JP6485639B2 - 経路生成装置、経路生成方法、および経路生成プログラム - Google Patents

経路生成装置、経路生成方法、および経路生成プログラム Download PDF

Info

Publication number
JP6485639B2
JP6485639B2 JP2015144993A JP2015144993A JP6485639B2 JP 6485639 B2 JP6485639 B2 JP 6485639B2 JP 2015144993 A JP2015144993 A JP 2015144993A JP 2015144993 A JP2015144993 A JP 2015144993A JP 6485639 B2 JP6485639 B2 JP 6485639B2
Authority
JP
Japan
Prior art keywords
vehicle
road
route
unit
end point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015144993A
Other languages
English (en)
Other versions
JP2017027354A (ja
Inventor
徹 幸加木
徹 幸加木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015144993A priority Critical patent/JP6485639B2/ja
Publication of JP2017027354A publication Critical patent/JP2017027354A/ja
Application granted granted Critical
Publication of JP6485639B2 publication Critical patent/JP6485639B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

本発明は、経路生成装置、経路生成方法、および経路生成プログラムに関する。
車両の通過点を設定し、通過点を通るようにスプライン関数により軌道を生成する技術が知られている(例えば、特許文献1参照)。この軌道生成技術では、地図情報に始点、終点、および通過交差点を指示し、指示された始点、終点、および通過交差点を通る主要通過点を作成し、主要通過点を通るスプライン曲線に沿って軌道を作成している。
特開平8−123547号公報
しかしながら、スプライン曲線は、始点や終点その他の情報に依存するため、軌道が道路からはみ出す場合があった。これに対し、特許文献1に記載された技術では、軌道が道路からはみ出している場合には主要通過点を追加または修正して再度軌道を生成しているので、修正した軌道が道路からはみ出すことを抑制できるものの、適切な位置に主要通過点を設定しないと、修正した軌道が道路形状に沿わない可能性がある。また、特許文献1に記載された技術は、主要通過点を追加または修正する度に軌道の生成および評価を行う必要があり、処理量が多くなる場合もあった。
本発明は、このような事情を考慮してなされたものであり、処理量の増加を抑制しつつ道路形状により近い経路を生成することができる経路生成装置、経路生成方法、および経路生成プログラムを提供することを目的の一つとする。
請求項1記載の発明は、車両の挙動を検出する検出部(20)と、現在の車両の位置に基づく目標経路の始点、地図情報に基づく目標経路の終点、および前記検出部により検出された車両の挙動に基づく大きさおよび方向を有する打ち出しベクトルを設定する設定部(113)と、前記地図情報に含まれる道路の形状情報に基づいて、前記打ち出しベクトルを補正する補正部(115)と、前記設定部により設定された始点および終点と、前記補正部により補正された打ち出しベクトルとに基づいて前記始点から前記終点までを補間する曲線を演算する経路演算部(116)と、を備え、前記補正部は、前記道路の形状情報から得られる道路の曲率に応じたゲインを乗算することで、前記打ち出しベクトルを補正する、経路生成装置(100、110)である
請求項記載の発明は、請求項1に記載の発明において、前記補正部は、前記道路の曲率とゲインの関係を規定したテーブルを検索することで、前記ゲインを導出する。
請求項記載の発明は、請求項2に記載の発明において、前記検出部は、前記車両の速度を検出し、前記補正部は、前記検出部により検出された前記車両の速度に基づいて前記道路の曲率に対応したゲインを変更する。
請求項記載の発明は、請求項1からのうちいずれか1項に記載の発明において、前記検出部は、前記車両のステアリング操舵角または前記車両のヨーレート角を検出し、前記補正部は、前記検出部により検出された前記車両のステアリング操舵角またはヨーレート角に基づいて前記打ち出しベクトルの方向を補正する。
請求項記載の発明は、請求項1から3のうちいずれか1項に記載の発明において、前記補正部は、前記道路の曲率が高くなるに従って低下する傾向を有し、前記低下する過程で上方向に凸となるような曲線から下方向に凸となるような曲線に変化する特性に従って、前記ゲインを変化させる。
請求項記載の発明は、車載コンピュータが、現在の車両の位置に基づく目標経路の始点、地図情報に基づく目標経路の終点、および前記車両の挙動に基づく大きさおよび方向を有する打ち出しベクトルを設定し、前記地図情報に含まれる道路の形状情報に基づいて、前記打ち出しベクトルを補正し、前記設定した始点および終点と、前記補正した打ち出しベクトルとに基づいて前記始点から前記終点までを補間する曲線を演算し、前記道路の形状情報から得られる道路の曲率に応じたゲインを乗算することで、前記打ち出しベクトルを補正する
