JP6485896B2 - Metal film and method for forming metal film - Google Patents

Metal film and method for forming metal film Download PDF

Info

Publication number
JP6485896B2
JP6485896B2 JP2014162320A JP2014162320A JP6485896B2 JP 6485896 B2 JP6485896 B2 JP 6485896B2 JP 2014162320 A JP2014162320 A JP 2014162320A JP 2014162320 A JP2014162320 A JP 2014162320A JP 6485896 B2 JP6485896 B2 JP 6485896B2
Authority
JP
Japan
Prior art keywords
film
electrolytic plating
electroless
electrolytic
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014162320A
Other languages
Japanese (ja)
Other versions
JP2016037642A (en
Inventor
磊 徐
磊 徐
繁 渡口
繁 渡口
和貴 田嶋
和貴 田嶋
逢坂 哲彌
哲彌 逢坂
時彦 横島
時彦 横島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Meltex Inc
Original Assignee
Waseda University
Meltex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Meltex Inc filed Critical Waseda University
Priority to JP2014162320A priority Critical patent/JP6485896B2/en
Publication of JP2016037642A publication Critical patent/JP2016037642A/en
Application granted granted Critical
Publication of JP6485896B2 publication Critical patent/JP6485896B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本件発明は、金属被膜及び金属被膜形成方法に関し、特に、ガラス等の平滑表面を有する絶縁性基材の表面に粗化処理を施さずに設けられた金属被膜及び当該金属被膜を形成するための金属被膜形成方法に関する。   The present invention relates to a metal film and a method for forming a metal film, and in particular, for forming a metal film provided on a surface of an insulating base material having a smooth surface such as glass without performing a roughening treatment, and the metal film. The present invention relates to a metal film forming method.

従来より、ガラス等の絶縁性基材の表面に無電解めっき法等により金属被膜を形成することが行われている。この際、絶縁性基材の表面に密着性の良い金属被膜を得るため、絶縁性基材の表面に予め粗化処理を施すことが一般に行われてきた。しかしながら、ガラス等の透明絶縁性基材の表面に粗化処理を施すと、当該透明絶縁性基材の透光性が低下する。このため、液晶ディスプレイ等のカラーフィルター用ブラックマトリクスや、タッチパネルの透明電極など、絶縁性基材自体の透明性が要求される用途では、その表面に粗化処理を施すことなく、密着性の良い金属被膜を形成することが求められていた。同様に、高周波回路等の絶縁性基材の表面の平滑性が要求される用途においても、絶縁性基材の表面に粗化処理を施すことなく、密着性の良い金属被膜を形成することが求められていた。   Conventionally, a metal film is formed on the surface of an insulating substrate such as glass by an electroless plating method or the like. At this time, in order to obtain a metal film having good adhesion on the surface of the insulating base material, it has been generally performed that the surface of the insulating base material is roughened in advance. However, when a roughening process is performed on the surface of a transparent insulating substrate such as glass, the translucency of the transparent insulating substrate decreases. For this reason, in applications where the transparency of the insulating substrate itself is required, such as a black matrix for a color filter such as a liquid crystal display or a transparent electrode of a touch panel, the surface has good adhesion without being roughened. It has been desired to form a metal film. Similarly, even in applications that require smoothness of the surface of an insulating substrate such as a high-frequency circuit, it is possible to form a metal film with good adhesion without subjecting the surface of the insulating substrate to roughening treatment. It was sought after.

絶縁性基材の表面に粗化処理を施すことなく、密着性の良い金属被膜を形成する方法として、例えば、特許文献1に記載の方法がある。特許文献1には、ガラス等の絶縁性基材の表面に、まず、ITO(酸化インジウムスズ)等の酸化物を含む導電膜を形成し、この導電膜表層を還元処理して還元層を形成し、還元層の表面に触媒層を形成し、この触媒層を有する導電膜上に金属をめっきすることにより、ガラス等の絶縁性基材の表面に粗化処理を施すことなく密着性の良好な金属被膜を形成することができるとしている。   As a method for forming a metal film with good adhesion without subjecting the surface of the insulating base material to roughening, for example, there is a method described in Patent Document 1. In Patent Document 1, first, a conductive film containing an oxide such as ITO (indium tin oxide) is formed on the surface of an insulating base material such as glass, and a reduction layer is formed by reducing the conductive film surface layer. Then, by forming a catalyst layer on the surface of the reduction layer and plating a metal on the conductive film having this catalyst layer, good adhesion without roughening the surface of an insulating substrate such as glass It is said that a simple metal film can be formed.

特開平8−120448号公報JP-A-8-120448

しかしながら、特許文献1に記載の方法では、絶縁性基材の表面にITO等の無機酸化物からなる導電膜を形成する必要があり、さらにITO等の導電膜の表層に対して還元処理を施す必要がある。このため、ガラス等の絶縁性基材の表面に直接密着性のよい金属被膜を得たい場合には当該特許文献1に記載の方法を適用することができない。   However, in the method described in Patent Document 1, it is necessary to form a conductive film made of an inorganic oxide such as ITO on the surface of the insulating substrate, and further, a reduction treatment is performed on the surface layer of the conductive film such as ITO. There is a need. For this reason, when it is desired to obtain a metal film having good adhesion directly to the surface of an insulating substrate such as glass, the method described in Patent Document 1 cannot be applied.

また、本件発明者等が実験を行い確認したところ、絶縁性基材の表面に、ITO膜を設けた後、触媒を付与して、無電解ニッケルめっき被膜を形成すれば、ITO膜に還元処理を施さなくとも、絶縁性基材の表面に密着性の良い無電解ニッケル被膜を形成することができる。しかしながら、絶縁性基材上の金属被膜の厚膜化を図るべく、この無電解ニッケル被膜上に電解めっき法により銅めっきを行うと、絶縁基板の表面から無電解ニッケル被膜と共に電解銅被膜が剥離するという問題があった。すなわち、粗化処理を施さなくとも絶縁基材の表面に密着性の良好な無電解金属被膜を形成することはできるが、その後、無電解金属被膜上に電解金属被膜を形成すると、絶縁性基材の表面から無電解金属被膜と共に電解金属被膜が剥離するという問題が生じた。   In addition, when the inventors of the present invention conducted an experiment and confirmed, if an ITO film was provided on the surface of the insulating substrate, a catalyst was applied, and an electroless nickel plating film was formed. Even if it does not give, the electroless nickel film with good adhesiveness can be formed on the surface of the insulating substrate. However, in order to increase the thickness of the metal coating on the insulating substrate, if the copper plating is performed on the electroless nickel coating by the electrolytic plating method, the electrolytic copper coating is peeled off from the surface of the insulating substrate together with the electroless nickel coating. There was a problem to do. That is, an electroless metal film having good adhesion can be formed on the surface of the insulating base material without roughening treatment, but after that, when an electrolytic metal film is formed on the electroless metal film, the insulating group is formed. There was a problem that the electrolytic metal film peeled off from the surface of the material together with the electroless metal film.

そこで、本件発明の課題は、粗化処理を施すことなく、且つ、簡易な手法で絶縁性基材の表面に密着性よく厚膜の金属被膜を形成することにある。   Accordingly, an object of the present invention is to form a thick metal film with good adhesion on the surface of an insulating substrate by a simple method without performing a roughening treatment.

本発明者等は、鋭意研究を行った結果、以下の金属被膜を採用することで上記課題を達成するに到った。   As a result of intensive studies, the present inventors have achieved the above-mentioned problem by employing the following metal coating.

本件発明に係る金属被膜は、算術平均粗さ(Ra)が0.3μm以下の平滑表面を有する絶縁性基材に設けられる金属被膜であって、無電解めっき法により、当該平滑表面上に形成された無電解めっき被膜と、電解めっき法により、当該無電解めっき被膜の表面に形成された電解めっき被膜とを備え、当該電解めっき被膜は圧縮応力を有することを特徴とする。   The metal coating according to the present invention is a metal coating provided on an insulating substrate having a smooth surface with an arithmetic average roughness (Ra) of 0.3 μm or less, and is formed on the smooth surface by an electroless plating method. And an electroplating film formed on the surface of the electroless plating film by an electroplating method, wherein the electroplating film has a compressive stress.

本件発明に係る金属被膜において、前記電解めっき被膜は窒素、硫黄及び炭素のうち少なくともいずれか一の元素を含有することが好ましい。   In the metal coating according to the present invention, the electrolytic plating coating preferably contains at least one element of nitrogen, sulfur, and carbon.

