JP4620952B2 - Base material for urethral tissue regeneration and method for urethral tissue regeneration - Google Patents

Base material for urethral tissue regeneration and method for urethral tissue regeneration Download PDF

Info

Publication number
JP4620952B2
JP4620952B2 JP2004017200A JP2004017200A JP4620952B2 JP 4620952 B2 JP4620952 B2 JP 4620952B2 JP 2004017200 A JP2004017200 A JP 2004017200A JP 2004017200 A JP2004017200 A JP 2004017200A JP 4620952 B2 JP4620952 B2 JP 4620952B2
Authority
JP
Japan
Prior art keywords
tissue regeneration
urethral tissue
base material
urethral
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004017200A
Other languages
Japanese (ja)
Other versions
JP2005205083A (en
Inventor
泰之 稲継
義人 筏
修 小川
明弘 兼松
泰彦 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2004017200A priority Critical patent/JP4620952B2/en
Publication of JP2005205083A publication Critical patent/JP2005205083A/en
Application granted granted Critical
Publication of JP4620952B2 publication Critical patent/JP4620952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、結石の形成による狭窄や、感染が発生しにくく、しかも、高い柔軟性や形状の復元力等の力学的性能を有し、尿道組織の再生に好適に用いることができる尿道組織再生用基材、及び、該尿道組織再生用基材を用いた尿道組織再生方法に関する。 The present invention is a urethral tissue regeneration that is less likely to cause stenosis due to the formation of a calculus and has mechanical properties such as high flexibility and shape restoring force, and can be suitably used for regeneration of urethral tissue. And a urethral tissue regeneration method using the urethral tissue regeneration substrate.

先天的尿道下裂(尿道の形成不全)や後天的な尿道損傷(欠損)の治療において、尿道再建術としては、従来から、主に患者本人の他の部分の生体組織を移植することが行われていた。しかし、この方法は、患者に過度の負担をかけることが問題となっていた。 In the treatment of congenital hypospadias (dysfunction of the urethra) and acquired urethral damage (defects), urethral reconstruction has traditionally been performed mainly by transplanting other parts of the patient's living tissue. It was broken. However, this method has a problem of overloading the patient.

一方、近年の細胞工学技術の進展によって、ヒト細胞を含む数々の動物細胞の培養が可能となり、また、それらの細胞を用いてヒトの組織や器官を再構築しようとする、いわゆる再生医療の研究が急速に進んでいる。再生医療においては、細胞が増殖分化して三次元的な生体組織様の構造物を構築できるかがポイントであり、組織又は器官の再生の足場になる基材をそのまま、又は、予め細胞を播種したうえで患者に移植することが行われている。このような基材としては、例えば、特許文献1に、コラーゲン単糸からなる移植用基材が開示されている。 On the other hand, recent progress in cell engineering technology has enabled the culturing of numerous animal cells, including human cells, and research on so-called regenerative medicine that uses these cells to reconstruct human tissues and organs. Is progressing rapidly. In regenerative medicine, the point is that cells can proliferate and differentiate to construct a three-dimensional biological tissue-like structure, and the substrate that serves as a scaffold for tissue or organ regeneration remains intact or cells are seeded in advance. And then transplanted to the patient. As such a base material, for example, Patent Document 1 discloses a base material for transplantation composed of a collagen single yarn.

尿道組織の再生においても、このような再生医療を応用することが検討されている。しかしながら、尿道は常に老廃物である尿が通過するという、他の組織又は器官の再生にはない特殊な事情があり、結石の形成による狭窄や、感染が発生しやすい等の問題があった。また、尿道自身が体外部又は体外部に近い部位に位置することから、曲げや圧縮等の外力が頻繁に加わるため、用いる基材には、高い柔軟性や形状の復元力等の力学的性能が要求されていた。 Application of such regenerative medicine is also being studied in the regeneration of urethral tissue. However, the urethra always has urine, which is a waste product, and there is a special situation that does not exist in the regeneration of other tissues or organs. In addition, since the urethra itself is located outside or close to the outside of the body, external forces such as bending and compression are frequently applied, so the base material used has high performance such as high flexibility and shape restoring force. Was requested.

特開2003−193328号公報JP 2003-193328 A

本発明は、上記現状に鑑み、結石の形成による狭窄や、感染が発生しにくく、しかも、高い柔軟性や形状の復元力等の力学的性能を有し、尿道組織の再生に好適に用いることができる尿道組織再生用基材、及び、該尿道組織再生用基材を用いた尿道組織再生方法を提供することを目的とする。 In view of the above situation, the present invention is less likely to cause stenosis or infection due to the formation of stones, and has high mechanical properties such as high flexibility and shape restoring force, and is preferably used for regeneration of urethral tissue. It is an object of the present invention to provide a urethral tissue regeneration base material that can be used, and a urethral tissue regeneration method using the urethral tissue regeneration base material.

本発明は、生体内吸収性高分子材料からなる多数の微細小孔を有する多孔質体と、生体内吸収性高分子材料からなる支持体とからなる尿道組織再生用基材である。
以下に本発明を詳述する。
The present invention is a urethral tissue regeneration substrate comprising a porous body having a large number of fine pores made of a bioabsorbable polymer material and a support made of the bioabsorbable polymer material.
The present invention is described in detail below.

