化制御を実行している(下記特許文献1)。   By the way, there exists an element of the characteristic which has a plateau area | region with a small change rate of OCV (open circuit voltage) with respect to SOC (charge condition), such as a lithium ion secondary battery, in an electrical storage element. In the plateau region, since it is difficult to estimate the SOC from the measured value of the OCV, equalization control is executed in the vicinity of full charge with high SOC estimation accuracy (Patent Document 1 below).

特開2010−88194号公報JP 2010-88194 A

しかし、プラトー領域が広い電池は、満充電付近でも電圧勾配が大きな領域が少なく、満充電付近まで実際に充電されない限り、均等化制御を行うことが難しい。
本発明は上記のような事情に基づいて完成されたものであって、満充電付近まで充電されない場合や、満充電される頻度が低い場合でも、蓄電素子間の容量アンバランスを抑えることを目的とする。
However, a battery with a wide plateau region has few regions with a large voltage gradient even near full charge, and it is difficult to perform equalization control unless it is actually charged to near full charge.
The present invention has been completed based on the above circumstances, and it is an object of the present invention to suppress capacity imbalance between power storage elements even when the battery is not fully charged or is not fully charged. And

本明細書によって開示される組電池の監視装置は、組電池の各蓄電素子の電圧を個別に検出する電圧検出部と、前記各蓄電素子を個別に放電又は充電する充放電回路と、制御部と、を備え、前記蓄電素子が、充電状態に対する開放電圧の変化率が相対的に低い2つの低変化領域と、2つの前記低変化領域の間に充電状態に対する開放電圧の変化率が相対的に高い第1高変化領域を有し、前記制御部は、2つの前記蓄電素子が2つの前記低変化領域に分かれている場合、前記第1高変化領域の端点間の容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電することにより、前記2つの蓄電素子の間の容量の差を小さくする第1均等化処理を行う。   An assembled battery monitoring device disclosed in the present specification includes a voltage detection unit that individually detects a voltage of each storage element of the assembled battery, a charge / discharge circuit that individually discharges or charges each storage element, and a control unit. And the storage element has two low change regions with a relatively low change rate of the open voltage with respect to the charge state, and a change rate of the open voltage with respect to the charge state is relatively between the two low change regions. The first high change region, and when the two storage elements are divided into two low change regions, the control unit, based on the capacity difference between the end points of the first high change region, A first equalization process is performed to reduce a capacity difference between the two power storage elements by discharging or charging at least one of the two power storage elements.

本明細書によって開示される組電池の監視装置は、組電池の各蓄電素子の電圧を個別に検出する電圧検出部と、前記各蓄電素子を個別に放電又は充電する充放電回路と、制御部と、を備え、前記蓄電素子が、充電状態に対する開放電圧の変化率が相対的に低い2つの低変化領域と、2つの前記低変化領域の間に充電状態に対する開放電圧の変化率が相対的に高い第1高変化領域を有し、前記制御部は、一方の前記蓄電素子が前記低変化領域に含まれ、他方側の蓄電素子が前記第1高変化領域に含まれている場合、前記低変化領域のうち他方側の蓄電素子に近い側の端点の容量と他方側の蓄電素子の容量との容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電することにより、前記2つの蓄電素子の間の容量の差を小さくする第2均等化処理を行う。   An assembled battery monitoring device disclosed in the present specification includes a voltage detection unit that individually detects a voltage of each storage element of the assembled battery, a charge / discharge circuit that individually discharges or charges each storage element, and a control unit. And the storage element has two low change regions with a relatively low change rate of the open voltage with respect to the charge state, and a change rate of the open voltage with respect to the charge state is relatively between the two low change regions. The control unit is configured such that when the one storage element is included in the low change area and the other storage element is included in the first high change area, Discharge or charge at least one of the two power storage elements based on the capacity difference between the capacity of the end point close to the power storage element on the other side in the low change region and the capacity of the power storage element on the other side. A space between the two power storage elements. Performing a second equalization process to reduce the difference in.

本明細書によって開示される組電池の監視装置によれば、満充電付近まで充電されない場合や、満充電される頻度が低い場合でも、蓄電素子間の容量アンバランスを抑えることが出来る。   According to the assembled battery monitoring device disclosed in this specification, it is possible to suppress the capacity imbalance between the power storage elements even when the battery is not charged to near full charge or when the frequency of full charge is low.

実施形態1において、電池パックの構成を示す概略図FIG. 3 is a schematic diagram illustrating a configuration of a battery pack in the first embodiment. 放電回路の回路図Circuit diagram of discharge circuit 二次電池のSOC−OCV相関特性を示すグラフThe graph which shows the SOC-OCV correlation characteristic of a secondary battery 図3のA部を拡大した図(第1均等化制御の説明図)The figure which expanded the A section of FIG. 3 (description figure of 1st equalization control) 図3のA部を拡大した図(第2均等化制御の説明図)The figure which expanded the A section of FIG. 3 (description figure of 2nd equalization control) 図3のA部を拡大した図(第2均等化制御の説明図)The figure which expanded the A section of FIG. 3 (description figure of 2nd equalization control) 図3のA部を拡大した図(複合均等化制御の説明図)The figure which expanded the A section of FIG. 3 (description figure of compound equalization control) 図3のB部を拡大した図(第3均等化制御の説明図)The figure which expanded the B section of FIG. 3 (description figure of 3rd equalization control) 均等化制御の処理手順を示すフローチャート図The flowchart figure which shows the process sequence of equalization control 実施形態2において、二次電池に満充電容量差がない場合に、2つの二次電池間で容量アンバランスが生じた場合のSOC−OCV相関特性を示すグラフIn Embodiment 2, when a secondary battery does not have a full charge capacity difference, the graph which shows a SOC-OCV correlation characteristic when a capacity imbalance arises between two secondary batteries 二次電池に満充電容量差がある場合に、2つの二次電池間で容量アンバランスが生じた場合のSOC−OCV相関特性を示すグラフThe graph which shows a SOC-OCV correlation characteristic in case capacity imbalance arises between two secondary batteries, when there exists a full charge capacity | capacitance difference in a secondary battery. 均等化制御の実行パターンの切り換え手順を示すフローチャート図The flowchart figure which shows the switching procedure of the execution pattern of equalization control 二次電池間に満充電容量差がある場合に、第3均等化処理を行った時の、SOC−OCV相関特性を示すグラフThe graph which shows a SOC-OCV correlation characteristic at the time of performing a 3rd equalization process when there exists a full charge capacity difference between secondary batteries. 第3均等化処理の実行後、二次電池を放電させた特の放電特性を示すグラフThe graph which shows the special discharge characteristic which discharged the secondary battery after execution of a 3rd equalization process

(本実施形態の概要)
初めに、本実施形態にて開示する組電池の監視装置の概要について説明する。監視装置は、充電状態に対する開放電圧の変化率が相対的に低い2つの低変化領域と、2つの前記低変化領域の間に充電状態に対する開放電圧の変化率が相対的に高い第1高変化領域を有する蓄電素子(組電池)を監視対象としており、2つの前記蓄電素子が2つの前記低変化領域に分かれている場合、前記第1高変化領域の端点間の容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電することにより、前記2つの蓄電素子の間の容量の差を小さくする第1均等化処理を行う。
(Outline of this embodiment)
First, an outline of a battery monitoring apparatus disclosed in the present embodiment will be described. The monitoring device includes two low change regions having a relatively low change rate of the open-circuit voltage with respect to the charged state, and a first high change between the two low change regions having a relatively high change rate of the open-circuit voltage with respect to the charge state. When the storage element (assembled battery) having a region is a monitoring target and the two storage elements are divided into the two low change regions, based on the capacity difference between the end points of the first high change region, A first equalization process is performed to reduce a capacity difference between the two power storage elements by discharging or charging at least one of the two power storage elements.

また、一方の前記蓄電素子が前記低変化領域に含まれ、他方側の蓄電素子が前記第1高変化領域に含まれている場合、前記低変化領域のうち他方側の蓄電素子に近い側の端点の容量と他方側の蓄電素子の容量との容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電することにより、前記2つの蓄電素子の間の容量の差を小さくする第2均等化処理を行う。   Further, when one of the power storage elements is included in the low change region and the other power storage element is included in the first high change region, the side closer to the other power storage element in the low change region. Based on the capacity difference between the capacity of the end point and the capacity of the other power storage element, the difference in capacity between the two power storage elements is obtained by discharging or charging at least one of the two power storage elements. The second equalization process is performed to reduce the.

監視装置によれば、2つの蓄電素子が2つの低変化領域に分かれている場合には、第1均等化処理が実行される。また、一方の蓄電素子が低変化領域に含まれ、他方側の蓄電素子が第1高変化領域に含まれている場合、第2均等化処理が実行される。そのため、満充電付近まで充電されない場合や満充電される頻度が低い場合でも、蓄電素子の容量アンバランスを抑えることが出来る。   According to the monitoring device, when the two power storage elements are divided into two low change regions, the first equalization process is executed. Further, when one power storage element is included in the low change region and the other power storage element is included in the first high change region, the second equalization process is performed. Therefore, even when the battery is not charged to near full charge or when the frequency of full charge is low, the capacity imbalance of the power storage element can be suppressed.

また、本実施形態にて開示する組電池の監視装置は、以下の構成がこの好ましい。
前記第1均等化処理の実行後、一方の前記蓄電素子が前記低変化領域に含まれ、他方側の蓄電素子が前記第1高変化領域に含まれている場合、前記低変化領域のうち他方側の蓄電素子に近い側の端点の容量と他方側の蓄電素子の容量との容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電することにより、前記2つの蓄電素子の間の容量の差を小さくする第2均等化処理を実行する。この構成では、第1均等化処理と第2均等化処理を複合的に実行するので、蓄電素子の容量アンバランスを一層抑えることが出来る。
Further, the assembled battery monitoring device disclosed in the present embodiment preferably has the following configuration.
After execution of the first equalization process, when one of the storage elements is included in the low change region and the other storage element is included in the first high change region, the other of the low change regions By discharging or charging at least one of the two power storage elements based on a capacity difference between the capacity of the end point close to the power storage element on the side and the capacity of the power storage element on the other side, the two A second equalization process is performed to reduce the capacity difference between the storage elements. In this configuration, since the first equalization process and the second equalization process are executed in combination, the capacity imbalance of the power storage elements can be further suppressed.