請求項記載の発明は、車載コンピュータに、現在の車両の位置に基づく目標経路の始点、地図情報に基づく目標経路の終点、および前記車両の挙動に基づく大きさおよび方向を有する打ち出しベクトルを設定させ、前記地図情報に含まれる道路の形状情報に基づいて、前記打ち出しベクトルを補正させ、前記設定させた始点および終点と、前記補正させた打ち出しベクトルとに基づいて前記始点から前記終点までを補間する曲線を演算させ、前記道路の形状情報から得られる道路の曲率に応じたゲインを乗算することで、前記打ち出しベクトルを補正させる。
請求項1、請求項および請求項記載の発明によれば、地図情報に含まれる道路の形状情報に基づいて前記曲線の演算手法を修正して、始点から終点までを補間する曲線を演算するので、道路の形状によって目標経路が道路からはみ出るような状況であっても、処理量の増加を抑制しつつ道路形状により近い経路を生成することができる。
また、請求項1、請求項6および請求項7記載の発明によれば、打ち出しベクトルを構成する速度にゲインを乗算することで、曲線の演算手法を修正するので、車両の速度が高く、道路の形状に対して目標経路が道路からはみ出るような状況であっても、道路形状により近い経路を生成することができる。
請求項記載の発明によれば、道路の形状情報から得られる道路の曲率を用いて、道路の曲率とゲインの関係を規定したテーブルを検索することで、ゲインを導出するので、道路の曲率によって始点から終点までを補間する曲線を変更することができ、道路の曲率に対応して道路の形状により近い経路を生成することができる。
請求項記載の発明によれば、車両の速度に基づいて道路の曲率に対応したゲインを変更するので、車両の速度に対応したゲインにより打ち出しベクトルの大きさを変更でき、道路の形状により近い経路を生成することができる。
請求項記載の発明によれば、車両のステアリング操舵角または車両のヨーレート角に基づいて打ち出しベクトルの方向を設定するので、ステアリング操舵角およびヨーレート角に対応して打ち出しベクトルの角度を変更でき、道路の形状により近い経路を生成することができる。
請求項記載の発明によれば、道路の曲率が高くなるに従って低下する傾向を有し、低下する過程で上方向に凸となるような曲線から下方向に凸となるような曲線に変化する特性に従って、ゲインを変化させるので、道路の曲率に対応してより細やかにゲインを調整して、さらに道路の形状に近い経路を生成することができる。
実施形態に係る車両制御装置100を中心とした自車両の機能構成図である。 実施形態に係る経路生成部110の機能的な構成を示すブロック図である。 実施形態の経路生成部110により目標経路を演算する処理の流れを示すフローチャートである。 実施形態の経路生成部110により目標経路を演算する処理を説明する図である。 実施形態における道路Lの曲率半径とゲインとの関係を示す図である。 実施形態における曲率−ゲインテーブルデータ138の一例を示す図である。 実施形態の経路演算部116により目標経路を演算することを説明する図である。 比較例として示す目標経路Tg#を示す図である。 実施形態のエルミート関数により目標経路を演算することを説明する図である。 他の変形例の車両制御装置100Aを中心とした自車両の機能構成図である。
以下、図面を参照し、本発明の経路生成装置、経路生成方法、および経路生成プログラムの実施形態について説明する。
図1は、実施形態に係る車両制御装置100を中心とした自車両の機能構成図である。自車両には、ナビゲーション装置10と、車両センサ20と、操作デバイス30と、操作検出センサ32と、切替スイッチ40と、走行駆動力出力装置50と、ステアリング装置52、ブレーキ装置54と、車両制御装置100とが搭載される。
ナビゲーション装置10は、GNSS(Global Navigation Satellite System)受信機や地図情報(ナビ地図)、ユーザインターフェースとして機能するタッチパネル式表示装置、スピーカ、マイク等を有する。ナビゲーション装置10は、GNSS受信機によって自車両の位置を特定し、その位置からユーザによって指定された目的地までの経路を導出する。ナビゲーション装置10により導出された経路は、地図情報132に含まれるリンク、およびノードの組み合わせにより定義される。ノードとは、交差点等の道路網を表現する上の結節点を表す情報である。リンクとは、ノード間の道路区間を表す情報である。
ナビゲーション装置10により導出された経路は、経路情報134として記憶部130に格納される。自車両の位置は、車両センサ20の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。また、ナビゲーション装置10は、車両制御装置100が手動運転モードを実行している際に、目的地に至る経路について音声やナビ表示によって案内を行う。なお、自車両の位置を特定するための構成は、ナビゲーション装置10とは独立して設けられてもよい。また、ナビゲーション装置10は、例えば、ユーザの保有するスマートフォンやタブレット端末等の端末装置の一機能によって実現されてもよい。この場合、端末装置と車両制御装置100との間で無線または通信によって情報の送受信が行われる。
車両センサ20は、自車両の速度(車速)を検出する車速センサ22と、鉛直軸回りの角速度を検出するヨーレートセンサ24とを備える。車両センサ20は、加速度を検出する加速度センサ、および自車両の向きを検出する方位センサ等を含んでいてもよい。
操作デバイス30は、例えば、アクセルペダルやステアリングホイール、ブレーキペダル、シフトレバー等を含む。操作デバイス30には、運転者による操作の有無や量を検出する操作検出センサ32が取り付けられている。操作検出センサ32は、例えば、アクセル開度センサ、ステアリングトルクセンサ、ブレーキセンサ、シフト位置センサ等を含む。操作検出センサ32は、検出結果としてのアクセル開度、ステアリングトルク、ブレーキ踏量、シフト位置等を走行制御部120に出力する。なお、これに代えて、操作検出センサ32の検出結果が、直接的に走行駆動力出力装置50、ステアリング装置52、またはブレーキ装置54に出力されてもよい。
