JP4581318B2 - Biodegradable cylindrical body and biological tissue or organ regeneration device using the same - Google Patents

Biodegradable cylindrical body and biological tissue or organ regeneration device using the same Download PDF

Info

Publication number
JP4581318B2
JP4581318B2 JP2002233431A JP2002233431A JP4581318B2 JP 4581318 B2 JP4581318 B2 JP 4581318B2 JP 2002233431 A JP2002233431 A JP 2002233431A JP 2002233431 A JP2002233431 A JP 2002233431A JP 4581318 B2 JP4581318 B2 JP 4581318B2
Authority
JP
Japan
Prior art keywords
cylindrical body
biodegradable
layer
cylindrical
collagen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002233431A
Other languages
Japanese (ja)
Other versions
JP2004073221A (en
Inventor
伸年 土居
秀明 村橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nipro Corp
Original Assignee
Nipro Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nipro Corp filed Critical Nipro Corp
Priority to JP2002233431A priority Critical patent/JP4581318B2/en
Publication of JP2004073221A publication Critical patent/JP2004073221A/en
Application granted granted Critical
Publication of JP4581318B2 publication Critical patent/JP4581318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、生体組織または器官の再生に用いられる生分解性筒状体に関する。
さらに詳細には、病変、損傷のために切断したヒト組織または器官、例えば神経繊維、微細血管などを再生するために、強度を向上させた生分解性筒状体およびそれを用いた再生用器具に関する。
【0002】
【従来の技術】
事故や災害あるいは疾患により、ヒトの神経、腱などの組織または器官が損傷し、自己の回復力により損傷部を治癒できない場合には、知覚、感覚、運動能力等に障害が発生する。このような患者に対して、近年、顕微鏡下で損傷部位を接続する技術の発展に伴い、切断された部位を接続する外科縫合手術や、自己の神経、腱などを他の部位から採取し、移植することにより、失われた機能を回復する自己の神経移植などの治療が効果をあげている。
【0003】
しかしながら、欠損した領域が大きすぎる場合は上記接続による修復は不可能であり、ある程度の障害が発生してもその損傷部分の障害よりも重要度が低いと思われる他の部分から神経を採取し、損傷部位へ移植することが必要であった。このような場合、最初に発生した部位の障害よりも重要度が低いとはいえ、損傷を受けていない健常な他の部分の神経を採取するので、その部位には知覚、感覚、運動能力などの障害を発生させることになる。
自己神経移植の一例として、まず腓腹神経を採取し、損傷部分に該神経の移植が行なわれるが、通常、足首から足の甲部分の皮膚感覚等が消失するという問題があった。そこで、他の部分(足首など)に支障を来すことなく、損傷部分の修復が可能な治療方法が切望されていた。
【0004】
自己神経移植の弊害を克服するために、損傷部位の再生を人工器具によって補助し、もとの機能を回復しようする種々の研究がなされている。例えば、ヒト体内に吸収されない非吸収性材料(珪素化合物、フッ素化合物および各種合成ポリマー)で作られた筒状体(被覆材ともいう)で神経の断裂部分を覆い、筒状体内部で切断された神経から新しい神経細胞が成長、増殖し、この切断された神経が再度接合することを期待したものがある(Ducker et al.,Journal of Neurosurgery,28,582〜587(1968);Midgler et al.,Surgical Forum,19,519〜528(1968);Lundborg et al.,Journal of Neuropathology in Experimental Neurology,41,412〜422(1982);Molander et al.,Muscle & Nerve,5,54〜58(1982);Uzman et al.,Journal of Neuroscience Research,9,325〜338(1983);Nyilas et al.,Transactions American Society of Artificial Internal Organs,29,307〜313(1983);USP 4,534,349等)。
また、これらの植え込まれた筒状体は人工的に合成されたものであるから、永久に体内に異物が存在することとなり、好ましくないため、該筒状体を生体吸収性材料に置き換えた例も存在している(Suzuki et al.,Artificial Organs,27(2),490〜494(1998))。
【0005】
ただし、これらの実験では、切断された神経の両端部から若干の細胞増殖は見られるが、切断した神経が再度接合して回復するには至っていない。これは、細胞が増殖する場合、一般的に筒状体の足場に付着し、そこから切断部分を埋める方向に増殖して行くが、切断部分を覆うのみでは切断端の間に空隙があり、その部分を全て埋め尽くす前に細胞の増殖が止まってしまうためである。このような問題を解決するために、生体吸収性材料の筒状体内部にある空隙にコラーゲンの繊維束を挿入し、フィブロネクチン(FN)でコーティングする技術が記載されている(特開平5−237139号公報、人工臓器22(2),359-363,1993)。
【0006】
また、より効率よく細胞を増殖させるために、筒状体内に細胞の成長因子を封入したものも報告されており(USP 4,963,146)、筒状体の内腔表面にフィブリノーゲン、フィブロネクチンなどをコーティングしたもの(Non-toxic Nerve Guide Tubes Support Neovasculer Growth in Transfected Rat Opic Nerve,R.Madison et al., Experimental Neurology,86(3):448-461,1984)、さらに内腔に充填した繊維にラミニンをコーティングしたもの(特開平5-237139号公報、人工臓器22(2),359-363,1993)などが知られている。
【0007】
このような生体組織または器官再生用器具に用いられる生体分解性筒状体の作製において、血管等の再生用器具として用いられる約10mm以上の内径を有する筒状体であれば、生分解性材料からなるシート、不織布または織布等を円筒鋳型に巻き付けて筒状体を形成し、その後鋳型を抜き取ることによって、作製することが出来る。しかし、神経等の再生用器具として用いられる内径が細い(約10mm未満、特に約2mm未満)の筒状体を作製する場合は、シート、不織布または織布等を芯棒に巻き付けることが難しく、巻き付けが出来たとしても作製された筒状体は内径が不均一になるといった問題があった。また、織る編むといった方法で筒状体を作成することも可能であるが、糸状物を密に巻きつけることができず、内径を均一にすることが困難であった。
【0008】
これらの問題を解決する方法として、生分解性糸状物を接着剤に浸し、回転する円筒鋳型に巻き取ることによって、コイル化された糸状物の多層積層物を作製し、硬化させて筒状体を形成し、最後に円筒鋳型を抜き取る方法(巻き取り生産法)が、特表平6−504930号公報に記載されている。この巻き取り生産法では、細い内径の筒状体であっても、ほぼ均一な内径を有する製品が得られる。しかしながら、従来の巻き取り生産法で作製された筒状体は、移植手術中の保持や縫合で折れや割れが生じる問題があった。
巻き取り生産法で、作製された筒状体の外周には巻き付けられた糸状物の隙間に応じたコイル状の成形線(図5に成形線12を図示)が生じる。この成形線部分は架橋構造等の強固な結合を有していないため物理的強度が弱い。また、従来の筒状体は、密度を上げるために、糸状物をほとんど間隔を開けず、円筒鋳型に均一に巻き付けている。従って、図5に示すように従来の筒状体では成形線は略一定方向に並んでおり、移植手術中の保持や縫合による外力は、構造的に成形線部分に集中しやすい。以上のことから、この成形線に沿って筒状体が折れてしまったり、ひび割れが生じたりすることが問題となっていた。
【0009】
【発明が解決しようとする課題】
本発明は、従来の生体組織または器官再生用器具に用いられる生体分解性筒状体に代えて、移植手術中の保持や縫合に十分耐え得る強度を有し、かつ、生体内での分解・吸収性に優れ、筒状体の内部に神経または血管などが容易に挿入され、細胞が効率よく、三次元的に増殖していくことが可能である生分解性筒状体およびそれを用いた生体組織または器官再生用器具を提供する。
【0010】
【課題を解決するための手段】
本発明者らは、上記情況に鑑み、鋭意検討したところ、生体組織または器官再生用器具の基材として、多層構造を有する筒状体であり、各層が生分解性糸状物のコイルで形成され、該コイルの巻き密度が互いに異なることを特徴とする筒状体を用いることによって、細い内径の筒状体であっても、生体内への移植手術中の保護や縫合の際に割れたり、折れたりすることがなく、強度が向上した生分解性筒状体が得られることを見出した。これらの知見に基づき、さらに種々検討した結果、該筒状体は、従来の生分解性筒状体と比べても生体組織または器官の再生速度および生分解性に悪影響を与えることなく、しかも強度のみが格段に向上することを見つけ、本発明を完成した。
【0011】
すなわち、本発明は、
(1)多層構造を有する筒状体であり、各層が生分解性糸状物のコイルで形成され、該コイルの巻き密度が互いに異なることを特徴とする筒状体、
(2)コイルの巻き密度が10コイル/cm以上である層およびコイルの巻き密度が10コイル/cm未満である層を有する、上記(1)記載の筒状体、
(3)コイルの巻き密度が30コイル/cm以上である層およびコイルの巻き密度が10コイル/cm未満である層を有する、上記(1)記載の筒状体、
(4)コイルの巻き密度が10コイル/cm以上であるコイル化された糸状物の層を最内層に有し、コイルの巻き密度が10コイル/cm未満である層を最外層に有する、上記(1)記載の筒状体、
(5)円筒状または角筒状である、上記(1)記載の筒状体、
(6)生分解性糸状物の直径が約5〜1000μmであり、筒状体の形状が円筒状で内径が約0.05〜10mm、外径が約0.1〜12mmである、上記(1)記載の筒状体、