本件発明に係る金属被膜において、前記電解めっき被膜はアルキルアミン類を含有することが好ましい。   In the metal coating according to the present invention, the electrolytic plating coating preferably contains an alkylamine.

本件発明に係る金属被膜において、前記無電解めっき被膜は、無電解ニッケル被膜であり、前記電解めっき被膜は、電解銅被膜であることが好ましい。   In the metal coating according to the present invention, the electroless plating coating is preferably an electroless nickel coating, and the electrolytic plating coating is preferably an electrolytic copper coating.

本件発明に係る金属被膜において、前記絶縁性基材の前記平滑表面には、無機酸化物からなる導電膜が設けられており、当該導電膜上に前記無電解めっき被膜が形成されていることが好ましい。   In the metal coating according to the present invention, a conductive film made of an inorganic oxide is provided on the smooth surface of the insulating substrate, and the electroless plating film is formed on the conductive film. preferable.

本件発明に係る金属被膜において、前記無電解めっき被膜の厚みは、1μm以下であることが好ましい。   In the metal coating according to the present invention, the electroless plating coating preferably has a thickness of 1 μm or less.

本件発明に係る金属被膜において、前記電解めっき被膜の厚みは、0.5μm以上であることが好ましい。   In the metal coating according to the present invention, the thickness of the electrolytic plating coating is preferably 0.5 μm or more.

本件発明に係る金属被膜の形成方法は、算術平均粗さ(Ra)が0.3μm以下の平滑表面を有する絶縁性基材に金属被膜を形成するための金属被膜形成方法であって、無電解めっき法により、当該絶縁性基材の平滑表面上に無電解めっき被膜を形成する無電解めっき工程と、電解めっき法により、当該無電解めっき被膜の表面に電解めっき被膜を形成する電解めっき工程とを備え、当該電解めっき工程において、添加剤として窒素化合物を0.02mol/L以上0.3mol/L以下、又は、硫黄化合物を0.001mol/L以下含む電解めっき液が用いられることを特徴とする。   The metal film forming method according to the present invention is a metal film forming method for forming a metal film on an insulating substrate having a smooth surface with an arithmetic average roughness (Ra) of 0.3 μm or less, and is electroless An electroless plating process for forming an electroless plating film on the smooth surface of the insulating substrate by a plating method; and an electroplating process for forming an electroplating film on the surface of the electroless plating film by an electrolytic plating method. In the electrolytic plating step, an electrolytic plating solution containing 0.02 mol / L or more and 0.3 mol / L or less of a nitrogen compound or 0.001 mol / L or less of a sulfur compound as an additive is used. To do.

本件発明に係る金属被膜の形成方法において、前記添加剤は、アルキルアミン類、チオ尿素及びチオ尿素誘導体のいずれか一種又は二種以上であることが好ましい。   In the method for forming a metal film according to the present invention, the additive is preferably one or more of alkylamines, thiourea and thiourea derivatives.

本件発明に係る金属被膜の形成方法において、前記電解めっき工程は、0.1A/dm以上5A/dm以下の電流密度で行うことが好ましい。 In the method for forming a metal film according to the present invention, the electrolytic plating process is preferably performed at a current density of 0.1 A / dm 2 or more 5A / dm 2 or less.

本件発明によれば、算術平均粗さ(Ra)が0.3μm以下の平滑表面を有する絶縁性基材の表面に、無電解めっき被膜と、圧縮応力を有する電解めっき被膜とを備えた金属被膜を設けることにより、粗化処理を施すことなく、絶縁性基材の表面に密着性よく厚膜の金属被膜を設けることができる。   According to the present invention, a metal coating comprising an electroless plating coating and an electrolytic plating coating having a compressive stress on the surface of an insulating substrate having a smooth surface with an arithmetic average roughness (Ra) of 0.3 μm or less. By providing this, a thick metal film can be provided on the surface of the insulating base material with good adhesion without performing a roughening treatment.

本件発明に係る金属被膜形成方法の手順を説明するための図である。It is a figure for demonstrating the procedure of the metal film formation method which concerns on this invention. 本件発明に係る金属被膜の断面の一例を示す走査型電子顕微鏡像(SEM像)である。It is a scanning electron microscope image (SEM image) which shows an example of the cross section of the metal film which concerns on this invention.

以下、図面を参照しながら、本件発明に係る金属被膜及び金属被膜形成方法の実施の形態を説明する。   Hereinafter, embodiments of a metal film and a metal film forming method according to the present invention will be described with reference to the drawings.

1.金属被膜
まず、本件発明に係る金属被膜の実施の形態を説明する。本件発明に係る金属被膜は、算術平均粗さ(Ra)が0.3μm以下の平滑表面を有する絶縁性基材に設けられる金属被膜であって、無電解めっき法により、当該平滑表面上に形成された無電解めっき被膜と、電解めっき法により、当該無電解めっき被膜の表面に形成された電解めっき被膜とを備え、当該電解めっき被膜は圧縮応力を有することを特徴とする。本件発明に係る金属被膜では、無電解めっき被膜上に、圧縮応力を有する電解めっき被膜を設けることにより、絶縁性基材の平滑表面に対して、粗化処理を施すことなく、密着性の良好な厚膜の金属被膜からなる導電性被膜を形成することができる。また、本件発明では、絶縁性基材の上記平滑表面には、無機酸化物からなる導電膜が設けられており、当該導電膜上に前記無電解めっき被膜が形成されていることも好ましい。以下では、絶縁性基材、導電膜、無電解めっき被膜、電解めっき被膜の順に説明する。但し、本件発明において圧縮応力を有する電解めっき被膜とは、当該電解めっき被膜の応力を測定したときに、0MPaよりも大きい値の圧縮応力を有することを意味する。
1. First, an embodiment of the metal coating according to the present invention will be described. The metal coating according to the present invention is a metal coating provided on an insulating substrate having a smooth surface with an arithmetic average roughness (Ra) of 0.3 μm or less, and is formed on the smooth surface by an electroless plating method. And an electroplating film formed on the surface of the electroless plating film by an electroplating method, wherein the electroplating film has a compressive stress. In the metal film according to the present invention, by providing an electroplating film having compressive stress on the electroless plating film, good adhesion without roughening the smooth surface of the insulating substrate. A conductive film made of a thick metal film can be formed. Moreover, in this invention, it is also preferable that the said smooth surface of an insulating base material is provided with the electrically conductive film which consists of inorganic oxides, and the said electroless-plating film is formed on the said electrically conductive film. Below, it demonstrates in order of an insulating base material, an electrically conductive film, an electroless-plating film, and an electroplating film. However, the electrolytic plating film having a compressive stress in the present invention means having a compressive stress having a value larger than 0 MPa when the stress of the electrolytic plating film is measured.

(1)絶縁性基材
本件発明において、絶縁性基材は、算術平均粗さ(Ra)が0.3μm以下の平滑表面を有する絶縁性の材料からなる基材であれば、特に限定されるものではなく、例えば、表面の算術平均粗さ(Ra)が0.3μm以下のガラス、プラスチック、セラミックス、半導体基板材料等の絶縁性材料からなる基材を用いることができる。ここで、プラスチックとして、ポリイミド樹脂、ポリカーボネイト樹脂、ポリエチレン樹脂、塩素化ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ABS樹脂、ポリフェニレンサルファイド樹脂、ポリブチレンテレフタレート樹脂、液晶ポリマー等に適用することができる。また、半導体基板材料として、SiC、GaAs、InP、GaN、Mo、Mo−Cu、サファイア等が挙げられる。なお、絶縁性基材の表面の算術粗さ(Ra)は、一般に、0.3μm以下である場合が多く、絶縁性基材の表面に対して粗化処理を施した場合、その算術平均粗さ(Ra)は0.3μmを超える場合が多い。すなわち、本件発明において、算術平均粗さ(Ra)が0.3μm以下の平滑表面を有する絶縁性基材とは、主として、表面に粗化処理等が施されていない絶縁性基材を意味する。
(1) Insulating base material In this invention, an insulating base material will be specifically limited if it is a base material which consists of an insulating material which has a smooth surface whose arithmetic mean roughness (Ra) is 0.3 micrometer or less. For example, a base material made of an insulating material such as glass, plastic, ceramics, or semiconductor substrate material having a surface arithmetic average roughness (Ra) of 0.3 μm or less can be used. Here, as plastic, it is applied to polyimide resin, polycarbonate resin, polyethylene resin, chlorinated polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, ABS resin, polyphenylene sulfide resin, polybutylene terephthalate resin, liquid crystal polymer, etc. Can do. Examples of the semiconductor substrate material include SiC, GaAs, InP, GaN, Mo, Mo—Cu, and sapphire. In general, the arithmetic roughness (Ra) of the surface of the insulating base material is often 0.3 μm or less, and when the surface of the insulating base material is roughened, the arithmetic average roughness The thickness (Ra) often exceeds 0.3 μm. That is, in the present invention, the insulating base material having a smooth surface with an arithmetic average roughness (Ra) of 0.3 μm or less mainly means an insulating base material whose surface is not subjected to roughening treatment or the like. .

