JP6487783B2 - Artificial blood braid - Google Patents

Artificial blood braid Download PDF

Info

Publication number
JP6487783B2
JP6487783B2 JP2015115988A JP2015115988A JP6487783B2 JP 6487783 B2 JP6487783 B2 JP 6487783B2 JP 2015115988 A JP2015115988 A JP 2015115988A JP 2015115988 A JP2015115988 A JP 2015115988A JP 6487783 B2 JP6487783 B2 JP 6487783B2
Authority
JP
Japan
Prior art keywords
braid
artificial blood
blood vessels
yarn
vessels according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015115988A
Other languages
Japanese (ja)
Other versions
JP2017000321A5 (en
JP2017000321A (en
Inventor
昭二 上杉
昭二 上杉
俊樹 早乙女
俊樹 早乙女
純 衣笠
純 衣笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gosen Co Ltd
Japan Wool Textile Co Ltd
Original Assignee
Gosen Co Ltd
Japan Wool Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gosen Co Ltd, Japan Wool Textile Co Ltd filed Critical Gosen Co Ltd
Priority to JP2015115988A priority Critical patent/JP6487783B2/en
Publication of JP2017000321A publication Critical patent/JP2017000321A/en
Publication of JP2017000321A5 publication Critical patent/JP2017000321A5/ja
Application granted granted Critical
Publication of JP6487783B2 publication Critical patent/JP6487783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Description

本発明は人工血管用材料に関する。さらに詳しくは、糸密度が高く小口径人工血管に好適な人工血管用組紐に関する。   The present invention relates to an artificial blood vessel material. More specifically, the present invention relates to a braid for an artificial blood vessel that has a high yarn density and is suitable for a small-diameter artificial blood vessel.

大口径人工血管に使用されているポリエチレンテレフタレート(PET)やポリテトラフルオロエチレン(PTFE)は、内径(中空径)が6mm以下の小口径人工血管に適用すると、移植後に閉塞しやすいという問題がある。これは、血管材料の生体不適合性による血管内膜の肥厚や血栓形成による閉塞が原因と言われている。そのため、現行では、膝関節末梢等へのバイパス術は自家静脈移植が行われているが、患者への負担が大きいこと、適合する血管を持たず自家静脈移植を行うことができない患者が多数いる等問題は多い。近年、患者の高齢化や糖尿病の増加に伴い、細小血管の再生治療の需要は増加している。従って、特に末梢血管等小口径の血管に利用できる抗血栓性のある人工血管の開発が従来から望まれていた。   Polyethylene terephthalate (PET) and polytetrafluoroethylene (PTFE) used for large-diameter artificial blood vessels have a problem that they tend to block after transplantation when applied to small-diameter artificial blood vessels having an inner diameter (hollow diameter) of 6 mm or less. . This is said to be due to thickening of the intima due to incompatibility of the vascular material and occlusion due to thrombus formation. Therefore, at present, autologous vein transplantation is performed for bypass to the knee joint periphery, etc., but there are many patients who do not have compatible blood vessels and cannot perform autologous vein transplantation because of heavy burden on the patient. There are many problems. In recent years, with the aging of patients and the increase in diabetes, the demand for regenerative treatment of small blood vessels is increasing. Therefore, development of an artificial blood vessel having antithrombotic properties that can be used particularly for small-diameter blood vessels such as peripheral blood vessels has been desired.

一方、絹糸は、高い生体親和性を有しており、細くて強く適度な弾性と柔軟性を持ち、糸の滑りがよく、結びやすくほつれ難い特性を持っていることから、手術用の縫合糸として用いられる天然繊維である。これまでに絹の高い生体適合性を利用した様々な再生絹材料が開発され、医療、生化学、食品、化粧料等幅広い分野での利用が期待されている。特に、再生医療のための材料として注目されている。絹を用いた人工血管作製の試みとしては、組紐構造物が提案されている(特許文献1〜3)。   On the other hand, silk thread has high biocompatibility, is thin, strong, has moderate elasticity and flexibility, has good sliding properties, and is easy to tie and hard to fray. It is a natural fiber used as Various regenerated silk materials that utilize the high biocompatibility of silk have been developed so far, and are expected to be used in a wide range of fields such as medicine, biochemistry, food, and cosmetics. In particular, it is attracting attention as a material for regenerative medicine. As an attempt to produce an artificial blood vessel using silk, braided structures have been proposed (Patent Documents 1 to 3).

特開2004−173772号公報JP 2004-173772 A 特開2009−279214号公報JP 2009-279214 A 特開2014−050412号公報JP 2014-050412 A

しかし、前記のような従来技術は、組糸の繊度、糸角度、組打ち数等が適正化されておらず、特に移植に必要な強度に関して、さらに改善が求められていた。   However, the prior art as described above has not been optimized in the fineness of the braid, the yarn angle, the number of braids, and the like, and further improvement has been demanded particularly regarding the strength necessary for transplantation.

本発明は、前記従来の問題を解決するため、組糸の繊度、糸角度、組打ち数等を適正化し、糸密度が高く、強度に優れた小口径人工血管に好適な人工血管用組紐を提供する。   In order to solve the above-mentioned conventional problems, the present invention provides a braid for an artificial blood vessel that is suitable for a small-diameter artificial blood vessel having a high yarn density and excellent strength by optimizing the fineness, yarn angle, the number of times of braiding, etc. To do.