(7)生分解性糸状物の直径が約20〜200μmであり、筒状体の形状が円筒状で内径が約0.05〜2mm、外径が約0.1〜3mmである、上記(1)記載の筒状体、
(8)生分解性糸状物が、タンパク質もしくはその誘導体、多糖類もしくはその誘導体、ポリグリコール酸、グリコール酸と乳酸との共重合体、乳酸とε−アミノカプロン酸との共重合体、またはラクチド重合体から形成される、上記(1)記載の筒状体、
(9)タンパク質が、コラーゲンである、上記(8)記載の筒状体、
(10)生分解性糸状物を、回転する筒状鋳型に多層になるように巻き付け、かつ、各層の糸状物の巻き密度が異なるように巻き取り、成形処理した後に、該鋳型を抜き取ることを特徴とする筒状体の製造方法、及び
(11)請求項1記載の筒状体を含むことを特徴とする、生体組織または器官再生用器具
に関する。
【0012】
本発明において筒状体は、外部に貫通する内腔を有する構造体であり、たとえば円筒状、角筒状、円錐台状、角錐台状などの形状を有するものである。このうち円筒状が好ましい。糸状物が筒状鋳型に巻き取られて筒状体は形成されるため、筒状体の横断面は、通常、凹みのない形状を有する。凹みのない形状とは、その輪郭のどの部分をとっても、隣接する輪郭上の点の両側を結んだ直線より中心方向に落ち込んでいないような形状を意味する。例えば、円形、楕円形、卵形、扇形、弓形、ゼムクリップ形、または多角形(三角形、四角形、五角形、六角形、七角形、八角形など)などが挙げられる。このうち、好ましくは円形である。
また、本発明の筒状体は、好ましくは、内径約0.05〜10mm、外径約0.1〜12mmであり、さらに好ましくは、内径約0.05〜2mm、外径約0.1〜3mmである。筒状体の全長は、通常、約5〜300mmである。
本発明において多層構造を有する筒状体とは、筒を構成する素材が2層以上に積層された構造を有する筒状体を意味する。
【0013】
本発明において生分解性糸状物は、生体内の分解酵素、酸またはアルカリにより分解される生分解性材料から形成される。生分解性材料としては、例えば、コラーゲン、ゼラチンなどのタンパク質もしくはその誘導体、多糖類もしくはその誘導体、ポリ乳酸、ポリグリコール酸、グリコール酸と乳酸との共重合体、乳酸とε−アミノカプロン酸との共重合体、またはラクチド重合体などの脂肪酸ポリエステル(特許2935750号公報に記載)が挙げられる。
本発明に使用されるコラーゲンとしては、その由来は特に限定されないが、一般的には、牛、豚、鳥類、魚類、霊長類、兎、羊、鼠、ヒトなどがあげられる。また、コラーゲンはこれらの皮膚、腱、骨、軟骨、臓器などから公知の各種抽出方法により得られるものであるが、これらの特定の部位に限定されるものではない。さらに、本発明に利用されるコラーゲンのタイプについては、特定の分類可能な型に限定されるものではないが、取扱上の観点から、I、III、IV型が好適である。
糸状物とは、一般的な糸のように、細長く柔軟性を有するものを意味する。糸状物の外径は、特に限定されるものではないが、通常、約5μm〜1000μmが好適であり、約20〜200μmが最適である。
生分解性糸状物としては、例えば、湿式防止法を用いて、生分解性材料の溶液から固化・乾燥工程を経て作製された繊維等が挙げられる。
【0014】
本発明において、コイルとは、一般的にコイルあるいはスプリングと呼ばれる形状の構造体である。通常、コイルは、円筒状のもの(図7)であるが、本発明におけるコイルは、この円筒状のものに限られず、楕円筒状或いは角筒状(角筒状のコイルの一例を図8に示す)等の形状であってもよい。
コイルの巻き密度とは、生分解性糸状物からなるコイルの軸方向の長さあたりの糸状物の巻き数を意味する。本明細書では、コイルの軸方向の長さ1cmあたり、糸状物が10回巻かれている場合の巻き密度を10コイル/cmと表現する。
コイルの巻き密度が互いに異なるとは、少なくとも互いに接する2層のコイルの巻き密度が異なっていれば良い。例えば、6層からなるコイルの場合、最内層(第1層)から第4層までの層は全ての巻き密度が同じであってもよく、第4層と第5層とは巻き密度が異なり、第5層から最外層までの層は全て巻き密度が同じであってもよく、6層の巻き密度が全て異なっていてもよい。最も内側の層の巻き密度は、最も外側の層の巻き密度よりも高いことが好ましい。さらに好ましくは、最も内側の層の巻き密度は、10コイル/cm以上であり、最も外側の層の巻き密度は、10コイル/cm未満である。最も好ましくは、最も内側の層の巻き密度は、30コイル/cm以上であり、最も外側の層の巻き密度は、10コイル/cm未満である。
【0015】
本発明において、生体組織または器官とは、生体の体液(血液、髄液、リンパ液など)もしくはその成分(赤血球、白血球、血小板、血漿、血清など)や、生体内の組織(血管、角膜、半月板、脳組織、皮膚、皮下組織、上皮組織、骨組織、筋組織など)、臓器(眼、肺、腎臓、心臓、肝臓、膵臓、脾臓、小腸を含む消化管、膀胱、卵巣および精巣など)、およびそれらの各種細胞(造血幹細胞、骨髄細胞、肝細胞、膵細胞、脳細胞、神経細胞、卵細胞、受精卵、胚性幹細胞など)等である。本発明に用いられる生体組織としては、特に、神経細胞が好ましい。
【0016】
本発明の生体組織または器官再生用器具は、病変または傷害によって、切断、損傷または欠損した上記生体組織または器官を再生させるために使用される器具であり、筒状体(A)を含むものである。すなわち、本発明の生体組織または器官再生用器具は、筒状体(A)のみからなるものであってもよく、また筒状体(A)と他の生分解性基材からなるものであってもよい。
本発明の生体組織または器官再生用器具の具体的な一例として、筒状体(A)と、該筒状体(A)の内腔に設けられた生体組織または器官再生の補助手段としての微細なマトリックス(B)および/または生体組織または器官の再生を誘導する直線状の経路(C)からなるものが挙げられる。
微細なマトリックス(B)としては、例えば、生分解性材料からなる多孔質層、短繊維、綿状体、不織布などが挙げられ、好ましくは、コラーゲンスポンジ層である。また、微細なマトリックス(B)は、必要に応じて生分解性材料、成長因子等を含んでいてもよい。微細なマトリックス(B)がコラーゲンスポンジ層である場合、スポンジ層の空隙率は、通常、約70〜99.9%であり、好ましくは80〜99%である。
【0017】
生体組織または器官の再生を誘導する直線状の経路(C)は、例えば、筒状体(A)の内腔に挿入された、多数の長繊維、糸状体、織布、編物などで構成されるか、あるいは、同様に筒状体(A)の内腔に挿入され、筒状体を長軸方向に貫通する多数の中空体(例えば、中空糸など)で構成される。また、別の方法として、スポンジ状のマトリックス(B)の成形前にマトリックス(B)を貫通する多数の中空体を挿入しておいて、成形後に該中空体を取り除くことによって直線状の経路(C)を形成してもよい。直線状の経路(C)が、コラーゲン繊維から形成される場合、コラーゲン繊維の直径は、好ましくは約5μm〜1mmであり、さらに好ましくは20〜200μmである。また、コラーゲン繊維の占める全容積は、筒状体の内腔の容積に対して、好ましくは5〜70%であり、さらに好ましくは10〜60%である。 直線状の経路(C)が、多数の中空体から形成される場合、中空体の内径は約5μm〜1mmであることが好ましい。
【0018】
本発明の生体組織または器官再生器具において、微細なマトリックス(B)は、その内部で再生する生体組織または器官の細胞に対して適切な密度と足場を与え、組織または器官の再生を促進する。
また、直線状の経路(C)は、再生する細胞に成長する方向性をあたえて、目的とする組織または器官まで接合する時間を短縮することができる。
【0019】
次に、本発明の筒状体は自体公知の方法または下記製造方法により製造される。生分解性糸状物を、例えば該糸状物を送り出す機構である糸分配器などを用いて、回転する筒状鋳型に多層になるように巻き付け、かつ、各層の糸状物の巻き密度が異なるように巻き取り、成形処理した後に、該鋳型を抜き取ることにより筒状体が製造される。糸分配器は、生分解性糸状物を送り出すための機構であり、例えば円筒状もしくは角筒状などの鋳型の回転軸方向に一定速度で移動しながら糸状物を送り出す機能を有することが好ましい(図9に糸分配器41の一例を示す)。
【0020】
糸状物に対する成形処理とは、鋳型に巻き付けられた糸状物がそのままの形状を維持するための処理工程である。成形処理としては、鋳型に巻き取られた糸状物同士を接着剤で接着し形状を維持させる方法と、糸状物の物理化学的性質を変化させる方法がある。
前者の方法としては、例えば、デンプン、にかわ、フィブリン、ゼラチン、コラーゲン、キチン、キトサン等の天然物接着剤や、ポリアミド、ポリエステルなどの合成接着剤で、糸状物同士を接着する処理方法が挙げられる。具体的な操作としては、通常、溶液状の接着剤を鋳型に巻き付けられた糸状物に含浸させ、乾燥を行う。合成接着剤としては、生分解性および生体吸収性を有する脂肪族ポリエステル(例:ポリ乳酸)等の接着剤が好ましい。また、糸状物が溶解性の高い材料(例:コラーゲン、ゼラチン)からなる場合には、生分解性材料の溶液(例:コラーゲン水溶液)や単なる溶媒(水など)を鋳型に巻き取られた糸状物に含浸させることによって、糸状物が再溶解して糸状物同士が相溶化し、その後乾燥することによって、成形処理を行うことができる。さらに、あらかじめ生分解性材料の溶液や溶媒に濡らした糸状物を鋳型に巻き付けて、乾燥を行っても同様の成形処理が可能である。
後者の方法としては、架橋剤を用いたり、紫外線、電子線、放射線の照射や加熱によって、架橋処理を施し、糸状物の分子間で化学結合を形成させ、3次元網目構造を有する硬化した糸状物を形成させる方法が挙げられる。
また、これら2種類以上の成形処理を同じ糸状物に施してもよい。特に、糸状物の巻き密度が10コイル/cm未満のコラーゲン製糸状物に対しては、架橋処理と、コラーゲン溶液を含浸後、乾燥する処理の両方を施すことが好ましい。
加熱による架橋処理(熱架橋処理)を施す場合は、通常、約40〜300℃で約0.5〜50時間の処理が行われる。
【0021】
本発明において糸状物の巻き密度とは、筒状鋳型の軸方向の長さあたりの糸状物の巻き数を意味する。
本発明の製造方法において、糸状物の巻き密度が10コイル/cm以上であるように糸状物を巻き付ける工程、および糸状物の巻き密度が10コイル/cm未満となるように糸状物を巻き付ける工程を含んでいることが好ましい。さらに、糸状物の巻き密度が10コイル/cm以上となるように糸状物を巻き付ける工程は、本発明の製造方法の生分解性糸状物を筒状鋳型に巻き付ける工程のうち最初の段階で行われ、かつ、糸状物の巻き密度が10コイル/cm未満となるように糸状物を巻き取る工程は、本発明の製造方法の生分解性糸状物を筒状鋳型に巻き付ける工程のうち最終段階で行われることが好ましい。また、糸状物の巻き密度が10コイル/cm未満となるように糸状物を巻き付けた後に架橋処理を施すことがより好ましい。
【0022】
本発明の具体的な製造方法の1例を挙げると、まず、糸分配器の移動速度を調節して、糸状物の巻き密度が50コイル/cmとなるように生分解性糸状物を回転する円筒鋳型に巻き付け、円筒鋳型の軸方向に1往復半の巻き付けを行い、3層の生分解性糸状物からなるコイルを得る。その各層の糸状物間に生分解性材料の溶液を含浸させた後、糸分配器の移動速度を上げて、糸状物の巻き密度が5コイル/cmとなるように調節し、さらに糸状物を巻き付け(図2参照)、円筒鋳型の軸方向に2往復の巻き付けを行う。得られた生分解性糸状物からなるコイルに熱架橋処理を施し、糸状物間に生分解性材料の溶液を含浸させ、さらに熱架橋処理を施す。