前記蓄電素子が前記2つの低変化領域よりも低充電状態領域側に第2高変化領域、又は高充電状態領域側に第3高変化領域を有する場合において、前記2つの蓄電素子の双方が前記第2高変化領域又は前記第3高変化領域に含まれている場合、前記2つの蓄電素子のうち少なくともいずれか一方側で、前記蓄電素子間の電圧差に相当する容量を放電又は充電することにより、前記2つの蓄電素子の間の容量の差を小さくする第3均等化処理を行う。この構成では、第2高変化領域や第3高変化領域では第3均等化処理が実行される。従って、蓄電素子間の容量アンバランスを一層抑えることが可能となる。   When the power storage element has a second high change region on the low charge state region side or a third high change region on the high charge state region side than the two low change regions, both of the two power storage elements are When included in the second high change region or the third high change region, discharging or charging a capacity corresponding to a voltage difference between the power storage elements on at least one of the two power storage elements. Thus, a third equalization process is performed to reduce the difference in capacity between the two power storage elements. In this configuration, the third equalization process is executed in the second high change region and the third high change region. Accordingly, it is possible to further suppress the capacity imbalance between the power storage elements.

また、前記蓄電素子間に満充電容量差がない場合、前記第1均等化処理及び前記第2均等化処理のうち少なくとも一方の均等化処理、並びに前記第3均等化処理を実行し、前記蓄電素子間に満充電容量差がある場合、前記第1均等化処理及び前記第2均等化処理のうち少なくとも一方の均等化処理、又は前記第3均等化処理のうち、いずれかの均等化処理を実行する。この構成では、満充電容量差の有無に応じて、均等化制御のパターンを切り換えることが可能である。   When there is no full charge capacity difference between the power storage elements, at least one of the first equalization process and the second equalization process and the third equalization process are executed, and the power storage When there is a full charge capacity difference between the elements, at least one of the first equalization process and the second equalization process, or any of the third equalization processes is performed. Run. In this configuration, the equalization control pattern can be switched according to the presence or absence of the full charge capacity difference.

また、前記第1均等化処理から前記第3均等化処理のうち、いずれかの均等化処理の実行後、前記蓄電素子を充放電させた時に、前記蓄電素子の電圧が変化するタイミングの時間差又はその間の累積充放電量を計測し、得られた前記時間差又は前記累積充放電量に基づいて前記蓄電素子間の満充電容量差の大きさを検出する。この構成では、蓄電素子の電圧が変化するタイミングの時間差又はその間の累積充放電量より、蓄電素子の満充電容量差の大きさを検出できる。   In addition, a time difference in timing at which the voltage of the power storage element changes when the power storage element is charged / discharged after execution of any one of the first equalization process to the third equalization process, or The accumulated charge / discharge amount during that time is measured, and the full charge capacity difference between the power storage elements is detected based on the obtained time difference or the accumulated charge / discharge amount. In this configuration, the magnitude of the full charge capacity difference of the power storage element can be detected from the time difference in timing at which the voltage of the power storage element changes or the accumulated charge / discharge amount therebetween.

<実施形態1>
実施形態1について図1ないし図9を参照して説明する。
1.電池パック20の構成
図1は、本実施形態における電池パック20の構成を示す図である。本実施形態の電池パック20は、例えば電気自動車やハイブリッド自動車に搭載され、電気エネルギーで作動する動力源に電力を供給するものである。
<Embodiment 1>
The first embodiment will be described with reference to FIGS.
1. Configuration of Battery Pack 20 FIG. 1 is a diagram showing a configuration of the battery pack 20 in the present embodiment. The battery pack 20 of the present embodiment is mounted on, for example, an electric vehicle or a hybrid vehicle, and supplies power to a power source that operates with electric energy.

図1に示すように、電池パック20は、組電池30と、電流センサ40と、組電池30を管理するバッテリ−マネージャー(以下、BM)50を有する。組電池30は、直列接続された複数の二次電池31から構成されている。   As shown in FIG. 1, the battery pack 20 includes an assembled battery 30, a current sensor 40, and a battery manager (hereinafter referred to as BM) 50 that manages the assembled battery 30. The assembled battery 30 includes a plurality of secondary batteries 31 connected in series.

二次電池31及び電流センサ40は、配線35を介して直列に接続されており、電気自動車に搭載された充電器10又は、電気自動車等の内部に設けられた動力源等の負荷10に接続される。充電器10は組電池30の電圧を検出して、組電池30を充電する機能を果たす。   The secondary battery 31 and the current sensor 40 are connected in series via the wiring 35 and connected to the charger 10 mounted on the electric vehicle or the load 10 such as a power source provided in the electric vehicle or the like. Is done. The charger 10 functions to detect the voltage of the assembled battery 30 and charge the assembled battery 30.

電流センサ40は、二次電池31に流れる電流を検出する機能を果たす。電流センサ40は、二次電池31の電流値を一定周期で計測し、計測した電流計測値のデータを、制御部60に対して送信する構成となっている。   The current sensor 40 functions to detect the current flowing through the secondary battery 31. The current sensor 40 is configured to measure the current value of the secondary battery 31 at a constant period and transmit data of the measured current measurement value to the control unit 60.

バッテリ−マネージャー(以下、BM)50は、制御部60と、放電回路70と、電圧検出回路80と、温度センサ95とを備える。尚、二次電池31が「蓄電素子」の一例であり、BM50が「監視装置」の一例である。また、放電回路70が「充放電回路」の一例である。   The battery manager (hereinafter referred to as BM) 50 includes a control unit 60, a discharge circuit 70, a voltage detection circuit 80, and a temperature sensor 95. The secondary battery 31 is an example of a “storage element”, and the BM 50 is an example of a “monitoring device”. The discharge circuit 70 is an example of a “charge / discharge circuit”.

放電回路70は、各二次電池31に設けられている。放電回路70は、図2に示すように、放電抵抗Rと放電スイッチSWとを備え、二次電池31に対して並列に接続されている。制御部60から指令を与えて、放電スイッチSWをオンすることで二次電池31を個別に放電することが出来る。   The discharge circuit 70 is provided in each secondary battery 31. As shown in FIG. 2, the discharge circuit 70 includes a discharge resistor R and a discharge switch SW, and is connected in parallel to the secondary battery 31. The secondary battery 31 can be discharged individually by giving a command from the control unit 60 and turning on the discharge switch SW.

電圧検出回路80は、検出ラインを介して、各二次電池31の両端にそれぞれ接続され、制御部60からの指示に応答して、各二次電池31の電圧Vを測定する機能を果たす。温度センサ95は接触式あるいは非接触式で、二次電池31の温度D[℃]を測定する機能を果たす。尚、電圧検出回路80が「電圧検出部」の一例である。   The voltage detection circuit 80 is connected to both ends of each secondary battery 31 via a detection line, and functions to measure the voltage V of each secondary battery 31 in response to an instruction from the control unit 60. The temperature sensor 95 is a contact type or non-contact type, and functions to measure the temperature D [° C.] of the secondary battery 31. The voltage detection circuit 80 is an example of a “voltage detection unit”.

制御部60は中央処理装置(以下、CPU)61と、メモリ63と、通信部65とを含む。制御部60は、放電回路70を制御して、各二次電池31の容量[Ah]を均等化する機能を果たす。尚、「均等化」とは、二次電池31の容量[Ah]を等しくする場合に加え、二次電池間の容量[Ah]の差を小さくする場合を含む。   The control unit 60 includes a central processing unit (hereinafter referred to as CPU) 61, a memory 63, and a communication unit 65. The controller 60 functions to control the discharge circuit 70 to equalize the capacity [Ah] of each secondary battery 31. The “equalization” includes not only equalizing the capacity [Ah] of the secondary batteries 31 but also reducing the difference in capacity [Ah] between the secondary batteries.

メモリ63には、二次電池31の容量[Ah]を均等化する処理を実行するためのプログラム(後述する「均等化制御の実行シーケンス」)や、プログラムの実行に必要なデータ、例えば、図3に示すSOC−OCV相関特性のデータや、二次電池31の満充電容量[Ah]のデータが記憶されている。   The memory 63 stores a program for executing a process for equalizing the capacity [Ah] of the secondary battery 31 (an “equalization control execution sequence” described later), data necessary for executing the program, for example, FIG. 3 and the data of the full charge capacity [Ah] of the secondary battery 31 are stored.

通信部65は、車載のECU(Electronic Control Unit)100と通信可能に接続され、車載のECU100と通信する機能を果たす。なお、電池パック20には、この他にユーザからの入力を受け付ける操作部(図示せず)、二次電池31の状態等を表示する表示部(図示せず)が設けられている。   The communication unit 65 is communicably connected to an in-vehicle ECU (Electronic Control Unit) 100 and fulfills a function of communicating with the in-vehicle ECU 100. In addition, the battery pack 20 is provided with an operation unit (not shown) that receives input from the user and a display unit (not shown) that displays the state of the secondary battery 31 and the like.

2.二次電池31のSOC−OCV相関特性と均等化制御
(a)SOC−OCV相関特性
図3は横軸をSOC[%]、縦軸をOCV[V]とした、二次電池31のSOC−OCV相関特性である。二次電池31は、図3に示すように、SOC(充電状態)に対するOCV(開放電圧)の変化率が相対的に低い低変化領域と、相対的に高い高変化領域を含む複数の充電領域を有している。具体的には2つの低変化領域L1、L2と、3つの高変化領域H1、H2、H3を有している。図3に示すように、低変化領域L1はSOC31[%]〜SOC62[%]の範囲に位置している。低変化領域L2は、SOC68[%]〜SOC97[%]の範囲に位置している。低変化領域L1は、SOCに対するOCVの変化率が非常に小さく、OCVが3.3[V]で略一定のプラトー領域となっている。また、低変化領域L2は、SOCに対するOCVの変化率が非常に小さく、OCVが3.34[V]で略一定のプラトー領域となっている。
2. SOC-OCV correlation characteristics and equalization control of secondary battery 31 (a) SOC-OCV correlation characteristics FIG. 3 shows SOC- of secondary battery 31 with the horizontal axis representing SOC [%] and the vertical axis representing OCV [V]. OCV correlation characteristics. As shown in FIG. 3, the secondary battery 31 includes a plurality of charging regions including a low change region in which a change rate of OCV (open voltage) with respect to the SOC (charged state) is relatively low and a relatively high change region. have. Specifically, it has two low change regions L1, L2 and three high change regions H1, H2, H3. As shown in FIG. 3, the low change region L1 is located in the range of SOC31 [%] to SOC62 [%]. The low change region L2 is located in the range of SOC68 [%] to SOC97 [%]. In the low change region L1, the change rate of the OCV with respect to the SOC is very small, and the OCV is 3.3 [V] and is a substantially constant plateau region. The low change region L2 has a very small change rate of the OCV with respect to the SOC, and is a plateau region where the OCV is 3.34 [V] and is substantially constant.