本発明の人工血管用組紐は、生体適合性繊維糸を組紐に製紐した人工血管用組紐であって、前記組紐を構成する組糸の単糸繊度が117〜932dtexの範囲であり、前記組紐は24打ち以上の組紐であり、前記組紐を構成する組糸の角度が円周方向に対して35〜45°の範囲の所定の角度に整っており、1inchあたりの組目の数が25以上であり、全体として円筒形状であることを特徴とする。   The braid for artificial blood vessels of the present invention is a braid for artificial blood vessels in which a biocompatible fiber yarn is made into a braid, and the single yarn fineness of the braid constituting the braid is in a range of 117 to 932 dtex, and the braid Is a braid of 24 or more punches, and the braid angle forming the braid is arranged at a predetermined angle in the range of 35 to 45 ° with respect to the circumferential direction, and the number of braids per inch is 25 or more It is characterized by having a cylindrical shape as a whole.

本発明の人工血管用組紐は、生体適合性繊維糸を組紐に製紐した人工血管用組紐であって、前記組紐を構成する組糸単糸の繊度が117〜932dtexの範囲であり、前記組紐は24打ち以上の組紐であり、前記組紐を構成する組糸の角度が円周方向に対して35〜45°の範囲の所定の角度に整っており、1inchあたりの組目の数が25以上であり、全体として円筒形状であることにより、糸密度と組目密度が高く強度もあり、小口径人工血管に好適な人工血管用組紐を提供できる。さらに本発明の人工血管用組紐は、血圧で破裂しない強度と、生体の血管と同等の弾力性を有する。   The braid for artificial blood vessels of the present invention is a braid for artificial blood vessels in which a biocompatible fiber yarn is made into a braid, and the fineness of the single yarn constituting the braid is in the range of 117 to 932 dtex, and the braid Is a braid of 24 or more punches, and the braid angle forming the braid is arranged at a predetermined angle in the range of 35 to 45 ° with respect to the circumferential direction, and the number of braids per inch is 25 or more In addition, since the overall shape is cylindrical, the braided cord for artificial blood vessels suitable for small-diameter artificial blood vessels can be provided. Furthermore, the braid for artificial blood vessels of the present invention has strength that does not rupture with blood pressure and elasticity equivalent to that of a blood vessel in a living body.

図1は本発明の一実施例における人工血管用組紐を光学顕微鏡(倍率10倍)で観察したトレース側面図である。FIG. 1 is a side view of a trace obtained by observing an artificial blood braid according to an embodiment of the present invention with an optical microscope (magnification 10 times). 図2は同組紐の模式的斜視図である。FIG. 2 is a schematic perspective view of the braid. 図3Aは同組紐の製造装置を示す模式的説明図、図3Bは同ボビンの動きを示す動作図である。FIG. 3A is a schematic explanatory view showing the braid manufacturing apparatus, and FIG. 3B is an operation diagram showing the movement of the bobbin. 図4A−Bは本発明の一実施例における人工血管用組紐の周軸破断強度及び周軸破断伸度(ひずみ)の測定装置の模式的説明図である。FIGS. 4A and 4B are schematic explanatory diagrams of a measuring device for measuring the peripheral axis breaking strength and the peripheral axis breaking elongation (strain) of the braid for artificial blood vessels in one embodiment of the present invention. 図5は本発明の別の実施例のほつれ防止した人工血管用組紐の端部を針金で強く引っ張ってもほつれず、孔が広がらない状態を示す写真である。FIG. 5 is a photograph showing a state in which the flaw-prevented artificial blood vessel braid according to another embodiment of the present invention does not fray and the hole does not widen even if it is strongly pulled with a wire. 図6Aは同実施例のほつれ防止した人工血管用組紐の端部を示す写真、図6Bはつぶしても元に戻る弾力性があることを示す写真である。FIG. 6A is a photograph showing an end portion of the braid for artificial blood vessels in which fraying is prevented according to the same embodiment, and FIG.

本発明者らは、組糸単糸の繊度と、組紐の打ち上げ本数と、組糸の角度を検討した結果、本発明の範囲であれば、糸密度と組目密度が高く強度もあり、小口径人工血管に好適な人工血管用組紐とすることができることを見出し本発明にいたった。   As a result of examining the fineness of the braided single yarn, the number of braids to be launched, and the angle of the braided yarn, the present inventors found that the yarn density and stitch density are high and strong within the scope of the present invention. The present inventors have found that an artificial blood braid suitable for a caliber artificial blood vessel can be obtained.

本発明の人工血管用組紐は、生体適合性繊維糸を組紐に製紐した人工血管用組紐である。組み紐であると円筒状に形成しやすい。生体適合繊維糸は、絹糸、ポリ乳酸糸、ポカプロラクトン、ポリグリコール酸等であり、それ自体の安全性は手術糸等で知られている。人体内における耐用期間は、絹糸は数年、ポリ乳酸糸は約6月、ポリカプロラクトンは1〜2年、ポリグリコールは約2週間と言われている。   The braid for artificial blood vessels of the present invention is a braid for artificial blood vessels in which a biocompatible fiber yarn is made into a braid. When it is a braid, it is easy to form in a cylindrical shape. Biocompatible fiber yarns are silk yarn, polylactic acid yarn, pocaprolactone, polyglycolic acid and the like, and their own safety is known for surgical yarns and the like. The useful life in the human body is said to be several years for silk, about 6 months for polylactic acid, 1 to 2 years for polycaprolactone, and about 2 weeks for polyglycol.