このように、最外層の巻き密度と最内層の巻き密度が異なるように糸状物を巻き付け、さらに、巻き付け後に最外層の糸構造が残り易いよう熱架橋処理を施すことによって、物理的強度が大幅に向上する。
【0023】
これに対して、従来の製造方法の1例を挙げると、まず、糸状物の巻き密度が50コイル/cmとなるように糸分配器の移動速度を調節して、生分解性糸状物を回転する円筒鋳型に巻き付け(図6参照)、円筒鋳型の軸方向に2往復の巻き付けを行って、4層の生分解性糸状物からなるコイルを得る。そのコイルの糸状物間に生分解性材料の溶液を含浸させた後、熱架橋処理を施すといった方法で筒状体を製造していた。
このような手順のみでは、最外層の糸状物の巻き密度に変化をつける工夫がされていないため、糸巻き時の成形線(糸状物どうしの接着部の痕跡)が形成され、この部分での割れや折れが生じ易かった。
【0024】
本発明の生体組織または器官再生用器具は、生体組織または器官の再生、移植、および置換において数多くの用途がある。具体的な処置としては、生体内で損傷した組織または器官と本発明の再生用器具とを縫合し、そのまま生体内に放置する。その後、生体内では、縫合した再生用器具を足場として組織または器官の再生が促進され、同時に生分解性材料からなる再生用器具は徐々に分解吸収され、最終的には消失する。縫合に用いる手段は、処置を施す生体組織または器官の種類、形状その他の条件に応じて、個々に最適な方法を用いることができる。縫合に用いられる縫合糸は、通常の生体用縫合糸であれば特に限定されないが、生分解性または生体吸収性の縫合糸を用いることが好ましい。
【0025】
切断された神経を再生する場合には、本発明の筒状体を含む神経再生用器具を、切断された神経の中枢側末端および末梢側末端に縫合する。具体的には、本発明の筒状体を含む神経再生器具を、予め神経欠損部の欠損長と同じ長さに切断し、γ線照射等の滅菌処理を施した後に欠損部位に挿入し、その両端を神経の切断端(中枢側および末梢側)にポリアミド系縫合糸(太さ10−0)等の生体用縫合糸により複数箇所縫合し固定する。これによって、筒状体内腔に設けられた再生を誘導する直線状の経路に沿って、神経の再生が見られる。神経再生用器具が筒状体のみからなる場合であっても、筒状体内腔が再生を誘導する直線状の経路となり、神経は内腔に沿って再生する。
【0026】
【発明の実施の形態】
次に、本発明の具体例を図面に基づいて説明する。
図1は、本発明の実施例1の図面に代わる写真である。図2は、本発明の製造途中の状態を示す説明図である。図3は、本発明の実施例1の全体構造の説明図である。図4は、従来の生分解性筒状体の図面に代わる写真である。図5は、従来の生分解性筒状体の説明図である。図6は、従来の生分解性筒状体の製造途中の状態を示す説明図である。図7および図8は、コイル化された糸状物の形状を示す図である。図9は、本発明の製造方法の一例の説明図である。
【0027】
本発明の1具体例を示す図2の筒状体は、図5の従来の筒状体の外層にさらに糸状物11を巻き付けている状態を示している。図2において、糸状物11は、筒状体1の最外層に、糸状物の巻き密度が約3コイル/cm(10コイル/cm未満)であるように巻き付けられている。12は、糸状物の巻き密度が約22コイル/cm(10コイル/cm以上)であるように巻き付けられた糸状物からなる筒状体の成形線(糸状物の接着部の痕跡)を示す。本発明のこのような最外層の巻き付け方法により、外部から応力が掛かった場合にも、糸状物11が成形線12での折れや割れを防ぎ、破損が生じない。
図3において、1は筒状体、2はコラーゲン繊維、3はコラーゲンスポンジ層を示す。本発明の生体組織または器官再生用器具は、このような構造からなるものであり、本発明はこの生体分解性筒状体1の強度向上を図ることにより、生体組織または器官再生用器具全体の強度向上を達成している。
図6は回転している筒状鋳型4に始点110から図の左方向へ糸状物を巻き付けていき、ほぼ片道の巻き付けが終了した状態を示している。この後さらに反対方向への巻き付けが行われ、所望の往復回数の巻き付けによって糸状物が積層されていく。その後、糸状物同士を接着剤で接着したり、糸状物の物理化学的性質を変化させたりすることによって、糸状物は成形処理され、筒状鋳型4が取り除かれることによって、図5に示す従来の生分解性筒状体が形成される。該形成物には、最外層に巻き付けられた糸状物間の隙間が接着剤等で埋められていても、その隙間の痕跡として成形線12が見受けられる。この部分は外部からの応力を直接受けやすく、強度も弱いため、割れや折れが生じやすいウィークポイントとなっていた。
図9において、糸分配器41が筒状鋳型4の軸方向に往復移動しながら、糸状物11を送り出し、回転している筒状鋳型4に糸状物11が調整された巻き密度で巻き付けられ、多層構造を有する筒状体が形成されていく。
【0028】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
【0029】
(実施例1) 縫合強度を有する神経再生器具の作製
まず、酵素可溶化コラーゲンを水に溶解して5%水溶液を作製し、常法に準じて凝固浴中に押出すことにより、直径約160μmのコラーゲン繊維を作製した。
次に、得られたコラーゲン繊維を直径1mmのポリフッ化エチレン系繊維製の円筒鋳型に巻き付けた。この時、円筒鋳型を約560rpmで回転させ、糸分配器を円筒鋳型の回転軸方向に約2mm/秒で往復移動させながら、繊維の巻き密度が約46.7コイル/cmとなるように巻き付けを行い、最終的にコラーゲン繊維を7往復巻き付けた。乾燥後1%コラーゲン水溶液を含浸させ、続いて5%コラーゲン水溶液を含浸させて、円筒鋳型に巻きつけた糸状物を溶解しながら5%コラーゲン水溶液を塗布した。このようにコラーゲン繊維を巻付けた後コラーゲン水溶液を含浸させることによって層を積層して、コラーゲン製の筒状体を形成させた。さらに、この筒状体の最外層にコラーゲン繊維を巻き付けた。この時、筒状体を約560rpmで回転させ、糸分配器を円筒鋳型の回転軸方向に約25mm/秒で往復移動させながら、繊維の巻き密度が約3.7コイル/cmとなるように巻き付けを行い、最終的にコラーゲン繊維を47往復巻き付けた。巻き付け後に作製された筒状体に対して、熱架橋処理を行った。次に、熱架橋された筒状体にコラーゲン水溶液を含浸させ、再び熱架橋処理を行った。管状体を乾燥させた後、熱架橋を行い、内径1mm、外径1.4mm、長さ5cmのコラーゲン製の筒状体を作製した。その内腔にコラーゲン繊維を5%コラーゲン溶液とともに同時に挿入し、急速冷凍した後に真空凍結乾燥を行った。内腔部分がコラーゲン繊維と各繊維の周囲を覆うコラーゲン製スポンジ層からなる構造を持つ、全体がコラーゲンから成る神経再生器具を作製した(図3参照。図3において、1は筒状体、2はコラーゲン繊維、3はコラーゲンスポンジ層を示す。)。
【0030】
(比較例1)従来の神経再生器具の作製
まず、酵素可溶化コラーゲンを水に溶解して5%水溶液を作製し、常法に準じて凝固浴中に押出すことにより、直径160μmのコラーゲン繊維を作製した。
次に、得られたコラーゲン繊維を直径1mmのポリフッ化エチレン系繊維製の円筒鋳型に巻き付けた。この時、円筒鋳型を約560rpmで回転させ、糸分配器を円筒鋳型の回転軸方向に約2mm/秒で往復移動させながら、繊維の巻き密度が約46.7コイル/cmとなるように巻き付けを行い、最終的にコラーゲン繊維を7往復巻き付けた。乾燥後1%コラーゲン水溶液を含浸させ、続いて5%コラーゲン水溶液を含浸させて、心棒に巻きつけた糸を溶解しながら5%コラーゲン水溶液を塗布した。このようにコラーゲン線維を巻付けた後コラーゲン水溶液を含浸させた層を積層して、コラーゲン製の筒状体を形成させた。筒状体には熱架橋処理を行った後、水にて炭酸水素ナトリウム水溶液を洗浄した。筒状体を乾燥させた後、さらに熱架橋処理を行い、内径1mm、外径1.4mm、長さ5cmのコラーゲン製の筒状体を作製した。その内腔にコラーゲン繊維を5%コラーゲン溶液とともに同時に挿入し、急速冷凍した後に真空凍結乾燥を行って、内腔部分におけるコラーゲン繊維の充填率10%であり、各繊維の周囲を空孔率95%のコラーゲン製スポンジ層が覆う構造を持つ、全体がコラーゲンから成る神経再生器具を作製した。
【0031】
(実験例1)組織再生実験における強度確認
実施例1で作製した神経再生器具を用いて犬の組織再生実験を実施した。再生する組織としては犬末梢神経を選択した。
犬腓骨神経を切断して30mmの欠損部位を作製した。この部位に予め欠損長と同じ30mmに切断し、25kGyのγ線滅菌処理を行った、前記神経再生器具を挿入し、その両端を神経の切断端に10−0ポリアミド系縫合糸により複数箇所縫合固定した。また、対照群として別の犬群に対し、腓骨神経部分に同じく30mmの欠損を作製し、そのまま創傷部位を上記縫合糸にて縫合した。
その結果、犬腓骨神経の神経切断部分に、上記神経再生器具を埋植する際の、指で曲げるピンセットで摘む、神経と縫合するなどの操作に対して、チューブが割れたり、損傷したりすることは無かった。
【0032】
(実験例2)浸潤時における強度確認
実施例1および比較例1において作製したチューブを、水に浸漬した際、チューブの破損の有無を目視で確認した。実施例1において作製したチューブは、水に浸漬した際チューブの割れ、破損は認められなかった(10例中0例)。しかし、比較例1にて作製したチューブは水に浸漬すると10例中3例のチューブで割れや破損が認められた。
【0033】
(実験例3)引っ張り強度試験
まず、ポリプロピレン製の糸(商品名:Prolene、太さ4-0、Ethicon社製)を縫合針を用いて、実施例1および比較例1において作成したチューブの両端から約3mmの位置に貫通させ、チューブの内腔側の糸を外側に出して、チューブの外側の糸と結び輪をつくり、チューブを両端から引っ張ることができるようにした。このようにして作成した試験用チューブを用いて、引っ張り強度試験器(製品名:オートグラフ AG-500D、島津製作所製)で引っ張り強度を測定した。
その結果、比較例1(3例)の引っ張り強度の平均値は0.2Nであり、実施例1(3例)の引っ張り強度の平均値は0.31Nであった。したがって、本発明の再生用器具は従来のものと比べて明らかに強度が向上したことが分かる。実施例1および比較例1のすべてにおいて、糸の貫通部から破断が発生したことから、本実験によって特に縫合時の破断強度が向上したことが証明された。
【0034】
【発明の効果】
本発明の筒状体は、糸状物の巻き密度が異なる層を有し、筒状体にかかる外部からの応力が分散されるため、筒状体が折れたり割れたりすることがなく、従って、該筒状体を用いた生体組織または器官再生用器具の強度が向上する。また、再生用器具の強度が従来より向上することにより、移植手術中の保持や縫合の際に再生用器具が折れたり割れたりすることがなくなり、手術時間の延長や再手術の可能性が低下し、患者の負担が大幅に減少される。また、再生用器具が手術後に体内で破損し、組織または器官の再生が不適切な方向に進行してしまう危険性を回避することができる。
しかも、本発明の筒状体は、十分な強度を有するだけでなく、軸方向の各々の箇所で内径のバラツキがほとんどない、高い精度の筒状体である。このため、特に神経の再生等の緻密なコントロールを必要とする再生医療において、有用な再生用器具が提供される。
特に、内外径の小さい筒状体を作製する場合、生分解性材料からなるシート、不織布または織布等を筒状鋳型に巻き付けて作製することは難しく、生分解性糸状物を筒状鋳型に巻き付ける本発明の方法により筒状体が容易に作製される。このため、本発明の製造方法は径の小さい筒状体を作製する場合において非常に有用である。しかし、太い径の筒状体においても、生分解性糸状物のコイルで形成されることによって、不織布等を鋳型に巻き付けて形成される場合と比べて、精度の高い器具が得られる。また、本発明の筒状体は径の太さに関わらず、優れた強度を示す。