第1高変化領域H1は、SOC62[%]〜SOC68[%]の範囲にあり、2つの低変化領域L1、L2の間に位置している。第2高変化領域H2は、SOC31[%]以下の範囲にあり、低変化領域L1よりも低SOC側に位置している。第3高変化領域H3は、SOC97[%]以上の範囲にあり、低変化領域L2よりも高SOC側に位置している。尚、第1〜第3高変化領域H1〜H3は、低変化領域L1、L2に比べてSOCに対するOCVの変化率(図3に示すグラフの傾き)が相対的に高い関係となっている。   The first high change region H1 is in the range of SOC 62 [%] to SOC 68 [%], and is located between the two low change regions L1 and L2. The second high change region H2 is in the range of SOC31 [%] or less, and is located on the low SOC side than the low change region L1. The third high change region H3 is in a range of SOC 97 [%] or more, and is located on the higher SOC side than the low change region L2. The first to third high change regions H1 to H3 have a relationship in which the OCV change rate with respect to the SOC (the slope of the graph shown in FIG. 3) is relatively high compared to the low change regions L1 and L2.

尚、図3のSOC−OCV相関特性を有する二次電池31として、正極活物質にリン酸鉄リチウム(LiFePO4)、負極活物質にグラファイトを用いたリン酸鉄系のリチウムイオン電池を例示することが出来る。   As an example of the secondary battery 31 having the SOC-OCV correlation characteristic of FIG. 3, an iron phosphate lithium ion battery using lithium iron phosphate (LiFePO4) as a positive electrode active material and graphite as a negative electrode active material is illustrated. I can do it.

(b)変化領域の判定と二次電池31の均等化制御
BM50は、二次電池31のOCVを計測して、各二次電池31の変化領域を判定する。例えば、OCVの計測値が3.3[V]の場合、図3に示すSOCーOCV相関特性から、その二次電池31は低変化領域L1に含まれていると判定できる。また、OCVが3.31[V]〜3.33[V]の場合、その二次電池31は第1高変化領域H1に含まれていると判定できる。また、OCVが3.34[V]であれば、その二次電池31は低変化領域L2に含まれていると判定できる。
(B) Determination of Change Area and Equalization Control of Secondary Battery 31 The BM 50 measures the OCV of the secondary battery 31 and determines the change area of each secondary battery 31. For example, when the measured value of OCV is 3.3 [V], it can be determined from the SOC-OCV correlation characteristic shown in FIG. 3 that the secondary battery 31 is included in the low change region L1. When the OCV is 3.31 [V] to 3.33 [V], it can be determined that the secondary battery 31 is included in the first high change region H1. If the OCV is 3.34 [V], it can be determined that the secondary battery 31 is included in the low change region L2.

そして、BM50は、変化領域の判定結果に基づいて、下記の均等化制御を実行する。以下、2つの二次電池31A、31Bを例にとって、均等化制御の内容を説明する。図4〜図7は図3のA部を拡大した図、図8は図3のB部を拡大した図である。   And BM50 performs the following equalization control based on the determination result of a change area | region. Hereinafter, the content of the equalization control will be described by taking two secondary batteries 31A and 31B as an example. 4 to 7 are enlarged views of the portion A in FIG. 3, and FIG. 8 is an enlarged view of the portion B in FIG.

<第1均等化制御>
図4に示すように、2つの二次電池31A、31Bが2つの低変化領域L1、L2に分かれている場合、2つの二次電池31A、31Bの間には、少なくとも、第1高変化領域H1分の容量差が存在している。すなわち、図4に示すように、第1高変化領域H1の端点c、d間の容量差Ccd[Ah]が存在する。
<First equalization control>
As shown in FIG. 4, when two secondary batteries 31A and 31B are divided into two low change regions L1 and L2, at least a first high change region is provided between the two secondary batteries 31A and 31B. There is a capacity difference of H1 minutes. That is, as shown in FIG. 4, there is a capacitance difference Ccd [Ah] between the end points c and d of the first high change region H1.

従って、制御部60は、放電回路70により、OCVが高い側の二次電池31Bを容量差Ccdだけ放電する。このようにすることで、2つの二次電池31A、31Bの容量差は放電前に比べて、容量差Ccdだけ小さくなる(第1均等化制御)。尚、容量差Ccdは2点c、d間の「SOC差」に「満充電容量」を乗算することで算出できる。また、第1均等化制御において、放電量は、容量差Ccdに基づく量であればよく、上記のように容量差Ccdと同量を放電させる場合の他、容量差Ccdを所定割合だけ増減させた量を放電させてもよい。   Therefore, the controller 60 causes the discharge circuit 70 to discharge the secondary battery 31B having the higher OCV by the capacity difference Ccd. By doing so, the capacity difference between the two secondary batteries 31A and 31B is reduced by the capacity difference Ccd compared to before discharge (first equalization control). The capacity difference Ccd can be calculated by multiplying the “SOC difference” between the two points c and d by the “full charge capacity”. In the first equalization control, the discharge amount may be an amount based on the capacity difference Ccd. In addition to discharging the same amount as the capacity difference Ccd as described above, the capacity difference Ccd is increased or decreased by a predetermined ratio. May be discharged.

<第2均等化制御>
また、図5に示すように、2つの二次電池31A、31Bが低変化領域L1と第1高変化領域H1に分かれている場合、2つの二次電池31A、31Bの間には、少なくとも、低変化領域L1の端点(二次電池31Bに近い側の端点)cの容量と二次電池31Bの容量との容量差Ccb[Ah]が存在する。
<Second equalization control>
Further, as shown in FIG. 5, when the two secondary batteries 31A and 31B are divided into the low change region L1 and the first high change region H1, at least between the two secondary batteries 31A and 31B, There is a capacity difference Ccb [Ah] between the capacity of the end point (end point close to the secondary battery 31B) c of the low change region L1 and the capacity of the secondary battery 31B.

従って、制御部60は、放電回路70により、OCVが高い側の二次電池31Bを容量差Ccbだけ放電する。このようにすることで、2つの二次電池31A、31Bの容量差は放電前に比べて、容量差Ccbだけ小さくなる(第2均等化制御)。尚、容量差Ccbは、端点cと二次電池31Bとの間のSOC差に「満充電容量」を乗算することで算出できる。また、二次電池31BのSOCは、二次電池30BのOCVと図3に示すSOC−OCV相関特性とから求めることが出来る。   Therefore, the control unit 60 uses the discharge circuit 70 to discharge the secondary battery 31B having the higher OCV by the capacity difference Ccb. In this way, the capacity difference between the two secondary batteries 31A and 31B is reduced by the capacity difference Ccb as compared to before discharging (second equalization control). The capacity difference Ccb can be calculated by multiplying the SOC difference between the end point c and the secondary battery 31B by the “full charge capacity”. Further, the SOC of the secondary battery 31B can be obtained from the OCV of the secondary battery 30B and the SOC-OCV correlation characteristic shown in FIG.

また、図6に示すように、2つの二次電池31A、31Bが第1高変化領域H1と低変化領域L2に分かれている場合、2つの二次電池31A、31Bの間には、少なくとも、二次電池31Aの容量と低変化領域L2の端点(二次電池31Aに近い側の端点)dの容量との容量差Cad[Ah]が存在する。   Further, as shown in FIG. 6, when the two secondary batteries 31A and 31B are divided into the first high change region H1 and the low change region L2, at least between the two secondary batteries 31A and 31B, There is a capacity difference Cad [Ah] between the capacity of the secondary battery 31A and the capacity of the end point (end point close to the secondary battery 31A) d of the low change region L2.

従って、制御部60は、放電回路70により、OCVが高い側の二次電池31Bを容量差Cadだけ放電する。このようにすることで、2つの二次電池31A、31Bの容量差は放電前に比べて、容量差Cadだけ小さくなる(第2均等化制御)。尚、容量差Cadは、二次電池30Aと端点dとの間の「SOC差」に「満充電容量」を乗算することで算出できる。また、二次電池31AのSOCは、二次電池30AのOCVと図3に示すSOCーOCV相関特性とから求めることが出来る。   Therefore, the controller 60 causes the discharge circuit 70 to discharge the secondary battery 31B on the higher OCV side by the capacity difference Cad. By doing so, the capacity difference between the two secondary batteries 31A and 31B is reduced by the capacity difference Cad as compared to before discharging (second equalization control). The capacity difference Cad can be calculated by multiplying the “SOC difference” between the secondary battery 30A and the end point d by “full charge capacity”. Further, the SOC of the secondary battery 31A can be obtained from the OCV of the secondary battery 30A and the SOC-OCV correlation characteristic shown in FIG.

また、第2均等化制御において、放電量は、容量差Ccb、Cadに基づく量であればよく、上記のように容量差Ccb、Cadと同量を放電させる場合の他、容量差Ccb、Cadを所定割合だけ増減させた量を放電させてもよい。   In the second equalization control, the discharge amount may be an amount based on the capacity differences Ccb, Cad. In addition to discharging the same amount as the capacity differences Ccb, Cad as described above, the capacity differences Ccb, Cad You may discharge the quantity which increased / decreased only by the predetermined ratio.

<複合均等化制御>
また、図7に示すように、第1均等化処理の実行後、2つの二次電池31A、31Bが第1低変化領域L1と第1高変化領域H1に分かれている場合、制御部60は、第2均等化処理を実行して、二次電池31Bを、容量差Ccbだけ放電する。このようにすることで、2つの二次電池31A、31Bの容量差は、第1均等化制御と第2均等化制御を実行する前に比べて、容量差(Ccd+Ccb)だけ小さくなる。
<Composite equalization control>
In addition, as shown in FIG. 7, when the two secondary batteries 31A and 31B are divided into the first low change region L1 and the first high change region H1 after the execution of the first equalization process, the controller 60 Then, the second equalization process is executed to discharge the secondary battery 31B by the capacity difference Ccb. In this way, the capacity difference between the two secondary batteries 31A and 31B is smaller by the capacity difference (Ccd + Ccb) than before the first equalization control and the second equalization control are executed.

