JP5392744B2 - Artificial blood vessel and manufacturing method thereof - Google Patents

Artificial blood vessel and manufacturing method thereof Download PDF

Info

Publication number
JP5392744B2
JP5392744B2 JP2008134959A JP2008134959A JP5392744B2 JP 5392744 B2 JP5392744 B2 JP 5392744B2 JP 2008134959 A JP2008134959 A JP 2008134959A JP 2008134959 A JP2008134959 A JP 2008134959A JP 5392744 B2 JP5392744 B2 JP 5392744B2
Authority
JP
Japan
Prior art keywords
artificial blood
tubular structure
blood vessel
silk
silk fibroin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008134959A
Other languages
Japanese (ja)
Other versions
JP2009279214A (en
Inventor
哲郎 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2008134959A priority Critical patent/JP5392744B2/en
Publication of JP2009279214A publication Critical patent/JP2009279214A/en
Application granted granted Critical
Publication of JP5392744B2 publication Critical patent/JP5392744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Description

本発明は、絹フィブロイン繊維を用いた人工血管及びその製造方法に関する。   The present invention relates to an artificial blood vessel using silk fibroin fiber and a method for producing the same.

近年、動脈硬化症など血管疾患の増加に伴い人工血管の重要性は確実に高まっている。人工血管においては、(1)安全性(急性毒性、皮内反応試験、溶血性試験、発熱性物質試験、皮膚感作性試験、細胞毒性など)、(2)機能性(伸縮性、縫合し易さ、柔軟性、切断端のほつれ難さ、人工血管壁からの出血し難さ)、(3)耐久性などが要求される。また、人工血管は、体内に移植する部位によって様々な種類が必要とされる。
人工血管のうち大口径のものは既に実用化され臨床使用に耐えられるものとなっている。しかしながら、口径5mm以下の小口径人工血管は、ポリエチレンテレフタレートやPTFEなど代表的な人工素材の生体不適合性による血管内膜の肥厚や血栓形成による閉塞が原因で、未だ実用化されるに至っていない。そのため、現行では、膝関節末梢などへのバイパス術は自家静脈移植が行われているが、患者への負担が大きいこと、適合する血管を持たず自家静脈移植を行うことができない患者が多数いるなど問題は多い。近年、患者の高齢化や糖尿病の増加に伴い、細小血管の再生治療は増加している。従って、特に末梢血管など小口径の血管に利用できる抗血栓性のある人工血管の開発が以前から強く望まれていた。
In recent years, with the increase of vascular diseases such as arteriosclerosis, the importance of artificial blood vessels has definitely increased. In artificial blood vessels, (1) safety (acute toxicity, intradermal reaction test, hemolysis test, pyrogen test, skin sensitization test, cytotoxicity, etc.), (2) functionality (stretchability, stitching) Easiness, flexibility, difficulty in fraying the cut end, difficulty in bleeding from the artificial blood vessel wall), and (3) durability. Various types of artificial blood vessels are required depending on the site to be implanted in the body.
Artificial blood vessels with large diameters have already been put into practical use and can withstand clinical use. However, small-diameter artificial blood vessels having a diameter of 5 mm or less have not yet been put into practical use due to thickening of the intima due to biocompatibility of typical artificial materials such as polyethylene terephthalate and PTFE and occlusion due to thrombus formation. Therefore, at present, autologous vein transplantation is performed for bypass to the knee joint periphery, etc., but the burden on the patient is large, and there are many patients who do not have compatible blood vessels and cannot perform autologous vein transplantation. There are many problems. In recent years, with the aging of patients and the increase in diabetes, regenerative treatment of small blood vessels has increased. Therefore, development of an artificial blood vessel having antithrombotic properties that can be used for small-diameter blood vessels such as peripheral blood vessels has been strongly desired for a long time.