【図面の簡単な説明】
【図1】本発明の実施例1の図面に代わる写真である。
【図2】本発明の製造途中の状態を示す説明図である。
【図3】本発明の実施例1の説明図である。
【図4】従来の生分解性筒状体の図面に代わる写真である。
【図5】従来の生分解性筒状体の説明図である。
【図6】従来の生分解性筒状体の製造途中の状態を示す説明図である。
【図7】本発明におけるコイルの一例を示す斜視図である。
【図8】本発明におけるコイルの別の例を示す斜視図である。
【図9】本発明の製造方法の一例の説明図である。
【符号の説明】
1 筒状体
11 生分解性糸状物
12 成形線
2 コラーゲン繊維
3 コラーゲンスポンジ層
4 筒状鋳型
41 糸分配器
[0001]
[Technical field to which the invention belongs]
The present invention relates to a biodegradable cylindrical body used for regeneration of a living tissue or organ.
More specifically, a biodegradable tubular body with improved strength for regenerating human tissues or organs cut for lesions or damage, such as nerve fibers, microvessels, etc., and a regenerating instrument using the same About.
[0002]
[Prior art]
When a human nerve or tendon or other tissue or organ is damaged by an accident, disaster, or disease, and the damaged part cannot be cured by its own resilience, a disorder occurs in perception, sensation, motor ability, and the like. In recent years, with the development of technology for connecting damaged sites under a microscope for these patients, surgical sutures that connect the cut sites, self nerves, tendons, etc. are collected from other sites, Treatment such as autologous nerve transplantation that restores lost function by transplantation is effective.
[0003]
However, if the missing area is too large, repair by the above connection is impossible, and even if a certain degree of failure occurs, nerves are taken from other parts that seem to be less important than the damaged part. It was necessary to transplant to the site of injury. In such a case, although it is less important than the injury of the site where it first occurred, the nerves of other healthy parts that are not damaged are collected, so that the site has sensory, sensory, motor skills, etc. Will cause a failure.
As an example of autologous nerve transplantation, first, the sural nerve is collected and the nerve transplantation is performed on the damaged portion. However, there is a problem that the skin sensation or the like of the instep from the ankle usually disappears. Therefore, a treatment method capable of repairing the damaged part without causing any trouble in other parts (such as the ankle) has been desired.
[0004]
In order to overcome the harmful effects of autologous nerve transplantation, various studies have been made to restore the original function by assisting regeneration of the damaged site with an artificial instrument. For example, a tubular body (also called a covering material) made of a non-absorbable material (silicon compound, fluorine compound, and various synthetic polymers) that is not absorbed by the human body covers the nerve's ruptured part, and is cut inside the tubular body. Some of them expected that new nerve cells would grow and proliferate from these nerves and that the severed nerves would rejoin (Ducker et al., Journal of Neurosurgery, 28, 582-587 (1968); Midgler et al Surgical Forum, 19, 519-528 (1968); Lundborg et al., Journal of Neuropathology in Experimental Neurology, 41, 412-422 (1982); Molander et al., Muscle & Nerve, 5, 54-58 ( 1982); Uzman et al., Journal of Neuroscience Research, 9, 325-338 (1983); Nyilas et al., Transactions American Society of Artificial Internal Organs, 29, 307-313 (1983); USP 4,534,349, etc.).
In addition, since these implanted cylindrical bodies are artificially synthesized, foreign substances are permanently present in the body, which is not preferable, so the cylindrical bodies were replaced with bioabsorbable materials. Examples also exist (Suzuki et al., Artificial Organs, 27 (2), 490-494 (1998)).
[0005]
However, in these experiments, although some cell growth is seen from both ends of the cut nerve, the cut nerve has not joined again and has not recovered. This is because when cells proliferate, it generally adheres to the scaffold of the cylindrical body and then grows in the direction of filling the cut part, but there is a gap between the cut ends only by covering the cut part, This is because the cell growth stops before the entire portion is filled. In order to solve such a problem, a technique is described in which a fiber bundle of collagen is inserted into a void inside a cylindrical body of a bioabsorbable material and coated with fibronectin (FN) (Japanese Patent Laid-Open No. 5-237139). Publication, Artificial Organ 22 (2), 359-363, 1993).
[0006]
In addition, in order to proliferate cells more efficiently, it has been reported that cell growth factors are enclosed in a cylindrical body (USP 4,963,146), and the inner surface of the cylindrical body is coated with fibrinogen, fibronectin, etc. (Non-toxic Nerve Guide Tubes Support Neovasculer Growth in Transfected Rat Opic Nerve, R. Madison et al., Experimental Neurology, 86 (3): 448-461, 1984), and the fiber filled in the lumen was coated with laminin (Japanese Unexamined Patent Publication No. 5-237139, artificial organ 22 (2), 359-363, 1993) and the like are known.