<第3均等化制御>
また、制御部60は、2つの二次電池31A、31Bの双方が、第2高変化領域H2又は第3高変化領域H3に含まれ、かつOCVの値が所定値以上異なる場合、OCVの高い側の二次電池を放電することにより、2つの二次電池31A、31Bの容量を均等化する。例えば、図8に示すように、2つの二次電池31A、31Bの双方が第3高変化領域H3に含まれ、かつOCVの値が所定値以上異なる場合、制御部60は、2つの二次電池31A、31Bの容量差Cv[Ah]を算出する。
<Third equalization control>
Further, the control unit 60 has a high OCV when both of the two secondary batteries 31A and 31B are included in the second high change region H2 or the third high change region H3 and the OCV values are different from each other by a predetermined value or more. By discharging the secondary battery on the side, the capacities of the two secondary batteries 31A and 31B are equalized. For example, as shown in FIG. 8, when both of the two secondary batteries 31A and 31B are included in the third high change region H3 and the value of the OCV differs by a predetermined value or more, the control unit 60 has two secondary batteries. A capacity difference Cv [Ah] between the batteries 31A and 31B is calculated.

そして、OCVが高い側の二次電池31Bを、求めた容量差Cvだけ放電する。このようにすることで、2つの二次電池31A、31Bの容量を均等化できる(第3均等化制御)。尚、容量差Cvは二次電池31A、31Bの「SOC差」に「満充電容量」を乗算することで算出できる。また、二次電池31A、31BのSOCは、二次電池31A、31BのOCVと図3に示すSOCーOCV相関特性とから求めることが出来る。   Then, the secondary battery 31B having the higher OCV is discharged by the obtained capacity difference Cv. In this way, the capacities of the two secondary batteries 31A and 31B can be equalized (third equalization control). The capacity difference Cv can be calculated by multiplying the “SOC difference” of the secondary batteries 31A and 31B by the “full charge capacity”. Further, the SOCs of the secondary batteries 31A and 31B can be obtained from the OCV of the secondary batteries 31A and 31B and the SOC-OCV correlation characteristics shown in FIG.

また、第3均等化制御において、放電量は、容量差Cvに基づく量であればよく、上記のように容量差Cvと同量を放電させる場合の他、容量差Cvを所定割合だけ増減させた量を放電させてもよい。   In the third equalization control, the discharge amount may be an amount based on the capacity difference Cv. In addition to discharging the same amount as the capacity difference Cv as described above, the capacity difference Cv is increased or decreased by a predetermined ratio. May be discharged.

尚、上記では、2つの二次電池31A、31Bを例にとって、均等化制御を説明したが、二次電池31の個数は3つ以上であってもよく、その場合、OCVが最も小さい二次電池31と、他の二次電池31との間でそれぞれ均等化制御を行うようにすればよい。   In the above description, the equalization control has been described by taking two secondary batteries 31A and 31B as an example. However, the number of secondary batteries 31 may be three or more, and in this case, the secondary battery with the smallest OCV is used. What is necessary is just to perform equalization control between the battery 31 and the other secondary battery 31, respectively.

3.均等化制御の実行シーケンス
次に均等化制御の実行シーケンスを説明する。図9に示す均等化制御の実行シーケンスは、S10〜S70のステップから構成されており、例えば、BM50が起動して、組電池30の監視を開始するのと同時に実行される。
3. Equalization Control Execution Sequence Next, the equalization control execution sequence will be described. The equalization control execution sequence shown in FIG. 9 includes steps S10 to S70. For example, the equalization control execution sequence is executed at the same time when the BM 50 is started and monitoring of the assembled battery 30 is started.

処理がスタートすると、制御部60は、電流センサ40の出力から二次電池31の電流値を取得する。そして、取得した電流値を閾値(電流が概ねゼロとみなせる値)と比較する処理を行う(S10、S20)。電流値が閾値を上回っている期間は、S20にてNO判定されるため、S10、S20の処理を繰り返す状態となる。   When the process starts, the control unit 60 acquires the current value of the secondary battery 31 from the output of the current sensor 40. And the process which compares the acquired electric current value with a threshold value (value which can be considered that an electric current is substantially zero) is performed (S10, S20). During the period in which the current value exceeds the threshold value, NO is determined in S20, so that the processes in S10 and S20 are repeated.

そして、二次電池31に流れる電流が概ねゼロとみなせる状態になると、S20でYES判定となり、次に、制御部60は、電圧検出回路80に指令を与え、各二次電池31のOCVを計測する処理を行う(S30)。   When the current flowing through the secondary battery 31 can be regarded as substantially zero, a YES determination is made in S20, and the control unit 60 then gives a command to the voltage detection circuit 80 to measure the OCV of each secondary battery 31. (S30).

その後、制御部60は、計測したOCVを、メモリ63に記憶されたSOC−OCV相関特性に参照して、各二次電池31がどの変化領域に含まれているか判定する処理を行う(S40)。   Thereafter, the control unit 60 refers to the measured OCV to the SOC-OCV correlation characteristics stored in the memory 63 and performs a process of determining in which change region each secondary battery 31 is included (S40). .

そして、制御部60は、各二次電池31の変化領域を判定すると、均等化処理を実行するか、否か判定する処理を行う(S50)。具体的には、以下(1)〜(4)の場合は「実行」と判定され、それ以外の場合は「実行しない」と判定される。   And if the control part 60 determines the change area | region of each secondary battery 31, it will perform the process which determines whether an equalization process is performed or not (S50). Specifically, in the following cases (1) to (4), it is determined as “execution”, and in other cases, it is determined as “not execute”.

(1)2つの低変化領域L1、L2に2つの二次電池31A、31Bが分かれている場合
(2)低変化領域L1と第1高変化領域H1に2つの二次電池31A、31Bが分かれている又は、第1高変化領域H1と低変化領域L2に2つの二次電池31A、31Bが分かれている場合
(3)第2高変化領域H2に2つの二次電池31A、31Bが含まれ、かつOCVの値が所定値以上異なる場合
(4)第3高変化領域H3に2つの二次電池31A、31Bが含まれ、かつOCVの値が所定値以上異なる場合
(1) When two secondary batteries 31A and 31B are divided into two low change regions L1 and L2, (2) Two secondary batteries 31A and 31B are divided into the low change region L1 and the first high change region H1. Or when the two secondary batteries 31A and 31B are separated in the first high change region H1 and the low change region L2 (3) The two secondary batteries 31A and 31B are included in the second high change region H2. When the OCV value differs by a predetermined value or more (4) When the second high change region H3 includes two secondary batteries 31A and 31B and the OCV value differs by a predetermined value or more

そして、(1)〜(4)に該当する場合、制御部60は、放電回路70に指令を与えて、第1〜第3均等化処理を実行する(S60)。すなわち、(1)に該当する場合は第1均等化処理を実行する。(2)に該当する場合は第2均等化処理を実行し、(3)、(4)に該当する場合は第3均等化処理を実行する。   And when it corresponds to (1)-(4), the control part 60 gives the instruction | command to the discharge circuit 70, and performs a 1st-3rd equalization process (S60). That is, the first equalization process is executed when the condition corresponds to (1). If (2) applies, the second equalization process is executed. If (3) and (4) apply, the third equalization process is executed.

その後、処理はS10に戻り、S10以降の処理が繰り返し実行される。そして、(1)〜(4)に該当する状態になると、制御部60が放電回路70に指令を与えて第1均等処理〜第3均等化処理を実行する。そして、BM50が二次電池31の監視を終了するに伴って、均等化制御の実行シーケンスも終了する(S70:YES)。   Thereafter, the process returns to S10, and the processes after S10 are repeatedly executed. And when it will be in the state applicable to (1)-(4), the control part 60 will give a command to the discharge circuit 70, and will perform a 1st equalization process-a 3rd equalization process. Then, as the BM 50 ends the monitoring of the secondary battery 31, the equalization control execution sequence also ends (S70: YES).

4.効果説明
実施形態1のBM50は、SOCが65%付近の中間SOC領域(図3に示すA部付近の領域)でも、均等化制御を行う。具体的には、二次電池31A、31Bが2つの低変化領域L1、L2に分かれている場合、第1均等化処理を実行する。また、二次電池31A、31Bが低変化領域L1、L2と高変化領域H1に分かれている場合、第2均等化処理を実行する。そのため、満充電付近まで充電されない場合や、満充電される頻度が低い場合でも、二次電池31の容量アンバランスを抑えることが出来る。
4). Description of Effect The BM 50 of the first embodiment performs equalization control even in an intermediate SOC region (region near the portion A shown in FIG. 3) where the SOC is around 65%. Specifically, when the secondary batteries 31A and 31B are divided into two low change regions L1 and L2, the first equalization process is executed. In addition, when the secondary batteries 31A and 31B are divided into the low change regions L1 and L2 and the high change region H1, the second equalization process is executed. Therefore, the capacity imbalance of the secondary battery 31 can be suppressed even when the battery is not charged to near full charge or when the frequency of full charge is low.

また、第1均等化処理の実行後、2つの二次電池31A、31Bが第1低変化領域L1と第1高変化領域H1に分かれている場合、制御部60は、第2均等化処理を実行する。そのため、二次電池31の容量アンバランスを一層、抑えることが出来る。そして更に、第2高変化領域H2や第3高変化領域H3では、第3均等化処理を行うので、二次電池31間の容量アンバランスをより一層、抑えることが可能となる。   When the two secondary batteries 31A and 31B are divided into the first low change area L1 and the first high change area H1 after the execution of the first equalization process, the control unit 60 performs the second equalization process. Run. Therefore, the capacity imbalance of the secondary battery 31 can be further suppressed. Further, since the third equalization process is performed in the second high change region H2 and the third high change region H3, it is possible to further suppress the capacity imbalance between the secondary batteries 31.