本発明の組紐を構成する組糸単糸の繊度は117〜932dtexの範囲であり、好ましくは117〜700dtex、さらに好ましくは117〜467dtexである。前記の範囲であれば、小口径人工血管に好適な人工血管用組紐とすることができる。   The fineness of the single braid constituting the braid of the present invention is in the range of 117 to 932 dtex, preferably 117 to 700 dtex, and more preferably 117 to 467 dtex. If it is the said range, it can be set as the braid for artificial blood vessels suitable for a small diameter artificial blood vessel.

組打ち数を24打ち以上の組紐とする。好ましくは24〜64打ち、さらに好ましくは32〜64打ちの組紐である。これにより組目密度を高くできる。組紐を構成する組糸の角度が円周方向に対して35〜45°の範囲の所定の角度に整える。好ましい角度は37〜45°である。組糸の角度が前記の範囲であれば歪みがなく、円筒形状に整った組紐ができる。また、組目の数は25/inch以上であり、好ましくは25〜54/inchである。これにより、糸密度と組目密度が高く強度も高く、生体血管と同等の弾力性となる。 The braid number is 24 or more. Preferably 24-64 beating, even more preferably braids beating 32 to 64. Thereby, the stitch density can be increased. The angle of the braid constituting the braid is adjusted to a predetermined angle in the range of 35 to 45 ° with respect to the circumferential direction. A preferred angle is 37-45 °. If the angle of the braid is within the above range, there is no distortion and a braid arranged in a cylindrical shape can be obtained. The number of sets is 25 / inch or more, preferably 25 to 54 / inch. Thereby, the yarn density and the stitch density are high and the strength is high, and the elasticity is equivalent to that of a living blood vessel .

組糸はマルチフィラメント糸でもよいし紡績糸でもよい。マルチフィラメント糸は生糸でもよいし加工糸でもよい。これらの糸は混合して使用することもできる。   The braided yarn may be a multifilament yarn or a spun yarn. The multifilament yarn may be raw yarn or processed yarn. These yarns can also be used as a mixture.

本発明の組紐は中空直径(内径)が1〜6mmであるのが好ましく、より好ましくは2〜5mmである。組紐であるとこのような小口径の人工血管も形成可能である。   The braid of the present invention preferably has a hollow diameter (inner diameter) of 1 to 6 mm, more preferably 2 to 5 mm. Such braided artificial blood vessels can be formed with braids.

組紐は長さが10〜50mmが好ましく、さらに好ましくは10〜40mmである。この範囲であれば生体内に移植するのに都合が良い。   The braid has a length of preferably 10 to 50 mm, more preferably 10 to 40 mm. Within this range, it is convenient for transplanting in vivo.

組紐は肉厚が0.32〜1.20mmが好ましい。この範囲であれば強度も高く、応力がかかっても中空を保て、人工血管として十分な強度を保てる。   The braid preferably has a wall thickness of 0.32 to 1.20 mm. Within this range, the strength is high, and even when stress is applied, the hollow space can be maintained and sufficient strength as an artificial blood vessel can be maintained.

組紐はほつれ防止されていても良い。ほつれ防止は組紐に熱融着性生体適合繊維糸を組み込んでおき、端部を接着又は熱融着することにより行う。組紐が絹糸の場合は、組紐の端部にポリ乳酸糸を縫い込み、接着しても良いし、溶着あるいは溶融してほつれ防止処理するのが好ましい。ポリ乳酸は熱可塑性であり、180〜195℃で溶融する。接着する場合は端部にクロロホルムをつけて溶解させる。ポリ乳酸糸、ポカプロラクトン、ポリグリコール酸の組紐の場合は、それ自体の端部を接着又は溶融してほつれ防止処理できる。ポリ乳酸糸、ポカプロラクトン、ポリグリコール酸等の共重合体を使用し、100℃以下の温度で絹を劣化させずに接着又は熱融着させるのが好ましい。   The braid may be prevented from fraying. Fraying prevention is performed by incorporating a heat-fusible biocompatible fiber yarn into the braid and bonding or heat-sealing the ends. When the braid is a silk thread, a polylactic acid thread may be sewn and bonded to the end of the braid, and fraying prevention treatment is preferably performed by welding or melting. Polylactic acid is thermoplastic and melts at 180-195 ° C. When bonding, add chloroform to the ends and dissolve. In the case of a braid of polylactic acid yarn, pocaprolactone, and polyglycolic acid, a fraying prevention treatment can be performed by bonding or melting the end of itself. It is preferable to use a copolymer such as polylactic acid yarn, pocaprolactone, polyglycolic acid and the like, and bond or heat-seal at a temperature of 100 ° C. or less without deteriorating the silk.