また、本件発明を透光性が要求される用途に適用する場合、当該絶縁性基材は、可視光の透過率が80%以上の透明絶縁性基材であることが好ましい。本件発明は、絶縁性基材の表面に粗化処理を施すことなく、絶縁性基材の表面に密着性の良好な金属被膜をめっき法により形成することができるため、例えば、タッチパネル等の透明電極や、液晶ディスプレイのカラーフィルタ用のブラックマトリクス等の基材の透明性が要求される用途に好適に用いることができるためである。これらの用途に適用する上で、当該絶縁性基材の可視光の透過率は、85%以上であることがより好ましく、90%以上であることがさらに好ましい。なお、本件発明を透光性が要求されない用途に適用する場合、当該絶縁性基材の可視光の透過率が80%未満であってもよいのは勿論である。   Moreover, when applying this invention for the use as which translucency is requested | required, it is preferable that the said insulating base material is a transparent insulating base material with a visible light transmittance of 80% or more. The present invention can form a metal film having good adhesion on the surface of the insulating base material by plating without subjecting the surface of the insulating base material to roughening. This is because it can be suitably used for applications requiring transparency of a substrate such as an electrode and a black matrix for a color filter of a liquid crystal display. In applying to these uses, the visible light transmittance of the insulating base material is more preferably 85% or more, and further preferably 90% or more. In addition, when applying this invention for the use for which translucency is not requested | required, of course, the visible light transmittance | permeability of the said insulating base material may be less than 80%.

(2)導電膜
次に、導電膜について説明する。本件発明において、絶縁性基材の表面に導電膜を設け、この導電膜を介して、絶縁性基材上に金属被膜を形成してもよい。導電膜は、導電性を有する無機酸化物からなる薄膜であれば、特に限定されるものではない。しかしながら、基材の透明性が要求される上記用途に適用することを考慮した場合、当該導電膜は透明導電膜であることが好ましく、酸化インジウムスズ(ITO)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化チタン(TiO)等の金属酸化物からなる透明導電膜であることが好ましい。
(2) Conductive Film Next, the conductive film will be described. In the present invention, a conductive film may be provided on the surface of the insulating base material, and a metal film may be formed on the insulating base material through the conductive film. The conductive film is not particularly limited as long as it is a thin film made of a conductive inorganic oxide. However, when considering application to the above-described applications where the transparency of the substrate is required, the conductive film is preferably a transparent conductive film, such as indium tin oxide (ITO), tin oxide (SnO 2 ), oxidation A transparent conductive film made of a metal oxide such as zinc (ZnO) or titanium oxide (TiO 2 ) is preferable.

(3)金属被膜
本件発明において、金属被膜は、上述したとおり、絶縁性基材の平滑表面上に形成される無電解めっき被膜と、当該無電解めっき被膜の表面に形成された電解めっき被膜とを備える。
(3) Metal film In this invention, as above-mentioned, a metal film is the electroless plating film formed on the smooth surface of an insulating base material, and the electroplating film formed on the surface of the said electroless plating film Is provided.

i)無電解めっき被膜
無電解めっき被膜は、無電解めっき法により、絶縁性基材の平滑表面上に形成された金属被膜であり、絶縁性基材の表面に直接形成されたものであってもよいし、絶縁性基材の表面に、上記導電膜を介して形成されたものであってもよい。本件発明において、無電解めっき被膜は、無電解ニッケル被膜、無電解銅被膜、無電解銅−ニッケル合金被膜等の無電解めっき法により、絶縁性基材又は上記導電膜の表面に形成可能な金属被膜であれば特に限定されるものではない。しかしながら、上記絶縁性基材及び/又は上記導電膜とのより良好な密着性を得ることができるという観点から、無電解ニッケル被膜であることが好ましい。但し、無電解ニッケル被膜とは、無電解法により形成されたニッケルを主成分とする金属被膜をいい、純ニッケル被膜の他、無電解ニッケル−リン被膜等のニッケルを主成分とする各種無電解ニッケル合金被膜を含むものとする。
i) Electroless plating film An electroless plating film is a metal film formed on the smooth surface of an insulating substrate by an electroless plating method, and is formed directly on the surface of the insulating substrate. Alternatively, it may be formed on the surface of the insulating substrate via the conductive film. In the present invention, the electroless plating film is a metal that can be formed on the surface of the insulating substrate or the conductive film by an electroless plating method such as an electroless nickel film, an electroless copper film, or an electroless copper-nickel alloy film. If it is a film, it will not specifically limit. However, an electroless nickel coating is preferred from the viewpoint that better adhesion to the insulating substrate and / or the conductive film can be obtained. However, the electroless nickel coating means a metal coating mainly composed of nickel formed by an electroless method. In addition to a pure nickel coating, various electroless components mainly composed of nickel such as an electroless nickel-phosphorus coating. It shall contain a nickel alloy coating.

無電解めっき被膜の厚みは、1μm以下であることが好ましく、0.8μm以下であることがより好ましく、0.5μm以下であることがさらに好ましい。また、当該無電解めっき被膜は、0.2μm以上の厚みがあれば、その表面に電解めっき被膜を良好に形成することができる。従って、下限値は0.2μm以上であることが好ましいが、当該下限値に関しては、特に限定されるものではなく、当該無電解めっき被膜上に電解めっき被膜を形成可能な導電性があれば、0.2μm未満の厚みであってもよい。   The thickness of the electroless plating film is preferably 1 μm or less, more preferably 0.8 μm or less, and even more preferably 0.5 μm or less. Moreover, if the said electroless-plating film has a thickness of 0.2 micrometer or more, an electroplating film can be favorably formed in the surface. Accordingly, the lower limit is preferably 0.2 μm or more, but the lower limit is not particularly limited, and if there is conductivity capable of forming an electrolytic plating film on the electroless plating film, The thickness may be less than 0.2 μm.

ii)電解めっき被膜
電解めっき被膜は、電解めっき法により、上記無電解めっき被膜の表面に形成された金属被膜であり、本件発明では圧縮応力を有する電解めっき被膜を無電解めっき被膜の表面に設けることにより、上述したとおり、絶縁性基材の平滑表面に対して、粗化処理を施すことなく、密着性の良好な厚膜の金属被膜を形成することができる。
ii) Electrolytic plating film The electrolytic plating film is a metal film formed on the surface of the electroless plating film by an electrolytic plating method. In the present invention, an electrolytic plating film having compressive stress is provided on the surface of the electroless plating film. Thus, as described above, a thick metal film with good adhesion can be formed on the smooth surface of the insulating substrate without roughening the surface.

ここで、当該電解めっき被膜の圧縮応力が0MPa未満である場合、すなわち、当該電解めっき被膜が引張応力を示す場合、無電解めっき被膜自体の絶縁性基材又は導電膜を介した絶縁性基材との密着性が良好であったとしても、無電解めっき被膜の表面に電解めっき被膜を形成することができず、或いは、無電解めっき被膜の表面に電解めっき被膜を形成しても絶縁性基材の表面から剥離してしまい、厚膜の金属被膜を絶縁性基材の表面に形成することができない。   Here, when the compressive stress of the electrolytic plating film is less than 0 MPa, that is, when the electrolytic plating film exhibits tensile stress, the insulating base material of the electroless plating film itself or the insulating base material through the conductive film Even if the adhesion with the electroless plating film is good, the electrolytic plating film cannot be formed on the surface of the electroless plating film, or the insulating group is formed even if the electrolytic plating film is formed on the surface of the electroless plating film. It peels from the surface of the material, and a thick metal film cannot be formed on the surface of the insulating substrate.