[0007]
In the production of a biodegradable cylindrical body used for such a biological tissue or organ regeneration instrument, a biodegradable material can be used as long as it is a cylindrical body having an inner diameter of about 10 mm or more used as a regeneration instrument for blood vessels and the like. A sheet, a nonwoven fabric, a woven fabric, or the like made of is wound around a cylindrical mold to form a cylindrical body, and then the mold is extracted. However, when producing a cylindrical body with a thin inner diameter (less than about 10 mm, particularly less than about 2 mm) used as a regeneration instrument such as a nerve, it is difficult to wrap a sheet, nonwoven fabric or woven fabric around a core rod, Even if it was able to wind, the produced cylindrical body had the problem that an internal diameter became non-uniform | heterogenous. Although it is possible to create a cylindrical body by a method such as weaving and knitting, it is difficult to tightly wind the filamentous material and it is difficult to make the inner diameter uniform.
[0008]
As a method for solving these problems, a biodegradable filamentous material is immersed in an adhesive, and wound around a rotating cylindrical mold to produce a multilayer laminate of coiled filamentous materials, which is then cured to form a cylindrical body. A method for forming a cylindrical mold and finally extracting a cylindrical mold (winding production method) is described in JP-A-6-504930. In this winding production method, a product having a substantially uniform inner diameter can be obtained even with a cylindrical body having a small inner diameter. However, the cylindrical body produced by the conventional winding production method has a problem that it is broken or cracked by holding or suturing during the transplantation operation.
In the winding production method, a coil-shaped forming line (forming line 12 is shown in FIG. 5) corresponding to the gap between the wound filaments is generated on the outer periphery of the produced cylindrical body. Since this forming line portion does not have a strong bond such as a crosslinked structure, the physical strength is weak. Further, in the conventional cylindrical body, in order to increase the density, the filamentous material is wound uniformly around the cylindrical mold with almost no gap. Therefore, as shown in FIG. 5, in the conventional cylindrical body, the forming lines are arranged in a substantially constant direction, and the external force due to holding and suturing during the transplantation operation is structurally easily concentrated on the forming line portion. From the above, there has been a problem that the cylindrical body is broken or cracked along the forming line.
[0009]
[Problems to be solved by the invention]
The present invention replaces a biodegradable tubular body used in a conventional biological tissue or organ regeneration device, has a strength sufficient to withstand holding and suturing during transplantation, and is capable of A biodegradable cylindrical body that is excellent in absorbability, in which nerves or blood vessels are easily inserted into the cylindrical body, and that allows cells to efficiently grow in three dimensions, and the same A tissue or organ regeneration device is provided.
[0010]
[Means for Solving the Problems]
The present inventors have intensively studied in view of the above situation, and as a base material for a biological tissue or organ regeneration device, the present invention is a cylindrical body having a multilayer structure, and each layer is formed of a coil of biodegradable filamentous material. By using a cylindrical body characterized in that the winding density of the coil is different from each other, even when the cylindrical body has a thin inner diameter, it can be broken during protection or suturing during transplantation into a living body, It has been found that a biodegradable cylindrical body with improved strength can be obtained without breaking. As a result of various studies based on these findings, the cylindrical body has no adverse effect on the regeneration rate and biodegradability of biological tissues or organs and is stronger than conventional biodegradable cylindrical bodies. Only the improvement was found and the present invention was completed.
[0011]
That is, the present invention
(1) A cylindrical body having a multilayer structure, wherein each layer is formed of a coil of biodegradable filamentous material, and the winding density of the coil is different from each other,
(2) The cylindrical body according to (1), including a layer having a coil winding density of 10 coils / cm or more and a layer having a coil winding density of less than 10 coils / cm,
(3) The cylindrical body according to (1), including a layer having a coil winding density of 30 coils / cm or more and a layer having a coil winding density of less than 10 coils / cm,
(4) The coiled filamentous layer having a coil winding density of 10 coils / cm or more is provided in the innermost layer, and the coil having a coil winding density of less than 10 coils / cm is provided in the outermost layer. (1) The cylindrical body according to the description,
(5) The cylindrical body according to (1), which has a cylindrical shape or a rectangular cylindrical shape,
(6) The diameter of the biodegradable filamentous material is about 5 to 1000 μm, the cylindrical shape is cylindrical, the inner diameter is about 0.05 to 10 mm, and the outer diameter is about 0.1 to 12 mm. Cylindrical body,
(7) The biodegradable filamentous material has a diameter of about 20 to 200 μm, the cylindrical body has a cylindrical shape, an inner diameter of about 0.05 to 2 mm, and an outer diameter of about 0.1 to 3 mm. Cylindrical body,
(8) The biodegradable filamentous material is a protein or derivative thereof, a polysaccharide or derivative thereof, polyglycolic acid, a copolymer of glycolic acid and lactic acid, a copolymer of lactic acid and ε-aminocaproic acid, or lactide heavy A cylindrical body according to the above (1), formed from a unity,
(9) The cylindrical body according to (8), wherein the protein is collagen,
(10) The biodegradable filamentous material is wound around a rotating cylindrical mold so as to be multilayered, wound so that the winding density of the filamentous material of each layer is different, and after the molding process, the mold is extracted. A method for producing a cylindrical body, and
(11) A biological tissue or organ regeneration device comprising the cylindrical body according to claim 1
About.
[0012]
In the present invention, the cylindrical body is a structural body having a lumen that penetrates to the outside, and has, for example, a cylindrical shape, a rectangular tube shape, a truncated cone shape, a truncated pyramid shape, and the like. Of these, a cylindrical shape is preferable. Since the thread-like material is wound around the tubular mold to form the tubular body, the cross-section of the tubular body usually has a shape without a dent. The shape without a dent means a shape that does not drop in the center direction from a straight line connecting both sides of the points on the adjacent contour, regardless of the portion of the contour. For example, a circular shape, an oval shape, an egg shape, a fan shape, a bow shape, a gem clip shape, or a polygon shape (triangle, quadrangle, pentagon, hexagon, heptagon, octagon, etc.) can be used. Of these, the shape is preferably circular.
The cylindrical body of the present invention preferably has an inner diameter of about 0.05 to 10 mm and an outer diameter of about 0.1 to 12 mm, and more preferably an inner diameter of about 0.05 to 2 mm and an outer diameter of about 0.1 to 3 mm. The overall length of the cylindrical body is usually about 5 to 300 mm.
In the present invention, a cylindrical body having a multilayer structure means a cylindrical body having a structure in which materials constituting the cylinder are laminated in two or more layers.
[0013]
In the present invention, the biodegradable filamentous material is formed from a biodegradable material that is decomposed by an in vivo degrading enzyme, acid, or alkali. Examples of the biodegradable material include proteins such as collagen and gelatin or derivatives thereof, polysaccharides or derivatives thereof, polylactic acid, polyglycolic acid, copolymers of glycolic acid and lactic acid, and lactic acid and ε-aminocaproic acid. Examples thereof include fatty acid polyesters (described in Japanese Patent No. 2935750) such as copolymers or lactide polymers.
The origin of the collagen used in the present invention is not particularly limited, but generally examples include cattle, pigs, birds, fish, primates, rabbits, sheep, rabbits and humans. Collagen can be obtained from these skin, tendon, bone, cartilage, organ and the like by various known extraction methods, but is not limited to these specific sites. Furthermore, the type of collagen used in the present invention is not limited to a specific type that can be classified, but types I, III, and IV are preferred from the viewpoint of handling.
A thread-like thing means what is long and flexible like a common thread | yarn. The outer diameter of the filamentous material is not particularly limited, but usually about 5 μm to 1000 μm is preferable, and about 20 to 200 μm is optimal.
Examples of the biodegradable filamentous material include fibers produced from a solution of a biodegradable material through a solidification / drying process using a wet prevention method.
[0014]
In the present invention, the coil is a structural body generally called a coil or a spring. Normally, the coil is cylindrical (FIG. 7), but the coil in the present invention is not limited to this cylindrical one, and an example of an elliptical cylinder or a rectangular cylinder (an example of a rectangular cylinder is shown in FIG. 8). Or the like.
The winding density of the coil means the number of windings of the filamentous material per axial length of the coil made of the biodegradable filamentous material. In this specification, the winding density when the filamentous material is wound 10 times per 1 cm of the axial length of the coil is expressed as 10 coils / cm.
The coil winding density is different from each other as long as at least the two layers of coils in contact with each other have different winding densities. For example, in the case of a coil composed of six layers, the layers from the innermost layer (first layer) to the fourth layer may all have the same winding density, and the fourth layer and the fifth layer have different winding densities. The layers from the fifth layer to the outermost layer may all have the same winding density, or the six layers may all have different winding densities. The winding density of the innermost layer is preferably higher than the winding density of the outermost layer. More preferably, the winding density of the innermost layer is 10 coils / cm or more, and the winding density of the outermost layer is less than 10 coils / cm. Most preferably, the innermost layer has a turn density of 30 coils / cm or more and the outermost layer has a turn density of less than 10 coils / cm.
[0015]
In the present invention, a biological tissue or organ refers to a biological fluid (blood, cerebrospinal fluid, lymph, etc.) or a component thereof (red blood cells, white blood cells, platelets, plasma, serum, etc.) or a living tissue (blood vessels, cornea, meniscus). Plate, brain tissue, skin, subcutaneous tissue, epithelial tissue, bone tissue, muscle tissue, etc.), organs (eg, eye, lung, kidney, heart, liver, pancreas, spleen, digestive tract including small intestine, bladder, ovary, and testis) And their various cells (hematopoietic stem cells, bone marrow cells, hepatocytes, pancreatic cells, brain cells, nerve cells, egg cells, fertilized eggs, embryonic stem cells, etc.). As the biological tissue used in the present invention, nerve cells are particularly preferable.
[0016]
The biological tissue or organ regeneration device of the present invention is a device used to regenerate the biological tissue or organ that has been cut, damaged or lost due to a lesion or injury, and includes a cylindrical body (A). That is, the biological tissue or organ regeneration device of the present invention may be composed only of the cylindrical body (A), or composed of the cylindrical body (A) and another biodegradable substrate. May be.