組紐は中空直径3.5mm、長さ10mmの周軸破断強度は1N以上であるのが好ましい。前記の強度であれば実用的に十分である。中空直径3.5mm、長さ10mmの周軸破断伸度(ひずみ)79〜175%であるのが好ましい。前記の伸度であれば、人工血管用組紐として使用できる。   It is preferable that the braid has a hollow diameter of 3.5 mm and a length of 10 mm and has a circumferential breaking strength of 1 N or more. The above strength is practically sufficient. It is preferable that the peripheral axis breaking elongation (strain) is 79 to 175% with a hollow diameter of 3.5 mm and a length of 10 mm. If it is the said elongation, it can be used as a braid for artificial blood vessels.

本発明の組紐は、組糸本数24打ち以上で組み上げた組紐が好ましい。好ましい打ち本数は24〜64である。組み機の打ち本数(組紐を組み上げるときに立てるボビン数)は24,32,40,48,56,64,72,80,88,96が採用できる。打ち本数24で内径1〜3mm、打ち本数32で内径2〜4mm、打ち本数64で直径3〜6mm程度が製造できる。組み紐には丸打ちと角打ちがあるが、丸打ちで組み上げた組紐は中空状となり人工血管用組紐に好適である。   The braid of the present invention is preferably a braid assembled with 24 or more braids. A preferable number of hits is 24 to 64. 24, 32, 40, 48, 56, 64, 72, 80, 88, 96 can be adopted as the number of strikes of the assembling machine (the number of bobbins set up when assembling the braid). The number of strokes 24 can produce an inner diameter of 1 to 3 mm, the number of strokes 32 can produce an inner diameter of 2 to 4 mm, and the number of strokes 64 can produce a diameter of about 3 to 6 mm. The braid includes round punching and square punching, but the braid assembled by round punching is hollow and suitable for a braid for an artificial blood vessel.

製紐機は打ち数により、主として組紐の太さ(内径、外径)を変えることができる。製紐工程で組み上げる際の紐は製紐機の中心部において、下から先端部分が紐の内径に略相当する丸みのある円形または多角形の金属製または木製の棒を垂直方向に上下運動させながら(突き上げ)組み上げることにより、円筒形の組紐を得ることができる。   The string making machine can mainly change the thickness (inner diameter, outer diameter) of the braid depending on the number of hits. When assembling in the string making process, the string is moved vertically in the center of the string making machine by moving a round or polygonal metal or wooden rod with a rounded end whose tip is roughly equivalent to the inner diameter of the string in the vertical direction. However, a cylindrical braid can be obtained by assembling (pushing up).

製紐工程でテンションを低くして引き取った場合は、組目が詰まった被覆性の良い組紐が得られる。テンションを掛けて引き取った場合、組紐が伸ばされ、内径が細くなったり、場合により組み目がずれるので注意が必要である。また単糸繊度が本発明より大きくなると糸が硬くなるため、突き上げ動作でも組目の詰まりが不十分となり空隙部ができやすくなる傾向がある。また、突き上げから引き取りまでの段階でヒーターを設置し、非接触の熱処理を行うことで形状を安定化することもできる。   When the tension is lowered during the string making process, a braid with good coverage and clogged with the stitches is obtained. When it is pulled with tension applied, care must be taken because the braid is stretched, the inner diameter becomes thinner, and the stitches may be displaced in some cases. In addition, when the single yarn fineness is larger than that of the present invention, the yarn becomes hard, so that there is a tendency that the stitches are not sufficiently clogged even in the pushing-up operation and a void portion is easily formed. Further, the shape can be stabilized by installing a heater in a stage from pushing up to taking-out and performing non-contact heat treatment.

人工血管用組紐は、そのままでは人工血管として使用した際に、血液が漏れるため、生体適合性を有する素材でコーティング処理を施すことが好ましい。生体適合性素材としては、絹フィブロインや、ポリL乳酸、ポリカプロラクトン、ポリグリコール酸等の生体吸収性高分子およびこれらの共重合体を原料が考えられ、絹フィブロイン水溶液、ポリL乳酸、ポリカプロラクトン、ポリグリコール酸は酢酸などの有機溶剤に溶解させ、得られた溶液に組紐を浸し、−30℃で凍結乾燥させることで、コーティングできる。またコーティングには、上記の溶液を電解紡糸により、得られるナノファイバーを組紐の上に被覆することも可能である。   When the artificial blood braid is used as it is as an artificial blood vessel as it is, blood leaks. Therefore, it is preferable to perform a coating treatment with a material having biocompatibility. Biocompatible materials include silk fibroin, bio-absorbable polymers such as poly-L lactic acid, polycaprolactone, and polyglycolic acid, and copolymers thereof. Silk fibroin aqueous solution, poly-L lactic acid, polycaprolactone Polyglycolic acid can be coated by dissolving in an organic solvent such as acetic acid, immersing the braid in the resulting solution, and freeze-drying at −30 ° C. For coating, the obtained nanofiber can be coated on the braid by electrospinning the above solution.