上記観点から、電解めっき被膜は、0MPaよりも大きい値の圧縮応力を有することが求められる。より密着性の高い金属被膜を形成するという観点から、電解めっき被膜の圧縮応力は、1MPa以上であることが好ましく、2MPa以上であることがより好ましい。また、上限値は特に限定されるものではない。しかしながら、現時点では98MPaよりも大きな圧縮応力を有する電解めっき被膜を形成することは困難である。また、圧縮応力の高い電解めっき被膜を形成するには、電解めっき液中における後述の添加剤濃度を上げる必要があるが、その場合、電解めっき被膜中に取り込まれる添加剤成分の含有量が増加して、当該電解めっき被膜の電気抵抗率が大きくなったり、膜質が低下するなどの問題が生じる。従って、電気抵抗率が低く、膜質の良好な電解めっき被膜を得るという観点から、電解めっき被膜の圧縮応力は、60MPa以下であることが好ましく、30MPa以下であることがより好ましく、10MPa以下であることがさらに好ましい。但し、本件発明において、当該圧縮応力は、スパイラル応力計(スパイラル・コントラクトメーター)により測定した電解めっき被膜の内部応力をいうものとする。   From the above viewpoint, the electrolytic plating film is required to have a compressive stress having a value larger than 0 MPa. From the viewpoint of forming a metal film with higher adhesion, the compressive stress of the electrolytic plating film is preferably 1 MPa or more, and more preferably 2 MPa or more. Moreover, an upper limit is not specifically limited. However, at present, it is difficult to form an electrolytic plating film having a compressive stress greater than 98 MPa. In addition, in order to form an electrolytic plating film with high compressive stress, it is necessary to increase the concentration of additives described later in the electrolytic plating solution. In this case, the content of additive components incorporated into the electrolytic plating film increases. As a result, problems such as an increase in the electrical resistivity of the electrolytic plating film and a decrease in film quality occur. Therefore, from the viewpoint of obtaining an electroplated film having low electrical resistivity and good film quality, the compressive stress of the electroplated film is preferably 60 MPa or less, more preferably 30 MPa or less, and 10 MPa or less. More preferably. However, in this invention, the said compressive stress shall mean the internal stress of the electrolytic plating film measured with the spiral stress meter (spiral contract meter).

本件発明において、電解めっき被膜は、上記範囲内の圧縮応力を有するものであれば、どのような金属からなる電解めっき被膜であってもよいが、上記無電解めっき被膜の表面に密着性の良好な導電被膜を、絶縁性基材の表面の平滑性を損なうことなく設けることができるという観点から、電解銅被膜を上記無電解めっき被膜の表面に設けることが好ましい。但し、電解銅被膜とは、電解法により形成された銅を主成分とする金属被膜をいい、純度が99.8%以上の純銅被膜の他、電解銅−ニッケル被膜等の各種電解銅合金被膜を含むものとする。   In the present invention, the electrolytic plating film may be an electrolytic plating film made of any metal as long as it has a compressive stress within the above range, but has good adhesion to the surface of the electroless plating film. From the viewpoint that a conductive film can be provided without impairing the smoothness of the surface of the insulating substrate, an electrolytic copper film is preferably provided on the surface of the electroless plating film. However, the electrolytic copper film refers to a metal film mainly composed of copper formed by an electrolysis method. In addition to a pure copper film having a purity of 99.8% or more, various electrolytic copper alloy films such as an electrolytic copper-nickel film. Shall be included.

本件発明において、電解めっき被膜は、結晶粒の平均粒径が1.5μm以下の微細な結晶組織を有することが好ましく、当該平均粒径は1.0μm以下であることがより好ましい。電解めっき法により、無電解めっき被膜上に金属を析出させる際に、所定の添加剤を添加することなどにより、結晶粒が大きく成長する前に、結晶核を次々に発生させることにより、微細な結晶組織を有する電解めっき被膜を得ることができる。微細な結晶組織を有する電解めっき被膜は圧縮応力を示し易くなり、絶縁性基材の表面に密着性のよい厚膜の金属皮膜を形成することが容易になる。   In the present invention, the electrolytic plating film preferably has a fine crystal structure having an average grain size of 1.5 μm or less, and more preferably 1.0 μm or less. When the metal is deposited on the electroless plating film by the electroplating method, by adding a predetermined additive, etc., the crystal nuclei are generated one after the other before the crystal grains grow greatly, An electrolytic plating film having a crystal structure can be obtained. An electrolytic plating film having a fine crystal structure is likely to exhibit compressive stress, and it becomes easy to form a thick metal film having good adhesion on the surface of the insulating substrate.

上述したとおり、電解液に含まれる添加剤は、電解めっき被膜に取り込まれることになる。この添加剤成分として、後述するようにアルキルアミン類、チオ尿素、チオ尿素誘導体等が挙げられる。また、これらの他に、チオ硫酸塩等を用いることもできる。そこで、当該電解めっき被膜はこれらの添加剤成分に起因して、窒素、硫黄及び炭素のうち少なくともいずれか一の元素を含有することが好ましい。   As described above, the additive contained in the electrolytic solution is taken into the electrolytic plating film. Examples of the additive component include alkylamines, thiourea, and thiourea derivatives as described later. In addition to these, thiosulfate and the like can also be used. Therefore, it is preferable that the electrolytic plating film contains at least one element of nitrogen, sulfur and carbon due to these additive components.

当該電解めっき皮膜の厚みは、絶縁性基材の表面に密着性よく形成可能であれば特に限定されるものではないが、0.5μm以上であることが好ましい。この場合、絶縁性基材の表面に、無電解めっき被膜の厚みに加えて、0.5μm以上の厚みの電解めっき被膜を形成することにより、電気抵抗率の低い導電膜を得ることができる。絶縁性基材上に形成される金属被膜の合計厚みが厚い程、電気抵抗率を低くすることができる。このため、当該電解めっき被膜の厚みは、1μm以上であることがより好ましく、2μm以上であることがさらに好ましい。実験により確認した結果、圧縮応力を有する電解めっき被膜を無電解めっき被膜の表面に設けることにより、7μmの厚みの金属被膜についても、絶縁性基材の表面から剥がれることなく、絶縁性基材に良好に密着した金属被膜が得られることが確認された。当該電解めっき被膜の厚みの上限値は、上述したとおり、絶縁性基材の表面に密着性よく形成可能であれば特に限定されるものではない。但し、電解めっき被膜を構成する金属元素や、電解めっき被膜を形成する際に用いる添加剤の種類や濃度、浴温によって、同じ厚みの電解めっき被膜であってもその電気抵抗率が異なる。従って、より抵抗値の低い電解めっき被膜を得るには、これらを調整することが求められる。   The thickness of the electrolytic plating film is not particularly limited as long as it can be formed on the surface of the insulating substrate with good adhesion, but is preferably 0.5 μm or more. In this case, a conductive film having a low electrical resistivity can be obtained by forming an electrolytic plating film having a thickness of 0.5 μm or more on the surface of the insulating substrate in addition to the thickness of the electroless plating film. The electrical resistivity can be lowered as the total thickness of the metal coating formed on the insulating substrate increases. For this reason, the thickness of the electrolytic plating film is more preferably 1 μm or more, and further preferably 2 μm or more. As a result of confirmation by experiment, by providing an electrolytic plating film having compressive stress on the surface of the electroless plating film, a 7 μm-thick metal film can be applied to the insulating substrate without peeling off from the surface of the insulating substrate. It was confirmed that a metal film with good adhesion could be obtained. As described above, the upper limit of the thickness of the electrolytic plating film is not particularly limited as long as it can be formed on the surface of the insulating base material with good adhesion. However, even if the electroplating film has the same thickness, the electrical resistivity varies depending on the metal element constituting the electroplating film, the type and concentration of the additive used when forming the electroplating film, and the bath temperature. Therefore, in order to obtain an electrolytic plating film having a lower resistance value, it is required to adjust these.

以上説明した導電膜及び金属被膜は、絶縁性基材の表面全面に形成されていてもよいが、例えば、絶縁性基材の表面に選択的に形成されていてもよい。絶縁性基材の表面に選択的に導電膜及び金属被膜を設ける方法として、例えば、絶縁性基材の表面全面にこれらの導電膜及び金属被膜を形成した後、エッチング等により配線パターンを形成する方法や、絶縁性基材の表面にこれらの導電膜及び金属被膜を所定の配線パターンに従って、選択的に形成する方法などが挙げられる。   The conductive film and metal film described above may be formed on the entire surface of the insulating base material, but may be selectively formed on the surface of the insulating base material, for example. As a method for selectively providing a conductive film and a metal film on the surface of the insulating substrate, for example, after forming these conductive film and metal film on the entire surface of the insulating substrate, a wiring pattern is formed by etching or the like. Examples thereof include a method and a method of selectively forming these conductive films and metal films on the surface of the insulating substrate according to a predetermined wiring pattern.

2.金属被膜形成方法
次に、本件発明に係る金属被膜形成方法の実施の形態について説明する。本件発明に係る金属被膜の形成方法は、算術平均粗さ(Ra)が0.3μm以下の平滑表面を有する絶縁性基材に金属被膜を形成するための金属被膜形成方法であって、無電解めっき法により、当該絶縁性基材の平滑表面上に無電解めっき被膜を形成する無電解めっき工程と、電解めっき法により、当該無電解めっき被膜の表面に電解めっき被膜を形成する電解めっき工程とを備え、当該電解めっき工程において、添加剤として窒素化合物又は硫黄化合物をを0.02mol/L以上0.3mol/L以下、及び/又は、硫黄化合物を0.001mol/L以上含む電解めっき液が用いられることを特徴とする。ここで、絶縁性基材及び絶縁性基材の平滑表面は上述したとおりであるため、ここでは説明を省略する。また、絶縁性基材の平滑表面に導電膜を設け、この導電膜の表面に無電解めっき被膜が形成されてもよいのも上述したとおりである。以下、導電膜形成工程を含む各工程について、順に説明する。
2. Next, an embodiment of the metal film forming method according to the present invention will be described. The metal film forming method according to the present invention is a metal film forming method for forming a metal film on an insulating substrate having a smooth surface with an arithmetic average roughness (Ra) of 0.3 μm or less, and is electroless An electroless plating process for forming an electroless plating film on the smooth surface of the insulating substrate by a plating method; and an electroplating process for forming an electroplating film on the surface of the electroless plating film by an electrolytic plating method. In the electrolytic plating process, an electrolytic plating solution containing 0.02 mol / L or more and 0.3 mol / L or less of a nitrogen compound or sulfur compound as an additive and / or 0.001 mol / L or more of a sulfur compound as an additive. It is used. Here, since the insulating base and the smooth surface of the insulating base are as described above, the description thereof is omitted here. Further, as described above, a conductive film may be provided on the smooth surface of the insulating substrate, and an electroless plating film may be formed on the surface of the conductive film. Hereinafter, each process including the conductive film forming process will be described in order.

(1)導電膜形成工程
絶縁性基材の表面に無機酸化物からなる導電膜を設ける場合には、例えば、スパッタリング法や物理蒸着法等の従来公知の薄膜形成方法を適宜採用することができる。本件発明において、導電膜は任意の構成である。以下において、絶縁性基材と称した場合、絶縁性基材自体又は、平滑表面に導電膜を備えた絶縁性基材を意味するものとし、絶縁性基材の平滑表面と称した場合、絶縁性基材の平滑表面、又は、絶縁性基材の平滑表面に導電膜が設けられているときには、導電膜の表面を意味するものとする。
(1) Conductive film formation process
In the case where a conductive film made of an inorganic oxide is provided on the surface of the insulating substrate, a conventionally known thin film forming method such as a sputtering method or a physical vapor deposition method can be appropriately employed. In the present invention, the conductive film has an arbitrary configuration. In the following, when referred to as an insulating substrate, it shall mean the insulating substrate itself or an insulating substrate provided with a conductive film on a smooth surface, and when referred to as the smooth surface of an insulating substrate, insulation When the conductive film is provided on the smooth surface of the conductive base material or the smooth surface of the insulating base material, the surface of the conductive film is meant.

(2)無電解めっき工程
無電解めっき工程では、無電解めっき法により、絶縁性基材の平滑表面に無電解めっき被膜を形成する。無電解めっき法により絶縁性基材の表面に金属被膜を形成する場合、一般に、絶縁性基材に対して、脱脂、水洗、コンディショナー処理、触媒付与、アクセレレータ処理等の各種前処理が施される。本件発明においてもこれらの各種前処理を適宜行うことができ、従来公知の各種の無電解めっき方法を適用することができる。但し、本件発明においては、絶縁性基材表面に対する粗化処理は行わないものとする。また、絶縁性基材の表面に導電膜を設けた場合においても、導電膜の表面に粗化処理は施さないものとする。但し、ガラス等の絶縁性基材の平滑表面に直接無電解めっき被膜を形成する場合には、当該絶縁性基材の表面に、金属被膜との密着性を向上させるための表面改質処理(粗化処理は含まれない)を施すことが好ましい。
(2) Electroless plating step In the electroless plating step, an electroless plating film is formed on the smooth surface of the insulating substrate by an electroless plating method. When a metal film is formed on the surface of an insulating substrate by an electroless plating method, generally, the insulating substrate is subjected to various pretreatments such as degreasing, water washing, conditioner treatment, catalyst application, and accelerator treatment. . Also in the present invention, these various pretreatments can be appropriately performed, and various conventionally known electroless plating methods can be applied. However, in this invention, the roughening process with respect to the insulating base material surface shall not be performed. Further, even when a conductive film is provided on the surface of the insulating base material, the surface of the conductive film is not roughened. However, when an electroless plating film is directly formed on the smooth surface of an insulating substrate such as glass, a surface modification treatment for improving the adhesion with the metal coating on the surface of the insulating substrate ( (Roughening treatment is not included).

無電解めっき工程において、例えば、無電解ニッケル被膜を絶縁性基材の表面に形成する場合、次亜リン酸塩を還元剤とした無電解ニッケル−リンめっき液、ホウ水素化合物を還元剤として用いる無電解ニッケル−ボロンめっき液等を用いることができる。また、無電解めっき工程において、例えば、無電解銅被膜を絶縁性基材の表面に形成する場合、エチレンジアミン(EDA)若しくはロシェル塩を錯化剤として、ホルマリンを還元剤として用いる無電解銅めっき液等を用いることができる。   In the electroless plating step, for example, when an electroless nickel coating is formed on the surface of an insulating substrate, an electroless nickel-phosphorous plating solution using hypophosphite as a reducing agent and a borohydride compound are used as the reducing agent. An electroless nickel-boron plating solution or the like can be used. In the electroless plating step, for example, when an electroless copper coating is formed on the surface of an insulating substrate, an electroless copper plating solution using ethylenediamine (EDA) or Rochelle salt as a complexing agent and formalin as a reducing agent. Etc. can be used.

(3)電解めっき工程
電解めっき工程では、添加剤として窒素化合物0.02mol/L以上0.3mol/L以下、及び/又は、硫黄化合物を0.001mol/L以上含む電解めっき液が用いて、無電解めっき被膜上に電解めっき被膜を形成する。添加剤濃度が高い方がより大きな圧縮応力を有する傾向にあるが、添加剤濃度が高くなりすぎると、上述したとおり、電解めっき被膜に取り込まれる窒素等の添加剤成分の含有量が増加し、当該電解めっき被膜の電気抵抗率が大きくなったり、膜質が低下するなどの問題が生じるため好ましくない。これらの観点から、添加剤濃度は上述の範囲内であることが求められる。
(3) Electrolytic plating step In the electrolytic plating step, an electrolytic plating solution containing 0.02 mol / L or more of nitrogen compound and / or 0.001 mol / L or more of a sulfur compound as an additive is used. An electrolytic plating film is formed on the electroless plating film. The higher the additive concentration tends to have a greater compressive stress, but if the additive concentration becomes too high, as described above, the content of additive components such as nitrogen incorporated into the electrolytic plating film increases, This is not preferable because problems such as an increase in electrical resistivity of the electrolytic plating film and deterioration in film quality occur. From these viewpoints, the additive concentration is required to be within the above range.