一方、絹糸は、高い生体親和性を有しており、細くて強く適度な弾性と柔軟性を持ち、糸の滑りがよく、結びやすくほつれ難い特性を持っていることから、手術用の縫合糸として用いられる天然繊維である。これまでに絹の高い生体適合性を利用した様々な再生絹材料が開発され、医療、生化学、食品、化粧料など幅広い分野での利用が期待されている。特に、再生医療のための材料として注目されている。
絹を用いた人工血管作製の試みとしては、組紐作製原理により編み込む動作を組み合わせて巻かれ、且つ繭糸相互や混繊維相互が繭糸表面に保有されているセリシンにより膠着されてなる繭糸構造物が知られている(特許文献1)。この繭糸構造物は繭糸相互がセリリンで膠着されることで、実用に耐え得る引っ張り強度になっている。
しかし、セリシンはアレルギー反応を引き起こす可能性が高いため、そのリスクを低減する観点からセリシンを除去することが望ましい。また、前記繭糸構造物は柔軟性が十分ではなく、切断端もほつれ易いため、生体適合性と術時の要求特性など絹本来の特性を保持しつつもより機能性に優れた人工血管が要望されていた。
特開2004−173772号公報
On the other hand, silk thread has high biocompatibility, is thin, strong, has moderate elasticity and flexibility, has good sliding properties, and is easy to tie and hard to fray. It is a natural fiber used as Various regenerated silk materials that utilize the high biocompatibility of silk have been developed so far, and are expected to be used in a wide range of fields such as medicine, biochemistry, food, and cosmetics. In particular, it is attracting attention as a material for regenerative medicine.
As an attempt to produce an artificial blood vessel using silk, a kite thread structure is known which is wound by combining braiding operations according to the principle of braid fabrication, and the kite yarns and mixed fibers are glued together with sericin held on the kite surface. (Patent Document 1). This string structure has a tensile strength that can withstand practical use because the string is glued together with seriline.
However, since sericin is highly likely to cause an allergic reaction, it is desirable to remove sericin from the viewpoint of reducing its risk. In addition, the silk thread structure is not flexible enough, and the cut end is easily frayed, so there is a demand for an artificial blood vessel that is superior in functionality while maintaining the original characteristics of silk such as biocompatibility and required characteristics during surgery. It had been.
JP 2004-173772 A

本発明は、上記実情に鑑みなされたものであり、生体適合性など絹本来の特性を有し、且つセリシンによるアレルギーリスクを低減させた、末梢血管など小口径の血管へ利用できる管状構造物を提供することに関する。   The present invention has been made in view of the above circumstances, and has a tubular structure that can be used for small-diameter blood vessels such as peripheral blood vessels, which have inherent properties such as biocompatibility and have reduced allergic risk due to sericin. About providing.

本発明者は、絹の特性を活かした管状構造物について種々検討したところ、絹フィブロイン繊維が編、組、織及び絡から選ばれる1又は2以上の方法により巻かれてなる管状構造物の外壁表面に、それを平滑化する平滑化処理を施すことにより、柔軟で切断端のほつれや血液の漏出が極めて少ない管状構造物が得られることを見出した。また、平滑化した表面をさらに起毛させることで、術時の要求特性を満足するより小口径の人工血管に適した管状構造物が得られることを見出し、本発明を完成した。   The present inventor has made various studies on tubular structures utilizing the characteristics of silk. As a result, the outer wall of the tubular structure in which silk fibroin fibers are wound by one or more methods selected from knitting, braiding, weaving and entanglement. It has been found that by applying a smoothing process to smooth the surface, it is possible to obtain a tubular structure which is flexible and has very little fraying at the cut end and extremely little blood leakage. Further, the present inventors have found that a tubular structure suitable for an artificial blood vessel having a smaller diameter that satisfies the required characteristics at the time of surgery can be obtained by further raising the smoothed surface.

すなわち、本発明は、絹フィブロイン繊維が編、組、織及び絡から選ばれる1又は2以上の方法により巻かれてなる管状構造物の外壁表面に、平滑化処理を施して得られることを特徴とするセリシン除去された管状構造物を提供するものである。
また、本発明は、絹フィブロイン繊維を編、組、織及び絡から選ばれる1又は2以上の方法により管状に構成した後、得られた管状構造物の外壁表面に平滑化処理及び起毛処理を施すことを特徴とするセリシン除去された管状構造物の製造方法を提供するものである。
That is, the present invention is obtained by performing a smoothing treatment on the outer wall surface of a tubular structure in which silk fibroin fibers are wound by one or more methods selected from knitting, braiding, weaving and entanglement. A tubular structure from which sericin has been removed is provided.
In the present invention, the silk fibroin fiber is formed into a tubular shape by one or more methods selected from knitting, braiding, weaving, and entanglement, and then the outer wall surface of the obtained tubular structure is subjected to smoothing treatment and raising treatment. The present invention provides a method for producing a tubular structure from which sericin has been removed.