本発明者は、鋭意検討の結果、生体内吸収性高分子材料からなる多数の微細小孔を有する多孔質体は、細胞を容易に侵入させることができ、このような多孔質体をそのまま、又は、予め粘膜細胞等を播種してから尿道に移植すれば、この多孔質体を足場に細胞が増殖し、早期に粘膜組織が再生し、一方、多孔質体自体は、徐々に生体内の酵素の働きにより分解されていくことから、結石の形成による狭窄や感染の発生を抑制できることを見出した。更に検討の結果、上記多孔質体を足場に尿道組織が再生するまでの間、多孔質体を生体内吸収性高分子材料からなる支持体により支持してやることにより、必要とされる三次元形状を維持し、曲げや圧縮等の外力が頻繁に加わった場合にでも高い柔軟性や形状の復元力等の力学的性能が付与されて、安定して治癒が進むことを見出し、本発明を完成するに至った。
なお、本発明の尿道組織再生用基材の三次元形状としては、再生しようとする部位の形状により管状、半円筒状、鞍状、シート状等が考えられるが、なかでも尿道自体が管状であることから、管状のものの実用性が高い。また、管状の尿道組織再生用基材を用いて半円筒状、鞍状又はシート状に加工してなるものも好適である。この場合、管状の尿道組織再生用基材を切断した後、切断端面を溶着又は接着することで三次元形状を維持することができる。
As a result of intensive studies, the present inventors have made it possible for a porous body having a large number of fine pores made of a bioabsorbable polymer material to easily infiltrate cells. Alternatively, if the mucosal cells are seeded in advance and then transplanted into the urethra, the cells proliferate on the porous body as a scaffold, and the mucosal tissue regenerates at an early stage, while the porous body itself gradually becomes in vivo. It has been found that since it is decomposed by the action of the enzyme, the occurrence of stenosis and infection due to the formation of stones can be suppressed. As a result of further investigation, the porous body is supported by a support made of a bioabsorbable polymer material until the urethral tissue is regenerated using the porous body as a scaffold. It is found that even when an external force such as bending or compression is frequently applied, mechanical properties such as high flexibility and shape restoring force are imparted, and the healing proceeds stably, and the present invention is completed. It came to.
The three-dimensional shape of the urethral tissue regeneration substrate of the present invention may be tubular, semi-cylindrical, saddle-shaped, sheet-shaped, etc., depending on the shape of the part to be regenerated. For this reason, the tubular type is highly practical. Moreover, what is processed into a semi-cylindrical shape, a bowl shape, or a sheet shape using a tubular base material for urethral tissue regeneration is also suitable. In this case, the three-dimensional shape can be maintained by welding or bonding the cut end surfaces after cutting the tubular urethral tissue regeneration substrate.

上記多孔質体は、移植した際に、細胞が侵入し、細胞増殖の足場となって尿道組織の再生を促す役割を有する。
上記多孔質体は、生体内吸収性高分子材料からなる。上記多孔質体を構成する生体内吸収性高分子材料としては、生体内の酵素により分解される性質を有するものであれば、天然高分子であっても合成高分子であってもよく、特に限定されないが、細胞との親和性が高く柔軟な多孔質体を得やすいことから、コラーゲン、ゼラチン、フィブリン及びヒアルロン酸からなる群より選択される少なくとも1種が好適である。
The porous body has a role of invading cells when transplanted and serving as a scaffold for cell proliferation to promote regeneration of urethral tissue.
The porous body is made of a bioabsorbable polymer material. The bioabsorbable polymer material constituting the porous body may be a natural polymer or a synthetic polymer as long as it has the property of being degraded by enzymes in the living body. Although not limited, at least one selected from the group consisting of collagen, gelatin, fibrin, and hyaluronic acid is preferable because it is easy to obtain a flexible porous body having high affinity with cells.

上記コラーゲン、ゼラチン、フィブリン及びヒアルロン酸は、必要に応じて架橋が施されてもよい。架橋を施すことにより、生体内吸収性を制御したり、耐水性を向上させたりすることができ、尿道組織が再生する前に分解してしまったり形状を失ってしまったりするのを防ぐことができる。
上記架橋の方法としては特に限定されず、例えば、熱脱水法、γ線照射法、紫外線照射法、電子線照射法、X線照射法、架橋剤を用いる方法等が挙げられる。なかでも、全体が均一の架橋度となるように架橋できることから架橋剤を用いる方法が好適である。なお、コラーゲン等を架橋剤により架橋する場合には、架橋剤溶液中での膨潤等を防止するために、予め熱脱水法等による架橋を施しておいてもよい。
The collagen, gelatin, fibrin and hyaluronic acid may be cross-linked as necessary. By applying cross-linking, in-vivo absorbability can be controlled and water resistance can be improved, preventing urethral tissue from degrading or losing shape before regeneration. it can.
The crosslinking method is not particularly limited, and examples thereof include a thermal dehydration method, a γ-ray irradiation method, an ultraviolet irradiation method, an electron beam irradiation method, an X-ray irradiation method, and a method using a crosslinking agent. Among these, a method using a crosslinking agent is preferable because crosslinking can be performed so that the whole has a uniform degree of crosslinking. When collagen or the like is cross-linked with a cross-linking agent, cross-linking by a thermal dehydration method or the like may be performed in advance in order to prevent swelling or the like in the cross-linking agent solution.

上記架橋剤としては特に限定されず、例えば、グルタルアルデヒド、ホルマリン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ヘキサメチレンジイソシアネート等が挙げられる。 The crosslinking agent is not particularly limited, and examples thereof include glutaraldehyde, formalin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polyglycerol polyglycidyl ether, glycerol polyglycidyl ether, hexamethylene diisocyanate, and the like.

上記多孔質体は、多数の微細小孔を有する。上記微細小孔の平均孔径の好ましい下限は5μm、好ましい上限は1000μmである。5μm未満であると、上記多孔質体の内部に細胞が侵入できず細胞接着性が極端に劣ったり、接着した細胞が三次元的に伸展できなかったりすることがあり、1000μmを超えると、ある程度粘膜組織が再生した後にも尿が漏れだしてしまうことがある。より好ましい下限は10μm、より好ましい上限は100μmである。
なお、上記微細小孔の平均孔径は、例えば、水銀圧入法や画像解析法等の従来公知の方法により測定することができる。
The porous body has a large number of fine pores. The preferable lower limit of the average pore diameter of the fine pores is 5 μm, and the preferable upper limit is 1000 μm. If the thickness is less than 5 μm, cells may not enter the porous body and cell adhesion may be extremely inferior, or the adhered cells may not extend three-dimensionally. Urine may leak even after mucosal tissue has regenerated. A more preferable lower limit is 10 μm, and a more preferable upper limit is 100 μm.
The average pore diameter of the fine pores can be measured by a conventionally known method such as a mercury intrusion method or an image analysis method.