切替スイッチ40は、運転者等によって操作されるスイッチである。切替スイッチ40は、機械式のスイッチであってもよいし、ナビゲーション装置10のタッチパネル式表示装置に設けられるGUI(Graphical User Interface)スイッチであってもよい。切替スイッチ40は、運転者が手動で運転する手動運転モードと、運転者が操作を行わない(或いは手動運転モードに比して操作量が小さい、または操作頻度が低い)状態で走行する自動運転モードとの切替指示を受け付け、走行制御部120による制御モードを自動運転モードまたは手動運転モードのいずれか一方に指定する制御モード指定信号を生成する。
走行駆動力出力装置50は、例えば、エンジンと走行用モータのうち一方または双方を含む。走行駆動力出力装置50がエンジンのみを有する場合、走行駆動力出力装置50は更にエンジンを制御するエンジンECU(Electronic Control Unit)を含む。エンジンECUは、例えば、走行制御部120から入力される情報に従い、スロットル開度やシフト段等を調整することで、車両が走行するための走行駆動力(トルク)を制御する。走行駆動力出力装置50が走行用モータのみを有する場合、走行駆動力出力装置50は、走行用モータを駆動するモータECUを含む。モータECUは、例えば、走行用モータに与えるPWM信号のデューティ比を調整することで、車両が走行するための走行駆動力を制御する。走行駆動力出力装置50がエンジンと走行用モータの双方を含む場合は、エンジンECUとモータECUの双方が協調して走行駆動力を制御する。
ステアリング装置52は、例えば、ラックアンドピニオン機能等に力を作用させて転舵輪の向きを変更可能な電動モータ等を備える。ステアリング装置52は、ステアリング操舵角(または実舵角)を検出する操舵角センサ52aを備える。ステアリング装置52は、走行制御部120から入力される情報に従い、電動モータを駆動する。
ブレーキ装置54は、ブレーキペダルになされたブレーキ操作が油圧として伝達されるマスターシリンダー、ブレーキ液を蓄えるリザーバータンク、各車輪に出力される制動力を調節するブレーキアクチュエータ等を備える。ブレーキ装置54は、走行制御部120から入力される情報に従い、所望の大きさのブレーキトルクが各車輪に出力されるように、ブレーキアクチュエータ等を制御する。なお、ブレーキ装置54は、上記説明した油圧により作動する電子制御式ブレーキ装置に限らず、電動アクチュエーターにより作動する電子制御式ブレーキ装置であってもよい。
以下、車両制御装置100について説明する。車両制御装置100は、例えば、自車位置認識部102と、行動計画生成部104と、経路生成部110と、走行制御部120と、制御切替部122と、記憶部130とを備える。自車位置認識部102、行動計画生成部104、経路生成部110、走行制御部120、および制御切替部122のうち一部または全部は、CPU(Central Processing Unit)等のプロセッサ(車載コンピュータ)がプログラムを実行することにより機能するソフトウェア機能部である。また、これらのうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。また、記憶部130は、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等で実現される。プログラムは、予め記憶部130に格納されていてもよいし、車載インターネット設備等を介して外部装置からダウンロードされてもよい。また、プログラムを格納した可搬型記憶媒体が図示しないドライブ装置に装着されることで記憶部130にインストールされてもよい。
自車位置認識部102は、記憶部130に格納された地図情報132と、ナビゲーション装置10、または車両センサ20から入力される情報とに基づいて、自車両が走行している車線(自車線)、および、走行車線に対する自車両の相対位置を認識する。地図情報132は、例えば、ナビゲーション装置10が有するナビ地図よりも高精度な地図情報であり、車線の中央の情報あるいは車線の境界の情報等を含んでいる。自車位置認識部102は、例えば、自車両の基準点(例えば車両の先端部)の走行車線中央からの乖離、および自車両の進行方向の走行車線中央を連ねた線に対してなす角度を、走行車線に対する自車両の相対位置として認識する。なお、これに代えて、自車位置認識部102は、自車線のいずれかの側端部に対する自車両の基準点の位置などを、走行車線に対する自車両の相対位置として認識してもよい。なお、自車位置認識部102は、ファインダ、レーダ、またはカメラにより車線を認識して、自車両の車線に対する相対位置を認識してもよい。
行動計画生成部104は、所定の区間における行動計画を生成する。所定の区間とは、例えば、ナビゲーション装置10により導出された経路のうち、高速道路等の有料道路を通る区間である。なお、これに限らず、行動計画生成部104は、任意の区間について行動計画を生成してもよい。
行動計画は、例えば、順次実行される複数のイベントで構成される。イベントには、例えば、自車両を減速させる減速イベントや、自車両を加速させる加速イベント、走行車線を逸脱しないように自車両を走行させるレーンキープイベント、走行車線を変更させる車線変更イベント等が含まれる。例えば、有料道路(例えば高速道路等)においてジャンクション(分岐点)が存在する場合、車両制御装置100は、自動運転モードにおいて、自車両を目的地の方向に進行するように車線を変更したり、車線を維持したりする必要がある。従って、行動計画生成部104は、車線を変更したり、車線を維持するイベントを設定する。
経路生成部110は、行動計画生成部104により生成された行動計画のうち、例えば、レーンキープイベントが実行される際に、自車両が走行する際の経路を生成する。なお、経路生成部110は、その他のイベントが実行される際にも同様の処理を行ってよい。経路生成部110は、ナビゲーション装置10により導出されたノードおよりリンクで特定される経路よりも、より詳細な経路を生成する。図2は、実施形態に係る経路生成部110の機能的な構成を示すブロック図である。経路生成部110は、地図情報取得部111と、道路形状算出部112と、初期パラメータ設定部113と、車両状態取得部114と、補正部115と、経路演算部116とを備える。初期パラメータ設定部113は、設定部の一例である。