<実施形態2>
実施形態2について図10〜図14を参照して説明する。
1.満充電容量差の検出
二次電池31A、31Bに満充電容量差がない場合、2つの二次電池31A、31B間で容量アンバランスが生じると、2つの二次電池31A、31BのSOC−OCV相関特性は、SOC軸方向に位置がずれる関係となる。例えば、二次電池31Aに対して二次電池31Bが容量の少ない側にアンバランスした場合、図10に示すように、二次電池31AのSOC−OCV相関特性に対して、二次電池31AのSOC−OCV相関特性はSOC軸に沿って高SOC側に平行移動する関係となる。
<Embodiment 2>
A second embodiment will be described with reference to FIGS.
1. Detection of full charge capacity difference When there is no full charge capacity difference between the secondary batteries 31A and 31B, if capacity imbalance occurs between the two secondary batteries 31A and 31B, the SOC-OCV of the two secondary batteries 31A and 31B The correlation characteristic is a relationship in which the position is shifted in the SOC axis direction. For example, when the secondary battery 31B is unbalanced with respect to the secondary battery 31A with a smaller capacity, the secondary battery 31A has an SOC-OCV correlation characteristic of the secondary battery 31A as shown in FIG. The SOC-OCV correlation characteristic has a relationship of moving parallel to the high SOC side along the SOC axis.

この場合、図10に示すように、A部(SOCが65%付近の中間SOC領域付近)、B部(SOCが97%付近の高SOC領域付近)の双方とも、二次電池31Aが二次電池31Bに比べてOCVが高くなる。   In this case, as shown in FIG. 10, in both the A part (near the intermediate SOC region where the SOC is about 65%) and the B part (near the high SOC region where the SOC is near 97%), the secondary battery 31A is the secondary battery 31A. The OCV is higher than that of the battery 31B.

従って、「第1均等化処理や第2均等化処理」では、OCVの高い二次電池31A側を放電させることにより、2つの二次電池31A、31B間の容量差を小さくする処理となる。また、「第3均等化処理」でも、OCVの高い二次電池31A側を放電させることにより、2つの二次電池31A、31B間の容量差を小さくする処理となる。このように、二次電池31A、31Bに満充電容量差がない場合、均等化処理では、同じ二次電池31Aを放電させることになる。   Therefore, in the “first equalization process or second equalization process”, the secondary battery 31A side having a high OCV is discharged to reduce the capacity difference between the two secondary batteries 31A and 31B. Also, the “third equalization process” is a process of reducing the capacity difference between the two secondary batteries 31A and 31B by discharging the secondary battery 31A side having a high OCV. Thus, when there is no full charge capacity difference in the secondary batteries 31A and 31B, the same secondary battery 31A is discharged in the equalization process.

次に、図11は、二次電池31A、31Bに満充電容量差がある場合に、2つの二次電池31A、31B間で容量アンバランスが生じた場合のSOC−OCV相関特性である。尚、図11に示す二次電池31Aは初期品であり、二次電池31Bは劣化品(初期と比べて満充電容量が低下した電池)である。   Next, FIG. 11 shows SOC-OCV correlation characteristics when capacity imbalance occurs between the two secondary batteries 31A and 31B when the secondary batteries 31A and 31B have a full charge capacity difference. Note that the secondary battery 31A shown in FIG. 11 is an initial product, and the secondary battery 31B is a deteriorated product (a battery having a reduced full charge capacity compared to the initial product).

二次電池31A、31Bに満充電容量差がある場合、2つの二次電池31A、31B間で容量アンバランスが生じると、図11に示すように、A部(SOCが65%付近の中間SOC領域付近)、B部(SOCが97%付近の高SOC領域付近)で、OCVの大小関係が入れ替わる。すなわち、A部では、二次電池31A側の方が、二次電池31B側よりOCVが高い。一方、B部では、二次電池31B側の方が、二次電池31A側よりOCVが高い。   When there is a difference in full charge capacity between the secondary batteries 31A and 31B, when capacity imbalance occurs between the two secondary batteries 31A and 31B, as shown in FIG. 11, part A (an intermediate SOC with an SOC of around 65%) In the vicinity of the area) and B part (in the vicinity of the high SOC area where the SOC is near 97%), the OCV magnitude relationship is switched. That is, in part A, the OCV is higher on the secondary battery 31A side than on the secondary battery 31B side. On the other hand, in part B, the OCV is higher on the secondary battery 31B side than on the secondary battery 31A side.

従って、「第1均等化処理や第2均等化処理」では、二次電池31A側を放電させることにより、2つの二次電池31A、31B間の容量差を小さくする処理となる。一方、第3均等化処理では、二次電池31B側を放電させることにより、2つの二次電池31A、31B間の容量差を小さくする処理となる。このように、二次電池31A、31Bに満充電容量差がある場合、均等化処理では、異なる二次電池31A、31Bを放電させることになる。   Therefore, in the “first equalization process or the second equalization process”, the secondary battery 31A side is discharged to reduce the capacity difference between the two secondary batteries 31A and 31B. On the other hand, the third equalization process is a process of reducing the capacity difference between the two secondary batteries 31A and 31B by discharging the secondary battery 31B side. Thus, when the secondary batteries 31A and 31B have a full charge capacity difference, the different secondary batteries 31A and 31B are discharged in the equalization process.

以上のことから、「第1均等化処理又は第2均等化処理」にて放電する二次電池31と、「第3均等化処理」にて放電する二次電池31が同じかどうかを判定することで、二次電池31A、31Bに満充電容量差が有るかどうかを判定することが可能である。
尚、満充電容量差がある場合に、図11に示すA部とB部で、OCVの大小関係が入れ替わる理由は、リン酸鉄系のリチウムイオン電池は、劣化すると、低変化領域L2の容量が減るように変化する。そのため、アンバランスの仕方により、A部とB部で大小関係が入れ替わる。
From the above, it is determined whether the secondary battery 31 discharged in the “first equalization process or the second equalization process” and the secondary battery 31 discharged in the “third equalization process” are the same. Thus, it is possible to determine whether or not there is a full charge capacity difference between the secondary batteries 31A and 31B.
In addition, when there is a full charge capacity difference, the reason why the OCV magnitude relationship is switched between the A portion and the B portion shown in FIG. 11 is that when the iron phosphate lithium ion battery deteriorates, the capacity of the low change region L2 Changes to decrease. Therefore, the magnitude relationship is switched between the A part and the B part depending on the manner of unbalance.

本実施形態では、均等化処理の実行後、放電した二次電池31を記憶しておき、次に均等化処理を実行する時に、放電する二次電池31が前回と同じかどうかにより、二次電池31A、31B間に満充電容量差があるかどうか検出する。そして、満充電容量差の有無に応じて、均等化制御の実行パターンを切り換えるようにしている。   In the present embodiment, after the equalization process is performed, the discharged secondary battery 31 is stored, and when the equalization process is performed next, the secondary battery 31 is discharged depending on whether the secondary battery 31 to be discharged is the same as the previous time. It is detected whether there is a full charge capacity difference between the batteries 31A and 31B. And the execution pattern of equalization control is switched according to the presence or absence of the full charge capacity difference.

図12は、均等化制御の実行パターンの切り換え手順を示すフローチャート図である。
制御部60は、上記の方法にて、二次電池31A、31Bに満充電容量差があるか、否かを判定する処理を行う(S100)。そして、満充電容量差がない場合、制御部60は、実施形態1の場合と同様に(1)〜(4)の場合に応じて、第1均等化処理〜第3均等化処理を実行する(S120)。
FIG. 12 is a flowchart showing a procedure for switching the execution pattern of equalization control.
The control unit 60 performs a process of determining whether or not the secondary batteries 31A and 31B have a full charge capacity difference by the above method (S100). And when there is no full charge capacity difference, the control part 60 performs a 1st equalization process-a 3rd equalization process according to the case of (1)-(4) similarly to the case of Embodiment 1. (S120).

一方、満充電容量差がある場合は、第1均等化処理と第2均等化処理の実行を禁止し、(4)に該当する場合に、第3均等化処理のみ実行する(S110)。具体的には、第3高変化領域H3に2つの二次電池31A、31Bが含まれ、かつOCVの値が所定値以上異なる場合、OCVの高い側の二次電池31を放電することにより、2つの二次電池31A、31Bの容量を均等化する。   On the other hand, when there is a full charge capacity difference, the execution of the first equalization process and the second equalization process is prohibited, and when the condition corresponds to (4), only the third equalization process is executed (S110). Specifically, when two secondary batteries 31A and 31B are included in the third high-change region H3 and the OCV value differs by a predetermined value or more, the secondary battery 31 on the higher OCV side is discharged, The capacities of the two secondary batteries 31A and 31B are equalized.

このようにすることで、次の効果が得られる。図11に示すように、劣化した二次電池31Bは、劣化のない二次電池31Aに比べて、B部付近(SOCが97%付近の高SOC領域付近)で立ち上がりが早くなる傾向になる。特に、第1均等化処理と第2均等化処理を行うと、その傾向が顕著になる恐れがあり、満充電付近で、劣化した二次電池31Bに過電圧が発生し易くなる。   By doing so, the following effects can be obtained. As shown in FIG. 11, the degraded secondary battery 31 </ b> B tends to start up faster near the B portion (near the high SOC region where the SOC is near 97%) than the secondary battery 31 </ b> A without degradation. In particular, when the first equalization process and the second equalization process are performed, the tendency may become remarkable, and an overvoltage is likely to occur in the deteriorated secondary battery 31B near the full charge.

この点、本例では、上記のように第1均等化処理と第2均等化処理の実行を禁止して、第3均等化処理のみ実行することで、図13に示すように、第3高変化領域H3にて、二次電池31A、31Bの容量が均等化され、2つの二次電池31A、31BのSOC−OCV相関特性の高SOC領域の立ち上がりが、B部で揃うので、過電圧の発生を抑えることが可能となる。   In this regard, in this example, the execution of the first equalization process and the second equalization process is prohibited as described above, and only the third equalization process is executed, so that as shown in FIG. In the change region H3, the capacities of the secondary batteries 31A and 31B are equalized, and the rise of the high SOC region of the SOC-OCV correlation characteristics of the two secondary batteries 31A and 31B is aligned in the B portion, so that an overvoltage is generated. Can be suppressed.

また、2つの二次電池31A、31Bに満充電容量差がある場合に、第3均等化処理を実行すると、満充電容量差が、図13のA部において、SOC−OCV相関特性のずれとして現れる。すなわち、二次電池31Bが低変化領域L2から第1高変化領域H1に移行するポイントP2と、二次電池31Aが低変化領域L2から第1高変化領域H1に移行するポイントP3間に満充電容量差に応じたずれが生じる。また、二次電池31Bが第1高変化領域H1から低変化領域L1に移行するポイントP4と、二次電池31Aが第1高変化領域H1から低変化領域に移行するポイントP5間に満充電容量差に応じたずれが生じる。   Further, when the third equalization process is performed when there is a full charge capacity difference between the two secondary batteries 31A and 31B, the full charge capacity difference is caused as a shift in the SOC-OCV correlation characteristic in the A part of FIG. appear. That is, the secondary battery 31B is fully charged between the point P2 where the low change region L2 shifts to the first high change region H1 and the point P3 where the secondary battery 31A moves from the low change region L2 to the first high change region H1. Deviation according to the capacity difference occurs. In addition, the fully charged capacity between the point P4 where the secondary battery 31B shifts from the first high change region H1 to the low change region L1 and the point P5 where the secondary battery 31A moves from the first high change region H1 to the low change region. A shift corresponding to the difference occurs.