上記多孔質体の形状としては特に限定されず、本発明の尿道組織再生用基材の三次元形状にあわせて管状、半円筒状、鞍状、シート状等が考えられる。なお、半円筒状、鞍状、シート状等の三次元形状は、主として支持体により維持されることから、このような形状の支持体と複合化する場合には、上記多孔質体としての形状は特に限定されない。
本発明の尿道組織再生用基材が管状である場合には、上記多孔質体も管状(多孔質管状体)であることが好ましい。
The shape of the porous body is not particularly limited, and a tubular shape, a semicylindrical shape, a saddle shape, a sheet shape, and the like are conceivable according to the three-dimensional shape of the urethral tissue regeneration base material of the present invention. In addition, since the three-dimensional shape such as a semi-cylindrical shape, a bowl shape, and a sheet shape is mainly maintained by the support, the shape as the porous body is used when combining with the support having such a shape. Is not particularly limited.
When the urethral tissue regeneration substrate of the present invention is tubular, the porous body is also preferably tubular (porous tubular body).

上記多孔質管状体の内径等については、移植すべき部位等により適宜決定される。また、上記多孔質管状体の厚さとしては特に限定されないが、好ましい下限は500μm、好ましい上限は2mmである。500μm未満であると、尿道組織を充分に再生できないことがあり、2mmを超えると移植が困難となることがある。 About the internal diameter etc. of the said porous tubular body, it determines suitably by the site | part etc. which should be transplanted. The thickness of the porous tubular body is not particularly limited, but a preferable lower limit is 500 μm and a preferable upper limit is 2 mm. If it is less than 500 μm, the urethral tissue may not be sufficiently regenerated, and if it exceeds 2 mm, transplantation may be difficult.

支持体は、上記多孔質体を支持して、本発明の尿道再生用基材の三次元形状を維持するとともに、本発明の尿道組織再生用基材に形状の復元力等の力学的特性を付与する役割を有する。
上記支持体を構成する生体内吸収性高分子としては、生体内の酵素により分解される性質を有するものであれば、天然高分子からなるものであっても合成高分子からなるものであってもよく、特に限定されないが、適度な曲げ強度や曲げ弾性率が得やすく、また、熱セット等により三次元形状を付与できることから、グリコール酸、乳酸(D体、L体、DL体)、カプロラクトン、ジオキサノン、エチレングリコール及びトリメチレンカーボネートからなる群より選択される少なくとも1種からなる単独重合体又は共重合体からなることが好ましい。
The support supports the porous body to maintain the three-dimensional shape of the urethral regeneration base material of the present invention, and provides mechanical properties such as shape restoring force to the urethral tissue regeneration base material of the present invention. Has a role to grant.
The in vivo absorbable polymer constituting the support is not limited to a natural polymer, as long as it has a property of being degraded by an in vivo enzyme. Although it is not particularly limited, moderate bending strength and flexural modulus can be easily obtained, and since it can be given a three-dimensional shape by heat setting, glycolic acid, lactic acid (D-form, L-form, DL-form), caprolactone , Dioxanone, ethylene glycol, and trimethylene carbonate, and at least one homopolymer or copolymer selected from the group consisting of trimethylene carbonate is preferable.

上記支持体は、プラズマ放電、電子線処理、コロナ放電、紫外線照射、オゾン処理等を施すことにより、表面を親水化していてもよい。親水化により、移植後の組織との親和性が向上する。 The support may have a hydrophilic surface by performing plasma discharge, electron beam treatment, corona discharge, ultraviolet irradiation, ozone treatment, or the like. Hydrophilization improves affinity with the tissue after transplantation.

上記支持体としては特に限定されず、例えば、編物、織物、組み紐、メッシュ、シート、板等が考えられる。
上記支持体の形状としては特に限定されず、本発明の尿道組織再生用基材の三次元形状にあわせた管状、半円筒状、鞍状、シート状等が考えられる。上記支持体が半円筒状、鞍状、シート状である場合に、これらの三次元形状を付与する手段としては特に限定されないが、熱セット等による方法等が挙げられる。
また、本発明の尿道組織再生用基材が管状である場合には、上記支持体も管状(管状支持体)であることが好ましい。このような管状支持体としては、生体内吸収性糸の編物又は組紐状織物からなるもの等が好適である。
It does not specifically limit as said support body, For example, a knitted fabric, a textile fabric, a braid, a mesh, a sheet | seat, a board etc. can be considered.
The shape of the support is not particularly limited, and a tubular shape, a semicylindrical shape, a saddle shape, a sheet shape and the like according to the three-dimensional shape of the urethral tissue regeneration base material of the present invention are conceivable. In the case where the support is in a semi-cylindrical shape, a bowl shape, or a sheet shape, the means for imparting these three-dimensional shapes is not particularly limited, and examples thereof include a method using heat setting.
When the urethral tissue regeneration substrate of the present invention is tubular, the support is preferably tubular (tubular support). As such a tubular support, one made of a knitted or braided woven fabric of a bioabsorbable yarn is suitable.

上記編物又は組紐状織物からなる管状支持体を構成する生体内吸収性糸としては、例えば、モノフィラメント糸、マルチフィラメント糸、撚糸、組紐等が挙げられる。なかでも、モノフィラメント糸が好適である。
上記生体内吸収性糸は、延伸により配向結晶化していることが好ましい。配向結晶化することにより充分な強度を得ることができる。上記結晶化の程度としては特に限定されないが、上記生体内吸収性糸の結晶含有率の好ましい下限は40%、好ましい上限は60%である。このような配向結晶化した上記生体内吸収性糸は、例えば、溶融紡糸した上記生体内吸収性糸を5〜10倍程度延伸することにより製造することができる。
Examples of the bioabsorbable yarn constituting the tubular support made of the knitted fabric or braided woven fabric include monofilament yarn, multifilament yarn, twisted yarn, braided cord and the like. Of these, monofilament yarn is preferred.
The bioabsorbable yarn is preferably oriented and crystallized by stretching. Sufficient strength can be obtained by orientation crystallization. The degree of crystallization is not particularly limited, but the preferable lower limit of the crystal content of the bioabsorbable yarn is 40%, and the preferable upper limit is 60%. Such oriented and crystallized bioabsorbable yarn can be produced, for example, by stretching the melt-spun bioabsorbable yarn about 5 to 10 times.