地図情報取得部111は、ナビゲーション装置10により演算された自車両の位置に基づいて、記憶部130に記憶された地図情報132を取得する。地図情報取得部111は自車両の位置に周辺の道路を含む地図情報132を道路形状算出部112に出力する。
道路形状算出部112は、地図情報取得部111により出力された地図情報132に基づいて、自車両が走行する道路の曲率情報を算出する。道路形状算出部112は、例えば、地図情報132に含まれる連続した道路の座標値の変化に基づいて、自車両が走行する道路の曲率を算出する。また、道路形状算出部112は、予め地図情報132に道路に対応した道路の曲率が記憶されている場合には、地図情報132から自車両が走行する車線の曲率を抽出してもよい。道路形状算出部112は、自車両が走行する道路の曲率情報を経路演算部116に出力する。
初期パラメータ設定部113は、自車両が走行する道路における座標点のち、自車両が走行する目標経路の目標点(終点)を設定する。初期パラメータ設定部113は、自車位置認識部102により認識された自車位置から所定距離だけ離れた自車両の走行方向に沿った道路のうち、例えば、当該道路の中央線上の座標点を目標点に設定する。また、初期パラメータ設定部113は、現在の自車両の位置に基づく目標経路の始点と、前記検出部により検出された車両の挙動に基づく大きさおよび方向を有する初期の打ち出しベクトルV1とを設定する。なお、上述した始点、終点、および打ち出しベクトルは、地図情報132によって示される地図と同期した座標系上において設定される。初期パラメータ設定部113の詳細な説明は、フローチャートに即して後述する。
車両状態取得部114は、車速センサ22により検出された車速信号、ヨーレートセンサ24により検出されたヨーレート角信号、および操舵角センサ52aにより検出されたステアリング操舵角信号を取得する。本実施形態において車両状態取得部114は、車速、ヨーレート角、およびステアリング操舵角を検出するものとするが、車両状態取得部114は、少なくとも車速を取得すればよい。また、車両状態取得部114は、自車両の挙動のうちの回転成分の信号としてヨーレート角およびステアリング操舵角を取得したが、ヨーレート角とステアリング操舵角の一方を取得すればよく、自車両の回転成分を表す信号であれば他の信号を取得してもよい。
補正部115は、地図情報132に含まれる道路の形状情報に基づいて、初期パラメータ設定部113により設定された初期の打ち出しベクトルV1を補正する。以下、補正部115によって補正された初期の打ち出しベクトルV1を、打ち出しベクトルV2と称して説明する。なお、補正部115の詳細な説明は、フローチャートに即して後述する。
経路演算部116は、初期パラメータ設定部113により設定された始点および終点と、補正部115により補正された打ち出しベクトルV2とに基づいて始点から終点までを補間する曲線を演算する。経路演算部116は、自車両の現在位置を始点とし、初期パラメータ設定部113により出力された目標点を終点に設定して、所定の曲線関数に基づく演算を行う。所定の曲線関数とは、少なくとも始点、終点、および速度をパラメータとして設定された場合に、当該パラメータが代入された関数を演算して、始点から終点までを補間する曲線を演算する関数である。本実施形態において、所定の曲線関数は、例えばスプライン曲線を演算するスプライン関数である。経路演算部116は、演算した曲線を自車両が走行する目標経路として走行制御部120に出力する。
以下、実施形態の経路生成部110により目標経路を演算する処理について説明する。図3は、実施形態の経路生成部110により目標経路を演算する処理の流れを示すフローチャートである。
経路生成部110は、所定の演算周期Tの開始タイミングが到来したか否かを判定する(ステップS100)。所定の演算周期Tは、例えば、車両制御装置100が自車両の走行を制御する演算周期と同期する。経路生成部110は、所定の演算周期Tの開始タイミングが到来していないと判定した場合には待機し、所定の演算周期Tの開始タイミングが到来したと判定した場合にはステップS102に処理を進める。
次に、初期パラメータ設定部113は、目標経路の始点および終点を設定する(ステップS102)。図4は、実施形態の経路生成部110により目標経路を演算する処理を説明する図である。初期パラメータ設定部113は、図4(a)に示すように、自車両Mの現在位置を始点Psに設定し、始点Psから自車両Mが走行する道路Lの中央線C上に目標点Peを設定する。初期パラメータ設定部113は、例えば、自車両Mの前端部のうち車幅方向の中央位置に始点Psを設定する。道路Lの中央線Cは、例えば、一つの車線を区画する2本の区画線の間(白線と白線の間)に設定される仮想的な中央線である。目標点Peは、経路演算部116により目標経路を演算する終点(以下、終点Peとも記載する。)である。なお、終点Peは、道路Lの中央線Cに設定されることに限らなくてもよく、例えば、道路Lの中央線Cから幅方向にずれた偏差を設定した位置に設定されてもよい。
次に、初期パラメータ設定部113は、初期の打ち出しベクトルV1を設定する(ステップS104)。初期パラメータ設定部113は、ステップS102において設定された始点Psに初期の打ち出しベクトルV1を設定する。初期パラメータ設定部113は、図4(b)に示すように、初期の打ち出しベクトルV1の大きさ(速度成分)SC1と、向き(角度成分)と、を決定する。打ち出しベクトルV1の大きさSC1は、例えば、自車両Mの速度に相当する速度成分として決定される。また、初期の打ち出しベクトルV1の向き(角度成分)は、例えば、車体角に応じて設定される。