As a specific example of the biological tissue or organ regeneration instrument of the present invention, a cylindrical body (A) and a fine as an auxiliary means for biological tissue or organ regeneration provided in the lumen of the cylindrical body (A) And a matrix (B) and / or a linear pathway (C) that induces regeneration of a living tissue or organ.
Examples of the fine matrix (B) include a porous layer made of a biodegradable material, short fibers, cotton-like bodies, and non-woven fabrics, and a collagen sponge layer is preferable. Moreover, the fine matrix (B) may contain a biodegradable material, a growth factor, etc. as needed. When the fine matrix (B) is a collagen sponge layer, the porosity of the sponge layer is usually about 70 to 99.9%, preferably 80 to 99%.
[0017]
The linear path (C) for inducing regeneration of a living tissue or organ is composed of, for example, a large number of long fibers, filaments, woven fabrics, knitted fabrics, etc. inserted into the lumen of the cylindrical body (A). Or similarly inserted into the lumen of the tubular body (A), Penetrates the cylindrical body in the long axis direction It is comprised with many hollow bodies (for example, hollow fiber etc.). Another method is to insert a large number of hollow bodies penetrating the matrix (B) before forming the sponge-like matrix (B), and remove the hollow bodies after the molding to form a linear path ( C) may be formed. When the straight path (C) is formed from collagen fibers, the diameter of the collagen fibers is preferably about 5 μm to 1 mm, more preferably 20 to 200 μm. Further, the total volume occupied by the collagen fibers is preferably 5 to 70%, more preferably 10 to 60% with respect to the volume of the lumen of the cylindrical body. When the linear path (C) is formed from a large number of hollow bodies, the hollow body preferably has an inner diameter of about 5 μm to 1 mm.
[0018]
In the living tissue or organ regeneration device of the present invention, the fine matrix (B) gives an appropriate density and scaffold to the cells of the living tissue or organ to be regenerated therein, and promotes the regeneration of the tissue or organ.
Further, the linear path (C) can give the direction of growth to the regenerating cell, and can shorten the time for joining to the target tissue or organ.
[0019]
Next, the cylindrical body of the present invention is produced by a method known per se or the following production method. The biodegradable filamentous material is wound in a multilayered manner on a rotating cylindrical mold using, for example, a yarn distributor which is a mechanism for feeding out the filamentous material, and the winding density of the filamentous material in each layer is different. After winding and forming, a cylindrical body is manufactured by extracting the mold. The yarn distributor is a mechanism for sending out the biodegradable yarn-like material, and preferably has a function of sending out the yarn-like material while moving at a constant speed in the rotation axis direction of a mold such as a cylindrical shape or a rectangular tube shape ( FIG. 9 shows an example of the yarn distributor 41).
[0020]
The forming treatment for the filamentous material is a treatment process for maintaining the shape of the filamentous material wound around the mold as it is. As the forming treatment, there are a method of maintaining the shape by bonding the filaments wound around the mold with an adhesive, and a method of changing the physicochemical properties of the filaments.
Examples of the former method include a treatment method in which filamentous materials are bonded to each other with a natural adhesive such as starch, glue, fibrin, gelatin, collagen, chitin, or chitosan, or a synthetic adhesive such as polyamide or polyester. . As a specific operation, usually a solution-like adhesive is impregnated into a thread wound around a mold and dried. As the synthetic adhesive, an adhesive such as an aliphatic polyester (eg, polylactic acid) having biodegradability and bioabsorbability is preferable. In addition, when the filamentous material is made of a highly soluble material (eg, collagen, gelatin), the filamentous material wound around a template with a biodegradable material solution (eg, collagen aqueous solution) or a simple solvent (such as water) When the material is impregnated, the filamentous material is re-dissolved so that the filamentous materials are compatible with each other and then dried to perform a molding process. Further, the same molding process can be performed by winding a filamentous material previously wetted with a solution of a biodegradable material or a solvent around a mold and drying it.
As the latter method, a hardened filamentous material having a three-dimensional network structure is formed by using a crosslinking agent or by performing crosslinking treatment by irradiation or heating with ultraviolet rays, electron beams, radiation, and forming chemical bonds between molecules of the filamentous material. The method of forming a thing is mentioned.
Moreover, you may give these 2 or more types of shaping | molding processes to the same thread-like thing. In particular, it is preferable to apply both a crosslinking treatment and a drying treatment after impregnating the collagen solution to a collagen filamentous material having a winding density of less than 10 coils / cm.
When the crosslinking treatment by heating (thermal crosslinking treatment) is performed, the treatment is usually performed at about 40 to 300 ° C. for about 0.5 to 50 hours.
[0021]
In the present invention, the winding density of the filamentous material means the number of windings of the filamentous material per axial length of the cylindrical mold.
In the production method of the present invention, a step of winding the filamentous material so that the winding density of the filamentous material is 10 coils / cm or more, and a step of winding the filamentous material so that the winding density of the filamentous material is less than 10 coils / cm. It is preferable to include. Furthermore, the step of winding the filamentous material so that the winding density of the filamentous material is 10 coils / cm or more is performed at the first stage of the step of winding the biodegradable filamentous material around the cylindrical mold in the production method of the present invention. The step of winding the filamentous material so that the winding density of the filamentous material is less than 10 coils / cm is performed at the final stage of the step of winding the biodegradable filamentous material of the manufacturing method of the present invention around the cylindrical mold. Are preferred. Further, it is more preferable to perform a crosslinking treatment after winding the filamentous material so that the winding density of the filamentous material is less than 10 coils / cm.
[0022]
As an example of a specific production method of the present invention, first, the moving speed of the yarn distributor is adjusted to rotate the biodegradable yarn so that the winding density of the yarn is 50 coils / cm. The coil is wound around a cylindrical mold and wound in one and a half halves in the axial direction of the cylindrical mold to obtain a coil composed of three layers of biodegradable yarns. After impregnating the biodegradable material solution between the filaments of each layer, the moving speed of the yarn distributor is increased and adjusted so that the winding density of the filaments is 5 coils / cm. Winding (see FIG. 2), two reciprocal windings are performed in the axial direction of the cylindrical mold. The coil made of the obtained biodegradable filamentous material is subjected to a thermal crosslinking treatment, impregnated with a solution of the biodegradable material between the filamentous materials, and further subjected to a thermal crosslinking treatment.
In this way, the physical strength is greatly increased by winding the filamentous material so that the winding density of the outermost layer and the winding density of the innermost layer are different, and by applying a thermal crosslinking treatment so that the yarn structure of the outermost layer tends to remain after winding. To improve.
[0023]
In contrast, one example of a conventional manufacturing method is as follows. First, the biodegradable filamentous material is rotated by adjusting the moving speed of the yarn distributor so that the winding density of the filamentous material becomes 50 coils / cm. A coil made of four layers of biodegradable filaments is obtained by wrapping around a cylindrical mold (see FIG. 6) and performing two reciprocal windings in the axial direction of the cylindrical mold. A cylindrical body was manufactured by impregnating a biodegradable material solution between the filaments of the coil and then subjecting it to a thermal crosslinking treatment.
Only with such a procedure, there is no ingenuity to change the winding density of the outermost layer of the filamentous material, so a forming line at the time of winding (a trace of the adhesive portion between the filamentous materials) is formed, and cracks at this part are formed. It was easy to break.
[0024]
The biological tissue or organ regeneration device of the present invention has numerous uses in the regeneration, transplantation, and replacement of biological tissue or organs. As a specific treatment, the tissue or organ damaged in vivo and the regeneration device of the present invention are sutured and left in the living body as they are. Thereafter, in the living body, regeneration of the tissue or organ is promoted using the sutured regeneration device as a scaffold, and at the same time, the regeneration device made of a biodegradable material is gradually decomposed and absorbed, and finally disappears. As the means used for suturing, an optimum method can be used individually depending on the type, shape and other conditions of the biological tissue or organ to be treated. The suture used for the suture is not particularly limited as long as it is a normal biological suture, but it is preferable to use a biodegradable or bioabsorbable suture.
[0025]
When the cut nerve is regenerated, the nerve regeneration device including the tubular body of the present invention is sutured to the central end and the distal end of the cut nerve. Specifically, the nerve regeneration device including the cylindrical body of the present invention, cut in advance to the same length as the defect length of the nerve defect portion, after sterilization treatment such as γ-ray irradiation, and inserted into the defect site, The both ends are sutured and fixed to a nerve cut end (central side and distal side) at a plurality of points with a biological suture such as a polyamide-based suture (thickness 10-0). As a result, nerve regeneration can be seen along a linear path that guides regeneration provided in the cylindrical body lumen. Even when the nerve regeneration device is composed only of a cylindrical body, the cylindrical body lumen becomes a linear path for inducing regeneration, and the nerve regenerates along the lumen.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Next, specific examples of the present invention will be described with reference to the drawings.
FIG. 1 is a photograph replacing a drawing of Embodiment 1 of the present invention. FIG. 2 is an explanatory view showing a state during the production of the present invention. FIG. 3 is an explanatory diagram of the overall structure of the first embodiment of the present invention. FIG. 4 is a photograph replacing a drawing of a conventional biodegradable cylindrical body. FIG. 5 is an explanatory view of a conventional biodegradable cylindrical body. FIG. 6 is an explanatory view showing a state during the production of a conventional biodegradable cylindrical body. 7 and 8 are diagrams showing the shape of the coiled filamentous material. FIG. 9 is an explanatory diagram of an example of the production method of the present invention.