本発明によれば、セリシンによるアレルギーリスクを低減させつつも、十分な引っ張り強度を有し、柔軟で血管吻合し易く、切断端のほつれや血液の漏出が極めて少ない管状構造物を提供することができる。この管状構造物は、絹本来の特性、すなわち高い生体適合性を有し、抗血栓性に優れるため、特に直径5mm以下の小口径人工血管に好適である。   According to the present invention, it is possible to provide a tubular structure that has sufficient tensile strength, is flexible and easily vascularly anastomosed while reducing the risk of allergy due to sericin, and has very little fraying at the cut end and extremely little blood leakage. it can. This tubular structure is suitable for a small-diameter artificial blood vessel having a diameter of 5 mm or less because it has the original properties of silk, that is, high biocompatibility and excellent antithrombotic properties.

以下、本発明を詳細に説明する。
本発明におけるセリシン除去された管状構造物は、絹フィブロイン繊維が編、組、織及び絡から選ばれる1又は2以上の方法により巻かれてなる。ここで、絹フィブロイン繊維とは、家蚕、及びエリ蚕、柞蚕、天蚕などの野蚕の繭層から得た繭糸や生糸などを精練したものである。当該精練処理によりセリシンが除去される。
Hereinafter, the present invention will be described in detail.
The tubular structure from which sericin has been removed in the present invention is formed by winding silk fibroin fibers by one or more methods selected from knitting, braiding, weaving and entanglement. Here, the silk fibroin fiber is a scoured raw silk, raw silk, etc., obtained from rabbit silkworms and wild silkworm layers such as Eli silkworm, silkworm, and tengu. Sericin is removed by the scouring treatment.

精練方法は、特に制限されず、公知の方法を使用できる。例えば100℃に加熱した12w/v%マルセル石鹸、8w/v%炭酸ナトリウム混合水溶液、及び上述した繭層や繭糸、生糸などを入れ、操糸後、撹拌しながら120分煮沸し、その後2w/v%炭酸ナトリウム水溶液で10分煮沸、更に100℃に加熱した蒸留水中で洗浄する操作を3回行った後、乾燥することでフィブロインを覆う蛋白質(セリシン)や、その他脂肪分などを除去できる。   The scouring method is not particularly limited, and a known method can be used. For example, 12w / v% Marcel soap heated to 100 ° C, 8w / v% sodium carbonate mixed aqueous solution, and the above-mentioned cocoon layer, silk thread, raw silk, etc. are put in, boiled for 120 minutes with stirring, then 2w / After performing the operation of boiling in a v% aqueous sodium carbonate solution for 10 minutes and washing in distilled water heated to 100 ° C. three times, the protein (sericin) covering fibroin and other fats can be removed by drying.

絹フィブロイン繊維を管状に構成するには、公知の編法、組法、織法、絡法を用いることができる。本発明においては、引っ張り強度や漏血性の向上の点から、編組するのが好ましい。絹フィブロイン繊維を編組する方法としては、特に制限されず、例えば八つ打ち、十二打ち、十六打ちなど公知の組紐技術を用いることができる。具体的には、煮繭から解いた繭糸又は精錬糸を熱可塑性樹脂製芯棒などに巻き付け、絹フィブロイン繊維を組むことにより行われる。熱可塑性樹脂製芯棒は、目的とする管状構造物の大きさに応じて、外径1〜5mm、好ましくは1.5〜5mmのものを用いることができる。また、絹フィブロイン繊維を用いて予め作製した編物や織物、その筒状物などを用いてもよい。   In order to construct the silk fibroin fiber into a tubular shape, a known knitting method, braiding method, weaving method, and entanglement method can be used. In the present invention, braiding is preferable from the viewpoint of improvement in tensile strength and blood leakage. The method for braiding the silk fibroin fiber is not particularly limited, and for example, a known braiding technique such as eight punching, twelve punching, sixteen punching can be used. Specifically, it is carried out by winding a silk thread or refined thread unraveled from boiled rice cake around a core rod made of a thermoplastic resin, etc., and assembling silk fibroin fibers. A thermoplastic resin core rod having an outer diameter of 1 to 5 mm, preferably 1.5 to 5 mm can be used depending on the size of the target tubular structure. Moreover, you may use the knitted fabric and textile fabric previously produced using the silk fibroin fiber, the cylindrical thing, etc.

絹フィブロイン繊維を管状に構成する際、絹フィブロイン繊維は単独で用いてもよく、他の繊維状物と混ぜて用いてもよい。そのような繊維としては、例えばナイロン、ポリエステル、ポリ乳酸、ポリテトラフルオロエチレンなどの合成繊維、及び無機繊維、金属繊維などが挙げられる。   When the silk fibroin fiber is formed into a tubular shape, the silk fibroin fiber may be used alone or may be used by mixing with other fibrous materials. Examples of such fibers include synthetic fibers such as nylon, polyester, polylactic acid, and polytetrafluoroethylene, inorganic fibers, and metal fibers.