上記上記生体内吸収性糸の断面としては特に限定されず、例えば、円、楕円、その他の異形(例えば星形)等が挙げられる。
上記生体内吸収性糸の太さとしては特に限定されないが、断面の直径の好ましい下限は0.01mm、好ましい上限は1.5mmである。0.01mm未満であると、本発明の尿道組織再生用基材の強度が不足して、充分な形状の復元力等の力学的性能が得られないことがあり、1.5mmを超えると、生体内における分解速度が遅くなり、上記多孔質管状体の分解後した後に尿道内に露出して狭窄の原因となったり、長期間の物理的な刺激や分解物の放出により異物反応が起こったり、患者が異物感を覚えたりする恐れがある。
The cross section of the bioabsorbable thread is not particularly limited, and examples thereof include a circle, an ellipse, and other irregular shapes (for example, a star shape).
The thickness of the bioabsorbable thread is not particularly limited, but a preferable lower limit of the cross-sectional diameter is 0.01 mm, and a preferable upper limit is 1.5 mm. If it is less than 0.01 mm, the strength of the urethral tissue regeneration base material of the present invention is insufficient, and mechanical performance such as a sufficient restoring force may not be obtained, and if it exceeds 1.5 mm, The degradation rate in the living body becomes slow, and after the porous tubular body is decomposed, it is exposed in the urethra, causing stenosis, or a foreign body reaction may occur due to long-term physical irritation or release of degradation products. The patient may feel a foreign body.

上記編物又は組紐状織物からなる管状支持体は、1本の生体内吸収性糸から構成されており、かつ、前記生体内吸収性糸の端部が接合又は接着されていることが好ましい。即ち、上記管状支持体を構成する生体内吸収性糸は、糸の端部を有しないことが好ましい。 The tubular support made of the knitted fabric or braided woven fabric is preferably composed of a single bioabsorbable thread, and the end of the bioabsorbable thread is preferably bonded or bonded. That is, it is preferable that the bioabsorbable yarn constituting the tubular support does not have a yarn end.

上記編物又は組紐状織物からなる管状支持体においては、粗く編成して糸の交差点を1又は複数箇所で接合又は接着していてもよい。糸の末端同士のつなぎ合わせ又は糸の交差点における接着・接合は、熱による融着、溶剤による溶着、接着剤による接着、合成又は天然の水溶性高分子や生体吸収性高分子を溶剤に溶解した溶液による接着により行うことができる。このような合成高分子としては、例えば、ポリビニルアルコール、ポリエチレングリコール、ポリ乳酸、ポリ−ε−カプロラクトン等が挙げられ、天然高分子としては、例えば、ゼラチン、コラーゲン、多糖類等が挙げられる。 In the tubular support made of the knitted fabric or braided woven fabric, the yarn may be knitted roughly and the intersections of the yarns may be joined or bonded at one or a plurality of locations. Bonding of yarn ends to each other or bonding / joining at the intersection of yarns is fusion by heat, welding by solvent, adhesion by adhesive, synthetic or natural water-soluble polymer or bioabsorbable polymer dissolved in solvent It can be performed by adhesion with a solution. Examples of such a synthetic polymer include polyvinyl alcohol, polyethylene glycol, polylactic acid, poly-ε-caprolactone, and the like, and examples of natural polymers include gelatin, collagen, polysaccharides, and the like.

上記編物又は組紐状織物からなる管状支持体を製造する方法としては特に限定されず、例えば、以下の方法により製造することができる。
即ち、まず、シリコーンチューブ等の両端の円周上にそれぞれ8〜12本程度のピンを立てる。このとき、片端のピンは、反対端のピンの中間に来るようにする。モノフィラメント糸をチューブに螺旋状に巻き、対側のピンで折り返していく。途中で交差するときには、隣の交点と糸の上下関係が交互に替わるように編んでいく。開始点まで編み終わると、糸の両端末を部分的に重ね合わせて編むことにより接合、固定する。接合の方法としては、例えば、溶着、融着、収縮チューブ、接着テープ等が挙げられる。
また、心棒の周りに8口程度の組紐機用いて組紐状織物を作製し、作製した組紐状織物を糸が交差している部分で切断し、交差部分を熱により融着してもよい。
このような方法により粗く編成した上記編物又は組紐状織物からなる管状支持体の一例を示す模式図を図1に示した。
It does not specifically limit as a method to manufacture the tubular support body which consists of the said knitted fabric or braided woven fabric, For example, it can manufacture with the following method.
That is, first, about 8 to 12 pins are erected on the circumferences of both ends of the silicone tube or the like. At this time, the pin at one end is positioned in the middle of the pin at the opposite end. A monofilament yarn is spirally wound around a tube and folded with a pin on the opposite side. When crossing in the middle, we knit so that the adjacent intersection and the vertical relationship of the yarn alternate. When knitting to the starting point is completed, the yarn ends are joined and fixed by partially overlapping and knitting. Examples of the bonding method include welding, fusing, a shrinkable tube, and an adhesive tape.
Alternatively, a braided woven fabric may be produced around the mandrel using about 8 braiding machines, the produced braided woven fabric may be cut at a portion where the yarns intersect, and the intersected portion may be fused by heat.
A schematic view showing an example of a tubular support made of the knitted fabric or braided woven fabric roughly knitted by such a method is shown in FIG.

本発明の尿道組織再生用基材においては、上記支持体は、上記多孔質体と複合化され一体化されている。複合化の態様としては特に限定されず、上記支持体と上記多孔質体とが接着又は接合されていてもよいし、上記支持体が上記多孔質体の内部に埋入されていてもよい。このような態様により複合化されることにより、上記多孔質体と支持体とは一体化して、本発明の尿道組織再生用基材は所定の三次元形状を維持することができ、高い力学的性能を発揮することができる。 In the base material for urethral tissue regeneration according to the present invention, the support is combined and integrated with the porous body. The composite mode is not particularly limited, and the support and the porous body may be bonded or bonded, or the support may be embedded in the porous body. By being combined in such a manner, the porous body and the support are integrated, and the urethral tissue regeneration substrate of the present invention can maintain a predetermined three-dimensional shape, and has high mechanical properties. Performance can be demonstrated.

本発明の尿道組織再生用基材においては、本発明の尿道組織再生用基材を尿道に移植したときに、上記支持体が尿道の内側に露出しないような構造にすることが好ましい。上記支持体が尿道の内側に露出している場合には、尿道が再生する際に、上記支持体と多孔質体の間に割り込むようにして粘膜組織等が再生する傾向があり、多孔質体から分離した支持体が尿道を狭窄してしまう恐れがある。
例えば、本発明の尿道組織再生用基材が管状である場合、その断面構造は、図2a、図2b、図2c等に示した態様が考えられる。図2aに示した態様では、管状支持体2は多孔質管状体1の外側に接着されており、図2cに示した態様では、管状支持体2は多孔質管状体1の内側に接着されている。一方、図2bに示した態様では、管状支持体2は多孔質管状体1内に埋入されている。上述のように、本発明の尿道組織再生用基材としては、管状支持体2が尿道の内側に露出する図2cに示した態様よりも、図2a又は図2bに示した態様の方が好適である。なかでも、図2bに示した態様は、管状支持体2が露出していないことから、生体との親和性に特に優れ好ましい。
The urethral tissue regeneration base material of the present invention preferably has a structure such that the support is not exposed to the inside of the urethra when the urethral tissue regeneration base material of the present invention is transplanted into the urethra. When the support is exposed to the inside of the urethra, when the urethra is regenerated, the mucosal tissue or the like tends to regenerate so as to interrupt between the support and the porous body. There is a possibility that the support separated from the stenosis may narrow the urethra.
For example, when the base material for urethral tissue regeneration of the present invention is tubular, the cross-sectional structure may be the mode shown in FIGS. 2a, 2b, 2c, and the like. In the embodiment shown in FIG. 2a, the tubular support 2 is bonded to the outside of the porous tubular body 1, and in the embodiment shown in FIG. 2c, the tubular support 2 is bonded to the inside of the porous tubular body 1. Yes. On the other hand, in the embodiment shown in FIG. 2 b, the tubular support 2 is embedded in the porous tubular body 1. As described above, as the urethral tissue regeneration base material of the present invention, the embodiment shown in FIG. 2a or 2b is more preferable than the embodiment shown in FIG. 2c in which the tubular support 2 is exposed inside the urethra. It is. Especially, since the tubular support body 2 is not exposed, the aspect shown in FIG. 2 b is particularly excellent in affinity with a living body and is preferable.

本発明の尿道組織再生用基材は、例えば、管状、半円筒状又は鞍状である場合に、外径の1/2にまで圧縮を10回以上繰り返し行う場合において、2回目の回復率を100とした場合の10回目の回復率が90以上であることが好ましい。このような尿道組織再生用基材は、曲げや圧縮等の外力が頻繁に加わった場合にも初期の形状を保持できることから、尿道が完全に再建されるまで尿道が閉塞される等の不具合が生じるのを抑制することができる。
なお、ここで2回目の回復率を基準としたのは、1回目の圧縮の際には基材が圧縮動作になじんでいない等の理由によりデータが安定しないことがあるためである。
When the base material for urethral tissue regeneration of the present invention is, for example, tubular, semi-cylindrical, or bowl-shaped, when the compression is repeated 10 times or more to half the outer diameter, the second recovery rate is obtained. The recovery rate at the 10th time when 100 is set is preferably 90 or more. Such a base material for urethral tissue regeneration can maintain the initial shape even when an external force such as bending and compression is frequently applied, so that the urethra is blocked until the urethra is completely reconstructed. It can be suppressed from occurring.
The reason why the second recovery rate is used as a reference is that the data may not be stable during the first compression because the base material is not adapted to the compression operation.

上記回復率は、例えば、島津製作所社製「AUTOGRAPH AG500−B」等を用い、圧縮スピード20mm/minの条件で外径の1/2にまで圧縮を行い、横軸を歪み量、縦軸を応力(基材にかかる力)として応力−歪み曲線(SSカーブ)を描くことにより算出することができる。即ち、得られた応力−歪み曲線において、圧縮するときの曲線の積分値(圧縮エネルギー)、開放されるときの曲線の積分値(回復エネルギー)をそれぞれ求め、下記式により回復率を算出できる。図3に、応力−歪み曲線の一例を示した。
回復率(%)=回復エネルギー/圧縮エネルギー×100
The recovery rate is, for example, by using “AUTOGRAPH AG500-B” manufactured by Shimadzu Corporation and compressing to 1/2 of the outer diameter under the condition of a compression speed of 20 mm / min. It can be calculated by drawing a stress-strain curve (SS curve) as stress (force applied to the substrate). That is, in the obtained stress-strain curve, the integral value (compression energy) of the curve when compressed and the integral value (recovery energy) of the curve when released are obtained, and the recovery rate can be calculated by the following equation. FIG. 3 shows an example of a stress-strain curve.
Recovery rate (%) = Recovery energy / Compression energy × 100

このようにして求められた回復率が大きいほど圧縮後にも元の形状に回復しやすく、更に、繰り返して圧縮したときに回復率の低下が小さいということは、尿道組織再生用基材の弾性特性が優れていることを意味すると考えられる。 The greater the recovery rate determined in this way, the easier it is to recover to the original shape after compression, and the lowering of the recovery rate is small when repeatedly compressed, indicating that the elastic properties of the urethral tissue regeneration substrate Is considered to mean superior.

本発明の尿道組織再生用基材を製造する方法としては特に限定されず、例えば、別々に作製した多孔質体と支持体とを、熱による融着、溶剤による溶着、接着剤、合成又は天然の水溶性又は生体吸収性高分子を用いて接合又は接着する方法;生体内吸収性高分子材料の溶液を調製し、この溶液に別に作製した支持体をディップして生体内吸収性高分子材料の溶液を支持体に付着させ、凍結した後、凍結乾燥する方法等が挙げられる。このとき、上記多孔質管状体の微細小孔の平均孔径は、凍結温度により調整することができる。 The method for producing the urethral tissue regeneration substrate of the present invention is not particularly limited. For example, a separately prepared porous body and a support are fused by heat, welded by a solvent, adhesive, synthetic or natural. A method for bonding or adhering using a water-soluble or bioabsorbable polymer of the present invention; preparing a solution of the bioabsorbable polymer material, dipping the support separately prepared in this solution, and the bioabsorbable polymer material And a method of freeze-drying after the solution is attached to a support and frozen. At this time, the average pore diameter of the fine pores of the porous tubular body can be adjusted by the freezing temperature.

また、本発明の尿道組織再生用基材が管状である場合には、例えば、以下の方法により製造することができる。即ち、生体内吸収性高分子材料の溶液を調製し、この溶液に上記編物又は組紐状織物からなる管状支持体を被覆した棒をディップして生体内吸収性高分子材料の溶液を管状支持体に付着させ、凍結したのち、凍結乾燥する。 Moreover, when the base material for urethral tissue reproduction | regeneration of this invention is a tubular shape, it can manufacture with the following method, for example. That is, a solution of a bioabsorbable polymer material is prepared, and a rod coated with the tubular support made of the knitted fabric or braided woven fabric is dipped in this solution, and the solution of the bioabsorbable polymer material is tubular-supported. Freeze and then freeze-dry.

本発明の尿道組織再生用基材は、細胞が侵入することができ、尿道組織の再生の足場となり得る多孔質体と、上記多孔質体を支持する支持体とからなることから、そのまま、又は、予め粘膜細胞等を播種してから尿道に移植すれば、多孔質体を足場に細胞が増殖し、早期に粘膜組織が再生する。このとき、多孔質体自体は、徐々に生体内の酵素の働きにより分解される。一方、その間、支持体により三次元形状が維持され、曲げや圧縮等の外力が頻繁に加わった場合にでも高い柔軟性や形状の復元力等の力学的性能が発揮され、安定して治癒が進む。また、最終的には上記支持体も分解されることから、治癒後に、再手術等により尿道組織再生用基材を取り出す必要がないことから、患者への負担を抑えることができる。
本発明の尿道組織再生用基材をそのまま、又は、粘膜細胞、皮膚細胞若しくは平滑筋細胞を播種した後、尿道組織内に移植する尿道組織再生方法もまた、本発明の1つである。
Since the base material for urethral tissue regeneration of the present invention comprises a porous body that can invade cells and can serve as a scaffold for regeneration of the urethral tissue, and a support that supports the porous body, as it is, or If the mucosal cells are seeded in advance and then transplanted to the urethra, the cells proliferate on the porous body as a scaffold, and the mucosal tissue is regenerated at an early stage. At this time, the porous body itself is gradually decomposed by the action of the enzyme in the living body. Meanwhile, the three-dimensional shape is maintained by the support during that time, and even when external forces such as bending and compression are frequently applied, mechanical properties such as high flexibility and shape restoring force are exhibited, and stable healing is achieved. move on. In addition, since the support is finally decomposed, it is not necessary to take out the urethral tissue regeneration base material by re-operation after the healing, so that the burden on the patient can be suppressed.
The urethral tissue regeneration method of transplanting the urethral tissue regeneration substrate of the present invention as it is or after seeding mucosal cells, skin cells or smooth muscle cells into the urethral tissue is also one aspect of the present invention.

本発明によれば、結石の形成による狭窄や、感染が発生しにくく、しかも、高い柔軟性や形状の復元力等の力学的特性を有し、尿道組織の再生に好適に用いることができる尿道組織再生用基材、及び、該尿道組織再生用基材を用いた尿道組織再生方法を提供することができる。 According to the present invention, narrowing due to formation of a calculus and infection are unlikely to occur, and the urethra has mechanical properties such as high flexibility and shape restoring force, and can be suitably used for regeneration of urethral tissue. A tissue regeneration substrate and a urethral tissue regeneration method using the urethral tissue regeneration substrate can be provided.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実験例1)
(1)管状支持体の作製
乳酸−カプロラクトン共重合体(乳酸含有率87.5mol%)を溶融紡糸法により紡糸して得た糸を、約9倍に延伸処理して、断面が直径120μm(縫合糸サイズ:5−0)の円形のモノフィラメント糸を得た。
直径7mmのシリコーンチューブの両端の円周上にそれぞれ8本及び12本のピンを立てた。このとき、片端のピンは、反対端のピンの中間に来るようにした。得られたモノフィラメント糸をチューブに螺旋状に巻き、対側のピンで折り返し、途中で交差するときには、隣の交点と糸の上下関係が交互に替わるように編んだ。開始点まで編み終わったところで、糸の両端末を部分的に重ね合わせて編み、乳酸カプロラクトン共重合体溶液を用いて接着して、乳酸カプロラクトン共重合体モノフィラメント糸の編物からなる長さ15mmの管状支持体を得た。
(Experimental example 1)
(1) Production of tubular support A yarn obtained by spinning a lactic acid-caprolactone copolymer (lactic acid content 87.5 mol%) by a melt spinning method was stretched about 9 times, and the cross section had a diameter of 120 μm ( A circular monofilament thread of suture size: 5-0) was obtained.
Eight and twelve pins were erected on the circumferences of both ends of a 7 mm diameter silicone tube, respectively. At this time, the pin at one end was placed in the middle of the pin at the opposite end. The obtained monofilament yarn was spirally wound around a tube, folded back with a pin on the opposite side, and knitted so that the vertical relationship between the adjacent intersection and the yarn alternated when crossing halfway. After knitting to the starting point, both ends of the yarn are partially overlapped and knitted, and bonded using a lactic acid caprolactone copolymer solution, and a 15 mm long tubular product made of a knitted lactic acid caprolactone copolymer monofilament yarn A support was obtained.