[0027]
The cylindrical body of FIG. 2 showing one specific example of the present invention shows a state in which the thread 11 is further wound around the outer layer of the conventional cylindrical body of FIG. In FIG. 2, the filamentous material 11 is wound around the outermost layer of the cylindrical body 1 so that the winding density of the filamentous material is about 3 coils / cm (less than 10 coils / cm). Reference numeral 12 denotes a forming line (a trace of the bonded portion of the thread-like material) formed of the thread-like material wound so that the winding density of the thread-like material is about 22 coils / cm (10 coils / cm or more). Even when stress is applied from the outside by the winding method of the outermost layer of the present invention, the filament 11 is prevented from being broken or cracked at the forming wire 12 and is not damaged.
In FIG. 3, 1 is a cylindrical body, 2 is a collagen fiber, 3 is a collagen sponge layer. The biological tissue or organ regeneration device of the present invention has such a structure, and the present invention improves the strength of the biodegradable tubular body 1 so that the entire biological tissue or organ regeneration device is improved. Strength has been improved.
FIG. 6 shows a state in which the thread-like material is wound around the rotating cylindrical mold 4 from the starting point 110 to the left in the drawing, and the winding of one way is almost completed. Thereafter, winding in the opposite direction is further performed, and the filamentous material is laminated by winding the desired number of reciprocations. Thereafter, the filamentous material is formed by bonding the filamentous materials with an adhesive or changing the physicochemical properties of the filamentous material, and the cylindrical mold 4 is removed. A biodegradable cylindrical body is formed. In the formed product, even if the gap between the filaments wound around the outermost layer is filled with an adhesive or the like, the forming line 12 can be seen as a trace of the gap. Since this portion is easily subjected to external stress and its strength is weak, it has become a weak point where cracks and breakage are likely to occur.
In FIG. 9, while the yarn distributor 41 reciprocates in the axial direction of the cylindrical mold 4, the thread 11 is fed out, and the thread 11 is wound around the rotating cylindrical mold 4 with the adjusted winding density. A cylindrical body having a multilayer structure is formed.
[0028]
【Example】
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
[0029]
(Example 1) Production of nerve regeneration device having suture strength
First, enzyme-solubilized collagen was dissolved in water to prepare a 5% aqueous solution, and extruded into a coagulation bath according to a conventional method to prepare collagen fibers having a diameter of about 160 μm.
Next, the obtained collagen fiber was wound around a cylindrical mold made of a polyfluorinated ethylene fiber having a diameter of 1 mm. At this time, the cylindrical mold is rotated at about 560 rpm, and the yarn distributor is reciprocated at about 2 mm / second in the direction of the axis of rotation of the cylindrical mold, and the fiber is wound so that the winding density of the fiber is about 46.7 coils / cm. Finally, the collagen fiber was wound 7 times. After drying, it was impregnated with a 1% collagen aqueous solution, followed by impregnation with a 5% collagen aqueous solution, and a 5% collagen aqueous solution was applied while dissolving the filament wound around the cylindrical mold. After the collagen fibers were wound in this way, the layers were laminated by impregnating with an aqueous collagen solution to form a collagen tubular body. Further, collagen fibers were wound around the outermost layer of this cylindrical body. At this time, the cylindrical body is rotated at about 560 rpm, and the yarn distributor is reciprocated at about 25 mm / second in the direction of the axis of rotation of the cylindrical mold, so that the winding density of the fiber is about 3.7 coils / cm. Finally, the collagen fiber was wound 47 times. A thermal cross-linking treatment was performed on the cylindrical body produced after winding. Next, the heat-crosslinked cylindrical body was impregnated with an aqueous collagen solution, and subjected to thermal crosslinking again. After drying the tubular body, thermal crosslinking was performed to produce a collagen tubular body having an inner diameter of 1 mm, an outer diameter of 1.4 mm, and a length of 5 cm. Collagen fibers were simultaneously inserted into the lumen together with a 5% collagen solution, and after quick freezing, vacuum lyophilization was performed. A nerve regeneration device having a structure in which the lumen portion is composed of collagen fibers and a collagen sponge layer surrounding each fiber was produced (see FIG. 3. In FIG. 3, 1 is a cylindrical body, 2 Is a collagen fiber, 3 is a collagen sponge layer).
[0030]
(Comparative Example 1) Production of a conventional nerve regeneration device
First, enzyme-solubilized collagen was dissolved in water to prepare a 5% aqueous solution, and extruded into a coagulation bath according to a conventional method to prepare collagen fibers having a diameter of 160 μm.
Next, the obtained collagen fiber was wound around a cylindrical mold made of a polyfluorinated ethylene fiber having a diameter of 1 mm. At this time, the cylindrical mold is rotated at about 560 rpm, and the yarn distributor is reciprocated at about 2 mm / second in the direction of the axis of rotation of the cylindrical mold, and the fiber is wound so that the winding density is about 46.7 coils / cm. Finally, the collagen fiber was wound 7 times. After drying, 1% collagen aqueous solution was impregnated, and then 5% collagen aqueous solution was impregnated, and 5% collagen aqueous solution was applied while dissolving the thread wound around the mandrel. After the collagen fibers were wound in this way, a layer impregnated with an aqueous collagen solution was laminated to form a tubular body made of collagen. The cylindrical body was subjected to a thermal crosslinking treatment, and then an aqueous sodium hydrogen carbonate solution was washed with water. After drying the cylindrical body, thermal crosslinking treatment was further performed to produce a collagen cylindrical body having an inner diameter of 1 mm, an outer diameter of 1.4 mm, and a length of 5 cm. Collagen fibers were simultaneously inserted into the lumen together with a 5% collagen solution, and after quick freezing, vacuum freeze-drying was performed. The filling rate of collagen fibers in the lumen was 10%, and the porosity around each fiber was 95%. % Of a nerve regeneration device having a structure covered with a collagen sponge layer and made entirely of collagen.
[0031]
(Experimental example 1) Strength confirmation in tissue regeneration experiment
Using the nerve regeneration device produced in Example 1, a dog tissue regeneration experiment was performed. Canine peripheral nerve was selected as the tissue to be regenerated.
The canine radial nerve was cut to produce a 30 mm defect site. The nerve regeneration instrument previously cut into 30 mm, which is the same as the defect length, and sterilized with 25 kGy was inserted into this part, and the both ends were sutured with 10-0 polyamide sutures at the nerve cut ends. Fixed. In addition, a 30 mm defect was prepared in the radial nerve portion of another dog group as a control group, and the wound site was sutured with the suture as it was.
As a result, when the nerve regeneration device is implanted in the nerve cut portion of the canine radial nerve, the tube is broken or damaged when the finger is tipped with tweezers that are bent with a finger or sutured with the nerve. There was nothing.
[0032]
(Experimental example 2) Strength check during infiltration
When the tubes prepared in Example 1 and Comparative Example 1 were immersed in water, the presence or absence of breakage of the tubes was visually confirmed. The tube produced in Example 1 was not cracked or broken when immersed in water (0 of 10 cases). However, when the tube produced in Comparative Example 1 was immersed in water, cracking or breakage was observed in 3 of 10 tubes.
[0033]
(Experiment 3) Tensile strength test
First, a thread made of polypropylene (trade name: Prolene, thickness 4-0, manufactured by Ethicon) was passed through a position of about 3 mm from both ends of the tubes prepared in Example 1 and Comparative Example 1 using a suture needle. The thread on the lumen side of the tube was taken out and a knot was formed with the thread on the outside of the tube so that the tube could be pulled from both ends. Using the test tube thus prepared, the tensile strength was measured with a tensile strength tester (product name: Autograph AG-500D, manufactured by Shimadzu Corporation).
As a result, the average value of the tensile strength of Comparative Example 1 (3 cases) was 0.2 N, and the average value of the tensile strength of Example 1 (3 cases) was 0.31 N. Therefore, it can be seen that the strength of the regeneration device of the present invention is clearly improved as compared with the conventional device. In all of Example 1 and Comparative Example 1, since the breakage occurred from the thread penetrating portion, it was proved by this experiment that the break strength particularly at the time of sewing was improved.
[0034]
【The invention's effect】
The cylindrical body of the present invention has layers with different winding density of the filamentous material, and since the external stress applied to the cylindrical body is dispersed, the cylindrical body is not broken or cracked. The strength of the biological tissue or organ regeneration device using the cylindrical body is improved. In addition, the strength of the regenerative device is improved compared to the conventional one, so that the regenerative device will not be broken or cracked during holding or suturing during transplantation, and the operation time is extended and the possibility of reoperation is reduced. The burden on the patient is greatly reduced. Further, it is possible to avoid a risk that the regeneration device is damaged in the body after the operation and the regeneration of the tissue or organ proceeds in an inappropriate direction.
Moreover, the cylindrical body of the present invention is a highly accurate cylindrical body that not only has sufficient strength but also has almost no variation in inner diameter at each location in the axial direction. Therefore, a regenerative instrument useful in regenerative medicine requiring precise control such as nerve regeneration is provided.
In particular, when producing a cylindrical body having a small inner and outer diameter, it is difficult to wrap a sheet made of a biodegradable material, a nonwoven fabric or a woven fabric around a cylindrical mold, and the biodegradable thread is used as a cylindrical mold. A cylindrical body is easily produced by the method of the present invention to wind. For this reason, the production method of the present invention is very useful in producing a cylindrical body having a small diameter. However, even in the case of a cylindrical body having a large diameter, an instrument with high accuracy can be obtained by forming the coil with a biodegradable filamentous material as compared with a case where the nonwoven fabric is wound around a mold. Moreover, the cylindrical body of the present invention exhibits excellent strength regardless of the diameter.
[Brief description of the drawings]
FIG. 1 is a photograph replacing a drawing of Embodiment 1 of the present invention.
FIG. 2 is an explanatory view showing a state during the production of the present invention.
FIG. 3 is an explanatory diagram of Embodiment 1 of the present invention.
FIG. 4 is a photograph replacing a drawing of a conventional biodegradable cylindrical body.
FIG. 5 is an explanatory view of a conventional biodegradable cylindrical body.