管状構造物は単層構造であってもよいが、引っ張り強度及び柔軟性の点から、好ましくは2〜4層、より好ましくは3〜4層の多層構造であることが好ましい。   The tubular structure may have a single layer structure, but preferably has a multilayer structure of 2 to 4 layers, more preferably 3 to 4 layers, from the viewpoint of tensile strength and flexibility.

本発明における平滑化処理は、管状構造物外壁表面の絹フィブロイン繊維を解繊し、平坦化できるものであればよく、管状構造物外壁表面に圧力・摩擦を加え、組み糸部分を圧延し平坦化するよう行われる。これにより、漏血性の向上や切断面のほつれの改善を図ることができる。また、セリシンの除去効果を向上させることができる。
圧力を加える方法としては、特に制限されないが、例えば金属棒状物を管状構造物の外側に接触・回転させて、その表面の組み糸部分を圧延し滑らかにするローリング処理などが挙げられる。管状構造物の外壁表面にかける圧力は、1〜10kg/cm2程度であるが、組み糸部分の凹凸の大きさ、深さ、高さによって可変する事が好ましい。
The smoothing treatment in the present invention is not limited as long as the silk fibroin fiber on the outer wall surface of the tubular structure can be defibrated and flattened. Pressure and friction are applied to the outer wall surface of the tubular structure, and the braided yarn portion is rolled and flattened. It is done to become. Thereby, the improvement of blood leakage and the fraying of a cut surface can be aimed at. Moreover, the removal effect of sericin can be improved.
The method of applying pressure is not particularly limited, and examples thereof include a rolling process in which a metal bar-like material is brought into contact with and rotated on the outside of the tubular structure, and the braid portion on the surface thereof is rolled and smoothed. The pressure applied to the outer wall surface of the tubular structure is about 1 to 10 kg / cm 2 , but preferably varies depending on the size, depth, and height of the unevenness of the braided yarn portion.

次いで、起毛処理を施すことにより、より柔軟で切断端のほつれや血液の漏出が少ない管状構造物とすることができる。また、セリシンの除去効果を向上させることができる。ここで、起毛処理は、管状構造物外壁表面の絹フィブロイン繊維を解繊し、繊維相互を絡ませられるものであればよく、繊維を管状構造物の外壁表面に引き出すことで、表面を毛羽だった状態にする。起毛の程度は管状構造物の内表面が保持されておれば特に制限されない。処理は、例えば研磨剤による研磨、ブラシ状物でブラッシングすることができる。これらのうち、作業性の点から、金属、プラスチック、豚毛などの各種ブラシ状物を用いてブラッシングするのが好ましい。   Subsequently, by raising the hair, a tubular structure that is more flexible and less frayed at the cut end and less leaked blood can be obtained. Moreover, the removal effect of sericin can be improved. Here, the raising treatment is not limited as long as the silk fibroin fiber on the outer wall surface of the tubular structure is disentangled and the fibers can be entangled with each other, and the surface is fluffed by pulling the fiber to the outer wall surface of the tubular structure. Put it in a state. The degree of raising is not particularly limited as long as the inner surface of the tubular structure is held. The treatment can be, for example, polishing with an abrasive or brushing with a brush-like material. Of these, from the viewpoint of workability, it is preferable to brush using various brush-like materials such as metal, plastic, and pig hair.

このようにして得られたセリシン除去された管状構造物を、さらに絹フィブロイン溶解液に浸漬し、絹フィブロイン繊維相互あるいは混繊維相互を絹フィブロインにより膠着させるのが好ましい。これにより、平滑化処理や起毛処理によって形成された管状構造物の状態を保持固定できる。
絹フィブロイン溶解液は、公知の方法により調製することができ、例えば繭層や繭糸、生糸などを精練して絹フィブロインを得、これを中性塩水溶液に溶解、加熱した後、得られた絹フィブロイン/塩水溶液を脱塩処理することで調製することができる。中性塩水溶液としては、例えば臭化リチウム、塩化リチウム、塩化カルシウム、チオシアン酸リチウムなどが挙げられる。また、脱塩処理の方法としては、公知の方法、例えば透析法、逆浸透法などを採用することができる。
It is preferable to immerse the sericin-removed tubular structure thus obtained in a silk fibroin solution so that silk fibroin fibers or mixed fibers are glued together with silk fibroin. Thereby, the state of the tubular structure formed by the smoothing process or the raising process can be held and fixed.
The silk fibroin solution can be prepared by a known method. For example, silk fibroin is obtained by scouring a silkworm layer, silk thread, raw silk, etc., dissolved in a neutral salt aqueous solution, heated, and then obtained silk It can be prepared by desalting a fibroin / salt aqueous solution. Examples of the neutral salt aqueous solution include lithium bromide, lithium chloride, calcium chloride, and lithium thiocyanate. As a desalting treatment method, a known method such as a dialysis method or a reverse osmosis method can be employed.