次に、補正部115が、道路Lの曲率等に基づいて、ステップS104において設定された初期の打ち出しベクトルV1の大きさを変更する(ステップS106)。補正部115は、道路形状算出部112により演算された道路Lの曲率に対応したゲインを導出する。図5は、実施形態における道路Lの曲率半径とゲインとの関係を示す図である。補正部115は、道路Lの曲率が高くなるに従って低下する傾向を有し、低下する過程で上方向に凸となるような曲線から下方向に凸となるような曲線に変化する特性に従って、ゲインGを変化させる。補正部115は、道路Lの曲率半径が所定の1/Rよりも大きい場合、ゲインGを一定の値に設定する。ゲインGの最低値Gは、例えば、初期の打ち出しベクトルV1の大きさが小さくなりすぎることを抑制し、且つ、大きな曲率の道路Lを滑らかに自車両Mが走行することができるような値が設定される。曲率−ゲインテーブルデータ138は、記憶部130に記憶されているが、これに限らず、経路生成プログラムや関数等に埋め込まれていてもよい。
補正部115は、導出したゲインGを、初期の打ち出しベクトルV1の大きさSC1に乗算する。そして、乗算結果として得られる補正後のベクトルに対して角度成分を変更することで、打ち出しベクトルV2を得る。
補正部115は、例えば、車両状態取得部114により取得されたヨーレート角、およびステアリング操舵角に基づいて、ゲインGが乗算された初期の打ち出しベクトルV1の向き(角度成分)を変更して、打ち出しベクトルV2の角度(方向)を決定する。例えば、補正部115は、ヨーレート角およびステアリング操舵角を参照して、初期の打ち出しベクトルV1の向き(角度成分)を基準として、打ち出しベクトルV2の向き(角度成分)に変更するための角度幅θを演算し、ゲインGが乗算された初期の打ち出しベクトルV1の向き(角度成分)を、演算した角度幅θ分補正する。
また、補正部115は、車両状態取得部114により取得された現在の自車両Mの車速が高いほど、打ち出しベクトルV2の大きさ(速度成分)が小さくなるように、初期の打ち出しベクトルV1を補正してもよい。補正部115は、例えば、所定の車速の範囲毎に、図6に示す道路Lの曲率半径とゲインGとを対応づけた曲率−ゲインテーブルデータ138を記憶部130に記憶させる。図6は、車速の範囲毎に設定される曲率−ゲインテーブルデータ138を示す図である。所定の車速の範囲は、曲率に対するゲインGの特性を切り替える必要があるような範囲に設定される。この場合の車速毎の曲率−ゲインテーブルデータ138は、自車両Mの車速が高くなるほど、ゲインGが小さくなるように設定される。補正部115は、例えば、上記の曲率−ゲインテーブルデータ138を参照してゲインGを変化させる。
次に、経路演算部116が、スプライン関数により目標経路を演算する(ステップS108)。図7は、実施形態の経路演算部116により目標経路を演算することを説明する図である。図7は、自車両Mが存在する空間をXY座標で表している。経路演算部116は、ステップS106において変更された打ち出しベクトルV2の打ち出し位置を始点Psに設定する。経路演算部116は、始点Psから終点Peまでを補間する曲線を演算する。
図7に示すように、始点Psの座標(x,y)において自車両Mの速度がvであり、加速度がaであるものとする。自車両Mの速度vは、速度のx方向成分vx0とy方向成分vy0とが合成されたものである。自車両Mの加速度aは、加速度のx方向成分ax0とy方向成分ay0とが合成されたものである。終点Peの座標(x,y)において自車両Mの速度がvであり、加速度がaであるものとする。自車両Mの速度vは、速度のx方向成分vx1とy方向成分vy1とが合成されたものである。自車両Mの加速度aは、加速度のx方向成分ax1とy方向成分ay1とが合成されたものである。なお、終点Peの速度vや加速度aは、始点Psにおける現在の速度vや加速度a、地図情報132に記憶された道路Lに対応した法定速度、道路Lの曲率等に基づいて推定してよい。例えば、カーブの出口では車速を加速することが想定されるため、道路Lの曲率に基づいて終点Peの加速度を求めるテーブルを予め用意してもよい。
経路演算部116は、自車両Mが始点Psから終点Peまでに至る単位時間Tが経過する周期中の時間tごとに、目標点(x,y)を設定する。目標点(x,y)の演算式は、式(1)および式(2)のように、道路の形状によって演算手法が修正されたスプライン関数により表される。式(1)および式(2)におけるGは、道路Lの曲率に対応して得られるゲインである。
x:f(t)=m×t+m×t+m×t+(1/2)×ax0×t+Gvx0×t+x 式(1)
y:f(t)=m×t+m×t+m×t+(1/2)×ay0×t+Gvy0×t+y 式(2)
式(1)および式(2)において、m、m、およびmは、下記の式(3)、式(4)および式(5)のように表される。
=−(20p−20p+12vT+8vT+3a−a)/2T 式(3)
=(30p−30p+16vT+14vT+3a−2a)/2T 式(4)
=−(12p−12p+6vT+6vT+a−a)/2T 式(5)
式(3)、式(4)および式(5)においてpは始点Psにおける自車両Mの位置(x,y)であり、pは終点Peにおける自車両Mの位置(x,y)である。
経路演算部116は、式(1)および式(2)におけるvx0およびvy0に車両状態取得部114により取得された車速にゲインGを掛け合わせて、単位時間Tを時刻tごとに式(1)および式(2)の演算結果により特定された目標点(x(t),y(t))を取得する。これにより、経路演算部116は、始点Psと終点Peとを複数の目標点(x(t),y(t))により補間したスプライン曲線を得る。経路演算部116は、得られたスプライン曲線を、目標経路Tgとして走行制御部120に出力する(ステップS110)。
なお、実施形態の経路演算部116は、5次元のスプライン関数によってスプライン曲線を演算しているが、5次元のスプライン関数に限らず、高次元のスプライン関数であれば、式(1)〜式(5)を変形して目標経路Tgを演算してもよい。