そのため、第3均等化処理後、二次電池31A、31Bを放電すると、ポイントP2とP3、ポイントP4とP5の位置のずれが、2つの二次電池31A、31Bの電圧が変化するタイミングとなって現れる。従って、所定の電圧値付近(図14の例では3.34V付近)において、2つの二次電池31A、31Bの電圧が変化するタイミングの時間差を検出することで、二次電池31A、31Bの満充電容量差の大きさを検出することが出来る。   Therefore, after the third equalization process, when the secondary batteries 31A and 31B are discharged, the positional shift between the points P2 and P3 and the points P4 and P5 is the timing when the voltages of the two secondary batteries 31A and 31B change. Appear. Therefore, by detecting the time difference between the timings at which the voltages of the two secondary batteries 31A and 31B change in the vicinity of a predetermined voltage value (around 3.34V in the example of FIG. 14), the full capacity of the secondary batteries 31A and 31B is detected. The magnitude of the charge capacity difference can be detected.

図14の例であれば、満充電後の時刻t0で放電を開始してから、二次電池31Bの電圧は下降し、時刻「t1」で電圧推移の傾向が変化(変極点が現れる)する。その後、電圧は、概ね3.34Vで変化はほとんどなく、時刻「t2」で電圧が変化し、それ以降、電圧は下降する。また、二次電池31Aは、時刻t0以降、電圧が下降し、時刻「t1」で、電圧推移の傾向(変極点が現れる)が変化する。その後、電圧は、概ね3.34Vで変化はほとんどなく、時刻「t3」で電圧が変化し、それ以降、電圧は下降する。   In the example of FIG. 14, after starting discharging at time t0 after full charge, the voltage of the secondary battery 31B decreases, and the tendency of voltage transition changes (inflection point appears) at time “t1”. . After that, the voltage is approximately 3.34 V and hardly changes, the voltage changes at time “t2”, and thereafter the voltage decreases. In the secondary battery 31A, the voltage decreases after time t0, and the tendency of voltage transition (the inflection point appears) changes at time “t1”. After that, the voltage is approximately 3.34 V, hardly changed, the voltage changes at time “t3”, and thereafter the voltage decreases.

時刻「t1」は、図13に示すように、二次電池31A、31Bが第3高変化領域H3から低変化領域L2に移行するポイント「P1」に対応する。また、時刻「t2」は、二次電池31Bが低変化領域L2から第1高変化領域H1に移行するポイント「P2」に対応し、時刻「t3」は、二次電池31Aが低変化領域L2から第1高変化領域H1に移行するポイント「P3」に対応する。   As shown in FIG. 13, the time “t1” corresponds to the point “P1” at which the secondary batteries 31A and 31B shift from the third high change region H3 to the low change region L2. The time “t2” corresponds to the point “P2” at which the secondary battery 31B moves from the low change region L2 to the first high change region H1, and the time “t3” has the secondary battery 31A in the low change region L2. Corresponds to the point “P3” that moves from the first to the high change region H1.

従って、満充電容量差により位置のずれが生じた2つポイントP2、P3に対応する2点の時間差T(t3−t2)から、二次電池31A、31Bの満充電容量差の大きさを検出することが出来る。制御部60は、検出した満充電容量差を規定値と比較する処理を行い、満充電容量差が規定値を上回っている場合、例えば、異常表示を行う等のエラー処理を行う。   Therefore, the magnitude of the full charge capacity difference between the secondary batteries 31A and 31B is detected from the time difference T (t3−t2) between the two points corresponding to the two points P2 and P3 where the position shift occurs due to the full charge capacity difference. I can do it. The control unit 60 performs a process of comparing the detected full charge capacity difference with a specified value. If the full charge capacity difference exceeds the specified value, for example, an error process such as displaying an abnormality is performed.

また、時刻t2、時刻t3は、電圧推移の傾向が変化する変極点であることから、変極点が出現するタイミングの差を検出することでも、二次電池31A、31Bの満充電容量差の大きさを検出することが出来る。変極点とは、図14に示す電圧曲線に変化(グラフの傾きが変わる)が現れる点である。   In addition, since the time t2 and the time t3 are inflection points at which the tendency of voltage transition changes, the full charge capacity difference between the secondary batteries 31A and 31B is large even by detecting the difference in timing at which the inflection points appear. Can be detected. An inflection point is a point at which a change (the slope of the graph changes) appears in the voltage curve shown in FIG.

尚、上記以外にも、2つのポイントP3、P4に対応する2点の時間差T(t4−t3)から、二次電池31A、31Bの満充電容量差の大きさを検出することも出来る。また、それ以外にも、ポイントP2に対応する時刻「t2」からポイントP3に対応する時刻「t3」までの二次電池31A、31Bの累積充放電量に基づいて満充電量差の大きさを検出するようにしてもよい。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
In addition to the above, the full charge capacity difference between the secondary batteries 31A and 31B can be detected from the time difference T (t4−t3) between the two points corresponding to the two points P3 and P4. In addition, the magnitude of the full charge amount difference is determined based on the accumulated charge / discharge amounts of the secondary batteries 31A and 31B from the time “t2” corresponding to the point P2 to the time “t3” corresponding to the point P3. You may make it detect.
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)実施形態1、2では、蓄電素子の一例にリチウムイオン二次電池31を例示した。蓄電素子は、SOCに対するOCVの変化率が相対的に低い2つの低変化領域L1、L2と、2つの前記低変化領域L1、L2の間にSOCに対するOCVの変化率が相対的に高い第1高変化領域H1を有する特性であれば、リチウムイオン電池以外であってもよい。   (1) In the first and second embodiments, the lithium ion secondary battery 31 is illustrated as an example of the storage element. The power storage element includes two low change regions L1 and L2 having a relatively low OCV change rate with respect to the SOC, and a first change in the OCV change rate with respect to the SOC between the two low change regions L1 and L2. Any battery other than the lithium ion battery may be used as long as it has characteristics having the high change region H1.

(2)実施形態1、2では、2つの二次電池31A、31Bのうち、OCVの高い側の二次電池31を放電することにより、2つの二次電池31の容量を均等化した例を示したが、OCVの低い側の二次電池31を充電することにより、2つの二次電池31の容量を均等化してもよい。また、充電と放電を組み合わせて均等化するようにしてもよい。例えば、2つの二次電池31A、31Bが低変化領域L1とL2に分かれている場合、低変化領域L2側の二次電池31Bにて容量Ccd/2を放電し、低変化領域L1側の二次電池31Aにて容量Ccd/2を充電するようにしてもよい。   (2) In the first and second embodiments, an example in which the capacities of the two secondary batteries 31 are equalized by discharging the secondary battery 31 on the higher OCV side of the two secondary batteries 31A and 31B. Although shown, the capacity of the two secondary batteries 31 may be equalized by charging the secondary battery 31 on the low OCV side. Moreover, you may make it equalize combining charging and discharging. For example, when the two secondary batteries 31A and 31B are divided into the low change areas L1 and L2, the secondary battery 31B on the low change area L2 side discharges the capacity Ccd / 2, and the secondary battery 31A, 31B has a low change area L1 side. The capacity Ccd / 2 may be charged by the secondary battery 31A.

(3)実施形態1、2では、OCVの計測値を利用して、二次電池31A、31Bがどの変化領域L1、L2、H1〜H3に含まれているか判定した。変化領域の判定方法はOCVの計測値を利用する方法の他、充放電時の二次電池31の電圧曲線を利用する方法でもよい。   (3) In the first and second embodiments, the change values L1, L2, and H1 to H3 of the secondary batteries 31A and 31B are determined using the OCV measurement values. The determination method of the change region may be a method using a voltage curve of the secondary battery 31 at the time of charge / discharge, in addition to a method using the measured value of the OCV.

すなわち、例えば、2つの二次電池31が低変化領域L1に含まれている状態から組電池30を充電してゆくと、二次電圧31が低変化領域L1から第1高変化領域H1に移行するタイミング、すなわち、図4の端点cにて、二次電池31に電圧変化が検出される。また、二次電圧31が第1高変化領域H1から低変化領域L2に移行するタイミング、すなわち、図4の端点dにて、二次電池31に電圧変化が検出される。従って、各二次電池31A、31Bにて端点c、端点dに対応する電圧変化が検出されたか、どうかを判定することにより、各二次電池31A、31Bがどの変化領域L1、L2、H1に含まれているか判定することが可能である。また、図4の端点dや端点cは、電圧推移の傾向が変化する変極点でもあるので、変極点を検出することでも、同様の判定が可能である。   That is, for example, when the assembled battery 30 is charged from a state in which the two secondary batteries 31 are included in the low change region L1, the secondary voltage 31 shifts from the low change region L1 to the first high change region H1. The voltage change is detected in the secondary battery 31 at the timing to perform, that is, at the end point c in FIG. Further, a voltage change is detected in the secondary battery 31 at the timing when the secondary voltage 31 shifts from the first high change region H1 to the low change region L2, that is, at the end point d in FIG. Therefore, by determining whether or not the voltage change corresponding to the end point c and the end point d is detected in each of the secondary batteries 31A and 31B, the change areas L1, L2, and H1 of the respective secondary batteries 31A and 31B are determined. It is possible to determine whether it is included. Further, since the end point d and the end point c in FIG. 4 are also inflection points at which the tendency of voltage transition changes, the same determination can be made by detecting the inflection points.

また、上記した判定方法以外に、電流センサ40から得られる電流値と内部抵抗から二次電池31の電圧を演算し、演算した電圧の大きさから二次電池31がどの変化領域に含まれているか、推定することも出来る。   In addition to the above-described determination method, the voltage of the secondary battery 31 is calculated from the current value obtained from the current sensor 40 and the internal resistance, and in which change region the secondary battery 31 is included based on the magnitude of the calculated voltage. It can also be estimated.

(4)実施形態2では、満充電容量差がある場合に、第1均等化処理と第2均等化処理の実行を禁止し、第3均等化処理のみ実行する例を示した。しかしながら、例えば、満充電まで充電されない用途や、充電時に二次電池31が過電圧となる可能性が低い場合(組電池の総電圧ではなく、二次電池の各セル電圧を対象に充電制御が実行される場合)、実施形態2の例とは反対に、第1均等化処理又は第2均等化処理を実行し、第3均等化処理の実行を禁止するようにしてもよい。このようにすることでも、均等化の実行頻度を高い状態に維持することが可能となり、二次電池31間の容量アンバランスを最小限に抑えることが可能となる。   (4) In the second embodiment, when there is a full charge capacity difference, execution of the first equalization process and the second equalization process is prohibited, and only the third equalization process is executed. However, for example, when the battery is not fully charged or when the secondary battery 31 is unlikely to become overvoltage during charging (charge control is performed for each cell voltage of the secondary battery, not the total voltage of the assembled battery) In contrast to the example of the second embodiment, the first equalization process or the second equalization process may be executed, and the execution of the third equalization process may be prohibited. This also makes it possible to maintain the equalization execution frequency at a high level, and to minimize the capacity imbalance between the secondary batteries 31.

また、第1均等化処理又は第2均等化処理を実行し、第3均等化処理の実行を禁止する場合、満充電容量差は、高SOC領域(図11のB部)における立ち上がりのずれとして現れる。従って、この場合は、2つの二次電池31の電圧が変化するタイミングから、立ち上がり部のずれを検出することにより、満充電容量差の大きさを検出することが出来る。   In addition, when the first equalization process or the second equalization process is executed and the execution of the third equalization process is prohibited, the full charge capacity difference is expressed as a rise deviation in the high SOC region (part B in FIG. 11). appear. Therefore, in this case, the magnitude of the full charge capacity difference can be detected by detecting the deviation of the rising portion from the timing when the voltages of the two secondary batteries 31 change.

(5)実施形態2では、「第1均等化処理又は第2均等化処理」にて放電する二次電池31と、「第3均等化処理」にて放電する二次電池31が同じかどうかを判定することで、二次電池31A、31Bに満充電容量差が有るかどうかを判定した。これ以外にも、例えば、内部抵抗の大きさから満充電容量差の有無を検出するようにしてもよい。   (5) In the second embodiment, whether the secondary battery 31 discharged in the “first equalization process or the second equalization process” and the secondary battery 31 discharged in the “third equalization process” are the same. Thus, it was determined whether or not there is a full charge capacity difference between the secondary batteries 31A and 31B. In addition to this, for example, the presence or absence of a full charge capacity difference may be detected from the size of the internal resistance.

(6)実施形態1では、(1)〜(4)に該当する場合、第1〜第3均等化処理を実行し、それ以外の場合は、均等化処理を実行しないようにした。(1)〜(4)に該当しない場合でも、2つの二次電池31A、31Bが、異なる2つの高変化領域Hに分かれている場合は、均等化処理を行ってもよい。例えば、2つの二次電池31A、31Bが第1高変化領域H1と第3高変化領域H3に分かれている場合、OCVを計測して、2つの二次電池31A、31Bの容量差を算出する。そして、OCVが高い側の二次電池を、求めた容量差だけ放電することにより、2つの二次電池31A、31Bの容量を均等化できる。   (6) In Embodiment 1, when it corresponds to (1)-(4), the 1st-3rd equalization process was performed, and it was made not to perform an equalization process in the case other than that. Even when the conditions do not correspond to (1) to (4), if the two secondary batteries 31A and 31B are divided into two different high-change regions H, an equalization process may be performed. For example, when the two secondary batteries 31A and 31B are divided into the first high change region H1 and the third high change region H3, the OCV is measured to calculate the capacity difference between the two secondary batteries 31A and 31B. . And the capacity | capacitance of two secondary battery 31A, 31B can be equalized by discharging only the calculated | required capacity | capacitance difference in the secondary battery with the higher OCV.

(6)実施形態1では、電流センサ40をBM50とは別に設けた例を示したが、電流センサ40をBM50に含めるような構成でもよい。   (6) Although the example which provided the current sensor 40 separately from BM50 was shown in Embodiment 1, the structure which includes the current sensor 40 in BM50 may be sufficient.

20...電池パック
31...二次電池(本発明の「蓄電素子」に相当)
40...電流センサ
50...バッテリマネージャ(本発明の「監視装置」に相当)
60...制御部
70...放電回路(本発明の「充放電回路」に相当)
80...電圧検出回路(本発明の「電圧検出部」に相当)
20 ... Battery pack 31 ... Secondary battery (corresponding to "storage element" of the present invention)
40 ... Current sensor 50 ... Battery manager (corresponding to "monitoring device" of the present invention)
60 ... Control unit 70 ... Discharge circuit (corresponding to "charge / discharge circuit" of the present invention)
80 ... voltage detection circuit (corresponding to "voltage detection part" of the present invention)

Claims (9)

蓄電素子を複数直列に接続した組電池の監視装置であって、
各蓄電素子の電圧を個別に検出する電圧検出部と、
前記各蓄電素子を個別に放電又は充電する充放電回路と、
制御部と、を備え、
前記蓄電素子が、充電状態に対する開放電圧の変化率が相対的に低い2つの低変化領域と、2つの前記低変化領域の間に充電状態に対する開放電圧の変化率が相対的に高い第1高変化領域を有し、
前記制御部は、2つの前記蓄電素子が2つの前記低変化領域に分かれている場合、
前記第1高変化領域の端点間の容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電することにより、前記2つの蓄電素子の間の容量の差を小さくする第1均等化処理を行う、組電池の監視装置。
A battery pack monitoring device in which a plurality of storage elements are connected in series,
A voltage detector that individually detects the voltage of each storage element;
A charge / discharge circuit for discharging or charging each of the storage elements individually;
A control unit,
The storage element includes two low change regions having a relatively low change rate of the open circuit voltage with respect to the charged state, and a first high voltage having a relatively high change rate of the open voltage with respect to the charge state between the two low change regions. Has a change area,
When the two storage elements are divided into two low change regions, the control unit,
Based on the capacity difference between the end points of the first high change region, at least one of the two power storage elements is discharged or charged, thereby reducing the capacity difference between the two power storage elements. An assembled battery monitoring device that performs a first equalization process.
蓄電素子を複数直列に接続した組電池の監視装置であって、
各蓄電素子の電圧を個別に検出する電圧検出部と、
前記各蓄電素子を個別に放電又は充電する充放電回路と、
制御部と、を備え、
前記蓄電素子が、充電状態に対する開放電圧の変化率が相対的に低い2つの低変化領域と、2つの前記低変化領域の間に充電状態に対する開放電圧の変化率が相対的に高い第1高変化領域を有し、
前記制御部は、2つの前記蓄電素子のうち、一方蓄電素子が前記低変化領域に含まれ、他方側の蓄電素子が前記第1高変化領域に含まれている場合、
一方の蓄電素子が含まれる前記低変化領域のうち他方側の蓄電素子に近い側の端点の容量と他方側の蓄電素子の容量との容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電することにより、前記2つの蓄電素子の間の容量の差を小さくする第2均等化処理を行う、組電池の監視装置。
A battery pack monitoring device in which a plurality of storage elements are connected in series,
A voltage detector that individually detects the voltage of each storage element;
A charge / discharge circuit for discharging or charging each of the storage elements individually;
A control unit,
The storage element includes two low change regions having a relatively low change rate of the open circuit voltage with respect to the charged state, and a first high voltage having a relatively high change rate of the open voltage with respect to the charge state between the two low change regions. Has a change area,
Wherein, of the two of said power storage device, when one of the power storage element is included in the low change region, the electric storage element of the other side are included in the first high-change region,
On the basis of the capacity difference between the capacity of the other side of the storage capacity of the side of the end points closer to the device and the other side of the storage element of the low-change region in which one of the storage element is contained, either at least one of the two power storage devices An assembled battery monitoring apparatus that performs a second equalization process for reducing a capacity difference between the two power storage elements by discharging or charging either side.
請求項1に記載の組電池の監視装置であって、
前記制御部は、前記第1均等化処理の実行後、前記2つの蓄電素子のうち、一方蓄電素子が前記低変化領域に含まれ、他方側の蓄電素子が前記第1高変化領域に含まれている場合、
一方の蓄電素子が含まれる前記低変化領域のうち他方側の蓄電素子に近い側の端点の容量と他方側の蓄電素子の容量との容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電することにより、前記2つの蓄電素子の間の容量の差を小さくする第2均等化処理を実行する、組電池の監視装置。
The assembled battery monitoring device according to claim 1,
Wherein the control unit, after the execution of the first equalization processing, of the two power storage devices are included in one of the storage element is the low change region, the electric storage element of the other side included in the first high-change region If
On the basis of the capacity difference between the capacity of the other side of the storage capacity of the side of the end points closer to the device and the other side of the storage element of the low-change region in which one of the storage element is contained, either at least one of the two power storage devices An assembled battery monitoring device that executes a second equalization process for reducing a difference in capacity between the two power storage elements by discharging or charging one side.
請求項1ないし請求項3のいずれか一項に記載の監視装置であって、
前記蓄電素子が前記2つの低変化領域よりも低充電状態領域側に第2高変化領域、又は高充電状態領域側に第3高変化領域を有する場合において、
前記制御部は前記2つの蓄電素子の双方が前記第2高変化領域又は前記第3高変化領域に含まれている場合、前記蓄電素子間の電圧差に相当する容量を前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電することにより、前記2つの蓄電素子の間の容量の差を小さくする第3均等化処理を行う、組電池の監視装置。
A monitoring device according to any one of claims 1 to 3,
In the case where the power storage element has a second high change region on the low charge state region side than the two low change regions, or a third high change region on the high charge state region side,
When both of the two power storage elements are included in the second high change region or the third high change region, the control unit sets a capacity corresponding to a voltage difference between the power storage elements of the two power storage devices. An assembled battery monitoring apparatus that performs a third equalization process for reducing a capacity difference between the two power storage elements by discharging or charging at least one of the two.
請求項4に記載の組電池の監視装置であって、
第1均等化処理は、前記2つの蓄電素子が2つの前記低変化領域に分かれている場合、前記第1高変化領域の端点間の容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電することにより、前記2つの蓄電素子の間の容量の差を小さくする処理であり、
第2均等化処理は、前記2つの蓄電素子のうち、一方の蓄電素子が前記低変化領域に含まれ、他方側の蓄電素子が前記第1高変化領域に含まれている場合、一方の蓄電素子が含まれる前記低変化領域のうち他方側の蓄電素子に近い側の端点の容量と他方側の蓄電素子の容量との容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電することにより、前記2つの蓄電素子の間の容量の差を小さくする処理であり、
前記制御部は、
前記組電池を構成する複数の前記蓄電素子間の満充電容量差の有無を検出する検出処理を実行し、
前記蓄電素子間に満充電容量差がない場合、
前記第1均等化処理及び前記第2均等化処理のうち少なくとも一方の均等化処理、並びに前記第3均等化処理を実行し、
前記蓄電素子間に満充電容量差がある場合、
前記第1均等化処理及び前記第2均等化処理のうち少なくとも一方の均等化処理、又は前記第3均等化処理のうち、いずれかの均等化処理のみ実行する、組電池の監視装置。
The assembled battery monitoring device according to claim 4,
In the first equalization process, when the two power storage elements are divided into the two low change regions, at least one of the two power storage devices is based on a capacitance difference between the end points of the first high change region. It is a process of reducing the capacity difference between the two power storage elements by discharging or charging either side,
In the second equalization process, when one of the two power storage elements is included in the low change region and the other power storage element is included in the first high change region, At least one of the two power storage elements based on the capacity difference between the capacity of the end point close to the power storage element on the other side and the capacity of the power storage element on the other side in the low change region including the element Is a process of reducing the difference in capacity between the two power storage elements by discharging or charging
The controller is
Detecting the presence or absence of a full charge capacity difference between the plurality of power storage elements constituting the assembled battery,
If there is no full charge capacity difference between the storage elements,
Performing at least one equalization process of the first equalization process and the second equalization process, and the third equalization process;
If there is a full charge capacity difference between the storage elements,
An assembled battery monitoring device that executes at least one of the first equalization process and the second equalization process or the third equalization process.
請求項5に記載の組電池の監視装置であって、
制御部は、前記第1均等化処理から前記第3均等化処理のうち、いずれかの均等化処理の実行後、前記蓄電素子を充放電させた時に、前記蓄電素子の電圧が変化するタイミングの時間差又はその間の累積充放電量を計測し、得られた前記時間差又は前記累積充放電量に基づいて前記蓄電素子間の満充電容量差の大きさを検出する、組電池の監視装置。
The assembled battery monitoring device according to claim 5,
The control unit is configured to control the timing at which the voltage of the power storage element changes when the power storage element is charged / discharged after execution of any of the first equalization process to the third equalization process. An assembled battery monitoring device that measures a time difference or a cumulative charge / discharge amount therebetween and detects a full charge capacity difference between the power storage elements based on the obtained time difference or the cumulative charge / discharge amount.
直列に接続された複数の蓄電素子からなる組電池の容量均等化方法であって、
前記蓄電素子は、充電状態に対する開放電圧の変化率が相対的に低い2つの低変化領域と、2つの前記低変化領域の間に充電状態に対する開放電圧の変化率が相対的に高い第1高変化領域を有し、
2つの前記蓄電素子が2つの前記低変化領域に分かれている場合、前記第1高変化領域の端点間の容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電する第1均等化処理により、前記2つの蓄電素子の間の容量の差を小さくする、組電池の容量均等化方法。
A method for equalizing the capacity of a battery pack comprising a plurality of power storage elements connected in series,
The storage element includes two low change regions having a relatively low change rate of the open circuit voltage with respect to the charged state, and a first high voltage having a relatively high change rate of the open voltage with respect to the charge state between the two low change regions. Has a change area,
When the two storage elements are divided into the two low change regions, at least one of the two storage elements is discharged or charged based on a capacity difference between the end points of the first high change region. A capacity equalization method for an assembled battery, wherein the difference in capacity between the two power storage elements is reduced by the first equalization process.
直列に接続された複数の蓄電素子からなる組電池の容量均等化方法であって、
前記蓄電素子は、充電状態に対する開放電圧の変化率が相対的に低い2つの低変化領域と、2つの前記低変化領域の間に充電状態に対する開放電圧の変化率が相対的に高い第1高変化領域を有し、
2つの前記蓄電素子のうち、一方蓄電素子が前記低変化領域に含まれ、他方側の蓄電素子が前記第1高変化領域に含まれている場合、一方の蓄電素子が含まれる前記低変化領域のうち他方側の蓄電素子に近い側の端点の容量と他方側の蓄電素子の容量との容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電する第2均等化処理により、前記2つの蓄電素子の間の容量の差を小さくする、組電池の容量均等化方法。
A method for equalizing the capacity of a battery pack comprising a plurality of power storage elements connected in series,
The storage element includes two low change regions having a relatively low change rate of the open circuit voltage with respect to the charged state, and a first high voltage having a relatively high change rate of the open voltage with respect to the charge state between the two low change regions. Has a change area,
Of the two said electric storage device, contained in one of the storage element is the low change area, if the storage element on the other side are included in the first high-change region, the low change that includes one storage element A second one that discharges or charges at least one of the two power storage elements based on a capacity difference between a capacity of an end point close to the power storage element on the other side of the region and a capacity of the power storage element on the other side. An assembled battery capacity equalization method for reducing a difference in capacity between the two power storage elements by an equalization process.
請求項7に記載の組電池の容量均等化方法であって、
前記第1均等化処理の実行後、前記2つの蓄電素子のうち、一方蓄電素子が前記低変化領域に含まれ、他方側の蓄電素子が前記第1高変化領域に含まれている場合、
一方の蓄電素子が含まれる前記低変化領域のうち他方側の蓄電素子に近い側の端点の容量と他方側の蓄電素子の容量との容量差に基づいて、前記2つの蓄電素子のうち少なくともいずれか一方側を放電又は充電する第2均等化処理により、前記2つの蓄電素子の間の容量の差を小さくする、組電池の均等化方法。
The battery pack capacity equalizing method according to claim 7,
After execution of the first equalization processing, of the two power storage device, when one of the storage element is the included in the low change area, the electricity storage device of the other side are included in the first high-change region,
On the basis of the capacity difference between the capacity of the other side of the storage capacity of the side of the end points closer to the device and the other side of the storage element of the low-change region in which one of the storage element is contained, either at least one of the two power storage devices A method for equalizing a battery pack, wherein a difference in capacity between the two power storage elements is reduced by a second equalization process for discharging or charging either side.
JP2015106588A 2015-05-26 2015-05-26 A battery pack monitoring device and battery pack capacity equalization method. Active JP6489366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015106588A JP6489366B2 (en) 2015-05-26 2015-05-26 A battery pack monitoring device and battery pack capacity equalization method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015106588A JP6489366B2 (en) 2015-05-26 2015-05-26 A battery pack monitoring device and battery pack capacity equalization method.

Publications (2)

Publication Number Publication Date
JP2016220504A JP2016220504A (en) 2016-12-22
JP6489366B2 true JP6489366B2 (en) 2019-03-27

Family

ID=57578756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015106588A Active JP6489366B2 (en) 2015-05-26 2015-05-26 A battery pack monitoring device and battery pack capacity equalization method.

Country Status (1)

Country Link
JP (1) JP6489366B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116886B2 (en) * 2017-02-20 2022-08-12 株式会社Gsユアサ state estimator
JP2021036734A (en) * 2017-10-06 2021-03-04 株式会社村田製作所 Battery pack
CN108233482B (en) * 2018-02-08 2023-11-07 福建省万华电子科技有限公司 Interphone charger for detecting battery capacity and balancing charging of battery pack
JP7214993B2 (en) * 2018-06-29 2023-01-31 株式会社リコー storage system
JP7056513B2 (en) 2018-10-26 2022-04-19 トヨタ自動車株式会社 Battery control device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088194A (en) * 2008-09-30 2010-04-15 Nissan Motor Co Ltd Device and method for adjusting capacity of battery pack
JP5573075B2 (en) * 2009-09-28 2014-08-20 株式会社Gsユアサ Voltage equalization device for battery pack
JP2014112980A (en) * 2011-03-25 2014-06-19 Sanyo Electric Co Ltd Battery module, battery system, power-supply device, and mobile body
JP6234127B2 (en) * 2012-10-11 2017-11-22 株式会社Gsユアサ Power storage device
JP2014233183A (en) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 Power storage system and control method
JP5924314B2 (en) * 2013-08-06 2016-05-25 株式会社デンソー Assembled battery
JP6075242B2 (en) * 2013-08-19 2017-02-08 株式会社Gsユアサ Charge state reliability determination device and charge state reliability determination method

Also Published As

Publication number Publication date
JP2016220504A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6489366B2 (en) A battery pack monitoring device and battery pack capacity equalization method.
JP6217996B2 (en) Charge / discharge system for storage element
US9759779B2 (en) State of charge estimation device and method of estimating state of charge
JP6714838B2 (en) State estimation device and state estimation method
JP6634854B2 (en) Storage element management device, storage element management method, storage element module, storage element management program, and moving object
JP6657967B2 (en) State estimation device and state estimation method
US9316697B2 (en) Management system and estimating method for battery parameter
JP6179407B2 (en) Battery pack equalization apparatus and method
JP6032473B2 (en) State management device and method for equalizing storage elements
JP5994521B2 (en) State estimation device, open-circuit voltage characteristics generation method
JP5929778B2 (en) CHARGE RATE ESTIMATION DEVICE AND CHARGE RATE ESTIMATION METHOD
WO2017122758A1 (en) Device for managing storage element, storage element module, vehicle, and method for managing storage element
US10038325B2 (en) Electric storage device and deterioration determination method
JP6324248B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
JP2010256323A (en) State detector for power supply device
WO2016009756A1 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
JP6183336B2 (en) Charge rate calculation device
JP6041040B2 (en) Storage battery, storage battery control method, control device, and control method
JP6749080B2 (en) Power storage system, secondary battery control system, and secondary battery control method
Tripathy et al. State-of-Charge estimation algorithms and their implications on cells in parallel
JP5999409B2 (en) State estimation device and state estimation method
US20170336478A1 (en) Method and device for detecting an overcharging of an accumulator of a battery
JP2019144211A (en) Estimation device and method for estimation
WO2023008044A1 (en) Battery monitoring device and program
CN116413607A (en) Method for predicting remaining discharge time of battery pack, and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190213

R150 Certificate of patent or registration of utility model

Ref document number: 6489366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150