絹フィブロイン溶解液への浸漬は通常の方法で行われるが、ローリングや減圧により内部への浸透を促進させてもよい。また、溶解液中の絹フィブロイン濃度は、好ましくは0.1〜5w/v%程度であるが、低濃度の場合は浸漬と乾燥を繰返し行ってもよい。
更に、絹フィブロイン溶解液を加熱、あるいは管状構造物をエタノール、イソプロピルアルコールなどのアルコール類へ浸漬してもよく、これにより絹フィブロインがゲル化し、管状構造物へ滅菌効果を付加することができる。
Although the immersion in the silk fibroin solution is performed by a normal method, penetration into the inside may be promoted by rolling or decompression. The silk fibroin concentration in the solution is preferably about 0.1 to 5 w / v%, but if the concentration is low, the immersion and drying may be repeated.
Furthermore, the silk fibroin solution may be heated, or the tubular structure may be immersed in alcohols such as ethanol and isopropyl alcohol, whereby the silk fibroin gels and a sterilizing effect can be added to the tubular structure.

浸漬後、加熱乾燥して熱可塑性樹脂製芯棒から分離することで管状構造物が得られる。乾燥温度は、熱可塑性樹脂製芯棒が軟化する温度であれば特に制限されないが、一般に90〜120℃、好ましくは100〜110℃である。   After dipping, a tubular structure is obtained by heating and drying to separate from the thermoplastic resin core rod. The drying temperature is not particularly limited as long as the core rod made of thermoplastic resin is softened, but is generally 90 to 120 ° C, preferably 100 to 110 ° C.

本発明の管状構造物は、例えば人工血管、人工気管、ステントグラフト、その他生体の管状構造物の代用品として用いることができる。特に、絹の優れた生体適合性及び抗血栓性から、直径5mm以下、好ましくは1〜5mm以下の小口径人工血管に好適である。   The tubular structure of the present invention can be used as a substitute for, for example, artificial blood vessels, artificial trachea, stent grafts, and other biological tubular structures. In particular, because of the excellent biocompatibility and antithrombogenicity of silk, it is suitable for small-diameter artificial blood vessels having a diameter of 5 mm or less, preferably 1 to 5 mm or less.

以下、本発明について実施例をあげて具体的に説明するが、本発明はこれらによって何等限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

参考例<家蚕絹フィブロイン溶解液の調製>
家蚕繭を鋏で細かく切断し(約2mm×10mm程度)、定法により精練して、フィブロインを覆うタンパク質(セリシン)やその他脂肪分などを除去した絹フィブロインを得た。セリシンの残留付着物の確認のため、走査型電子顕微鏡観察を行った。測定にはリアルサーフェイスビュー顕微鏡VE-7800(Keyence社製)を用い、カーボンテープでサンプルを固定し、非蒸着にて測定した。加速電圧は、1.3kV、Working distanceは7.3mmで測定した。得られた絹フィブロインを図1に示す。
次いで、この絹フィブロインを9M塩化リチウム水溶液に15w/v%となるように溶解した。この水溶液を、セルロース透析膜(VISKASESELES COAP社製 Seamless Cellulose Tubing 36/32)を用いて、3日間純水で透析を行い、塩化リチウムを取り除き、さらに遠心分離にて、溶け残りやゴミなどを除去し、家蚕絹フィブロイン溶解液を得た。
Reference example <Preparation of rabbit silk fibroin solution>
Rabbits were finely cut with a scissors (about 2 mm × 10 mm) and refined by a conventional method to obtain silk fibroin from which protein (sericin) covering fibroin and other fats were removed. Scanning electron microscope observation was performed to confirm the residual sericin deposits. For the measurement, a real surface view microscope VE-7800 (manufactured by Keyence) was used, the sample was fixed with carbon tape, and measurement was performed without vapor deposition. The acceleration voltage was 1.3 kV and the working distance was 7.3 mm. The obtained silk fibroin is shown in FIG.
Next, this silk fibroin was dissolved in 9M lithium chloride aqueous solution so as to be 15 w / v%. This aqueous solution is dialyzed with pure water using cellulose dialysis membrane (VISKASESELES COAP Co., Ltd. Seamless Cellulose Tubing 36/32) for 3 days to remove lithium chloride, and further centrifuged to remove undissolved residue and dust. Then, a silkworm silk fibroin solution was obtained.

実施例1 <家蚕絹人工血管の作成>
1.組み機を用いた小口径絹グラフトの作製
人工血管の作製には、組紐作製装置(16打)((株)コクブンリミテッド製)を用いた。ボビンには、定法により精練した絹フィブロイン繊維を巻いた。同機の中心部部分に、外径1.5mm熱可塑性樹脂製芯棒(塩化ビニル製芯棒)を装着し、芯棒の周囲に絹フィブロイン繊維を組んだ。
Example 1 <Creation of Rabbit Silk Artificial Blood Vessel>
1. Fabrication of small-diameter silk graft using an assembling machine For the fabrication of an artificial blood vessel, a braided string producing device (16 strokes) (manufactured by Kokbun Limited) was used. The bobbin was wrapped with silk fibroin fiber scoured by a conventional method. A 1.5mm outer diameter core rod (vinyl chloride core rod) was attached to the center of the machine, and silk fibroin fibers were assembled around the core rod.

2.家蚕絹人工血管への平滑化処理
上記1.で作製した人工血管の芯棒を硬質平坦面に置き、外壁表面に金属棒状物(ステンレス製ロール)にて5kg/cm2の加重を掛け、人工血管の長手方向に10分間転がすことで組み糸部分を平坦化した。これにより、絹糸間の間隙が大幅に減少した。ローリング処理前後の人工血管の走査型電子顕微鏡観察を行った結果を図2に示す。
2. 1. Smoothing treatment to silkworm silk artificial blood vessel Place the artificial blood vessel core rod prepared in step 1 on a hard flat surface, apply a load of 5 kg / cm 2 on the outer wall surface with a metal rod (stainless steel roll), and roll it for 10 minutes in the longitudinal direction of the artificial blood vessel. The part was flattened. This greatly reduced the gap between the silk threads. The results of scanning electron microscope observation of the artificial blood vessel before and after the rolling treatment are shown in FIG.

3.人工血管の起毛処理
上記2.で得られた人工血管をリョウビ社製電動ドリルに固定し、300rpmで回転させつつ金属製ブラシを接触させた。この時、回転方向を変えると起毛の効率が向上した。これにより、人工血管の外壁表面が起毛した状態となった。ブラッシング処理後の走査型電子顕微鏡像を図3に示す。
図3から明らかなように、繊維が各方向に分散し絡み合っていた。
3. 1. Raising treatment of artificial blood vessel The artificial blood vessel obtained in (1) was fixed to an electric drill manufactured by Ryobi, and a metal brush was brought into contact while rotating at 300 rpm. At this time, raising the rotation direction improved the efficiency of raising. As a result, the outer wall surface of the artificial blood vessel was raised. A scanning electron microscope image after the brushing treatment is shown in FIG.
As is clear from FIG. 3, the fibers were dispersed and entangled in each direction.

4.絹フィブロイン溶解液への浸漬
上記<家蚕絹フィブロイン溶解液の調製>で作製した絹フィブロイン溶解液中に人工血管を浸漬し、-60mmHg圧力下にて5回の減圧浸透を行った後、110℃に設定した乾燥機中にて乾燥した。
乾燥後、50%エタノール水溶液に人工血管を浸漬し絹フィブロインを定着させた後、110℃に設定した乾燥機中にて再度乾燥し、芯棒から分離することで、家蚕絹人工血管(口径1.5mm)を得た。
4). Immersion in silk fibroin solution The artificial blood vessel is immersed in the silk fibroin solution prepared in <Preparation of silk silk fibroin solution> and subjected to 5 times reduced pressure infiltration at -60 mmHg pressure, then 110 ° C. It dried in the dryer set to.
After drying, the artificial blood vessel is immersed in a 50% ethanol aqueous solution to fix the silk fibroin, and then dried again in a dryer set at 110 ° C. and separated from the core rod, so that the silkworm artificial blood vessel (caliber 1.5 mm).

実施例2 <トーションレースを用いた3mmφ人工血管の作製>
1.3mmφ絹グラフトの作製
3mmφ人工血管の作製には、家蚕絹製筒状トーションレース(二渡レース製)を用いた。3mm熱可塑性樹脂製芯棒(塩化ビニル製芯棒)に5mm巾のトーションレースを被せた。
Example 2 <Production of 3 mmφ artificial blood vessel using torsion race>
1. Production of 1.3 mmφ silk graft A 3 mmφ artificial blood vessel was produced using a rabbit silk torsion lace (manufactured by Futoshi lace). A 3 mm thermoplastic resin core rod (vinyl chloride core rod) was covered with a 5 mm wide torsion race.

2.3mmφ人工血管への平滑化処理
上記1.の芯棒を硬質平坦面に置き、外壁表面に金属棒状物(ステンレス製ロール)にて5kg/cm2の加重を掛け、人工血管の長手方向に10分間転がすことで組み糸部分を平坦化した。これにより、絹糸間の間隙が大幅に減少した。
2.3 Smoothing treatment to 3 mmφ artificial blood vessel Was placed on a hard flat surface, a 5 kg / cm 2 load was applied to the outer wall surface with a metal rod (stainless steel roll), and the braided yarn portion was flattened by rolling in the longitudinal direction of the artificial blood vessel for 10 minutes. . This greatly reduced the gap between the silk threads.

3.3mmφ人工血管への起毛処理
上記2.で作製した人工血管をリョウビ社製電動ドリルに固定し、300rpmで回転させつつ金属製ブラシを接触させた。
3. Brushing treatment on 3 mmφ artificial blood vessel The artificial blood vessel produced in (1) was fixed to an electric drill manufactured by Ryobi and contacted with a metal brush while rotating at 300 rpm.

4.絹フィブロイン溶解液への浸漬
上記<家蚕絹フィブロイン溶解液の調製>で作製した絹フィブロイン溶解液中に3mmφ人工血管を浸漬し、-60mmHg圧力下にて5回の減圧浸透を行った後、110℃に設定した乾燥機中にて乾燥した。
乾燥後、50%エタノール水溶液に人工血管を浸漬し絹フィブロインを定着させた後、110℃に設定した乾燥機中にて再度乾燥し、芯棒から分離することで、家蚕絹人工血管(口径3mm)を得た。
このようにして得られた家蚕絹人工血管(口径3mm)は、柔軟で任意な方向に切り込んでも切断端には解れが無いものであった(図4)。
4). Immersion in silk fibroin solution 3 mmφ artificial blood vessel is immersed in the silk fibroin solution prepared in the above <Preparation of silkworm silk fibroin solution>, and after 5 times under reduced pressure infiltration at -60 mmHg pressure, 110 It dried in the dryer set to ° C.
After drying, the artificial blood vessel is immersed in a 50% ethanol aqueous solution to fix the silk fibroin, and then dried again in a dryer set at 110 ° C., and separated from the core rod, so that the silkworm artificial blood vessel (diameter 3 mm) )
The rabbit silkworm artificial blood vessel (diameter 3 mm) obtained in this way was flexible and could not be cut at the cut end even if it was cut in any direction (FIG. 4).

精練後の絹フィブロイン繊維の走査型電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of the silk fibroin fiber after scouring. ローリング処理前後の家蚕絹人工血管の走査型電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of the silkworm silk artificial blood vessel before and behind a rolling process. ブラッシング処理後の家蚕絹人工血管の走査型電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of the rabbit silk artificial blood vessel after a brushing process. 家蚕絹人工血管の切断端を示す図である。It is a figure which shows the cutting end of a rabbit silk artificial blood vessel. 本発明の管状構造物の作製法を図示した図である。It is the figure which illustrated the manufacturing method of the tubular structure of this invention.

Claims (4)

絹フィブロイン繊維が編、組、織及び絡から選ばれる1又は2以上の方法により巻かれてなる管状構造物の外壁表面に、ローリング処理を施して得られることを特徴とするセリシン除去された管状構造物。 A sericin-removed tubular product obtained by rolling the outer wall surface of a tubular structure in which silk fibroin fiber is wound by one or more methods selected from knitting, braiding, weaving, and entanglement Structure. さらに起毛処理が施されてなる請求項記載のセリシン除去された管状構造物。 Further napping treatment is performed comprising Claim 1 sericin-extracted tubular structure according. 管状構造物が小口径人工血管である請求項1又は2記載のセリシン除去された管状構造物。 3. The tubular structure from which sericin has been removed according to claim 1, wherein the tubular structure is a small-diameter artificial blood vessel. 絹フィブロイン繊維を編、組、織及び絡から選ばれる1又は2以上の方法により管状に構成した後、得られた管状構造物の外壁表面にローリング処理及び起毛処理を施すことを特徴とするセリシン除去された管状構造物の製造方法。 A sericin characterized in that silk fibroin fiber is formed into a tubular shape by one or more methods selected from knitting, braiding, weaving and entanglement, and then the outer wall surface of the obtained tubular structure is subjected to rolling treatment and raising treatment. A method for producing the removed tubular structure.
JP2008134959A 2008-05-23 2008-05-23 Artificial blood vessel and manufacturing method thereof Active JP5392744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134959A JP5392744B2 (en) 2008-05-23 2008-05-23 Artificial blood vessel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134959A JP5392744B2 (en) 2008-05-23 2008-05-23 Artificial blood vessel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009279214A JP2009279214A (en) 2009-12-03
JP5392744B2 true JP5392744B2 (en) 2014-01-22

Family

ID=41450308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134959A Active JP5392744B2 (en) 2008-05-23 2008-05-23 Artificial blood vessel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5392744B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783794B2 (en) * 2011-05-19 2015-09-24 カジナイロン株式会社 Method for producing silk for medical base materials such as artificial blood vessels and artificial organs
CN102274089A (en) * 2011-05-24 2011-12-14 苏州大学 Silk fibroin tubular bracket and preparation method thereof
CN104174065B (en) * 2014-09-02 2016-06-01 青岛博益特生物材料股份有限公司 A kind of adsorbable artificial blood vessel and its preparation method and application
JP6487783B2 (en) * 2015-06-08 2019-03-20 日本毛織株式会社 Artificial blood braid
JP6484117B2 (en) * 2015-06-08 2019-03-13 日本毛織株式会社 Artificial blood vessel
KR101602791B1 (en) * 2015-10-21 2016-03-11 대한민국 Vascular Patch using silk matrix and Method for manufaturing thereof
JP6423054B2 (en) * 2017-08-01 2018-11-14 テルモ株式会社 Bellows-like lumen structure
JP2021080110A (en) * 2018-01-31 2021-05-27 Spiber株式会社 Carbon nanotube dispersant, carbon nanotube dispersion liquid, and method of dispersing carbon nanotube
JP7407904B2 (en) * 2021-12-29 2024-01-04 鉄隆 西山 Method for manufacturing a medical tubular structure, core material used in the manufacturing method for a medical tubular structure, and medical tubular structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126631A (en) * 1981-01-30 1982-08-06 Junkosha Co Ltd Raised continuous porous fluororesin material and its manufacture
JPS6192666A (en) * 1984-10-15 1986-05-10 東レ株式会社 Artificial blood vessel and its production
JP3840541B2 (en) * 2002-11-25 2006-11-01 独立行政法人農業生物資源研究所 Spun structure as a medical substrate and method for producing the same
PT2374919E (en) * 2003-03-11 2013-08-26 Allergan Inc Biocompatible repair strengthening silk fabric
JP4541336B2 (en) * 2006-09-25 2010-09-08 独立行政法人科学技術振興機構 Arterial blood vessel for small arteries using fibroin thread

Also Published As

Publication number Publication date
JP2009279214A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5392744B2 (en) Artificial blood vessel and manufacturing method thereof
JP5704665B2 (en) Artificial blood vessel manufacturing method
CA2976265C (en) Methods of making collagen fiber medical constructs and related medical constructs, including nerve guides and patches
JP4541336B2 (en) Arterial blood vessel for small arteries using fibroin thread
EP2741791B1 (en) Medical device
US3272204A (en) Absorbable collagen prosthetic implant with non-absorbable reinforcing strands
CN105031735B (en) A kind of three-layer composite structure small-caliber artificial blood vessel and preparation method thereof
CN1237889A (en) Artificial blood vessel
JP3165166B2 (en) Artificial blood vessel and method for producing the same
WO2012090553A1 (en) Method for manufacturing artificial blood vessel
JP6146718B2 (en) Artificial blood vessel manufacturing method
Fernández-Colino et al. Textile-reinforced scaffolds for vascular tissue engineering
JPS632620B2 (en)
JPH0459901B2 (en)
JP3591868B2 (en) Artificial prosthesis
JP2012170559A (en) Double-raschel-knitted tube for artificial blood vessel, and process for producing the same
JP5783794B2 (en) Method for producing silk for medical base materials such as artificial blood vessels and artificial organs
Chellamani et al. Textile implants: Silk suture manufacturing technology
JPH0523362A (en) Preparation of artificial blood vessel
CN118001462A (en) Artificial blood vessel woven based on high molecular yarns and preparation method thereof
JPH0636820B2 (en) Mandrill graft insertion method
JPH0459900B2 (en)
Kancevicha et al. Vascular Implants Reinforced with Natural Silk Yarns
Kancevica et al. Silk Fibroin Bombyx Mori Yarns for Bio-Resistant Woven Aortic Prostheses
JPS5932448A (en) Artificial blood vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5392744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250