走行制御部120は、制御切替部122による制御によって、制御モードを自動運転モードあるいは手動運転モードに設定し、設定した制御モードに従って制御対象を制御する。走行制御部120は、自動運転モード時において、行動計画生成部104によって生成された行動計画情報136を読み込み、行動計画情報136におよび目標経路Tgに基づいて制御対象を制御する。走行制御部120は、行動計画に基づき、目標経路Tgに沿って自車両Mが走行するようにステアリング装置52における電動モータの制御量(例えば回転数)と、走行駆動力出力装置50におけるECUの制御量(例えばエンジンのスロットル開度やシフト段等)とを決定する。走行制御部120は、決定した制御量を示す情報を、対応する制御対象に出力する。これによって、制御対象の各装置(50、52、54)は、走行制御部120から入力された制御量を示す情報に従って、自装置を制御することができる。また、走行制御部120は、車両センサ20の検出結果に基づいて、決定した制御量を適宜調整する。
以上説明した実施形態の車両制御装置100によれば、地図情報132に含まれる道路の形状情報に基づいて、目標経路となる曲線の演算手法を修正するのでことができる。これにより、車両制御装置100によれば、自車両Mの現在の車速に基づいて初期の打ち出しベクトルV1を設定した場合に、目標経路Tgが道路Lを超えてしまうことを抑制することができる。この結果、実施形態の車両制御装置100によれば、道路Lの形状により近い目標経路Tgを生成することができる。
また、実施形態の車両制御装置100によれば、始点Psと終点Peとの間に経由点を設定することなく、道路Lの形状に沿った目標経路Tgを1回の処理で演算することができる。図8は、比較例として示す目標経路Tg#を示す図である。図8によれば、目標経路Tg#を演算する際の自車両Mの車速に基づいて初期の打ち出しベクトルV1を設定した場合、道路Lの曲率に対して自車両Mの車速が高いと、目標経路Tg#が道路Lからはみ出てしまう。これに対し、実施形態の車両制御装置100によれば、道路Lの形状により近い目標経路Tgを1回の処理で生成することができるので、比較例のような目標経路Tg#を演算して、再度目標経路Tgを計算し直すことを抑制でき、処理量の増加を抑制することができる。さらに、実施形態の車両制御装置100によれば、目標経路Tgが道路Lからはみ出さないために終点Peを適切な位置に設定するなどの複雑な処理を行うことがなく、処理量の増加を抑制することができる。
さらに、実施形態の車両制御装置100によれば、初期の打ち出しベクトルV1を構成する速度にゲインGを乗算することで、目標経路Tgの演算手法を修正するので、自車両Mの速度が高く、道路Lの形状に対して目標経路Tgが道路からはみ出るような状況であっても、道路Lの形状により近い経路を生成することができる。
さらに、実施形態の車両制御装置100によれば、道路Lの曲率を用いて、道路Lの曲率とゲインGの関係を規定した曲率−ゲインテーブルデータ138を検索することで、ゲインGを導出するので、道路Lの曲率によって始点Psから終点Peまでを補間する目標経路Tgを変更することができ、道路Lの曲率に対応して道路Lの形状により近い目標経路Tgを生成することができる。
さらに、実施形態の車両制御装置100によれば、自車両Mの速度に基づいて道路Lの曲率に対応したゲインGを変更するので、自車両Mの速度に対応したゲインGにより初期の打ち出しベクトルV1の大きさ(速度成分)SC1を変更でき、道路Lの形状により近い目標経路Tgを生成することができる。
さらに、実施形態の車両制御装置100によれば、自車両Mの車体角に応じて設定した初期の打ち出しベクトルV1の方向を、ステアリング操舵角およびヨーレート角に応じて初期の打ち出しベクトルV1の向き(角度成分)を変更でき、道路Lの形状により近い目標経路Tgを生成することができる。
さらに、実施形態の車両制御装置100によれば、道路Lの曲率が高くなるに従って低下する傾向を有し、低下する過程で上方向に凸となるような曲線から下方向に凸となるような曲線に変化する特性に従って、ゲインGを変化させるので、道路Lの曲率に対応してより細やかにゲインGを調整して、さらに道路Lの形状に近い目標経路Tgを生成することができる。
(変形例)
以下、実施形態の車両制御装置100の変形例について説明する。上述した実施形態は、経路演算部116がスプライン関数に従って目標経路Tgを演算していたが、これには限られず、他の関数に従って目標経路Tgを演算してもよい。変形例の車両制御装置100は、エルミート関数により始点Psと終点Peとを補間する。
図9は、実施形態のエルミート曲線により目標経路を演算することを説明する図である。図9に示すように、始点Psの座標(x,y)において自車両Mの速度がvであるものとする。自車両Mの速度vは、速度のx方向成分vx0とy方向成分vy0とが合成されたものである。終点Peの座標(x,y)において自車両Mの速度がvであるものとする。自車両Mの速度vは、速度のx方向成分vx1とy方向成分vy1とが合成されたものである。なお、終点Peにおける速度は、始点Psにおける速度と同じ速度であってもよく、例えば行動計画情報136に基づいて変更した値を設定してもよい。
経路演算部116は、自車両Mが始点Psと終点Peとの間を、式(6)および式(7)のエルミート関数により補間する。式(6)および式(7)のエルミート関数は、例えば3次元関数である。
x=f(k)=n×k+n×k+n×k+x 式(6)
y=f(k)=n×k+n×k+n×k+y 式(7)
式(6)および式(7)において、kは媒介変数(0≦k≦1)であり、始点Psにおいて0が代入され、終点Peにおいて1が代入され、始点Psから終点Peまでを補間する各点において0から1の範囲で変化される。 式(6)および式(7)において、n、n、およびnは、下記の式(8)、式(9)および式(10)のように表される。