以下図面を用いて説明する。図1は本発明の一実施例における人工血管用組紐の側面を光学顕微鏡(倍率10倍)で観察したトレース図面である。組紐1は組糸2,3で組み上げられているが、その表面には開口(空隙)は観察されない。組糸同士の組み目が密に詰まった状態で、隙間は見られない。組糸2,3は円周方法に対して35〜45°の範囲の所定の角度に整えられている。図1右下の角度Θが組み上げ角度である。図2は本発明の一実施例における組紐の模式的斜視図である。この組紐4は全体が円筒状であり、円筒部が組糸5で構成され、両端部がほつれ防止処理部6a,6bである。この状態で人工血管用組紐となる。   This will be described below with reference to the drawings. FIG. 1 is a trace drawing of the side surface of an artificial blood vessel braid in one embodiment of the present invention observed with an optical microscope (magnification 10 times). The braid 1 is assembled with the braids 2 and 3, but no opening (gap) is observed on the surface thereof. No gaps are seen when the stitches of the braids are tightly packed. The braids 2, 3 are arranged at a predetermined angle in the range of 35-45 ° with respect to the circumferential method. The angle Θ in the lower right of FIG. 1 is the assembly angle. FIG. 2 is a schematic perspective view of a braid in one embodiment of the present invention. The braid 4 has a cylindrical shape as a whole, the cylindrical portion is composed of the braided yarn 5, and both ends are fraying prevention processing portions 6a and 6b. In this state, it becomes a braid for artificial blood vessels.

図3Aは本発明の一実施例で使用する丸打ちの組紐の製造装置を示す模式的説明図、図3Bは同ボビンの動きを示す動作図である。この製造装置10は、架台11、およびボビン(キャリア)12と、マンドレル14と、図示しない駆動装置を含んで構成されている。ボビン12が架台11上の軌道19の実線上を回転移動することによりボビン12に巻き付けられた糸13が突き上げ動作をするマンドレル14上で編組され、組紐が作成される。突き上げ部16はボビン12の回転移動と連動して上下に運動する半球状ヘッドとその中心部にある円筒形(または多角形)の円筒部15で構成される。円筒部15の外径は組紐17の内径に略等しい。組紐17は必要な場合は加熱ヒーターに送られ、ヒートセットされる。組紐17は、取出しガイド(プーリー)18を通過して収納容器に振り落としされる。前記において、マンドレル14ストローク長、ストローク回数は適宜設定する。絹糸の組紐に対しては、ヒートセットは必須ではないが、熱可塑性樹脂からなる糸を使用した組紐に対しては、ヒートセットは有効である。   FIG. 3A is a schematic explanatory view showing an apparatus for manufacturing a round braid used in one embodiment of the present invention, and FIG. 3B is an operation diagram showing the movement of the bobbin. The manufacturing apparatus 10 includes a gantry 11, a bobbin (carrier) 12, a mandrel 14, and a driving device (not shown). As the bobbin 12 rotates on the solid line of the track 19 on the gantry 11, the yarn 13 wound around the bobbin 12 is braided on the mandrel 14 that pushes up to create a braid. The push-up portion 16 includes a hemispherical head that moves up and down in conjunction with the rotational movement of the bobbin 12 and a cylindrical (or polygonal) cylindrical portion 15 at the center thereof. The outer diameter of the cylindrical portion 15 is substantially equal to the inner diameter of the braid 17. If necessary, the braid 17 is sent to a heater and heat set. The braid 17 passes through the take-out guide (pulley) 18 and is shaken off by the storage container. In the above, the mandrel 14 stroke length and the number of strokes are set as appropriate. Heat set is not essential for silk braids, but heat set is effective for braids using yarns made of thermoplastic resin.

以下実施例および比較例を用いて本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。以下の実施例および比較例における各種測定は以下のようにして測定した。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely using an Example and a comparative example, this invention is not limited to a following example. Various measurements in the following Examples and Comparative Examples were performed as follows.