添加剤としての窒素化合物又は硫黄化合物は、例えば、アルキルアミン類、チオ尿素及びチオ尿素誘導体のいずれか一種又は二種以上であることが好ましい。例えば、電解銅めっき液等にアルキルアミン類を添加することにより、圧縮応力を有する電解銅めっき被膜等を得ることができる。同様に、チオ尿素を電解銅めっき液等の添加剤として用いることにより、圧縮応力を有する電解銅めっき被膜等を得ることができる。チオ尿素を添加剤として用いた場合、絶縁性基材の表面に無電解めっき被膜を介して、密着性よく厚膜(2μm以上)の電解めっき被膜を形成することができる。   The nitrogen compound or sulfur compound as the additive is preferably, for example, one or more of alkylamines, thiourea and thiourea derivatives. For example, an electrolytic copper plating film having compressive stress can be obtained by adding alkylamines to the electrolytic copper plating solution or the like. Similarly, an electrolytic copper plating film having compressive stress can be obtained by using thiourea as an additive such as an electrolytic copper plating solution. When thiourea is used as an additive, a thick (2 μm or more) electrolytic plating film can be formed on the surface of the insulating substrate with good adhesion via an electroless plating film.

これらの添加剤は単独で用いてもよいが、いずれか二種以上を同時に用いることができる。例えば、アルキルアミン類単独で添加剤として用いる場合と比較すると、アルキルアミン類と共にチオ尿素又はチオ尿素誘導体を添加剤として用いれば、より厚膜の電解めっき被膜を密着性よく形成することができる。但し、添加剤としてアルキルアミン類を単独で用いた場合の方が得られた電解銅めっき被膜の電気抵抗率が小さくなる。従って、電気抵抗率の低い金属被膜を絶縁性基材の表面に形成することができるという観点からは、添加剤としてアルキルアミン類を単独で用いることが好ましい。一方、より膜厚の厚い金属被膜を絶縁性基材の表面に形成するという観点からは、チオ尿素又はチオ尿素誘導体を用いることが好ましい。   These additives may be used alone, but any two or more of them can be used simultaneously. For example, compared to the case of using alkylamines alone as an additive, a thicker electrolytic plating film can be formed with better adhesion by using thiourea or a thiourea derivative as an additive together with alkylamines. However, the electrical resistivity of the obtained electrolytic copper plating film becomes smaller when an alkylamine is used alone as an additive. Therefore, from the viewpoint that a metal film having a low electrical resistivity can be formed on the surface of the insulating substrate, it is preferable to use an alkylamine alone as an additive. On the other hand, from the viewpoint of forming a thicker metal film on the surface of the insulating substrate, it is preferable to use thiourea or a thiourea derivative.

アルキルアミン類として、具体的には、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン等を用いることができる。また、チオ尿素は、一般にCHSで表される化合物であるが、本件発明においては、他にも「>N−C(=S)−N<」という構造を有する化合物も含むものとする。また、チオ尿素誘導体として、具体的には、1−アセチルー2−チオ尿素等を挙げることができる。この1−アセチルー2−チオ尿素等のチオ尿素誘導体を用いた場合にも、チオ尿素を用いた場合と同様の効果が得られると考えられる。 Specific examples of alkylamines that can be used include ethylenediamine, diethylenetriamine, and triethylenetetraamine. Further, thiourea is a compound generally represented by CH 4 N 2 S, but in the present invention, other compounds having a structure of “> N—C (═S) —N <” are also included. . Specific examples of thiourea derivatives include 1-acetyl-2-thiourea. Even when this thiourea derivative such as 1-acetyl-2-thiourea is used, it is considered that the same effect as that obtained when thiourea is used is obtained.

当該電解工程では、無電解めっき被膜が形成された絶縁性基材を上記添加剤を上記濃度範囲で含んだ電解めっき液に浸漬し、無電解めっき被膜を陰極とし、例えば、ステンレス電極等を陽極として、電解めっき液の電解を行う。当該電解めっき工程において、電解めっき液の電解は、0.05A/dm以上5A/dm以下の電流密度で行うことが好ましい。より低電流密度条件で電解めっき液の電気分解を行った場合の方が、絶縁性基材の表面により密着性の良好な金属被膜を形成することができる。当該観点から、電解時の電流密度は、3A/dm以下であることがより好ましい。 In the electrolysis step, an insulating base material on which an electroless plating film is formed is immersed in an electrolytic plating solution containing the above additives in the above concentration range, and the electroless plating film is used as a cathode, for example, a stainless electrode or the like is used as an anode. Then, electrolysis of the electrolytic plating solution is performed. In the electrolytic plating step, electrolysis of the electrolytic plating solution is preferably performed at a current density of 0.05 A / dm 2 or more and 5 A / dm 2 or less. When the electrolytic plating solution is electrolyzed under a lower current density condition, a metal film having better adhesion can be formed on the surface of the insulating substrate. From this viewpoint, the current density during electrolysis is more preferably 3 A / dm 2 or less.

また、電解時の電解めっき浴の浴温は20℃以上であることが好ましい。浴温を高くするほど、電気抵抗率の低い金属被膜を得ることができる傾向にあり、25℃以上であることがより好ましい。一方、浴温が高くなると電解めっき浴が分解しやすくなる。当該観点から電解めっき浴の浴温は60℃以下であることが好ましく、30℃以下であることがより好ましい。但し、添加剤として硫黄化合物を含む場合は、密着性の良好な金属被膜を得るには浴温を30℃以下とすることが好ましい。なお、添加剤として窒素化合物のみを含む場合は、浴温が30℃以上であっても、絶縁性基材に対する密着性の良好な金属被膜を得ることができる。   Moreover, it is preferable that the bath temperature of the electroplating bath at the time of electrolysis is 20 degreeC or more. As the bath temperature is increased, a metal film having a low electrical resistivity tends to be obtained, and it is more preferably 25 ° C. or higher. On the other hand, when the bath temperature increases, the electrolytic plating bath tends to decompose. From this viewpoint, the bath temperature of the electrolytic plating bath is preferably 60 ° C. or less, and more preferably 30 ° C. or less. However, when a sulfur compound is included as an additive, the bath temperature is preferably 30 ° C. or lower in order to obtain a metal film with good adhesion. In addition, when only a nitrogen compound is included as an additive, even if bath temperature is 30 degreeC or more, the metal film with favorable adhesiveness with respect to an insulating base material can be obtained.

以上の方法により、無電解めっき被膜の表面に0.5μm以上の厚みで電解めっき被膜を形成することができ、無電解めっき被膜及び電解めっき被膜からなる金属被膜を絶縁性基材の表面に密着性よく形成することができる。当該方法において形成された電解めっき被膜は、圧縮応力を有する。また、当該方法において形成された電解めっき被膜は微細な結晶組織を有する傾向にあり、当該電解めっき被膜を構成する結晶粒の平均粒径は1.5μm以下、好ましくは1μm以下となる。また、絶縁性基材の表面に比較的厚膜の電解めっき被膜を形成することができるため、電気抵抗率の小さい導電膜を得ることができる。   By the above method, an electrolytic plating film can be formed on the surface of the electroless plating film with a thickness of 0.5 μm or more, and the electroless plating film and the metal film made of the electrolytic plating film are adhered to the surface of the insulating substrate. It can be formed with good properties. The electrolytic plating film formed in the method has a compressive stress. Moreover, the electrolytic plating film formed by the method tends to have a fine crystal structure, and the average particle diameter of the crystal grains constituting the electrolytic plating film is 1.5 μm or less, preferably 1 μm or less. In addition, since a relatively thick electrolytic plating film can be formed on the surface of the insulating substrate, a conductive film having a low electrical resistivity can be obtained.

次に、実施例および比較例を示して本件発明を具体的に説明する。但し、本件発明は以下の実施例に限定されるものではない。   Next, the present invention will be specifically described with reference to examples and comparative examples. However, the present invention is not limited to the following examples.

実施例1では、図1に示すように、まず、ITOからなる透明導電膜11を備えたガラス製の絶縁性基材10の表面に、以下の無電解めっき工程により無電解ニッケル被膜12を形成し、当該無電解ニッケル被膜12上に以下の電解めっき工程により電解銅被膜13を形成し、無電解ニッケル被膜12と電解銅被膜とからなる金属被膜を設けた。当該透明導電膜11の表面の算術平均粗さ(Ra)は1.5nmである。以下、無電解めっき工程と電解めっき工程とについて説明する。   In Example 1, as shown in FIG. 1, first, an electroless nickel coating 12 is formed on the surface of a glass insulating substrate 10 provided with a transparent conductive film 11 made of ITO by the following electroless plating process. Then, an electrolytic copper coating 13 was formed on the electroless nickel coating 12 by the following electrolytic plating process, and a metal coating composed of the electroless nickel coating 12 and the electrolytic copper coating was provided. The arithmetic average roughness (Ra) of the surface of the transparent conductive film 11 is 1.5 nm. Hereinafter, the electroless plating process and the electrolytic plating process will be described.