=2p−2p+Gv+v 式(8)
=−3p+3p+2Gv−v 式(9)
=v 式(10)
式(8)および式(9)において、Gは道路Lの曲率に対応して得られるゲインであり、pは始点Psにおける自車両Mの位置(x,y)であり、pは終点Peにおける自車両Mの位置(x,y)である。
経路演算部116は、式(8)および式(9)におけるvに車両状態取得部114により取得された車速にゲインGを掛け合わせて、式(6)および式(7)の演算結果により特定された目標点(x(k),y(k))を取得する。これにより、経路演算部116は、始点Psと終点Peとを複数の目標点(x(k),y(k))により補間したエルミート曲線を得る。経路演算部116は、得られたエルミート曲線を、目標経路Tgとして走行制御部120に出力する。
以上説明した変形例の車両制御装置100によれば、実施形態と同様に、地図情報132に含まれる道路の形状情報に基づいて、初期の打ち出しベクトルV1の大きさを変更して始点Psから終点Peまでを補間する目標経路Tgを演算することができる。これにより、変形例の車両制御装置100によれば、道路Lの形状により近い目標経路Tgを生成することができる。
以下、他の変形例ついて説明する。図10は、他の変形例の車両制御装置100Aを中心とした自車両の機能構成図である。他の変形例の車両制御装置100Aは、ナビゲーション装置10との連携で行動計画を生成する構成を備えておらず、任意のトリガが入力されたときに自動運転モードの制御を切り替え、それ以外の場合に手動運転モードで制御を行う。なお、自車位置認識部102は、GNSS受信機や地図情報等(ナビゲーション装置に属するものとは限らない)を参照して自車位置を認識する。
任意のトリガは、例えば、運転者によって車線維持支援システムのためのスイッチ操作等がなされたときに生成される。また、車線維持支援システムのトリガは、車両の状態に応じて自動的に生成されてもよい。
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
20‥車両センサ
22‥車速センサ
24‥ヨーレートセンサ
52a‥操舵角センサ
100‥車両制御装置
110‥経路生成部
111‥地図情報取得部
112‥道路形状算出部
113‥初期パラメータ設定部(設定部)
114‥車両状態取得部(検出部)
115…補正部
116‥経路演算部
138‥曲率−ゲインテーブルデータ

Claims (7)

  1. 車両の挙動を検出する検出部と、
    現在の車両の位置に基づく目標経路の始点、地図情報に基づく目標経路の終点、および前記検出部により検出された車両の挙動に基づく大きさおよび方向を有する打ち出しベクトルを設定する設定部と、
    前記地図情報に含まれる道路の形状情報に基づいて、前記打ち出しベクトルを補正する補正部と、
    前記設定部により設定された始点および終点と、前記補正部により補正された打ち出しベクトルとに基づいて前記始点から前記終点までを補間する曲線を演算する経路演算部と、
    を備え
    前記補正部は、前記道路の形状情報から得られる道路の曲率に応じたゲインを乗算することで、前記打ち出しベクトルを補正する、
    経路生成装置。
  2. 前記補正部は、前記道路の曲率とゲインの関係を規定したテーブルを検索することで、前記ゲインを導出する、
    請求項1に記載の経路生成装置。
  3. 前記検出部は、前記車両の速度を検出し、
    前記補正部は、前記検出部により検出された前記車両の速度に基づいて前記道路の曲率に対応したゲインを変更する、
    請求項に記載の経路生成装置。
  4. 前記検出部は、前記車両のステアリング操舵角または前記車両のヨーレート角を検出し、
    前記補正部は、前記検出部により検出された前記車両のステアリング操舵角またはヨーレート角に基づいて前記打ち出しベクトルの方向を補正する、
    請求項1からのうちいずれか1項に記載の経路生成装置。
  5. 前記補正部は、前記道路の曲率が高くなるに従って低下する傾向を有し、前記低下する過程で上方向に凸となるような曲線から下方向に凸となるような曲線に変化する特性に従って、前記ゲインを変化させる、
    請求項1から3のうちいずれか1項に記載の経路生成装置。
  6. 車載コンピュータが、
    現在の車両の位置に基づく目標経路の始点、地図情報に基づく目標経路の終点、および前記車両の挙動に基づく大きさおよび方向を有する打ち出しベクトルを設定し、
    前記地図情報に含まれる道路の形状情報に基づいて、前記打ち出しベクトルを補正し、
    前記設定した始点および終点と、前記補正した打ち出しベクトルとに基づいて前記始点から前記終点までを補間する曲線を演算し、
    前記道路の形状情報から得られる道路の曲率に応じたゲインを乗算することで、前記打ち出しベクトルを補正する、
    経路生成方法。
  7. 車載コンピュータに、
    現在の車両の位置に基づく目標経路の始点、地図情報に基づく目標経路の終点、および前記車両の挙動に基づく大きさおよび方向を有する打ち出しベクトルを設定させ、
    前記地図情報に含まれる道路の形状情報に基づいて、前記打ち出しベクトルを補正させ、
    前記設定させた始点および終点と、前記補正させた打ち出しベクトルとに基づいて前記始点から前記終点までを補間する曲線を演算させ、
    前記道路の形状情報から得られる道路の曲率に応じたゲインを乗算することで、前記打ち出しベクトルを補正させる、
    経路生成プログラム。
JP2015144993A 2015-07-22 2015-07-22 経路生成装置、経路生成方法、および経路生成プログラム Active JP6485639B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015144993A JP6485639B2 (ja) 2015-07-22 2015-07-22 経路生成装置、経路生成方法、および経路生成プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015144993A JP6485639B2 (ja) 2015-07-22 2015-07-22 経路生成装置、経路生成方法、および経路生成プログラム

Publications (2)

Publication Number Publication Date
JP2017027354A JP2017027354A (ja) 2017-02-02
JP6485639B2 true JP6485639B2 (ja) 2019-03-20

Family

ID=57945973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015144993A Active JP6485639B2 (ja) 2015-07-22 2015-07-22 経路生成装置、経路生成方法、および経路生成プログラム

Country Status (1)

Country Link
JP (1) JP6485639B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235748B1 (ja) * 2017-06-22 2017-11-22 株式会社ショーワ 経路生成装置、車両、及び車両システム
US10816977B2 (en) 2018-01-26 2020-10-27 Baidu Usa Llc Path and speed optimization fallback mechanism for autonomous vehicles
US11181920B2 (en) 2018-08-28 2021-11-23 Denso Corporation Travel assistance method and travel assistance apparatus
CN112327826B (zh) * 2020-09-27 2023-12-12 一汽解放汽车有限公司 一种路径规划方法、装置、设备和介质
CN115185290B (zh) * 2022-08-12 2024-05-14 东南大学 一种无人机悬索桥主缆巡检路径规划的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257276A (ja) * 2006-03-23 2007-10-04 Toyota Motor Corp 移動経路作成方法、自律移動体および自律移動体制御システム
JP2008149855A (ja) * 2006-12-15 2008-07-03 Toyota Motor Corp 車両の目標進路変更軌跡生成装置
JP5593606B2 (ja) * 2008-11-28 2014-09-24 株式会社ジェイテクト 走行支援装置
JP5421019B2 (ja) * 2009-08-03 2014-02-19 トヨタ自動車株式会社 車両の走行支援装置

Also Published As

Publication number Publication date
JP2017027354A (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6485639B2 (ja) 経路生成装置、経路生成方法、および経路生成プログラム
JP6654121B2 (ja) 車両運動制御装置
US11703883B2 (en) Autonomous driving device
US10310503B2 (en) Travel control apparatus for vehicle
JP6259797B2 (ja) 車両走行制御装置
JP6411956B2 (ja) 車両制御装置、および車両制御方法
WO2018131090A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6568560B2 (ja) 車両の走行制御装置
JP6323572B2 (ja) 目標車速生成装置および走行制御装置
JPWO2017208786A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2017077794A1 (ja) 車両の走行支援装置
JP2015102243A (ja) 車両用変速制御装置
CN110799402B (zh) 车辆控制装置
US11898850B2 (en) Vehicle position detection device and parameter set creation device for vehicle position detection
JPWO2018047292A1 (ja) 車両の走行制御方法および走行制御装置
JP2020111299A (ja) 車両運転支援システム及び方法
JP6659513B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP7206970B2 (ja) 車両運動制御方法及び車両運動制御装置
JP6705270B2 (ja) 移動体の自動運転制御システム
JP7206971B2 (ja) 車両運動制御方法及び車両運動制御装置
JP7200712B2 (ja) 車両運動制御方法及び車両運動制御装置
JP6288305B2 (ja) 目標車速生成装置および走行制御装置
US20200257296A1 (en) Plan buffering for low-latency policy updates
JP6705271B2 (ja) 移動体の自動運転制御システム
JP2019108097A (ja) 自動運転制御システムおよび自動運転制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6485639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150