<内径、厚み(肉厚)、組目数>
内径:円錐形のテーパーゲージ(測定器:新潟精機製テーパーゲージ710B型(4〜15mm)をテーパー先端が上になるようにして立て、組紐を挿入して軽くのせ、組紐端面部のゲージを読んだ。組目(目/インチ):一辺が1インチのフレームを有する拡大鏡(リネンテスター)を組紐側面に組紐が変形しない程度に軽く接触させ、1インチ(25.4mm)間の組目の数を0.5目まで測った。厚み(肉厚):ノギスを使用して組紐の内側と外側に挟み、厚み(mm)を計測した。データはいずれも3回の平均値とした。
<組紐10mmあたりの重量(g/10mm)>
標準状態(温度20±3℃、相対湿度65±3%)で24時間放置した組紐を、所定の長さに切断した。その重量を測定し、10mmあたりの重さを算出した。
<組糸角度>
組紐の側面を光学顕微鏡観察(倍率10倍)し、円周方向(図1のX方向)に対する組糸の角度を測定した。組糸の角度は計10回測定し、その平均値とした。
<周軸破断強度と周軸破断伸度(ひずみ)>
引張試験機(EZ-graph(SHIMAZU 社製))の上下にL字型の治具を挟み,そこに長さ10mm に切った人工血管を通して,ロードセル100N,引張り速度2mm/min の条件で周軸方向へ引張し、人工血管の破断強度と、変位から周軸破断伸度(%)を算出した。図4A−Bは本発明の一実施例における人工血管用組紐の周軸破断強度及び周軸破断伸度(ひずみ)の測定装置の模式的説明図である。上下のロードセル21,22にそれぞれL字型の治具23,24を固定し、組紐25を取り付ける。図4Aの矢印はシワの無い状態まで引っ張った状態である。この状態から図4Bのように上下のロードセル21,22を引き離し、L字型の治具23,24で組紐25を平行状に引っ張る。これにより周軸破断強度と周軸破断伸度(ひずみ)を測定する。
<被覆性>
組紐の側面を光学顕微鏡観察(倍率10倍)して下記にて判定した。
A 空隙の認められない
B 糸間に空隙が認められる
C 組紐構成糸の配列が乱れており、糸間の空隙も大きい
<弾力性>
組紐を親指と人差し指でつまみ、数回圧縮、回復操作を繰り返し、形状の保持回復性と追随性(なじみ性)から弾力性の有無を評価した
A 適度な回復性となじみ性があり弾力性が良好
B 回復性は低く、やや硬くなじみ性が不十分で弾力性は不足
C 弾力性が不足で潰れてしまう
<Inner diameter, thickness (wall thickness), number of groups>
Inner diameter: Conical taper gauge (Measuring instrument: Niigata Seiki Taper Gauge 710B type (4-15mm) with the tip of the taper facing up, insert the braid and put it lightly, read the gauge on the braid end face Braid (eyes / inch): A magnifying glass (linen tester) having a frame of 1 inch on each side is lightly brought into contact with the side of the braid so that the braid does not deform, and the braid between 1 inch (25.4 mm) The number was measured to 0.5.Thickness (thickness): Using a caliper, it was sandwiched between the inside and outside of the braid, and the thickness (mm) was measured.
<Weight per 10mm braid (g / 10mm)>
A braid that was allowed to stand for 24 hours in a standard state (temperature 20 ± 3 ° C., relative humidity 65 ± 3%) was cut into a predetermined length. The weight was measured and the weight per 10 mm was computed.
<Braid angle>
The side surface of the braid was observed with an optical microscope (magnification 10 times), and the angle of the braid with respect to the circumferential direction (X direction in FIG. 1) was measured. The angle of the braid was measured a total of 10 times and made the average value.
<Circumferential fracture strength and circumferential elongation at break (strain)>
An L-shaped jig is sandwiched between the top and bottom of a tensile tester (EZ-graph (manufactured by SHIMAZU)), through an artificial blood vessel cut to a length of 10 mm, and a peripheral axis under the conditions of a load cell 100N and a tensile speed of 2 mm / min. The tensile strength in the direction of the peripheral axis was calculated from the breaking strength and displacement of the artificial blood vessel. FIGS. 4A and 4B are schematic explanatory diagrams of a measuring device for measuring the peripheral axis breaking strength and the peripheral axis breaking elongation (strain) of the braid for artificial blood vessels in one embodiment of the present invention. L-shaped jigs 23 and 24 are fixed to the upper and lower load cells 21 and 22, respectively, and a braid 25 is attached. The arrow in FIG. 4A shows a state in which the wrinkle is not pulled. From this state, the upper and lower load cells 21 and 22 are pulled apart as shown in FIG. 4B, and the braid 25 is pulled in parallel by the L-shaped jigs 23 and 24. Thus, the circumferential axis breaking strength and the circumferential axis breaking elongation (strain) are measured.
<Coating properties>
The side of the braid was observed with an optical microscope (magnification 10 times) and judged as follows.
A There is no gap B B There is a gap between the yarns C The braid-constituting yarn arrangement is disordered, and the gaps between the yarns are also large.
Hold the braid with your thumb and forefinger, compress it several times, repeat the recovery operation, and evaluate the presence / absence of elasticity based on the shape retention / recovery and followability (familiarity). Good B Recoverability is low, somewhat hard and inadequate, and lacks elasticity C Crushes due to lack of elasticity

(実施例1)
組糸として絹フィラメント糸(繊度23.3decitex)を10本合撚した。合撚は撚り数40/m、撚り方向Sとし、ボビンに巻き上げた。この絹糸を図3に示す組紐の製造装置30を用いて丸打ちの24打ちで内径1.5mmの組紐を製造した。得られた組紐の特性を表1にまとめて示す。
Example 1
Ten silk filament yarns (fineness: 23.3 decitex) were twisted as a braid. The twist was 40 / m and the twist direction was S, and it was wound on a bobbin. A braid having an inner diameter of 1.5 mm was manufactured by round punching 24 times using the braid manufacturing apparatus 30 shown in FIG. The characteristics of the braid obtained are summarized in Table 1.

(実施例2〜10、比較例1〜2)
絹フィラメント糸の繊度、組打ち数、及び内径を表1に示す以外は実施例1と同様に実施した。以上の条件と結果を表1にまとめて示す。
(Examples 2-10, Comparative Examples 1-2)
The same procedure as in Example 1 was performed except that the fineness, the number of braids, and the inner diameter of the silk filament yarn were shown in Table 1. The above conditions and results are summarized in Table 1.

表1から明らかなとおり、実施例1〜10は糸密度が高く強度もあり、血圧で破裂しない強度と、生体の血管と同等の弾力性し、小口径人工血管に好適な人工血管用組紐とすることができた。   As is apparent from Table 1, Examples 1 to 10 have high yarn density and strength, strength that does not rupture with blood pressure, elasticity equivalent to that of living blood vessels, and a braid for artificial blood vessels that is suitable for small-diameter artificial blood vessels. We were able to.

これに対して比較例1、2は、組紐の組角度あるいは組目の数が低かったため、周軸破断強度が好ましくなかった。   On the other hand, in Comparative Examples 1 and 2, since the braid angle or the number of braids was low, the circumferential fracture strength was not preferable.

(実施例11)
実施例9の繊度23.3decitexの絹糸5本に対し、生体吸収性糸としてポリ乳酸(PLLA)、直径0.0075mmを1本引き揃えて、組紐を作製し、端部にクロロホルムを付着させて25℃で、10秒間接着した。これにより、端部1mm未満に縫合針をかけてもほつれず、かつ、弾力性を有する組紐を作製することができた。図5の写真は、この実施例のほつれ防止した人工血管用組紐の端部を針金で強く引っ張ってもほつれず、孔が広がらない状態を示す写真である。図6Aはこの実施例のほつれ防止した人工血管用組紐の端部を示す写真、図6Bはつぶしても元に戻る弾力性があることを示す写真である。
(Example 11)
A single piece of polylactic acid (PLLA) and a diameter of 0.0075 mm as a bioabsorbable yarn is drawn to five silk yarns having a fineness of 23.3 decitex of Example 9 to produce a braid, and chloroform is attached to the ends. Bonding was performed at 25 ° C. for 10 seconds. As a result, it was possible to produce a braid having elasticity without being frayed even when a suture needle was applied to the end portion of less than 1 mm. The photograph of FIG. 5 is a photograph showing a state in which the fraying-prevented braid for artificial blood vessel according to this embodiment does not fray even if it is strongly pulled with a wire and the hole does not expand. FIG. 6A is a photograph showing an end portion of a braid for artificial blood vessels in which fraying is prevented in this embodiment, and FIG.

本発明の人工血管用組紐は、人体、ペット、家畜などの動物の人工血管用材料として好適である。   The braid for artificial blood vessels of the present invention is suitable as a material for artificial blood vessels of animals such as human bodies, pets and livestock.

1,4 人工血管用組紐
2,3,5 組糸
6a,6b 端部ほつれ処理部
30 組紐製造装置
11 架台
12 ボビン
13 糸
14 マンドレル
15 円筒部
16 突き上げ部
17 組紐
18 取出しガイド(プーリー)
19 軌道
θ 組み上げ角度
21,22 ロードセル
23,24 L字型の治具
25 組紐
DESCRIPTION OF SYMBOLS 1,4 Artificial blood vessel braid 2,3,5 Braid 6a, 6b End fray processing part 30 Braid manufacturing apparatus 11 Base 12 Bobbin 13 Thread 14 Mandrel 15 Cylindrical part 16 Raised part 17 Braid 18 Takeout guide (pulley)
19 Track θ Assembly angle 21, 22 Load cell 23, 24 L-shaped jig 25 Braid

Claims (10)

生体適合性繊維糸を組紐に製紐した人工血管用組紐であって、
前記組紐を構成する組糸の単糸繊度が117〜932dtexの範囲であり、
前記組紐は24打ち以上の組紐であり、前記組紐を構成する組糸の角度が円周方向に対して35〜45°の範囲の所定の角度に整っており、1inchあたりの組目の数が25以上であり、全体として円筒形状であることを特徴とする人工血管用組紐。
A braid for artificial blood vessels in which a biocompatible fiber yarn is made into a braid,
The single yarn fineness of the braid constituting the braid is in the range of 117 to 932 dtex,
The braids are braids of 24 or more strikes, and the braids constituting the braids are arranged at a predetermined angle in a range of 35 to 45 ° with respect to the circumferential direction, and the number of stitches per inch A braid for artificial blood vessels, which is 25 or more and has a cylindrical shape as a whole.
前記組紐は中空直径が1〜6mmである請求項1に記載の人工血管用組紐。   The braid for artificial blood vessels according to claim 1, wherein the braid has a hollow diameter of 1 to 6 mm. 前記組紐は長さが10〜50mmである請求項1又は2に記載の人工血管用組紐。   The braid for artificial blood vessels according to claim 1 or 2, wherein the braid has a length of 10 to 50 mm. 前記組紐は肉厚が0.32〜1.20mmである請求項1〜3のいずれか1項に記載の人工血管用組紐。   The braid for artificial blood vessels according to any one of claims 1 to 3, wherein the braid has a thickness of 0.32 to 1.20 mm. 前記生体適合繊維糸は、絹糸、ポリ乳酸糸、ポリカプロラクトン及びポリグリコール酸から選ばれる少なくとも一つである請求項1〜4のいずれか1項に記載の人工血管用組紐。   5. The braid for artificial blood vessels according to claim 1, wherein the biocompatible fiber yarn is at least one selected from silk yarn, polylactic acid yarn, polycaprolactone, and polyglycolic acid. 前記組紐の端部はほつれ防止がされている請求項1〜5のいずれか1項に記載の人工血管用組紐。   The braid for artificial blood vessels according to any one of claims 1 to 5, wherein an end portion of the braid is prevented from fraying. 前記ほつれ防止は、組紐に熱融着性生体適合繊維糸を組み込んでおき、端部を接着又は熱融着して形成されている請求項6に記載の人工血管用組紐。   7. The braid for artificial blood vessels according to claim 6, wherein the fraying prevention is formed by incorporating a heat-fusible biocompatible fiber yarn into the braid and bonding or heat-sealing the ends. 前記組紐は中空直径3.5mm、長さ10mmの周軸破断強度が1N以上である請求項1〜7のいずれか1項に記載の人工血管用組紐。   The braided cord for artificial blood vessels according to any one of claims 1 to 7, wherein the braided cord has a hollow diameter of 3.5 mm and a length of 10 mm, and a peripheral axis breaking strength is 1 N or more. 前記組紐は中空直径3.5mm、長さ10mmの周軸破断伸度(ひずみ)が79〜175%である請求項1〜8のいずれか1項に記載の人工血管用組紐。   The braided cord for artificial blood vessels according to any one of claims 1 to 8, wherein the braided cord has a hollow diameter of 3.5 mm and a length of 10 mm, and has a circumferential fracture elongation (strain) of 79 to 175%. 前記組紐は丸打ちである請求項1〜9のいずれか1項に記載の人工血管用組紐。   The braid for artificial blood vessels according to any one of claims 1 to 9, wherein the braid is round-punched.
JP2015115988A 2015-06-08 2015-06-08 Artificial blood braid Active JP6487783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015115988A JP6487783B2 (en) 2015-06-08 2015-06-08 Artificial blood braid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115988A JP6487783B2 (en) 2015-06-08 2015-06-08 Artificial blood braid

Publications (3)

Publication Number Publication Date
JP2017000321A JP2017000321A (en) 2017-01-05
JP2017000321A5 JP2017000321A5 (en) 2018-07-05
JP6487783B2 true JP6487783B2 (en) 2019-03-20

Family

ID=57750760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115988A Active JP6487783B2 (en) 2015-06-08 2015-06-08 Artificial blood braid

Country Status (1)

Country Link
JP (1) JP6487783B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441215A (en) * 1980-11-17 1984-04-10 Kaster Robert L Vascular graft
JPS5932448A (en) * 1982-08-12 1984-02-21 株式会社クラレ Artificial blood vessel
US5628783A (en) * 1991-04-11 1997-05-13 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system and method
DE19912360A1 (en) * 1999-03-19 2000-09-21 Aesculap Ag & Co Kg Strand-shaped implant made of resorbable polymer material, process for its production and use in surgery
JP5392744B2 (en) * 2008-05-23 2014-01-22 国立大学法人東京農工大学 Artificial blood vessel and manufacturing method thereof
JP5912556B2 (en) * 2012-01-13 2016-04-27 有限会社ナイセム Suture for medical device sewing, its use, and medical device sewn using the suture
WO2013172021A1 (en) * 2012-05-14 2013-11-21 福井経編興業株式会社 Artificial blood vessel and method for producing same
JP6188514B2 (en) * 2013-09-25 2017-08-30 テルモ株式会社 Bellows-like lumen structure

Also Published As

Publication number Publication date
JP2017000321A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5005126B2 (en) Improved multifilament surgical thread
US20070260279A1 (en) Yarns containing thermoplastic elastomer copolymer and polyolefin filaments
EP2687238B1 (en) Bioresorbable suture thread and production method for bioresorbable suture thread
US20110125188A1 (en) Shape-memory self-retaining sutures, methods of manufacture, and methods of use
FR2699066A1 (en) Vascular graft forming prosthesis.
US20040267313A1 (en) High strength multi-component surgical cord
JP2013531533A (en) Suture
EP2501300A2 (en) Braided self-retaining sutures and methods
KR101621759B1 (en) Bending-type barbed suture
AU2009202951A1 (en) Yarns containing thermoplastic elastomer copolymer and polyolefin filaments
JP6852086B2 (en) Suture with a restraining element at one end and its method and use
US10716656B2 (en) Multifilaments with time-dependent characteristics, and medical products made from such multifilaments
JP4581318B2 (en) Biodegradable cylindrical body and biological tissue or organ regeneration device using the same
GB1588031A (en) Isotactic polypropylene surgical sutures
US20220160941A1 (en) High Tenacity Fibers
JP6484117B2 (en) Artificial blood vessel
JP6487783B2 (en) Artificial blood braid
JPH01277567A (en) Prosthetic product
WO2020007186A1 (en) Lifting thread with toothed tube
ES2956815T3 (en) Procedures for manufacturing mesh sutures from poly-4-hydroxybutyrate and its copolymers
JP2021151327A (en) Braid for artificial blood vessel and artificial blood vessel therewith
EP2626454A1 (en) Multifilaments with time-dependent characteristics and medical products made thereof
KR102010489B1 (en) Medical Suture and Producing Method for the Same
JP2023512211A (en) braided surgical implant
RU2601409C2 (en) Suture filament

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190222

R150 Certificate of patent or registration of utility model

Ref document number: 6487783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250