(1)無電解めっき工程
無電解めっき工程では、無電解めっき法により、絶縁性基材10の表面に設けられた透明導電膜11の表面(平滑表面)に厚さが0.2μmの無電解ニッケル被膜を形成した。
(1) Electroless plating step In the electroless plating step, an electroless plating method has an electroless thickness of 0.2 μm on the surface (smooth surface) of the transparent conductive film 11 provided on the surface of the insulating substrate 10 by an electroless plating method. A nickel coating was formed.

(2)電解めっき工程
上記無電解めっき工程において得られた無電解ニッケル被膜の表面に、市販の電解銅めっき液(メルテックス株式会社製電解銅めっき液:メルカパーCF−2170)に対して、エチレンジアミンを0.05mol/L添加した電解銅めっき液を用いて、電流密度1A/dmで電解し、2μmの厚みの電解銅被膜を形成した。以上の工程で得られた試料を試料1−1とする。さらに、当該市販の電解銅めっき液に対して、エチレンジアミンを0.05mol/L、チオ尿素(CHS)0.001mol/Lを添加した電解銅めっき液を用いて、7μmの厚みの電解銅被膜を形成したものを試料1−2とした。図2に、試料1−2の断面のSEM像を示す。
(2) Electrolytic plating step On the surface of the electroless nickel coating obtained in the electroless plating step, ethylenediamine with respect to a commercially available electrolytic copper plating solution (Meltex Co., Ltd. electrolytic copper plating solution: Mercapa CF-2170) Was electrolyzed at a current density of 1 A / dm 2 using an electrolytic copper plating solution to which 0.05 mol / L was added to form an electrolytic copper film having a thickness of 2 μm. Let the sample obtained at the above process be the sample 1-1. Furthermore, with respect to the commercially available electrolytic copper plating solution, an electrolytic copper plating solution to which 0.05 mol / L of ethylenediamine and 0.001 mol / L of thiourea (CH 4 N 2 S) are added is used. A sample formed with an electrolytic copper coating was designated Sample 1-2. In FIG. 2, the SEM image of the cross section of the sample 1-2 is shown.

実施例2では、電解めっき工程において、下記表1に示す組成を有する電解銅めっき液を用いた以外は、実施例1と同様にして透明導電膜を備えた絶縁性基材の表面に無電解ニッケル被膜を形成し、当該無電解ニッケル被膜の表面に電解銅被膜を形成して、試料2−1と試料2−2とを得た。なお、表1に示すとおり、試料2−1を形成する際に用いた電解銅めっき液にはエチレンジアミンを0.28mol/Lの濃度で含み、試料2−2を形成する際に用いた電解銅めっき液にはエチレンジアミン0.28mol/Lに加えて、チオ尿素を0.001mol/Lの濃度で含んでいる。   In Example 2, the surface of the insulating base material provided with the transparent conductive film was electrolessly treated in the same manner as in Example 1 except that the electrolytic copper plating solution having the composition shown in Table 1 below was used in the electrolytic plating process. A nickel coating was formed, and an electrolytic copper coating was formed on the surface of the electroless nickel coating to obtain Sample 2-1 and Sample 2-2. As shown in Table 1, the electrolytic copper plating solution used when forming Sample 2-1 contains ethylenediamine at a concentration of 0.28 mol / L, and the electrolytic copper used when forming Sample 2-2. In addition to ethylenediamine 0.28 mol / L, the plating solution contains thiourea at a concentration of 0.001 mol / L.

比較例Comparative example

[比較例1]
比較例1として、電解めっき工程において、エチレンジアミン及びチオ尿素を含まない電解銅めっき液を用いた以外は、実施例1と同様にして、透明導電膜を備えた絶縁性基材の表面に無電解ニッケル被膜を形成し、当該無電解ニッケル被膜の表面に電解銅被膜を形成した。これを比較試料1とする。
[Comparative Example 1]
As Comparative Example 1, electroless plating was performed on the surface of an insulating substrate provided with a transparent conductive film in the same manner as in Example 1 except that an electrolytic copper plating solution not containing ethylenediamine and thiourea was used in the electrolytic plating step. A nickel coating was formed, and an electrolytic copper coating was formed on the surface of the electroless nickel coating. This is designated as Comparative Sample 1.

[比較例2]
比較例2の試料として、電解めっき工程において、エチレンジアミン及びチオ尿素を含まない電解銅めっき液を用いた以外は、実施例2と同様にして、透明導電膜を備えた絶縁性基材の表面に無電解ニッケル被膜を形成し、当該無電解ニッケル被膜の表面に電解銅被膜を形成した。これを比較試料2とする。
[Comparative Example 2]
As a sample of Comparative Example 2, in the electrolytic plating process, except that an electrolytic copper plating solution not containing ethylenediamine and thiourea was used, in the same manner as in Example 2, the surface of the insulating base material provided with the transparent conductive film was used. An electroless nickel coating was formed, and an electrolytic copper coating was formed on the surface of the electroless nickel coating. This is designated as Comparative Sample 2.

[評価]
実施例1、実施例2及び比較例で得た各試料の電解銅被膜の内部応力をスパイラル応力計により測定した結果を表2に示す。表2に示すように実施例1及び実施例2で得た試料1−1〜試料2−2は0MPa〜58.8MPaの圧縮応力を示した。一方、比較試料1は137.3MPa〜225.6MPaの引張応力を示し、比較試料2は166.7MPa〜196.1MPaの引張応力を示した。また、実施例1及び実施例2で得た試料1−1〜試料2−2はいずれも絶縁性基材の表面、具体的には透明導電膜の表面に対する密着性は良好で、剥がれなどは生じなかった。特に、エチレンジアミンに加えて、チオ尿素を添加した電解銅めっき液を用いて作製した試料1−2及び試料2−2の絶縁性基材の表面に対する密着性は良好であり、試料1−1及び試料2−1と比較すると、電解銅被膜の厚みを増加させた場合にも良好な密着性を維持することができた。これに対して比較試料1及び比較試料2はいずれも絶縁性基材の表面から剥がれてしまい、実用上十分な密着性を得ることができなかった。なお、表2において、「◎」は密着性が特に良好であることを意味し、「○」は密着性が良好であることを意味し、「×」は密着性が得られないことを意味する。
[Evaluation]
Table 2 shows the results of measuring the internal stress of the electrolytic copper coating of each sample obtained in Example 1, Example 2 and Comparative Example with a spiral stress meter. As shown in Table 2, Sample 1-1 to Sample 2-2 obtained in Example 1 and Example 2 exhibited a compressive stress of 0 MPa to 58.8 MPa. On the other hand, Comparative Sample 1 showed a tensile stress of 137.3 MPa to 225.6 MPa, and Comparative Sample 2 showed a tensile stress of 166.7 MPa to 196.1 MPa. Sample 1-1 to Sample 2-2 obtained in Example 1 and Example 2 both have good adhesion to the surface of the insulating substrate, specifically the surface of the transparent conductive film. Did not occur. In particular, the adhesion to the surface of the insulating substrate of Sample 1-2 and Sample 2-2, which were prepared using an electrolytic copper plating solution to which thiourea was added in addition to ethylenediamine, was good. Compared to Sample 2-1, good adhesion could be maintained even when the thickness of the electrolytic copper coating was increased. On the other hand, Comparative Sample 1 and Comparative Sample 2 were both peeled off from the surface of the insulating substrate, and practically sufficient adhesion could not be obtained. In Table 2, “◎” means that adhesion is particularly good, “◯” means that adhesion is good, and “×” means that adhesion cannot be obtained. To do.

本件発明によれば、算術平均粗さ(Ra)が0.3μm以下の平滑表面を有する絶縁性基材の表面に、無電解めっき被膜と、圧縮応力を有する電解めっき被膜とを備えた金属被膜を設けることにより、粗化処理を施すことなく、絶縁性基材の表面に密着性よく厚膜の金属被膜を設けることができる。   According to the present invention, a metal coating comprising an electroless plating coating and an electrolytic plating coating having a compressive stress on the surface of an insulating substrate having a smooth surface with an arithmetic average roughness (Ra) of 0.3 μm or less. By providing this, a thick metal film can be provided on the surface of the insulating base material with good adhesion without performing a roughening treatment.

Claims (9)

算術平均粗さ(Ra)が0.3μm以下の平滑表面を有するガラス製の絶縁性基材に設けられる金属被膜であって、
無電解めっき法により、当該平滑表面上に形成された無電解めっき被膜と、
電解めっき法により、当該無電解めっき被膜の表面に形成された電解めっき被膜と、
を備え、
当該電解めっき被膜は圧縮応力を有すること、
を特徴とする金属被膜。
A metal film provided on an insulating base made of glass having a smooth surface with an arithmetic average roughness (Ra) of 0.3 μm or less,
An electroless plating film formed on the smooth surface by an electroless plating method;
An electrolytic plating film formed on the surface of the electroless plating film by an electrolytic plating method;
With
The electrolytic plating film has compressive stress,
A metal coating characterized by
前記電解めっき被膜は窒素、硫黄及び炭素のうち少なくともいずれか一の元素を含有する請求項1に記載の金属被膜。   The metal coating according to claim 1, wherein the electrolytic plating film contains at least one element of nitrogen, sulfur, and carbon. 前記電解めっき被膜はアルキルアミン類に起因する窒素又は炭素を含有する請求項1又は請求項2に記載の金属被膜。The metal film according to claim 1 or 2, wherein the electrolytic plating film contains nitrogen or carbon derived from alkylamines. 前記無電解めっき被膜は、無電解ニッケル被膜であり、前記電解めっき被膜は、電解銅被膜である請求項1〜請求項3のいずれか一項に記載の金属被膜。   The metal film according to any one of claims 1 to 3, wherein the electroless plating film is an electroless nickel film, and the electrolytic plating film is an electrolytic copper film. 前記ガラス製の絶縁性基材の前記平滑表面には、無機酸化物からなる導電膜が設けられており、
当該導電膜上に前記無電解めっき被膜が形成されている請求項1〜請求項4のいずれか一項に記載の金属被膜。
The smooth surface of the insulating substrate made of glass is provided with a conductive film made of an inorganic oxide,
The metal film according to any one of claims 1 to 4, wherein the electroless plating film is formed on the conductive film.
算術平均粗さ(Ra)が0.3μm以下の平滑表面を有する絶縁性基材に設けられる金属被膜であって、
無電解めっき法により、当該平滑表面上に形成された無電解めっき被膜と、
電解めっき法により、当該無電解めっき被膜の表面に形成された電解めっき被膜と、
を備え、
当該電解めっき被膜は圧縮応力を有し、
前記絶縁性基材の前記平滑表面には、無機酸化物からなる導電膜が設けられており、
当該導電膜上に前記無電解めっき被膜が形成されていることを特徴とする金属被膜。
A metal film provided on an insulating substrate having a smooth surface with an arithmetic average roughness (Ra) of 0.3 μm or less,
An electroless plating film formed on the smooth surface by an electroless plating method;
An electrolytic plating film formed on the surface of the electroless plating film by an electrolytic plating method;
With
The electrolytic plating film has a compressive stress,
The smooth surface of the insulating base material is provided with a conductive film made of an inorganic oxide,
A metal film, wherein the electroless plating film is formed on the conductive film.
算術平均粗さ(Ra)が0.3μm以下の平滑表面を有するガラス製の絶縁性基材に金属被膜を形成するための金属被膜形成方法であって、
無電解めっき法により、当該絶縁性基材の平滑表面上に無電解めっき被膜を形成する無電解めっき工程と、
電解めっき法により、当該無電解めっき被膜の表面に電解めっき被膜を形成する電解めっき工程と、
を備え、
当該電解めっき工程において、添加剤としてアルキルアミン類を0.02mol/L以上0.3mol/L以下含む電解めっき液が用いられること、
を特徴とする金属被膜形成方法。
A metal film forming method for forming a metal film on an insulating base made of glass having a smooth surface with an arithmetic average roughness (Ra) of 0.3 μm or less,
An electroless plating step of forming an electroless plating film on the smooth surface of the insulating substrate by an electroless plating method;
An electrolytic plating step of forming an electrolytic plating film on the surface of the electroless plating film by an electrolytic plating method;
With
In the electrolytic plating step, an electrolytic plating solution containing alkylamines in an amount of 0.02 mol / L to 0.3 mol / L as an additive is used,
A metal film forming method characterized by the above.
前記電解めっき液は、添加剤として、チオ尿素及び/又はチオ尿素誘導体を0.001mol/L以上含む請求項7に記載の金属被膜形成方法。 The metal film forming method according to claim 7, wherein the electrolytic plating solution contains 0.001 mol / L or more of thiourea and / or a thiourea derivative as an additive . 前記電解めっき工程は、0.1A/dm以上5A/dm以下の電流密度で行う請求項7又は請求項8に記載の金属被膜形成方法。 It said electroplating step, the metal film forming method according to claim 7 or claim 8 carried out at a current density of 0.1 A / dm 2 or more 5A / dm 2 or less.
JP2014162320A 2014-08-08 2014-08-08 Metal film and method for forming metal film Active JP6485896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014162320A JP6485896B2 (en) 2014-08-08 2014-08-08 Metal film and method for forming metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014162320A JP6485896B2 (en) 2014-08-08 2014-08-08 Metal film and method for forming metal film

Publications (2)

Publication Number Publication Date
JP2016037642A JP2016037642A (en) 2016-03-22
JP6485896B2 true JP6485896B2 (en) 2019-03-20

Family

ID=55528992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014162320A Active JP6485896B2 (en) 2014-08-08 2014-08-08 Metal film and method for forming metal film

Country Status (1)

Country Link
JP (1) JP6485896B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207490A (en) * 1994-01-19 1995-08-08 Sumitomo Metal Mining Co Ltd Copper electroplating liquid
JP2004333764A (en) * 2003-05-06 2004-11-25 Canon Electronics Inc Fixing belt
JP4327163B2 (en) * 2003-10-17 2009-09-09 日鉱金属株式会社 Electroless copper plating solution and electroless copper plating method
JP2008012861A (en) * 2006-07-07 2008-01-24 Hitachi Maxell Ltd Metal stamper, manufacturing method of metal stamper, and pattern transfer molding system
JP5448524B2 (en) * 2008-04-23 2014-03-19 富士フイルム株式会社 Laminated film for plating, surface metal film material production method and surface metal film material
US20140008234A1 (en) * 2012-07-09 2014-01-09 Rohm And Haas Electronic Materials Llc Method of metal plating semiconductors
JP6178958B2 (en) * 2012-12-27 2017-08-16 石原ケミカル株式会社 Electro copper plating method

Also Published As

Publication number Publication date
JP2016037642A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5598700B2 (en) Electrolytic copper foil and method for producing the same
WO2005123987A1 (en) Tin-based plating film and method for forming the same
TW201009130A (en) Copper-foil roughening treatment and copper foil for printed circuit boards obtained using said treatment
Hong et al. Influence of complexing agents on texture formation of electrodeposited copper
TWI227753B (en) Electrolytic copper plating method, phosphorus-containing anode for electrolytic copper plating
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
JP4756637B2 (en) Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte
JP6485896B2 (en) Metal film and method for forming metal film
TW201446490A (en) Amorphous material capable of inhibiting the growth of tin whisker
JP6086531B2 (en) Silver plating material
JP2008109111A (en) To-resin adhesive layer and manufacturing method of laminate using it
Lee et al. Effect of 2-Mercapto-5-benzimidazolesulfonic acid in superconformal Cu electroless deposition
JPWO2009157457A1 (en) Composite material for electric and electronic parts and electric and electronic parts using the same
JP5728118B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
JP2006336079A (en) Copper strike plating method
JP2018123425A (en) Aluminum based plating material and method for producing the same
JP4411289B2 (en) Wiring board
CN108103534A (en) A kind of preparation method of metal grill film
JP2019112707A (en) Aluminum-based plating treatment material and production method thereof
JP7000269B2 (en) Sheet material, metal mesh, and their manufacturing method
JP5025815B1 (en) Hard gold plating solution
US20140308538A1 (en) Surface treated aluminum foil for electronic circuits
KR20090098538A (en) Method for releasing deposit stress of cu electroplating and cu plating bath using the same
JP5728117B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
JP2002302778A (en) Method of forming electroconductive part on anodic- oxidized film of aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190215

R150 Certificate of patent or registration of utility model

Ref document number: 6485896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250