(2)尿道組織再生用基材の作製
直径5mmのステンレス製の棒に内径が5mmのフッ素樹脂からなるチューブを被せて、冷却した。このフッ素樹脂チューブの表面に適当な間隔で点状に0.3%コラーゲン酸性水溶液を付着させ、その状態で凍結した。次いで、予め冷却しておいた管状支持体を、凍結したコラーゲン液滴が付着したフッ素樹脂チューブに被せ、この状態で冷却した0.3%コラーゲン酸性水溶液中に浸漬することにより、コラーゲン酸性水溶液を付着させた後、凍結させた。その後、凍結乾燥した。得られた凍結乾燥体に熱脱水架橋を施した後、グルタルアルデヒドにより架橋し、充分に洗浄した後、再凍結乾燥して、図2bに示したような、管状支持体が多孔質管状体内に埋入された構造を有する尿道組織再生用基材を得た。
(2) Production of base material for urethral tissue regeneration A stainless steel rod having a diameter of 5 mm was covered with a tube made of a fluororesin having an inner diameter of 5 mm and cooled. A 0.3% acidic collagen aqueous solution was attached to the surface of the fluororesin tube in a dotted manner at appropriate intervals, and frozen in that state. Next, the preliminarily cooled tubular support is placed on a fluororesin tube to which frozen collagen droplets are attached, and immersed in a cooled 0.3% collagen acid aqueous solution in this state, so that the collagen acid aqueous solution is After attachment, it was frozen. Thereafter, it was freeze-dried. The obtained freeze-dried body is subjected to thermal dehydration crosslinking, then crosslinked with glutaraldehyde, thoroughly washed, and then re-lyophilized to form a tubular support as shown in FIG. 2b in the porous tubular body. A base material for urethral tissue regeneration having an embedded structure was obtained.

(3)尿道組織再生用基材の物性評価
島津製作所社製「AUTOGRAPH AG500−B」を用い、圧縮スピード20mm/minの条件で外径の1/2(3.5mm)にまで圧縮を行い、横軸を歪み量、縦軸を応力(基材にかかる力)として応力−歪み曲線(SSカーブ)を描き、得られた応力−歪み曲線から圧縮エネルギー及び回復エネルギーをそれぞれ求め、下記式により回復率を算出した。
回復率(%)=回復エネルギー/圧縮エネルギー×100
試験は、10回圧縮まで繰り返し行い、2回圧縮時の回復率を100としたときの各回の回復率(減衰率)も求めた。
結果を表1に示した。
(3) Physical property evaluation of the base material for urethral tissue regeneration Using “AUTOGRAPH AG500-B” manufactured by Shimadzu Corporation, compression to 1/2 (3.5 mm) of the outer diameter under the condition of a compression speed of 20 mm / min, Draw a stress-strain curve (SS curve) with the horizontal axis as the strain amount and the vertical axis as the stress (force applied to the base material). Obtain the compression energy and the recovery energy from the obtained stress-strain curve. The rate was calculated.
Recovery rate (%) = Recovery energy / Compression energy × 100
The test was repeated up to 10 times of compression, and the recovery rate (attenuation rate) of each time when the recovery rate at the time of 2 compression was set to 100 was also obtained.
The results are shown in Table 1.

Figure 0004620952
(4)動物実験による評価
得られた尿道組織再生用基材をエチレンオキサイドガス滅菌した後、動物実験に供した。
日本白色種家兎の尿道を全周にわたって切除し、その部分を作製した尿道組織再生用基材で置換して、吻合した。手術後、導尿のためのカテーテルを固定し、一週間後にカテーテルを抜管し、経過観察を行った。
置換手術後、2週間目に内視鏡で尿道内部を撮影した。この像を図4に示した。また、内視鏡による撮影の方法を示す模式図を図5に示した。図4より、置換した部分の内腔表面は、伸展してきた粘膜組織で覆われ、尿道組織再生用基材の管状支持体は、完全に粘膜組織下に埋もれこみ、完全に一体化した状況が確認できた。また尿道内腔側には基材の一部である多孔質管状体が確認されたが、尿道の管形状はしっかりと保たれていた。
更に、置換手術後4週間目、10週間目に尿道全体をX線造影して撮影したが(それぞれ図6a、図6b)、充分に管形状が保持されていることが確認できた。
Figure 0004620952
(4) Evaluation by animal experiments The obtained base material for urethral tissue regeneration was sterilized with ethylene oxide gas and then subjected to animal experiments.
The urethra of Japanese white breed rabbits was excised over the entire circumference, and the part was replaced with the prepared urethral tissue regeneration base material and anastomosed. After the operation, the catheter for urination was fixed, and the catheter was extubated one week later and the follow-up was performed.
Two weeks after the replacement operation, the inside of the urethra was photographed with an endoscope. This image is shown in FIG. FIG. 5 is a schematic diagram showing a method of photographing with an endoscope. From FIG. 4, the lumen surface of the replaced portion is covered with the extended mucosal tissue, and the tubular support of the base material for urethral tissue regeneration is completely buried under the mucosal tissue and completely integrated. It could be confirmed. A porous tubular body, which is a part of the base material, was confirmed on the urethral lumen side, but the urethral tube shape was firmly maintained.
Furthermore, X-ray imaging of the entire urethra was performed 4 weeks and 10 weeks after the replacement surgery (FIGS. 6a and 6b, respectively), and it was confirmed that the tube shape was sufficiently maintained.

本発明によれば、結石の形成による狭窄や、感染が発生しにくく、しかも、高い柔軟性や形状の復元力等の力学的特性を有し、尿道組織の再生に好適に用いることができる尿道組織再生用基材、及び、該尿道組織再生用基材を用いた尿道組織再生方法を提供することができる。 According to the present invention, narrowing due to formation of a calculus and infection are unlikely to occur, and the urethra has mechanical properties such as high flexibility and shape restoring force, and can be suitably used for regeneration of urethral tissue. A tissue regeneration substrate and a urethral tissue regeneration method using the urethral tissue regeneration substrate can be provided.

編物又は組紐状織物からなる管状支持体の一例を示す模式図である。It is a schematic diagram which shows an example of the tubular support body which consists of a knitted fabric or a braided textile. 本発明の尿道組織再生用基材が管状である場合の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure in case the base material for urethral tissue reproduction | regeneration of this invention is tubular. 応力−歪み曲線の一例を示す図である。It is a figure which shows an example of a stress-strain curve. 置換手術後、2週間目に内視鏡で尿道内部を撮影した像である。It is the image which image | photographed the inside of the urethra with the endoscope 2 weeks after replacement surgery. 内視鏡による尿道組織再生部の撮影の方法を示す模式図である。It is a schematic diagram which shows the method of imaging | photography of the urethral tissue reproduction | regeneration part by an endoscope. 置換手術後4週間目(a)、10週間目(b)の尿道のX線造影像である。It is an X-ray contrast image of the urethra 4 weeks after replacement surgery (a) and 10 weeks (b).

符号の説明Explanation of symbols

1 多孔質管状体
2 管状支持体
DESCRIPTION OF SYMBOLS 1 Porous tubular body 2 Tubular support body

Claims (4)

生体内吸収性高分子材料からなる多数の微細小孔を有する多孔質管状体と、生体内吸収性糸の編物からなる管状支持体とからなる尿道組織再生用基材であって、
前記管状支持体は、端部が接合又は接着された1本の乳酸カプロラクトン共重合体モノフィラメント糸の編物からなり、
前記管状支持体は前記多孔質管状体の外側に接着されているか、又は、前記管状支持体は前記多孔質管状体内に埋入されている
ことを特徴とする尿道組織再生用基材。
A porous tubular body having a large number of fine pores consisting of bioabsorbable polymer material, a urethral tissue regeneration substrate comprising a knitted product or Ranaru tubular support of bioabsorbable yarns,
The tubular support consists of a knitted fabric of a single lactic acid caprolactone copolymer monofilament yarn joined or bonded at the ends,
The urethral tissue regeneration base , wherein the tubular support is bonded to the outside of the porous tubular body, or the tubular support is embedded in the porous tubular body. Wood.
請求項1記載の尿道組織再生用基材を用いて半円筒状、鞍状又はシート状に加工してなることを特徴とする尿道組織再生用基材。 A base material for urethral tissue regeneration, wherein the base material for urethral tissue regeneration according to claim 1 is processed into a semicylindrical shape, a bowl shape or a sheet shape. 多孔質体又は多孔質管状体は、平均孔径が5〜1000μmであることを特徴とする請求項1又は2記載の尿道組織再生用基材。 The urethral tissue regeneration substrate according to claim 1 or 2 , wherein the porous body or the porous tubular body has an average pore diameter of 5 to 1000 µm. 孔質管状体は、コラーゲン、ゼラチン、フィブリン及びヒアルロン酸からなる群より選択される少なくとも1種からなることを特徴とする請求項1、2又は3記載の尿道組織再生用基材。 Multi porous tubular body, collagen, gelatin, fibrin and claims 1, 2 or 3 urethral tissue regeneration substrate according to characterized in that it consists of at least one selected from the group consisting of hyaluronic acid.
JP2004017200A 2004-01-26 2004-01-26 Base material for urethral tissue regeneration and method for urethral tissue regeneration Expired - Fee Related JP4620952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017200A JP4620952B2 (en) 2004-01-26 2004-01-26 Base material for urethral tissue regeneration and method for urethral tissue regeneration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004017200A JP4620952B2 (en) 2004-01-26 2004-01-26 Base material for urethral tissue regeneration and method for urethral tissue regeneration

Publications (2)

Publication Number Publication Date
JP2005205083A JP2005205083A (en) 2005-08-04
JP4620952B2 true JP4620952B2 (en) 2011-01-26

Family

ID=34902117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017200A Expired - Fee Related JP4620952B2 (en) 2004-01-26 2004-01-26 Base material for urethral tissue regeneration and method for urethral tissue regeneration

Country Status (1)

Country Link
JP (1) JP4620952B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101687063A (en) * 2007-04-26 2010-03-31 先进科技及再生医学有限责任公司 tissue engineering devices and methods for luminal organs
JP2010240200A (en) * 2009-04-07 2010-10-28 Gunze Ltd Tubular medical material for living tissue regeneration
CN109847101B (en) * 2018-12-28 2022-04-12 广州市妇女儿童医疗中心 Tissue engineering urethral stent and preparation process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505327A (en) * 1992-09-14 1995-06-15 ミードックス メディカルズ インコーポレイテッド three-dimensional braided soft tissue prosthesis
WO2003028782A1 (en) * 2001-09-27 2003-04-10 Nitta Gelatin Inc. Composite material for tissue regeneration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505327A (en) * 1992-09-14 1995-06-15 ミードックス メディカルズ インコーポレイテッド three-dimensional braided soft tissue prosthesis
WO2003028782A1 (en) * 2001-09-27 2003-04-10 Nitta Gelatin Inc. Composite material for tissue regeneration

Also Published As

Publication number Publication date
JP2005205083A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP5599886B2 (en) Retaining fabric coated with a bioresorbable impermeable layer
JP6113202B2 (en) Dilated bladder expansion prosthesis
JP4605985B2 (en) Nerve regeneration induction tube
EP3375461B1 (en) Tissue repair fiber membrane, preparation method and application thereof, and tissue repair product
JP3871525B2 (en) Biological tissue or organ regeneration device
TW458772B (en) An artificial neural canal
KR20020029069A (en) Artificial Neural Tube
KR20180102083A (en) Light letters and medical materials
WO2004054635A1 (en) Medical film
JP2022079625A (en) Medical devices with managed biodegradation
JP4581318B2 (en) Biodegradable cylindrical body and biological tissue or organ regeneration device using the same
JP2007268239A (en) Artificial blood vessel
JP5224841B2 (en) Biological duct stent
JP2002200176A (en) Biological duct stent
WO2009049677A1 (en) Shape-changing medical device, kit, method of production and method of use
JP4620952B2 (en) Base material for urethral tissue regeneration and method for urethral tissue regeneration
JP2004209228A (en) Film for medical use
CN105748171B (en) Biological nerve duct
JP2019505347A (en) Fiber tube for stenting
EP3338817B1 (en) Prosthesis with a chitosan core for regeneration of nerves and method of its manufacturing
JP5313603B2 (en) Bile duct tissue regeneration material
CN111700710B (en) Template for tissue engineering material and tissue engineering material
JP7449073B2 (en) Artificial blood vessel
JP2010240200A (en) Tubular medical material for living tissue regeneration
US20190142569A1 (en) Artificial Trachea and Method for Producing the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees