JP2010088194A - Device and method for adjusting capacity of battery pack - Google Patents

Device and method for adjusting capacity of battery pack Download PDF

Info

Publication number
JP2010088194A
JP2010088194A JP2008253645A JP2008253645A JP2010088194A JP 2010088194 A JP2010088194 A JP 2010088194A JP 2008253645 A JP2008253645 A JP 2008253645A JP 2008253645 A JP2008253645 A JP 2008253645A JP 2010088194 A JP2010088194 A JP 2010088194A
Authority
JP
Japan
Prior art keywords
cell
capacity
voltage
assembled battery
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008253645A
Other languages
Japanese (ja)
Inventor
Takeshi Shigekari
武志 茂刈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008253645A priority Critical patent/JP2010088194A/en
Publication of JP2010088194A publication Critical patent/JP2010088194A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately adjust the fluctuation in capacity occurring in a battery pack constituted of a cell containing a region less in the change rate of open voltage to capacity and having voltage-capacity characteristics. <P>SOLUTION: The capacity adjustment device 10 for the battery pack 1 having a plurality of cells 11n connected in series, the cells containing a first region less in the change rate of the open voltage to capacity and also having the voltage-capacity characteristics, the device includes a battery pack voltage sensor 103 for detecting the total voltage Vt of the battery pack 1, a cell voltage sensor 102 for detecting the terminal voltage Vcn of the cell 11n, a capacity adjustment part 101 for adjusting the capacity of each cell 11n, and a CPU 106 for controlling the operation of the capacity adjustment part 101. When the total voltage Vt belongs to a second region relatively greater in the change rate than the first region, the CPU 106 obtains the terminal voltage Vcn of the cell 11n, and calculates the time for operating the capacity adjustment part 101 based on the terminal voltage Vcn, to operate the capacity adjustment part 101 at the particular time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、組電池の容量調整装置及び方法に関する。   The present invention relates to a battery pack capacity adjustment apparatus and method.

複数のセルを直列に接続した組電池に対して充放電を繰り返したり、あるいはこうした組電池を長期間放置したりすると、組電池を構成する各セルの自己放電や劣化等の差に基づいて各セルに容量(SOC)のばらつきが生ずる。各セルに容量のばらつきが生じていると、組電池の使用可能な電力が制限される。このため、各セルに生じた容量のばらつきを可能な限り調整する必要がある。   If charging / discharging is repeated for an assembled battery in which a plurality of cells are connected in series, or if such an assembled battery is left for a long period of time, each of the cells constituting the assembled battery will be subject to a difference in self-discharge or deterioration. The cell has a variation in capacity (SOC). When the capacity varies among the cells, the usable power of the assembled battery is limited. For this reason, it is necessary to adjust the variation in the capacity generated in each cell as much as possible.

従来、組電池を構成する各セルの開放電圧を検出し、この開放電圧に基づいて各セルに生じた容量のばらつきを推定し、これを調整する容量調整方法が知られている(特許文献1)。   2. Description of the Related Art Conventionally, a capacity adjustment method is known in which an open circuit voltage of each cell constituting an assembled battery is detected, a variation in capacity generated in each cell is estimated based on the open circuit voltage, and this is adjusted (Patent Document 1). ).

特開2003−282155号公報JP 2003-282155 A

ところで、組電池を構成するセルとして、容量に対する開放電圧の変化率が小さい領域を含む電圧−容量特性を有するセルが知られている。このようなセルを充電した場合、例えば充電開始時(容量(SOC:State Of Charge)が0%)付近では、セル電圧が大きな変化率で増加していくが、SOCが例えば20%前後程度にまで充電された時点以降はセル電圧の増加率(変化率)が鈍る。この傾向は満充電略手前のSOCが例えば95%前後程度まで継続する。その後、SOCが100%に到達する手前の短い領域で、セル電圧は比較的大きな変化率で増加し、満充電を迎える。この傾向は、セルを放電させた場合にも当てはまる。すなわち、この種のセルを充放電した場合、満充電の時点から放電完了の時点まで、あるいは充電開始の時点から充電完了の時点までのうち、SOCが所定区間(例えば20%前後〜95%前後の領域)の広い領域でセル電圧の変化プロファイルが略フラットになる。   By the way, a cell having a voltage-capacitance characteristic including a region where a change rate of an open-circuit voltage with respect to a capacity is small is known as a cell constituting an assembled battery. When such a cell is charged, for example, in the vicinity of the start of charging (SOC: State of Charge (0%)), the cell voltage increases at a large rate of change, but the SOC decreases to, for example, about 20%. The cell voltage increase rate (rate of change) becomes dull after the point of time until the battery is charged. This tendency continues until the SOC before the full charge is about 95%, for example. Thereafter, in a short region before the SOC reaches 100%, the cell voltage increases at a relatively large rate of change and reaches full charge. This tendency is also true when the cell is discharged. That is, when this type of cell is charged / discharged, the SOC is within a predetermined interval (for example, about 20% to about 95%) from the time of full charge to the time of completion of discharge or from the time of charge start to the time of completion of charge. The change profile of the cell voltage becomes substantially flat in a wide area.

また、上述した従来手法で開放電圧検出時に使用される電圧センサは分解性能の限界から、検出される電圧値に誤差を生じることがある。   Moreover, the voltage sensor used at the time of open circuit voltage detection by the conventional method mentioned above may produce an error in the detected voltage value from the limit of decomposition performance.

従って、上述した特性を有するセルを複数直列に接続した組電池に対して、特許文献1の技術を適用し、検出されたセルの開放電圧が上述した略フラットな領域に属する場合、開放電圧に基づいて推定される容量の精度が問題となる。   Therefore, when the technique of Patent Document 1 is applied to an assembled battery in which a plurality of cells having the above-described characteristics are connected in series, and the detected open-circuit voltage of the cell belongs to the above-described substantially flat region, the open-circuit voltage is set. The accuracy of the capacity estimated based on this becomes a problem.

発明が解決しようとする課題は、所定の電圧−容量特性を有するセルで構成される組電池に生じた容量のばらつきを精度良く調整することができる組電池の容量調整装置及び方法を提供することである。   The problem to be solved by the present invention is to provide an assembled battery capacity adjusting apparatus and method capable of accurately adjusting a variation in capacity generated in an assembled battery composed of cells having predetermined voltage-capacitance characteristics. It is.

この発明は、所定の電圧−容量特性を有するセルで構成される組電池の容量を調整するに際し、容量に対する開放電圧の変化率が大きい領域に組電池の総電圧が属するときに各セルの端子電圧を取得し、当該セルの端子電圧に基づいて各セル毎に設けられたセル容量調整手段を作動させる時間を算出し、当該時間だけセル容量調整手段を作動させることによって、上記課題を解決する。   When adjusting the capacity of an assembled battery composed of cells having a predetermined voltage-capacitance characteristic, the present invention provides a terminal for each cell when the total voltage of the assembled battery belongs to a region where the change rate of the open-circuit voltage with respect to the capacity is large. The above-described problem is solved by obtaining a voltage, calculating a time for operating the cell capacity adjusting means provided for each cell based on the terminal voltage of the cell, and operating the cell capacity adjusting means for the time. .

上記発明によれば、容量に対する開放電圧の変化率が大きい領域に組電池の総電圧が属するときに、各セルの端子電圧に基づいて算出した時間だけセル容量調整手段を作動させるので、所定の電圧−容量特性を有するセルで構成される組電池に生じた容量のばらつきを精度良く調整することができる。   According to the above invention, when the total voltage of the assembled battery belongs to a region where the change rate of the open circuit voltage with respect to the capacity is large, the cell capacity adjusting means is operated for a time calculated based on the terminal voltage of each cell. It is possible to accurately adjust the variation in capacity generated in the assembled battery including cells having voltage-capacity characteristics.

以下、図面を参照しつつ、発明の実施形態について説明する。   Hereinafter, embodiments of the invention will be described with reference to the drawings.

なお、以下の説明では、リチウムイオン電池により組電池が構成されているものとして説明するが、これに限定されない。また、この組電池は車両に搭載されているものとして説明する。   In addition, although the following description demonstrates as what the assembled battery is comprised with the lithium ion battery, it is not limited to this. In addition, this assembled battery will be described as being mounted on a vehicle.

図1に示すように、本実施形態に係る容量調整システム100は、組電池1と、電流センサ2と、メインリレー3と、インバータ4と、モータ5と、容量調整装置10とを含む。   As shown in FIG. 1, the capacity adjustment system 100 according to the present embodiment includes an assembled battery 1, a current sensor 2, a main relay 3, an inverter 4, a motor 5, and a capacity adjustment device 10.

組電池1は、電流センサ2及びメインリレー3を介してインバータ4に接続され、インバータ4へ直流電力を供給する。電流センサ2は、組電池1からインバータ4へ流れる放電電流と、インバータ4から組電池1へ流れる充電電流とを検出し、容量調整装置10のバッテリコントローラ104(CPU106)へ出力する。メインリレー3は、容量調整装置10のCPU106からの指令により開閉され、組電池1とモータ5との間の接続と開放を行う。インバータ4は、組電池1の直流電力を交流電力に変換してモータ5に印加し、該モータ5を駆動して車両を走行させる。インバータ4はまた、車両の制動時にモータ5で発生する交流回生電力を直流電力に変換し、組電池1を充電する。モータ5は、走行駆動用交流モータで構成されている。   The assembled battery 1 is connected to the inverter 4 via the current sensor 2 and the main relay 3 and supplies DC power to the inverter 4. The current sensor 2 detects a discharge current flowing from the assembled battery 1 to the inverter 4 and a charging current flowing from the inverter 4 to the assembled battery 1, and outputs them to the battery controller 104 (CPU 106) of the capacity adjustment device 10. The main relay 3 is opened / closed by a command from the CPU 106 of the capacity adjustment device 10 to connect and release the assembled battery 1 and the motor 5. The inverter 4 converts the DC power of the assembled battery 1 into AC power and applies the AC power to the motor 5, and drives the motor 5 to run the vehicle. The inverter 4 also converts AC regenerative power generated by the motor 5 during braking of the vehicle into DC power and charges the assembled battery 1. The motor 5 is composed of an AC motor for driving.

本例の組電池1は、二次電池であるセル(単位電池)11を96個直列に接続した一組の直列セルブロックで構成されている。ただし、組電池1の直列接続数は96個に限定されない。また組電池1は、上述した直列セルブロックを任意の数で並列に接続した直並列セルブロックで構成してもよい。   The assembled battery 1 of this example is composed of a set of series cell blocks in which 96 cells (unit batteries) 11 as secondary batteries are connected in series. However, the number of series connections of the assembled battery 1 is not limited to 96. Moreover, the assembled battery 1 may be comprised by the serial-parallel cell block which connected the serial cell block mentioned above in parallel by arbitrary numbers.

本例の各セル111〜1196(以下、代表して「11n」ともいう。「n」はn番目のセル11を意味する。)は、同一設計のリチウムイオン電池で構成されている。以下、各セル11nの構造の一例を説明する。   Each of the cells 111 to 1196 in this example (hereinafter also referred to as “11n” as a representative. “N” means the nth cell 11) is composed of a lithium ion battery having the same design. Hereinafter, an example of the structure of each cell 11n will be described.

図2に示すように、本例のセル11nは、電池要素250、外装ケース260、正極リード(正極端子)270及び負極リード(負極端子)280を有する。   As shown in FIG. 2, the cell 11 n of this example includes a battery element 250, an outer case 260, a positive electrode lead (positive electrode terminal) 270, and a negative electrode lead (negative electrode terminal) 280.

電池要素250は、正極活物質層251を集電体252上に有する正極板と、負極活物質層253を集電体252上に有する負極板とを、電解質を保持するセパレータ(電解質層)254を介して積層することで構成されている。   The battery element 250 includes a positive electrode plate having a positive electrode active material layer 251 on a current collector 252 and a negative electrode plate having a negative electrode active material layer 253 on a current collector 252. A separator (electrolyte layer) 254 that holds an electrolyte. It is comprised by laminating | stacking via.

正極活物質層251は、正極活物質、導電助剤、バインダ等を含む。正極活物質としては、例えばLiMn等のリチウム−遷移金属複合酸化物などが挙げられる。導電助剤としては、例えばアセチレンブラック、カーボンブラック、グラファイト、炭素繊維、カーボンナノチューブなどが挙げられる。バインダとしては、例えばポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、ポリイミドなどが挙げられる。 The positive electrode active material layer 251 includes a positive electrode active material, a conductive additive, a binder, and the like. Examples of the positive electrode active material include lithium-transition metal composite oxides such as LiMn 2 O 4 . Examples of the conductive assistant include acetylene black, carbon black, graphite, carbon fiber, and carbon nanotube. Examples of the binder include polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), and polyimide.

負極活物質層253は、負極活物質、導電助剤、バインダ等を含む。負極活物質は、黒鉛系炭素材料(グラファイト系)を含む。本例のセル11nは、黒鉛系炭素材料を含む負極活物質層253を有する電池要素250を備えているので、図3に示す電圧−SOC特性を持つ。この点は後述する。   The negative electrode active material layer 253 includes a negative electrode active material, a conductive additive, a binder, and the like. The negative electrode active material includes a graphite-based carbon material (graphite-based). Since the cell 11n of this example includes the battery element 250 having the negative electrode active material layer 253 including the graphite-based carbon material, the cell 11n has the voltage-SOC characteristics shown in FIG. This point will be described later.

集電体252は、例えばアルミニウム箔、銅箔、ステンレススチール箔、チタン箔、ニッケルとアルミニウムのクラッド材、銅とアルミニウムのクラッド材、ステンレススチールとアルミニウムのクラッド材あるいはこれらの金属の組み合わせのめっき材などで構成される。なお、上記材質のうち、正極の集電体252は正極電位で、負極の集電体252では負極の電位で安定な材質が選択され、一般的には、正極の集電体252にはアルミニウム箔が、負極の集電体252には銅箔が用いられる。   The current collector 252 is, for example, an aluminum foil, a copper foil, a stainless steel foil, a titanium foil, a nickel-aluminum clad material, a copper-aluminum clad material, a stainless steel-aluminum clad material, or a plating material of a combination of these metals. Etc. Among the above materials, a positive electrode current collector 252 is selected as a positive electrode potential, and a negative electrode current collector 252 is selected from a material that is stable at a negative electrode potential. Generally, the positive electrode current collector 252 is made of aluminum. A copper foil is used for the negative electrode current collector 252.

セパレータ254は、電解質を保持する役割を果たし、例えばポリエチレン、ポリプロピレン等のポリオレフィン、ポリアミド、ポリイミドなどで構成される。   The separator 254 plays a role of holding an electrolyte, and is made of, for example, polyolefin such as polyethylene or polypropylene, polyamide, polyimide, or the like.

セパレータ254に保持される電解質(電解液)は、液体系あるいは流動性を有するゲルポリマー系であり、例えば有機溶媒、支持塩及び少量の界面活性剤等を含む。有機溶媒としては、例えばプロピレンカーボネート(PC)やエチレンカーボネート(EC)等の環状カーボネート類、ジメチルカーボネート等の鎖状カーボネート類、テトラヒドロフラン等のエーテル類などが挙げられる。支持塩としては、例えばリチウム塩(LiPF)等の無機酸陰イオン塩、LiCFSO等の有機酸陰イオン塩などが挙げられる。ゲルポリマー電解質は、電解液、ホストポリマー等を含む。ホストポリマーとしては、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVDF−HFP)、PAN(ポリアクリロニトリル(PAN)、PMMA(ポリメチルメタクリレート(PMMA)等のリチウムイオン伝導性を持たない高分子、PEO(ポリエチレンオキシド)やPPO(ポリプロピレンオキシド)等のイオン伝導性を有する高分子(固体高分子電解質)などが挙げられる。 The electrolyte (electrolytic solution) held in the separator 254 is a liquid polymer or a fluid gel polymer, and includes, for example, an organic solvent, a supporting salt, a small amount of a surfactant, and the like. Examples of the organic solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), chain carbonates such as dimethyl carbonate, and ethers such as tetrahydrofuran. Examples of the supporting salt include inorganic acid anion salts such as lithium salt (LiPF 6 ) and organic acid anion salts such as LiCF 3 SO 3 . The gel polymer electrolyte includes an electrolytic solution, a host polymer, and the like. As the host polymer, a polymer having no lithium ion conductivity, such as a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVDF-HFP), PAN (polyacrylonitrile (PAN), PMMA (polymethyl methacrylate (PMMA)), Examples thereof include polymers (solid polymer electrolytes) having ion conductivity such as PEO (polyethylene oxide) and PPO (polypropylene oxide).

外装ケース260は、シート状の外装材262の周縁を、熱溶着によって接合することで袋状に形成されており、電池要素250を収容するために使用される。外装材262は、例えば三層構造を有する高分子−金属複合ラミネートフィルムであり、金属層264と、この金属層264の両面に配置される高分子樹脂層266とで構成されている。金属層264としては、例えばアルミニウム、ステンレス、ニッケル、銅などの金属箔などで構成することができる。高分子樹脂層266としては、例えばポリエチレン、ポリプロピレン、変性ポリエチレン、変性ポリプロピレン、アイオノマー、エチレンビニルアセテート等の熱溶着性樹脂フィルムなどで構成することができる。なお、外装材262の接合は、熱溶着を適用することに限定されない。   The exterior case 260 is formed in a bag shape by joining the peripheral edges of the sheet-shaped exterior material 262 by heat welding, and is used to accommodate the battery element 250. The exterior material 262 is, for example, a polymer-metal composite laminate film having a three-layer structure, and includes a metal layer 264 and a polymer resin layer 266 disposed on both surfaces of the metal layer 264. The metal layer 264 can be made of, for example, a metal foil such as aluminum, stainless steel, nickel, or copper. The polymer resin layer 266 can be composed of, for example, a heat-welding resin film such as polyethylene, polypropylene, modified polyethylene, modified polypropylene, ionomer, and ethylene vinyl acetate. Note that the bonding of the exterior material 262 is not limited to applying heat welding.

正極リード270及び負極リード280は、電池要素250の集電体252に接続され、電池要素250から電流を引き出すために、外装ケース260の内部から外部に延長している。   The positive electrode lead 270 and the negative electrode lead 280 are connected to the current collector 252 of the battery element 250 and extend from the inside of the outer case 260 to the outside in order to draw current from the battery element 250.

《容量調整装置》
図1に戻り、本例の容量調整装置10は、上述した電流センサ2、メインリレー3及びインバータ4を介してモータ5に接続された組電池1の容量を調整する装置であり、容量調整部101と、セル電圧センサ102と、組電池電圧センサ103と、バッテリコントローラ104とを含む。
<Capacity adjustment device>
Returning to FIG. 1, the capacity adjustment apparatus 10 of this example is an apparatus that adjusts the capacity of the assembled battery 1 connected to the motor 5 via the current sensor 2, the main relay 3, and the inverter 4, and includes a capacity adjustment unit. 101, a cell voltage sensor 102, an assembled battery voltage sensor 103, and a battery controller 104.

バッテリコントローラ104は、CPU106と、ROM107と、RAM108とを含む。CPU106(制御手段)は、後述する処理(容量調整処理)を実行する。ROM107は、CPU106で実行されるプログラムを記憶する。RAM108(記憶手段)は、所定のデータを一時的に記憶する。RAM108には、少なくとも、組電池1及びセル11nの電圧−SOCの相関図(図3参照)に関する情報と、セル11nの閾電圧値C1及びこのC1にセル数を乗じた、組電池1全体の閾電圧値96C1に関する情報と、容量調整時間初期値t0(秒)に関する情報とが、予め格納してある。   The battery controller 104 includes a CPU 106, a ROM 107, and a RAM 108. The CPU 106 (control unit) executes processing (capacity adjustment processing) described later. The ROM 107 stores a program executed by the CPU 106. The RAM 108 (storage means) temporarily stores predetermined data. The RAM 108 includes at least information related to the voltage-SOC correlation diagram (see FIG. 3) of the assembled battery 1 and the cell 11n, the threshold voltage value C1 of the cell 11n, and the C1 multiplied by the number of cells. Information regarding the threshold voltage value 96C1 and information regarding the capacity adjustment time initial value t0 (seconds) are stored in advance.

組電池電圧センサ103(総電圧検出手段)は、組電池1の総電圧Vt、つまり組電池1全体の端子電圧を検出し、CPU106へ出力する。   The assembled battery voltage sensor 103 (total voltage detection means) detects the total voltage Vt of the assembled battery 1, that is, the terminal voltage of the entire assembled battery 1, and outputs it to the CPU.

セル電圧センサ102(セル電圧検出手段)は、CPU106からの指令を受けた後に、各セル11nの端子電圧Vc1〜Vc96(以下、代表してVcnともいう。Vcnはn番目のセル11の電圧を意味する。)を検出し、CPU106へ出力する。本例では、組電池1の総電圧Vtが後述するA領域(図3参照)に属するときには、セル電圧センサ102による各セル11nの端子電圧Vcnの検出を行わず、B領域(図3参照)に属するときに電圧Vcnの検出を行う。   After receiving a command from the CPU 106, the cell voltage sensor 102 (cell voltage detection means) is connected to terminal voltages Vc1 to Vc96 (hereinafter also referred to as Vcn as representative. Vcn represents the voltage of the nth cell 11). It is detected and output to the CPU 106. In this example, when the total voltage Vt of the assembled battery 1 belongs to the A region (see FIG. 3) described later, the cell voltage sensor 102 does not detect the terminal voltage Vcn of each cell 11n, and the B region (see FIG. 3). The voltage Vcn is detected when belonging to.

容量調整部101(容量調整手段)は、何れかのセル11nが過充電状態または過放電状態になって組電池1の容量が十分に利用できなくなることを防止するために、組電池1を構成する各セル11n単位で、各セル11nに生じた容量(SOC)のばらつきを調整する。一般に、各セル11nに生じたSOCのばらつきを調整するには、所定のSOCを持つセル11nよりも、SOCの大きなセル11nを放電させて平準化する場合と、SOCの小さなセル11nを充電して平準化する場合とがある。本例では、SOCの大きなセル11nを放電させる場合を例示する。   The capacity adjusting unit 101 (capacity adjusting means) configures the assembled battery 1 in order to prevent any of the cells 11n from being overcharged or overdischarged and the capacity of the assembled battery 1 from being fully utilized. The variation of the capacity (SOC) generated in each cell 11n is adjusted for each cell 11n. In general, in order to adjust the variation of the SOC generated in each cell 11n, a cell 11n having a larger SOC than the cell 11n having a predetermined SOC is discharged and leveled, and a cell 11n having a smaller SOC is charged. Leveling. In this example, a case where a cell 11n having a large SOC is discharged is illustrated.

本例の容量調整部101は、各セル11nのSOCを放電するための回路であり、抵抗器101aとトランジスタ101bの直列回路で構成されている。この直列回路は、各セル11nに対してそれぞれ並列に接続されている。抵抗器101aは放電抵抗であり、トランジスタ101bは放電と停止を行うためのスイッチング素子である。スイッチング素子として、トランジスタ101bに代えてFETなどの半導体スイッチング素子や、リレーなどを用いることもできる。   The capacity adjustment unit 101 of this example is a circuit for discharging the SOC of each cell 11n, and includes a series circuit of a resistor 101a and a transistor 101b. This series circuit is connected in parallel to each cell 11n. The resistor 101a is a discharge resistor, and the transistor 101b is a switching element for discharging and stopping. As the switching element, a semiconductor switching element such as an FET, a relay, or the like can be used instead of the transistor 101b.

なお、容量調整装置10は、温度センサ109などをさらに備えていてもよい。この場合、温度センサ109は、組電池1の温度を検出し、CPU106へ出力する。   The capacity adjustment device 10 may further include a temperature sensor 109 and the like. In this case, the temperature sensor 109 detects the temperature of the assembled battery 1 and outputs it to the CPU 106.

負極活物質層253(図2参照)に黒鉛系炭素材料を含む場合のセル11nは、例えば図3に示すような電圧−SOC特性を備えている。図3において、横軸はセルの容量(SOC)を示し、縦軸はセルの開放電圧を示している。なお、図3の特性を取得するには、例えば、まず満充電時でのセル電圧を検出する。次にこのセルを所定電流で放電させる。このとき、セルのSOCが、計算上で、例えば所定%減少することとなる時点毎に放電をストップし、そのときのセル電圧を検出する。これを繰り返すことにより図3の特性を取得することができる。   The cell 11n when the negative electrode active material layer 253 (see FIG. 2) contains a graphite-based carbon material has voltage-SOC characteristics as shown in FIG. 3, for example. In FIG. 3, the horizontal axis indicates the capacity (SOC) of the cell, and the vertical axis indicates the open circuit voltage of the cell. In order to obtain the characteristics shown in FIG. 3, for example, the cell voltage at full charge is first detected. Next, the cell is discharged with a predetermined current. At this time, discharge is stopped at each time point when the SOC of the cell is reduced by, for example, a predetermined percentage in the calculation, and the cell voltage at that time is detected. By repeating this, the characteristics shown in FIG. 3 can be acquired.

一般に、セルのSOCが開放電圧と一定の比例関係にある組電池は、開放電圧のばらつき自体が各セルに生じた容量のばらつきとなる。ところが、図3に示すように、本実施形態のセル11nは、負極に黒鉛系炭素材料を用いているので、SOCの基準変化幅に対する開放電圧の変化量、つまりSOCに対する開放電圧の変化率(傾き)が、B領域(第2の領域。SOCが20%前後以下の狭い領域)及びC領域(第2の領域。SOCが95%前後以上の狭い領域)の場合と比較して、相対的に、A領域(第1の領域。SOCが20%前後から95%前後までの広い領域)の場合で小さくなる。   In general, in an assembled battery in which the SOC of a cell is in a fixed proportional relationship with the open circuit voltage, the open circuit voltage variation itself is a variation in capacity generated in each cell. However, as shown in FIG. 3, since the cell 11n of the present embodiment uses a graphite-based carbon material for the negative electrode, the change amount of the open circuit voltage with respect to the SOC standard change width, that is, the change rate of the open circuit voltage with respect to the SOC ( Compared to the case of the B region (second region, a narrow region with an SOC of about 20% or less) and the C region (second region, a narrow region with an SOC of about 95% or more) In addition, it becomes smaller in the case of the A region (first region, a wide region from about 20% to about 95% SOC).

図3の例では、A領域においてSOCが約75%変動しても、開放電圧の変化量ΔVcnaは極めて小さい。このように、セル電圧が殆ど変化しないフラットな電圧波形を広い範囲のSOC領域(A領域)で持つセル11nに対し、検出された開放電圧がA領域内にある場合、セル電圧センサ102(組電池電圧検出センサ103も含む)の分解能の限界から、その時点でのセル11n(組電池1)の容量(SOC)を正確に算出することは困難である。   In the example of FIG. 3, even if the SOC fluctuates by about 75% in the A region, the change amount ΔVcna of the open circuit voltage is extremely small. As described above, when the detected open voltage is within the A region with respect to the cell 11n having a flat voltage waveform in which the cell voltage hardly changes in the wide SOC region (A region), the cell voltage sensor 102 (set) It is difficult to accurately calculate the capacity (SOC) of the cell 11n (the assembled battery 1) at that time from the resolution limit of the battery voltage detection sensor 103).

ところで図3の例では、B領域において、SOCが約20%しか変動しなくても、開放電圧の変化量ΔVcnbが大きいことが理解される(ΔVcnb>>ΔVcna)。本実施形態では、図3の電圧波形において傾きが大きい、換言すると、SOCに対する開放電圧の変化率が大きい領域(B領域またはC領域。好ましくはB領域)に属する総電圧Vtを検出した場合に限って、各セル11nの端子電圧Vcnを検出し、このVcnに基づいてセル11n毎の容量調整時間tcn(第1の時間)を算出し、このtcnを容量調整時間初期値t0(第2の時間)に対して書き換える(更新)。   In the example of FIG. 3, it is understood that the change amount ΔVcnb of the open circuit voltage is large (ΔVcnb >> ΔVcna) even if the SOC fluctuates by only about 20% in the B region. In the present embodiment, when the total voltage Vt belonging to a region (B region or C region, preferably B region) in which the slope of the voltage waveform in FIG. 3 is large, in other words, the change rate of the open-circuit voltage with respect to the SOC is large is detected. For example, the terminal voltage Vcn of each cell 11n is detected, the capacity adjustment time tcn (first time) for each cell 11n is calculated based on this Vcn, and this tcn is used as the capacity adjustment time initial value t0 (second time). Rewrite (update) for (time).

《容量調整処理》
以下、本実施形態に係る容量調整処理の一例を説明する。
<Capacity adjustment process>
Hereinafter, an example of the capacity adjustment process according to the present embodiment will be described.

図4に示すように、まずステップ(以下、ステップをSと略す。)1にて、組電池電圧センサ103は、組電池1の総電圧Vtを検出し、CPU106へ出力する。総電圧Vtの検出タイミングは、特に限定されない。例えば図示省略のイグニッションキースイッチ(IGN)がオンされた時点(車両の起動時)でもよく、あるいはIGNがオフされた時点(車両停止時)でもよいし、さらにはIGNがオンされてからオフされるまでの間(車両走行時)であってもよい。   As shown in FIG. 4, first, in step (hereinafter, step is abbreviated as S) 1, the assembled battery voltage sensor 103 detects the total voltage Vt of the assembled battery 1 and outputs it to the CPU 106. The detection timing of the total voltage Vt is not particularly limited. For example, the ignition key switch (IGN) (not shown) may be turned on (when the vehicle is started), may be turned off (when the vehicle is stopped), or may be turned off after the IGN is turned on. Until the vehicle is running (during vehicle travel).

次にS2にて、CPU106は、RAM108に格納されている組電池1の閾電圧値96C1を取得する。ここで取得する閾電圧値96C1は、図3のB領域、すなわちSOCに対する開放電圧の変化率が大きい領域に属する電圧値である。   Next, in S <b> 2, the CPU 106 acquires the threshold voltage value 96 </ b> C <b> 1 of the assembled battery 1 stored in the RAM 108. The threshold voltage value 96C1 acquired here is a voltage value belonging to the B region of FIG. 3, that is, the region where the change rate of the open circuit voltage with respect to the SOC is large.

次にS3にて、CPU106は、S1で検出した組電池1の総電圧Vtと、S2で取得した閾電圧値96C1とを比較する。その結果、Vt>96C1の場合(S3にてNo)にはS10へ進み、Vt≦96C1の場合(S3にてYes)にはS4へ進む。   Next, in S3, the CPU 106 compares the total voltage Vt of the assembled battery 1 detected in S1 with the threshold voltage value 96C1 acquired in S2. As a result, if Vt> 96C1 (No in S3), the process proceeds to S10, and if Vt ≦ 96C1 (Yes in S3), the process proceeds to S4.

S3にてNoの場合に後述のS5〜S9を実行しても、検出された組電池1の総電圧Vtが図3のA領域内にある場合、上述したように、組電池電圧センサ103の分解能の限界から、組電池1全体の容量を正確に算出することは困難である。通常、セル電圧センサ102にて各セル11nの端子電圧Vcnをすべて検出するには比較的長い時間(例えばセル96個で1分ほど)がかかり、上述した理由で組電池1全体の容量を正確に算出することが困難であるにもかかわらず、各セル11nの端子電圧Vcnを検出するのは無駄である。そこでS3にてNoの場合には、S10へ進む。   If the total voltage Vt of the detected assembled battery 1 is within the area A in FIG. 3 even if S5 to S9 described later are executed in the case of No in S3, as described above, the assembled battery voltage sensor 103 From the limit of resolution, it is difficult to accurately calculate the capacity of the assembled battery 1 as a whole. Normally, it takes a relatively long time (for example, about 1 minute for 96 cells) to detect all the terminal voltages Vcn of each cell 11n by the cell voltage sensor 102, and the capacity of the assembled battery 1 is accurately determined for the reason described above. It is useless to detect the terminal voltage Vcn of each cell 11n in spite of being difficult to calculate. Therefore, in the case of No in S3, the process proceeds to S10.

次にS4にて、セル電圧センサ102は、各セル11nの端子電圧Vcnを検出し、CPU106へ出力する。セル電圧Vcnの取得順序は特に限定されず、取得順序を決めて1つずつ取得してもよいし、あるいは全てのセル11nの電圧を同時に取得することもできる。   Next, in S <b> 4, the cell voltage sensor 102 detects the terminal voltage Vcn of each cell 11 n and outputs it to the CPU 106. The acquisition order of the cell voltage Vcn is not particularly limited, and the acquisition order may be determined and acquired one by one, or the voltages of all the cells 11n may be acquired simultaneously.

次にS5にて、CPU106は、S4で取得したセル11n毎のセル電圧Vcnの中からセル電圧最小値Vcminを抽出し、これを容量調整目標値Vgとして設定する。その後、設定した容量調整目標値Vgと各セル11nの電圧Vcnとの偏差に対応した容量調整時間tcn(秒)を算出し、容量調整部101を上記調整放電時間tcnだけオンさせて、容量調整目標値Vgより大きい電圧Vcnを持つセル11nを放電させる。その一例(S6以降)は以下の通りである。   Next, in S5, the CPU 106 extracts the cell voltage minimum value Vcmin from the cell voltage Vcn for each cell 11n acquired in S4, and sets this as the capacity adjustment target value Vg. Thereafter, a capacity adjustment time tcn (seconds) corresponding to the deviation between the set capacity adjustment target value Vg and the voltage Vcn of each cell 11n is calculated, and the capacity adjustment unit 101 is turned on for the above-mentioned adjusted discharge time tcn to adjust the capacity. The cell 11n having a voltage Vcn larger than the target value Vg is discharged. An example (after S6) is as follows.

S6にて、CPU106は、S4で取得したセル電圧Vcnと、S5で設定した容量調整目標値Vgとの差ΔVcn(=Vcn−Vg)を算出する。   In S6, CPU 106 calculates a difference ΔVcn (= Vcn−Vg) between cell voltage Vcn acquired in S4 and capacity adjustment target value Vg set in S5.

例えば図5に示す例では、Vcminを示しているのはVc4のセル(4番目のセル114)、次に電圧が高いのはVc1のセル(1番目のセル111)、以降、Vc2のセル(2番目のセル112)、Vc3のセル(3番目のセル113)の順序である。そして、セル111のΔVc1は(Vc1−Vc4)、セル112のΔVc2は(Vc2−Vc4)、セル113のΔVc3は(Vc3−Vc4)となる。   For example, in the example shown in FIG. 5, Vcmin is indicated by the Vc4 cell (fourth cell 114), the next highest voltage is the Vc1 cell (first cell 111), and thereafter the Vc2 cell ( The second cell 112) and the Vc3 cell (third cell 113) are in this order. Then, ΔVc1 of the cell 111 is (Vc1−Vc4), ΔVc2 of the cell 112 is (Vc2−Vc4), and ΔVc3 of the cell 113 is (Vc3−Vc4).

次に図4に戻り、S7にて、CPU106は、S6で算出したΔVcnに基づいて、S5で抽出されたセル電圧最小値Vcminを示すセル以外の各セル11n(図5の例ではセル114以外の各セル111〜113,115〜1196)の容量調整量ΔSOCnを算出する。各セル11nのΔSOCnの算出は、RAM108に格納されているセルの電圧−SOC相関図(図3参照)に基づいて行うことができる。   Next, returning to FIG. 4, in S7, the CPU 106 determines each cell 11n other than the cell indicating the cell voltage minimum value Vcmin extracted in S5 based on ΔVcn calculated in S6 (in the example of FIG. 5, other than the cell 114). The capacity adjustment amount ΔSOCn of each of the cells 111 to 113, 115 to 1196) is calculated. The calculation of ΔSOCn of each cell 11n can be performed based on the cell voltage-SOC correlation diagram (see FIG. 3) stored in the RAM.

次にS8にて、CPU106は、S7で算出したΔSOCnに基づいて、特定セル以外の各セルについて、セル毎の容量調整時間tcnを算出する。容量調整量ΔSOCnは、セル11n毎の電気量ΔQn(単位はC)と同様に考えることができるので、式1に基づいて、セル毎のtcnを算出する。   Next, in S8, CPU 106 calculates a capacity adjustment time tcn for each cell for each cell other than the specific cell based on ΔSOCn calculated in S7. Since the capacity adjustment amount ΔSOCn can be considered in the same manner as the electric amount ΔQn (unit is C) for each cell 11n, tcn for each cell is calculated based on Equation 1.

[数1] ΔQn=Ic×tcn …(1)
ここで、「Ic」は抵抗器101aを介して放電する電流(単位はA)を示している。例えば図5の例では、セル111に対してはΔQ1だけ電気量を放出(放電)するような容量調整時間tc1を算出し、セル112に対してはΔQ2を放電するtc2を算出し、セル113に対してはΔQ3を放電するtc3を算出する。その結果、セル111のtc1は(ΔQ1/Ic)、セル112のtc2は(ΔQ2/Ic)、セル113のtc3は(ΔQ3/Ic)とそれぞれ算出される。
[Formula 1] ΔQn = Ic × tcn (1)
Here, “Ic” indicates a current (unit: A) discharged through the resistor 101a. For example, in the example of FIG. 5, a capacity adjustment time tc1 that discharges (discharges) electricity by ΔQ1 is calculated for the cell 111, tc2 that discharges ΔQ2 is calculated for the cell 112, and the cell 113 Is calculated by calculating tc3 which discharges ΔQ3. As a result, tc1 of the cell 111 is calculated as (ΔQ1 / Ic), tc2 of the cell 112 is calculated as (ΔQ2 / Ic), and tc3 of the cell 113 is calculated as (ΔQ3 / Ic).

次に図4に戻り、S9にて、CPU106は、RAM108に格納されている容量調整時間初期値t0を、S8で算出された容量調整時間tcnに書き換える。   Next, returning to FIG. 4, in S9, the CPU 106 rewrites the capacity adjustment time initial value t0 stored in the RAM 108 to the capacity adjustment time tcn calculated in S8.

次にS10にて、CPU106は、RAM108に格納されている容量調整時間(例えばS3にてNoの場合には初期値t0、S3にてYesの場合にはS9にて書き換えられた書換値tcn)を取得する。   Next, in S10, the CPU 106 stores the capacity adjustment time stored in the RAM 108 (for example, the initial value t0 if No in S3, the rewritten value tcn rewritten in S9 if Yes in S3). To get.

このS10にて取得あるいは格納(初期値もしくは前回の値)に基づいて、各セルの容量調整を実行するが、容量調整の実際の実行タイミングは所定の周期毎に行われる(更新後即時実行に限られない)。   Based on the acquisition or storage (initial value or previous value) in S10, the capacity adjustment of each cell is executed, but the actual execution timing of the capacity adjustment is performed at predetermined intervals (for immediate execution after update). Not limited).

所定の周期としては、所定時間毎、所定の充放電量積算値(充電も放電も積算としてカウントする)毎に実行する。これは推定したバラツキが内部抵抗に起因しており、所定周期ごとに再現されるためである。   The predetermined cycle is executed every predetermined time and every predetermined charge / discharge amount integrated value (charging and discharging are counted as integration). This is because the estimated variation is caused by the internal resistance and is reproduced every predetermined period.

これにより、S3でNOの判定の場合であっても、初期値もしくは近しい推定値(前回値)にて容量調整が可能となる。 次に、CPU106は、S3にてNoであった場合には各セル11nの容量調整部101に対し、S3にてYesであった場合には特定セル以外のセルの容量調整部101に対し、トランジスタ101bのベースへ指令信号を送り、取得した容量調整時間(t0又はtcn)だけトランジスタ101bをオン(導通)させるとともに、所定時間が経過するとオフ(非導通)にする。   Thereby, even if it is a case of NO determination in S3, the capacity can be adjusted with the initial value or a close estimated value (previous value). Next, when it is No at S3, the CPU 106 determines the capacity adjustment unit 101 of each cell 11n, and when it is Yes at S3, it determines the capacity adjustment unit 101 of cells other than the specific cell. A command signal is sent to the base of the transistor 101b to turn on the transistor 101b for the acquired capacitance adjustment time (t0 or tcn) and to turn it off (non-conducting) after a predetermined time.

容量調整部101は、CPU106からの指令を受けて、トランジスタ101bを所定時間だけオンさせる。これにより、指定されたセル11nの充電電力が抵抗器101aを介して放電し、放電分だけ指定されたセル11nのSOCが減少する。この場合、CPU106は、トランジスタ101bのオンとオフを繰り返してデューティー制御を行う。このデューティー比は、指定されたセル11nの放電容量と放電時間(容量調整時間)とに基づいて決定される。   In response to a command from the CPU 106, the capacity adjustment unit 101 turns on the transistor 101b for a predetermined time. As a result, the charging power of the designated cell 11n is discharged through the resistor 101a, and the SOC of the designated cell 11n is reduced by the amount of discharge. In this case, the CPU 106 performs duty control by repeatedly turning on and off the transistor 101b. This duty ratio is determined based on the discharge capacity and discharge time (capacity adjustment time) of the designated cell 11n.

また、トランジスタ101bのコレクターとエミッター間には、電圧センサ(図示省略)が接続されている。トランジスタ101bがオンするとコレクター〜エミッター間電圧がほぼ0Vになり、オフするとコレクター〜エミッター間電圧が各セル11nのセル電圧Vcnになる。CPU106は、不図示の電圧センサによりトランジスタ101bのコレクター〜エミッター間電圧をモニターし、トランジスタ101bの動作状況、つまり各セル11nの容量調整状況を確認しながら各セル11n間に生じたSOCのばらつきを調整する。   A voltage sensor (not shown) is connected between the collector and emitter of the transistor 101b. When the transistor 101b is turned on, the collector-emitter voltage becomes approximately 0V, and when the transistor 101b is turned off, the collector-emitter voltage becomes the cell voltage Vcn of each cell 11n. The CPU 106 monitors the collector-emitter voltage of the transistor 101b with a voltage sensor (not shown), and checks the operation status of the transistor 101b, that is, the capacity adjustment status of each cell 11n, and observes the variation in the SOC generated between the cells 11n. adjust.

図6から、セル111に対してtc1の間だけ、セル112に対してtc2の間だけ、セル113に対してtc3の間だけ、それぞれ放電させることにより、セル111〜113のSOCが、それぞれΔQ1、ΔQ2、ΔQ3の電気量だけ減少することが理解される。そしてセル111〜113の電圧Vc1,Vc2,Vc3は、最終的に、セル114と同じ電圧Vc4(Vcmin)付近に調整される。   From FIG. 6, by discharging only during tc1 with respect to the cell 111, only during tc2 with respect to the cell 112, and only during tc3 with respect to the cell 113, the SOCs of the cells 111 to 113 become ΔQ1 , ΔQ2 and ΔQ3 are understood to decrease. The voltages Vc1, Vc2, and Vc3 of the cells 111 to 113 are finally adjusted to the vicinity of the same voltage Vc4 (Vcmin) as that of the cell 114.

以上説明したように、本実施形態によれば、CPU106は、SOCに対する電圧の変化率が小さいA領域(図3参照)よりも相対的に大きいB領域(図3参照)に組電圧1の総電圧Vtが属するときに各セル11nの端子電圧Vcnを取得した後に、この端子電圧Vcnの中から最小電圧値Vc4を取得し、その後、最小電圧値Vc4とこの最小電圧値Vc4を示すセル114以外の各セル111〜113,115〜1196の端子電圧Vc1〜Vc3,Vc5〜Vc96に基づいて算出した時間tc1〜tc3,tc5〜tc96だけ容量調整部101を作動させるので、このようなA領域(図3参照)を含む電圧−容量特性を有するセル11nで構成された組電池1に生じた容量のばらつきを精度良く調整することができる。   As described above, according to the present embodiment, the CPU 106 adds the total assembled voltage 1 to the B region (see FIG. 3) which is relatively larger than the A region (see FIG. 3) where the rate of change of the voltage with respect to the SOC is small. After the terminal voltage Vcn of each cell 11n is acquired when the voltage Vt belongs, the minimum voltage value Vc4 is acquired from the terminal voltage Vcn, and thereafter, other than the cell 114 indicating the minimum voltage value Vc4 and the minimum voltage value Vc4 Since the capacity adjustment unit 101 is operated only for the times tc1 to tc3 and tc5 to tc96 calculated based on the terminal voltages Vc1 to Vc3 and Vc5 to Vc96 of the respective cells 111 to 113 and 115 to 1196 of FIG. 3), the variation in capacity generated in the assembled battery 1 composed of the cells 11n having the voltage-capacitance characteristics including the voltage-capacitance characteristics can be accurately adjusted.

図1は本実施形態に係る組電池の容量調整システムの一例を示すブロック図である。FIG. 1 is a block diagram showing an example of an assembled battery capacity adjustment system according to the present embodiment. 図2は図1の組電池を構成するセルの一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a cell constituting the assembled battery of FIG. 図3は図1の組電池及び図2のセルの電圧(V)とSOC(%)との関係を示す特性図である。FIG. 3 is a characteristic diagram showing the relationship between the voltage (V) and SOC (%) of the assembled battery of FIG. 1 and the cell of FIG. 図4は本実施形態に係る容量調整処理の一例を示すフローチャートである。FIG. 4 is a flowchart illustrating an example of the capacity adjustment process according to the present embodiment. 図5は図3のV部分の一部拡大図である。FIG. 5 is a partially enlarged view of a portion V in FIG. 図6は容量調整前後のセル電圧の変遷を示す説明図である。FIG. 6 is an explanatory diagram showing the transition of the cell voltage before and after capacity adjustment.

符号の説明Explanation of symbols

100…容量調整システム
1…組電池
111〜1196(11n)…セル
2…電流センサ
3…メインリレー
4…インバータ
5…モータ
10…容量調整装置
101…容量調整部(容量調整手段)
101a…抵抗器
101b…トランジスタ
102…セル電圧センサ(セル電圧検出手段)
103…組電池電圧センサ(組電池電圧検出手段)
104…バッテリコントローラ
106…CPU(制御手段)
107…ROM
108…RAM(記憶手段)
109…温度センサ
DESCRIPTION OF SYMBOLS 100 ... Capacity adjustment system 1 ... Battery assembly 111-1196 (11n) ... Cell 2 ... Current sensor 3 ... Main relay 4 ... Inverter 5 ... Motor 10 ... Capacity adjustment apparatus 101 ... Capacity adjustment part (capacity adjustment means)
101a ... resistor 101b ... transistor 102 ... cell voltage sensor (cell voltage detection means)
103 ... Battery voltage sensor (battery voltage detection means)
104 ... Battery controller 106 ... CPU (control means)
107 ... ROM
108 ... RAM (storage means)
109 ... temperature sensor

Claims (6)

容量に対する開放電圧の変化率が小さい第1の領域を含む電圧−容量特性を有するセルを複数直列に接続した組電池の容量を調整する装置であって、
前記組電池全体の端子電圧である総電圧を検出する総電圧検出手段と、
前記セルの端子電圧を検出するセル電圧検出手段と、
前記セル毎の容量を調整するセル容量調整手段と、
前記セル容量調整手段の作動を制御する制御手段と、を有し、
前記制御手段は、前記変化率が前記第1の領域よりも相対的に大きい第2の領域に前記総電圧が属するときに前記セルの端子電圧を取得し、当該セルの端子電圧に基づいて前記セル容量調整手段を作動させる時間を算出し、当該時間だけ前記セル容量調整手段を作動させることを特徴とする組電池の容量調整装置。
An apparatus for adjusting the capacity of an assembled battery in which a plurality of cells having voltage-capacitance characteristics including a first region in which a change rate of an open-circuit voltage with respect to a capacity is small is connected,
A total voltage detecting means for detecting a total voltage which is a terminal voltage of the whole assembled battery;
Cell voltage detecting means for detecting a terminal voltage of the cell;
Cell capacity adjusting means for adjusting the capacity of each cell;
Control means for controlling the operation of the cell capacity adjusting means,
The control means obtains a terminal voltage of the cell when the total voltage belongs to a second region where the rate of change is relatively larger than the first region, and based on the terminal voltage of the cell A battery pack capacity adjustment device characterized in that a time for operating the cell capacity adjustment means is calculated and the cell capacity adjustment means is operated for the time.
請求項1記載の組電池の容量調整装置であって、
前記制御手段は、取得した前記セルの端子電圧の中から最小電圧値を取得し、当該最小電圧値と前記セルの端子電圧に基づいて前記時間を算出することを特徴とする組電池の容量調整装置。
The capacity adjustment device for an assembled battery according to claim 1,
The control means acquires a minimum voltage value from the acquired terminal voltage of the cell, and calculates the time based on the minimum voltage value and the terminal voltage of the cell. apparatus.
請求項1又は2記載の組電池の容量調整装置であって、
前記セルは、黒鉛系炭素材料を含む負極活物質層を有する電池要素を備えたリチウムイオン電池であることを特徴とする組電池の容量調整装置。
The capacity adjustment device for an assembled battery according to claim 1 or 2,
The battery is a lithium-ion battery including a battery element having a negative electrode active material layer containing a graphite-based carbon material.
容量に対する開放電圧の変化率が小さい第1の領域を含む電圧−容量特性を有するセルを複数直列に接続した組電池の容量を調整する方法であって、
前記変化率が前記第1の領域よりも相対的に大きい第2の領域に前記組電池全体の端子電圧である総電圧が属するときに、前記セルの端子電圧を取得する工程と、
前記セルの端子電圧に基づいて、前記セル毎の容量を調整するセル容量調整手段を作動させる第1の時間を算出する工程と、
前記第1の時間だけ前記セル容量調整手段を作動させる工程と、を有する組電池の容量調整方法。
A method of adjusting the capacity of an assembled battery in which a plurality of cells having voltage-capacitance characteristics including a first region in which a change rate of an open circuit voltage with respect to a capacity is small is connected,
Obtaining a terminal voltage of the cell when a total voltage which is a terminal voltage of the entire assembled battery belongs to a second region where the rate of change is relatively larger than the first region;
Calculating a first time for operating a cell capacity adjusting means for adjusting the capacity of each cell based on the terminal voltage of the cell;
And a step of operating the cell capacity adjusting means only for the first time.
請求項4記載の組電池の容量調整方法であって、
前記第1の時間を算出した後、予め記憶手段に記憶されている第2の時間を前記第1の時間に書き換えることを特徴とする組電池の容量調整方法。
A method for adjusting the capacity of an assembled battery according to claim 4,
After calculating said 1st time, the capacity | capacitance adjustment method of the assembled battery characterized by rewriting the 2nd time previously memorize | stored in the memory | storage means to the said 1st time.
請求項5記載の組電池の容量調整方法であって、
前記第1の領域に前記総電圧が属するときには、前記第2の時間だけ前記セル容量調整手段を作動させることを特徴とする組電池の容量調整方法。
The battery pack capacity adjustment method according to claim 5,
The assembled battery capacity adjusting method, wherein when the total voltage belongs to the first area, the cell capacity adjusting means is operated only for the second time.
JP2008253645A 2008-09-30 2008-09-30 Device and method for adjusting capacity of battery pack Pending JP2010088194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008253645A JP2010088194A (en) 2008-09-30 2008-09-30 Device and method for adjusting capacity of battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008253645A JP2010088194A (en) 2008-09-30 2008-09-30 Device and method for adjusting capacity of battery pack

Publications (1)

Publication Number Publication Date
JP2010088194A true JP2010088194A (en) 2010-04-15

Family

ID=42251602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008253645A Pending JP2010088194A (en) 2008-09-30 2008-09-30 Device and method for adjusting capacity of battery pack

Country Status (1)

Country Link
JP (1) JP2010088194A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072169A (en) * 2009-09-28 2011-04-07 Gs Yuasa Corp Voltage equalizer for battery packs, and battery-pack system
WO2011155034A1 (en) * 2010-06-09 2011-12-15 トヨタ自動車株式会社 Vehicle battery-pack equalization system and vehicle battery-pack equalization method
CN102478636A (en) * 2010-11-26 2012-05-30 比亚迪股份有限公司 Electric quantity detection method and device for battery
WO2012099820A1 (en) * 2011-01-20 2012-07-26 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
JP2012175734A (en) * 2011-02-17 2012-09-10 Toyota Motor Corp Vehicular charging apparatus
JP2012175733A (en) * 2011-02-17 2012-09-10 Toyota Motor Corp Vehicular charging apparatus
WO2012169061A1 (en) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 Battery control device and battery system
JP2013070600A (en) * 2011-09-09 2013-04-18 Gs Yuasa Corp State management device, equalization method for storage elements
WO2014030472A1 (en) * 2012-08-22 2014-02-27 日本電気株式会社 Battery control device, electricity storage device, method for operating electricity storage device, and program
US8773068B2 (en) 2011-01-20 2014-07-08 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
JP2014190723A (en) * 2013-03-26 2014-10-06 Gs Yuasa Corp State of charge detection apparatus and state of charge detection method
US8957624B2 (en) 2011-01-20 2015-02-17 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
JPWO2012169061A1 (en) * 2011-06-10 2015-02-23 日立ビークルエナジー株式会社 Battery control device, battery system
JP2016220504A (en) * 2015-05-26 2016-12-22 株式会社Gsユアサ Monitoring device for battery pack and capacity equalization method for battery pack
US9970992B2 (en) 2016-01-26 2018-05-15 Gs Yuasa International Ltd. State estimation device, energy storage module, vehicle, and state estimation method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072169A (en) * 2009-09-28 2011-04-07 Gs Yuasa Corp Voltage equalizer for battery packs, and battery-pack system
JP5316709B2 (en) * 2010-06-09 2013-10-16 トヨタ自動車株式会社 Vehicle assembled battery equalization system and vehicle assembled battery equalization method
WO2011155034A1 (en) * 2010-06-09 2011-12-15 トヨタ自動車株式会社 Vehicle battery-pack equalization system and vehicle battery-pack equalization method
US8957636B2 (en) 2010-06-09 2015-02-17 Toyota Jidosha Kabushiki Kaisha Vehicle battery-pack equalization system and vehicle battery-pack equalization method
KR101424908B1 (en) 2010-06-09 2014-08-01 도요타 지도샤(주) Vehicle battery-pack equalization system and vehicle battery-pack equalization method
CN102478636A (en) * 2010-11-26 2012-05-30 比亚迪股份有限公司 Electric quantity detection method and device for battery
CN102478636B (en) * 2010-11-26 2014-09-03 比亚迪股份有限公司 Electric quantity detection method and device for battery
CN103329390A (en) * 2011-01-20 2013-09-25 威伦斯技术公司 Rechargeable battery systems and rechargeable battery system operational methods
CN103329390B (en) * 2011-01-20 2016-02-24 威伦斯技术公司 Chargeable cell system and rechargeable battery system operational
US10903661B2 (en) 2011-01-20 2021-01-26 Lithium Werks Technology Bv Rechargeable battery systems and rechargeable battery system operational methods
US9912178B2 (en) 2011-01-20 2018-03-06 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
US8773068B2 (en) 2011-01-20 2014-07-08 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
US10056764B2 (en) 2011-01-20 2018-08-21 Lithium Werks B.V. Rechargeable battery systems and rechargeable battery system operational methods
US8922167B2 (en) 2011-01-20 2014-12-30 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
WO2012099820A1 (en) * 2011-01-20 2012-07-26 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
US8957624B2 (en) 2011-01-20 2015-02-17 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
US11616375B2 (en) 2011-01-20 2023-03-28 Lithion Battery Inc. Rechargeable battery systems and rechargeable battery system operational methods
JP2012175733A (en) * 2011-02-17 2012-09-10 Toyota Motor Corp Vehicular charging apparatus
JP2012175734A (en) * 2011-02-17 2012-09-10 Toyota Motor Corp Vehicular charging apparatus
WO2012169061A1 (en) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 Battery control device and battery system
JPWO2012169061A1 (en) * 2011-06-10 2015-02-23 日立ビークルエナジー株式会社 Battery control device, battery system
JP2013070600A (en) * 2011-09-09 2013-04-18 Gs Yuasa Corp State management device, equalization method for storage elements
US9985444B2 (en) 2011-09-09 2018-05-29 Gs Yuasa International Ltd. Electric storage device management apparatus and method of equalizing capacities of electric storage devices
JPWO2014030472A1 (en) * 2012-08-22 2016-07-28 日本電気株式会社 Battery control device, power storage device, operation method of power storage device, and program
WO2014030472A1 (en) * 2012-08-22 2014-02-27 日本電気株式会社 Battery control device, electricity storage device, method for operating electricity storage device, and program
JP2014190723A (en) * 2013-03-26 2014-10-06 Gs Yuasa Corp State of charge detection apparatus and state of charge detection method
JP2016220504A (en) * 2015-05-26 2016-12-22 株式会社Gsユアサ Monitoring device for battery pack and capacity equalization method for battery pack
US9970992B2 (en) 2016-01-26 2018-05-15 Gs Yuasa International Ltd. State estimation device, energy storage module, vehicle, and state estimation method

Similar Documents

Publication Publication Date Title
JP2010088194A (en) Device and method for adjusting capacity of battery pack
JP7483078B2 (en) Secondary battery abnormality detection device and secondary battery
JP6280196B2 (en) Apparatus and method for estimating state of charge of secondary battery including mixed positive electrode material
JP3964635B2 (en) Memory effect detection method and solution
JP6065561B2 (en) Secondary battery control device and SOC detection method
US8305085B2 (en) Lithium-ion battery controlling apparatus and electric vehicle
JP5320953B2 (en) Battery performance detection device and control device
JP4523738B2 (en) Secondary battery remaining capacity control method and apparatus
US8674659B2 (en) Charge control device and vehicle equipped with the same
JP6135110B2 (en) Secondary battery control device, charge control method, and SOC detection method
US8674702B2 (en) Apparatus for detecting a state of secondary battery
KR101549360B1 (en) Secondary battery control device
KR20070014652A (en) Method for estimating soc of secondary battery module
JP2012104239A (en) Lithium ion battery electricity storage amount estimation method, lithium ion battery electricity storage amount estimation program, lithium ion battery electricity storage amount correction method, and lithium ion battery electricity storage amount correction program
WO2018083802A1 (en) Short circuit detection device
JP2001086604A (en) Set-battery and remaining capacity detector
JP2015190815A (en) Lithium ion secondary battery state detection system and lithium ion secondary battery state detection method
JP2015220038A (en) Lithium ion secondary battery system and method for charging lithium ion secondary battery
JP6897362B2 (en) Rechargeable battery system
JP2015220851A (en) Charging capacity adjusting system and charging capacity adjusting method