FIG. 6 is an explanatory view showing a state during the production of a conventional biodegradable cylindrical body.
FIG. 7 is a perspective view showing an example of a coil according to the present invention.
FIG. 8 is a perspective view showing another example of a coil according to the present invention.
FIG. 9 is an explanatory diagram of an example of the production method of the present invention.
[Explanation of symbols]
1 Tubular body
11 Biodegradable filamentous material
12 Forming line
2 Collagen fiber
3 Collagen sponge layer
4 Cylindrical mold
41 Yarn distributor

Claims (8)

多層構造を有する筒状体であり、各層がコラーゲン糸状物のコイルで形成され、最も内側の層の巻き密度は、最も外側の層の巻き密度よりも高いことを特徴とする筒状体。A cylindrical body having a multilayer structure, wherein each layer is formed of a coil of collagen filamentous material, and the winding density of the innermost layer is higher than the winding density of the outermost layer. コイルの巻き密度が10コイル/cm以上である層およびコイルの巻き密度が10コイル/cm未満である層を有する、請求項1記載の筒状体。  The cylindrical body according to claim 1, comprising a layer having a coil winding density of 10 coils / cm or more and a layer having a coil winding density of less than 10 coils / cm. コイルの巻き密度が30コイル/cm以上である層およびコイルの巻き密度が10コイル/cm未満である層を有する、請求項1記載の筒状体。  The cylindrical body according to claim 1, comprising a layer having a coil winding density of 30 coils / cm or more and a layer having a coil winding density of less than 10 coils / cm. コイルの巻き密度が10コイル/cm以上であるコイル化された糸状物の層を最内層に有し、コイルの巻き密度が10コイル/cm未満である層を最外層に有する、請求項1記載の筒状体。  2. A coiled filamentous layer having a coil winding density of 10 coils / cm or more is provided in the innermost layer, and a layer having a coil winding density of less than 10 coils / cm is provided in the outermost layer. Cylindrical body. 円筒状または角筒状である、請求項1記載の筒状体。  The cylindrical body according to claim 1, which is cylindrical or rectangular. コラーゲン糸状物の直径が5〜1000μmであり、筒状体の形状が円筒状で内径が0.05〜10mm、外径が0.1〜12mmである、請求項1記載の筒状体。 The cylindrical body according to claim 1, wherein the collagen thread has a diameter of 5 to 1000 μm, the cylindrical body has a cylindrical shape, an inner diameter of 0.05 to 10 mm, and an outer diameter of 0.1 to 12 mm. コラーゲン糸状物の直径が20〜200μmであり、筒状体の形状が円筒状で内径が0.05〜2mm、外径が0.1〜3mmである、請求項1記載の筒状体。 The cylindrical body according to claim 1, wherein the collagen thread has a diameter of 20 to 200 µm, the cylindrical body has a cylindrical shape, an inner diameter of 0.05 to 2 mm, and an outer diameter of 0.1 to 3 mm. コラーゲン糸状物を、回転する筒状鋳型に多層になるように巻き付け、かつ、最も内側の層の巻き密度は、最も外側の層の巻き密度よりも高くなるように巻き取り、成形処理した後に、該鋳型を抜き取ることを特徴とする筒状体の製造方法。 A collagen thread is wound around a rotating cylindrical mold so as to be multilayered, and the winding density of the innermost layer is wound so as to be higher than the winding density of the outermost layer. A method for producing a cylindrical body, wherein the mold is extracted.
JP2002233431A 2002-08-09 2002-08-09 Biodegradable cylindrical body and biological tissue or organ regeneration device using the same Expired - Fee Related JP4581318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233431A JP4581318B2 (en) 2002-08-09 2002-08-09 Biodegradable cylindrical body and biological tissue or organ regeneration device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233431A JP4581318B2 (en) 2002-08-09 2002-08-09 Biodegradable cylindrical body and biological tissue or organ regeneration device using the same

Publications (2)

Publication Number Publication Date
JP2004073221A JP2004073221A (en) 2004-03-11
JP4581318B2 true JP4581318B2 (en) 2010-11-17

Family

ID=32018563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233431A Expired - Fee Related JP4581318B2 (en) 2002-08-09 2002-08-09 Biodegradable cylindrical body and biological tissue or organ regeneration device using the same

Country Status (1)

Country Link
JP (1) JP4581318B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751733B1 (en) * 2005-07-07 2007-08-24 한국과학기술연구원 Method of preparing porous polymer scaffold for tissue engineering using gel spinning technique
JP4765602B2 (en) * 2005-12-14 2011-09-07 ニプロ株式会社 Package for regenerative medical instrument and processing method for regenerative medical instrument
CN1986001B (en) * 2005-12-20 2011-09-14 广东冠昊生物科技股份有限公司 Biological wound-protecting film
CN1986006A (en) * 2005-12-20 2007-06-27 广州知光生物科技有限公司 Biological nerve duct
JP5563182B2 (en) * 2006-06-15 2014-07-30 ニプロ株式会社 Tissue regeneration device precursor with releasable fixation means
WO2012141381A1 (en) * 2011-04-14 2012-10-18 Kim Byung Gun Functional thread for a subcutaneous medical procedure, and device for performing a medical procedure including same
DK3243489T3 (en) 2011-05-24 2021-05-10 Takeda As WROLLED COLLAGEN CARRIER
WO2013174879A1 (en) 2012-05-24 2013-11-28 Takeda Nycomed As Packaging
RU2670746C9 (en) * 2012-05-24 2018-12-20 Такеда Ас Process and apparatus for providing coiled collagen carrier
US20130345729A1 (en) * 2012-06-22 2013-12-26 Collagen Matrix, Inc. Compression and kink resistant implants
US20140163586A1 (en) * 2012-12-11 2014-06-12 Dolly Jeanne Holt Tissue repair devices and methods
JP2014155622A (en) * 2013-02-15 2014-08-28 Terumo Corp Tubular body
JP6188514B2 (en) * 2013-09-25 2017-08-30 テルモ株式会社 Bellows-like lumen structure
JP2024020670A (en) * 2020-12-25 2024-02-15 ニプロ株式会社 Growth induction member and tissue regeneration instrument
JPWO2022138956A1 (en) * 2020-12-25 2022-06-30

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504930A (en) * 1991-02-11 1994-06-09 フィディーア・ソシエタ・ペル・アチオニ Biodegradable and bioabsorbable guide channels for use in nerve treatment and regeneration
JPH07509386A (en) * 1992-08-03 1995-10-19 フィディーア・ソシエタ・ペル・アチオニ Biodegradable guide channel for use in tissue repair as a surgical aid
JP2000210376A (en) * 1999-01-21 2000-08-02 Nissho Corp Suturable tissue regeneration induction type adhesion preventive membrane
JP2000237300A (en) * 1999-02-23 2000-09-05 Djk Research Center:Kk Hollow yarn with fine diameter, its hollow yarn bundle and manufacture thereof
JP2000271207A (en) * 1999-03-29 2000-10-03 Nissho Corp Adhesion preventive film capable of being sutured
JP2001070436A (en) * 1999-09-02 2001-03-21 Koken Co Ltd Collagen supporting body for forming vital vascular structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504930A (en) * 1991-02-11 1994-06-09 フィディーア・ソシエタ・ペル・アチオニ Biodegradable and bioabsorbable guide channels for use in nerve treatment and regeneration
JPH07509386A (en) * 1992-08-03 1995-10-19 フィディーア・ソシエタ・ペル・アチオニ Biodegradable guide channel for use in tissue repair as a surgical aid
JP2000210376A (en) * 1999-01-21 2000-08-02 Nissho Corp Suturable tissue regeneration induction type adhesion preventive membrane
JP2000237300A (en) * 1999-02-23 2000-09-05 Djk Research Center:Kk Hollow yarn with fine diameter, its hollow yarn bundle and manufacture thereof
JP2000271207A (en) * 1999-03-29 2000-10-03 Nissho Corp Adhesion preventive film capable of being sutured
JP2001070436A (en) * 1999-09-02 2001-03-21 Koken Co Ltd Collagen supporting body for forming vital vascular structure

Also Published As

Publication number Publication date
JP2004073221A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4581318B2 (en) Biodegradable cylindrical body and biological tissue or organ regeneration device using the same
JP4605985B2 (en) Nerve regeneration induction tube
JP3871525B2 (en) Biological tissue or organ regeneration device
US6090117A (en) Artificial neural canal
US6589257B1 (en) Artificial neural tube
EP1201202A1 (en) Artificial neural tube
EP3383444B1 (en) Filamentous graft implants and methods of their manufacture and use
JP2007268239A (en) Artificial blood vessel
JP4168740B2 (en) Collagen artificial blood vessel
JP4554916B2 (en) Medical film
JP4596335B2 (en) Method for manufacturing nerve regeneration induction tube
JP5089688B2 (en) Collagen tube
JP5386929B2 (en) Nerve regeneration substrate and parts for nerve regeneration substrate
JP6188514B2 (en) Bellows-like lumen structure
JP4620952B2 (en) Base material for urethral tissue regeneration and method for urethral tissue regeneration
JPWO2019054407A1 (en) Neuroprotective material
WO2022138956A1 (en) Biodegradable or bioabsorbable tubular body and manufacturing method thereof
WO2022138952A1 (en) Growth-induction member and tissue regeneration tool
WO2019189835A1 (en) Suture auxiliary material
JP7329384B2 (en) tissue regeneration substrate
JP6423054B2 (en) Bellows-like lumen structure
JP2007050263A (en) Apparatus for reproducing biological tissue or organ
JP5017936B2 (en) Precursor of tissue regeneration device with fixation means in the excision region
JP5563182B2 (en) Tissue regeneration device precursor with releasable fixation means
JPH0459899B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Ref document number: 4581318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees