JP6483020B2 - Discharge lamp, discharge lamp manufacturing method, and discharge lamp electrode - Google Patents

Discharge lamp, discharge lamp manufacturing method, and discharge lamp electrode Download PDF

Info

Publication number
JP6483020B2
JP6483020B2 JP2015535169A JP2015535169A JP6483020B2 JP 6483020 B2 JP6483020 B2 JP 6483020B2 JP 2015535169 A JP2015535169 A JP 2015535169A JP 2015535169 A JP2015535169 A JP 2015535169A JP 6483020 B2 JP6483020 B2 JP 6483020B2
Authority
JP
Japan
Prior art keywords
end side
side member
groove
rear end
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015535169A
Other languages
Japanese (ja)
Other versions
JPWO2015033239A1 (en
Inventor
裕介 細木
裕介 細木
壮則 早川
壮則 早川
芹澤 和泉
和泉 芹澤
宏 小平
宏 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Publication of JPWO2015033239A1 publication Critical patent/JPWO2015033239A1/en
Application granted granted Critical
Publication of JP6483020B2 publication Critical patent/JP6483020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/86Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes

Description

本発明は、露光装置等に利用される放電ランプに関し、特に、複数の金属部材を接合させた電極の構造に関する。  The present invention relates to a discharge lamp used in an exposure apparatus or the like, and more particularly, to an electrode structure in which a plurality of metal members are joined.

ショートアーク型放電ランプでは、高輝度の光を基板など露光対象物に照射する。露光対象物の大型化、さらにスループット向上のため、放電ランプの高出力化が要求されており、それに伴って定格消費電力の増加が求められる。  In a short arc type discharge lamp, an object to be exposed such as a substrate is irradiated with high-intensity light. In order to increase the size of the object to be exposed and further improve the throughput, it is required to increase the output of the discharge lamp, and accordingly, the rated power consumption must be increased.

大電力化すると、従来の単一金属による電極構造では、電子放出、熱放出、耐久性などに影響が生じる。また、電極の重量が大きくなることにより、電極支持棒などの負荷が大きい。  When the power is increased, the conventional single metal electrode structure affects the electron emission, heat emission, durability, and the like. In addition, since the weight of the electrode increases, the load on the electrode support rod and the like is large.

そのため、複数の金属を接合させて電極を構成することが提案されている。例えば、トリウムを含むトリエーテッドタングステンなどから成る電極先端部と、純タングステンなどから成る後方胴体部を固相接合し、電極を構成する(特許文献1、2参照)。  Therefore, it has been proposed to form an electrode by joining a plurality of metals. For example, an electrode is formed by solid-phase joining a tip portion of an electrode made of tritium tungsten containing thorium or the like and a rear body portion made of pure tungsten or the like (see Patent Documents 1 and 2).

特開2011−154927号公報JP 2011-154927 A 特開2011−070823号公報JP 2011-070823 A

異なる金属を固相接合させて電極を構成する場合、熱膨張率の相違などにより、接合時における昇温、降温に伴って接合面の外縁付近に隙間が生じやすい。ランプ点灯時に電極が高熱になると、隙間が拡大して電極が破損する恐れがある。また、同じ金属部材を固相接合させた電極においても、楔状の隙間が接合面付近に形成される。  When an electrode is configured by solid-phase bonding of different metals, a gap is likely to be generated near the outer edge of the bonded surface as the temperature increases or decreases during bonding due to a difference in thermal expansion coefficient. If the electrode becomes hot when the lamp is lit, the gap may be enlarged and the electrode may be damaged. In addition, a wedge-shaped gap is formed in the vicinity of the bonding surface even in an electrode in which the same metal member is solid-phase bonded.

したがって、固相接合によって形成された電極において、接合面付近における接合強度を高めることが必要とされる。  Therefore, in the electrode formed by solid phase bonding, it is necessary to increase the bonding strength in the vicinity of the bonding surface.

本発明の放電ランプは、放電管と、放電管内に配置される一対の電極とを備え、少なくとも一方の電極が、先端側部材と、後端側部材とを固相接合させた電極によって構成される。先端側部材は、電極先端面側、すなわち他方の電極側に近い位置にあり、後端側部材は、電極支持棒に近い位置にある。そして、後端側部材は、先端側部材よりも展延性が高い/大きい。  The discharge lamp of the present invention includes a discharge tube and a pair of electrodes disposed in the discharge tube, and at least one of the electrodes is constituted by an electrode obtained by solid-phase bonding a front end side member and a rear end side member. The The front end side member is in a position close to the electrode front end surface side, that is, the other electrode side, and the rear end side member is in a position close to the electrode support bar. The rear end side member is higher / larger than the front end side member.

先端側部材と後端側部材は、金属部材によって構成可能である。例えば、先端側部材をトリエーテッドタングステン、後端側部材を、相対的に展延性の高いモリブデンによって構成可能である。  The front end side member and the rear end side member can be configured by a metal member. For example, the front end side member can be constituted by triated tungsten, and the rear end side member can be constituted by molybdenum having relatively high extensibility.

本発明では、先端側部材と後端側部材との接合面を跨ぐように、すなわち接合面が間に介在するように、溝部が電極側面に形成されている。ただし、「電極側面」は、電極先端側に形成されるテーパー面、胴体部分の側面(外周面)いずれも含む。  In the present invention, the groove portion is formed on the side surface of the electrode so as to straddle the joint surface between the front end side member and the rear end side member, that is, the joint surface is interposed therebetween. However, the “electrode side surface” includes both the tapered surface formed on the electrode tip side and the side surface (outer peripheral surface) of the body portion.

接合強度向上のために形成される溝部は、ミリメートルオーダーである放熱用溝のピッチ、深さよりも小さい溝ピッチ、溝深さをもつ。例えば、100μm以下のピッチ、深さをもつ溝を形成することが可能である。このような微細な溝が形成されることによって、展延性の高い後端側部材の接合面外縁付近が比較的深く変形する。  The groove formed for improving the bonding strength has a groove pitch and a groove depth that are smaller than the pitch and depth of the heat radiating groove on the order of millimeters. For example, it is possible to form grooves having a pitch and depth of 100 μm or less. By forming such a fine groove, the vicinity of the outer edge of the joining surface of the rear end side member having high spreadability is deformed relatively deeply.

このような接合面が含まれる溝部は、後端側部材側面の表面粗さRaが、1.2μm以上となればよい。また、先端側部材側面の表面粗さRaが、0.7μm以下となればよい。さらに、後端側部材側面の反射率が、先端側部材側面の反射率よりも小さくなるように、溝部を形成すればよい。このような数値を満たすことで、接合面強度を向上させることができる。  The groove portion including such a joining surface may have a surface roughness Ra of the rear end side surface of 1.2 μm or more. Further, the surface roughness Ra of the side surface of the tip side member may be 0.7 μm or less. Furthermore, what is necessary is just to form a groove part so that the reflectance of a rear end side member side surface may become smaller than the reflectance of a front end side member side surface. By satisfying such numerical values, the joint surface strength can be improved.

微細溝については、先端側部材と比べて粗い溝を形成することで、楔付近を変形させることができる。例えば、後端側部材側面において、「むしれ」(gouge or burr)が生じるように溝を形成すればよい。すなわち、部分的に引きちぎれたり、剥がれたりするように溝を形成するのが良い。一方、アーク放電安定を考慮すると、溝部の先端側部材側面には、むしれのない微細溝を形成するのがよい。  About a fine groove | channel, a wedge vicinity can be deformed by forming a coarse groove | channel compared with a front end side member. For example, the groove may be formed on the side surface of the rear end side member so that “goe or burr” occurs. That is, the groove is preferably formed so as to be partially torn off or peeled off. On the other hand, in consideration of arc discharge stability, it is preferable to form a fine groove with no peeling on the side surface of the tip side member of the groove.

また、微細溝が、先端側部材側面よりも後端側部材側面において深くなるように構成することも可能である。楔付近において後端側金属部材表面が変形しやすくなる。  It is also possible to configure the fine groove so that it is deeper on the rear end side surface than on the front end side surface. In the vicinity of the wedge, the rear end side metal member surface is easily deformed.

切削加工によって電極が形作られる場合、溝部を、電極を固相接合後の切削加工において形成するのがよい。旋盤などを使った切削加工のときに溝部を同時に形成することで、製造工程が複雑にならない。  When the electrode is formed by cutting, the groove is preferably formed in the cutting after the solid phase bonding of the electrode. By simultaneously forming the groove during cutting using a lathe, the manufacturing process is not complicated.

溝部には、接合面を跨いで微細溝よりもピッチおよび深さが大きい幅広溝を形成することが可能である。  In the groove portion, it is possible to form a wide groove having a larger pitch and depth than the fine groove across the joint surface.

本発明の他の態様における放電ランプの製造方法は、先端側部材と、先端側部材よりも展延性の高い後端側部材とを固相接合させ、固相接合させた電極部材の側面を切削加工する放電ランプの製造方法であって、切削加工において、先端側部材と後端側部材との接合面を跨ぐように電極部材側面に溝部を形成する。例えば、切削加工において、後端側部材側面において、むしれによる微細溝を形成すればよい。  According to another aspect of the present invention, there is provided a method for manufacturing a discharge lamp, in which a front end side member and a rear end side member having higher extensibility than the front end side member are solid-phase bonded, and a side surface of the electrode member subjected to solid phase bonding is cut. In the manufacturing method of the discharge lamp to be processed, in the cutting process, the groove is formed on the side surface of the electrode member so as to straddle the joint surface between the front end side member and the rear end side member. For example, in the cutting process, fine grooves due to peeling may be formed on the side surface of the rear end side member.

本発明の他の態様における放電ランプ用電極は、先端側部材と、先端側部材と固相接合した後端側部材とを備え、溝部が、先端側部材と後端側部材との接合面を跨いで電極側面に形成されている。展延性の同じ部材同時を固相接合させることも可能である。  An electrode for a discharge lamp according to another aspect of the present invention includes a front end side member and a rear end side member solid-phase bonded to the front end side member, and the groove portion serves as a bonding surface between the front end side member and the rear end side member. It is formed on the electrode side face across. It is also possible to perform solid-phase bonding of the members having the same spreadability.

本発明によれば、複数の部材を固相接合させた電極において、接合強度を高めた電極を構成することができる。  ADVANTAGE OF THE INVENTION According to this invention, the electrode which raised joint strength can be comprised in the electrode which carried out the solid phase joining of the several member.

第1の実施形態であるショートアーク型放電ランプを模式的に示した平面図である。It is the top view which showed typically the short arc type discharge lamp which is 1st Embodiment. 陽極、陰極の概略的側面図である。It is a schematic side view of an anode and a cathode. 陰極の部分的側面図である。It is a partial side view of a cathode. 陰極における金属部材接合面付近を拡大した図である。It is the figure which expanded the metal member joining surface vicinity in a cathode. 第2の実施形態における陰極の部分的側面図である。It is a partial side view of the cathode in 2nd Embodiment. 接合面付近の陰極の写真を表した図である。It is a figure showing the photograph of the cathode of joining surface vicinity. 図6の拡大写真を表した図である。It is the figure showing the enlarged photograph of FIG. 電子顕微鏡による接合面付近の写真を表した図である。It is a figure showing the photograph of the joint surface vicinity by an electron microscope.

以下では、図面を参照して本発明の実施形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、第1の実施形態であるショートアーク型放電ランプを模式的に示した平面図である。  FIG. 1 is a plan view schematically showing the short arc type discharge lamp according to the first embodiment.

ショートアーク型放電ランプ10は、パターン形成する露光装置(図示せず)の光源などに使用可能な放電ランプであり、透明な石英ガラス製の放電管(発光管)12を備える。放電管12には、陰極20、陽極30が所定間隔をもって対向配置される。  The short arc type discharge lamp 10 is a discharge lamp that can be used as a light source of an exposure apparatus (not shown) for pattern formation, and includes a transparent quartz glass discharge tube (light emitting tube) 12. A cathode 20 and an anode 30 are opposed to the discharge tube 12 with a predetermined interval.

放電管12の両側には、対向するように石英ガラス製の封止管13A、13Bが放電管12と一体的に設けられており、封止管13A、13Bの両端は、口金19A、19Bによって塞がれている。放電ランプ10は、ここでは陽極30が上側、陰極20が下側となるように鉛直方向に沿って配置されている。  On both sides of the discharge tube 12, quartz glass sealing tubes 13A and 13B are provided integrally with the discharge tube 12 so as to face each other, and both ends of the sealing tubes 13A and 13B are formed by caps 19A and 19B. It is blocked. Here, the discharge lamp 10 is arranged along the vertical direction so that the anode 30 is on the upper side and the cathode 20 is on the lower side.

封止管13A、13Bの内部には、金属性の陰極20、陽極30を支持する導電性の電極支持棒17A、17Bが配設され、金属リング(図示せず)、そしてモリブデンといった金属箔16A、16Bを介して導電性のリード棒15A、15Bにそれぞれ接続される。封止管13A、13Bは、封止管13A、13B内に設けられるガラス管(図示せず)と溶着しており、これによって、水銀、および希ガスが封入された放電空間DSが封止される。  Inside the sealing tubes 13A and 13B, conductive electrode support rods 17A and 17B for supporting the metallic cathode 20 and the anode 30 are disposed, a metal ring (not shown), and a metal foil 16A such as molybdenum. , 16B to the conductive lead rods 15A, 15B, respectively. The sealing tubes 13A and 13B are welded to glass tubes (not shown) provided in the sealing tubes 13A and 13B, thereby sealing the discharge space DS in which mercury and a rare gas are sealed. The

リード棒15A、15Bは外部の電源部(図示せず)に接続されており、リード棒15A、15B、金属箔16A、16B、そして電極支持棒17A、17Bを介して陰極20、陽極30の間に電圧が印加される。放電ランプ10に電力が供給されると、電極間でアーク放電が発生し、水銀による輝線(紫外光)が放射される。  The lead rods 15A and 15B are connected to an external power source (not shown), and are connected between the cathode 20 and the anode 30 via the lead rods 15A and 15B, the metal foils 16A and 16B, and the electrode support rods 17A and 17B. A voltage is applied to. When electric power is supplied to the discharge lamp 10, arc discharge occurs between the electrodes, and a bright line (ultraviolet light) due to mercury is emitted.

図2は、陽極、陰極の概略的側面図である。  FIG. 2 is a schematic side view of an anode and a cathode.

陰極20は、電極軸Eに垂直な電極先端面20Sを有する金属部材(先端側部材)20Aと、その後方で金属部材20Aと接合する金属部材(後端側部材)20Bから構成される。電極支持棒17Aによって支持される金属部材20Bは、円柱状部分23Bと円錐台形状部分23Aから成り、円錐台形状の金属部材20Aは、金属部材20Bの円錐台形状部分23Aと接合している。  The cathode 20 includes a metal member (front end side member) 20A having an electrode front end surface 20S perpendicular to the electrode axis E, and a metal member (rear end side member) 20B joined to the metal member 20A behind the metal member 20A. The metal member 20B supported by the electrode support rod 17A includes a columnar portion 23B and a truncated cone-shaped portion 23A, and the truncated cone-shaped metal member 20A is joined to the truncated cone-shaped portion 23A of the metal member 20B.

陽極30は、電極軸Eに垂直な電極先端面30Sを有する金属部材(先端側部材)30Aと、金属部材30Aと接合する金属部材(後端側部材)30Bから構成される。金属部材30Aは、円錐台形状部分33Aと円柱状部分33Bから成り、円柱状の金属部材30Bは、金属部材30Aの円柱状部分33Bと接合する。  The anode 30 includes a metal member (front end side member) 30A having an electrode front end surface 30S perpendicular to the electrode axis E, and a metal member (rear end side member) 30B joined to the metal member 30A. The metal member 30A includes a truncated cone portion 33A and a columnar portion 33B, and the columnar metal member 30B is joined to the columnar portion 33B of the metal member 30A.

先端側の金属部材20Aは、トリエーテッドタングステンなどタングステンを主成分とする合金、あるいは純タングステン(W)など高融点金属によって構成される。一方、後端側の金属部材20Bは、金属部材20Aよりも展延性の高い金属、あるいはそれを主成分とする合金から成る。ここでは、金属部材20Bはモリブデン(Mo)によって構成される。陽極30の金属部材30A、30Bは、それぞれ純タングステン(W)とモリブデン(Mo)から構成される。  The tip-side metal member 20A is made of an alloy mainly composed of tungsten such as triated tungsten or a high melting point metal such as pure tungsten (W). On the other hand, the metal member 20B on the rear end side is made of a metal having higher extensibility than the metal member 20A or an alloy containing the metal as a main component. Here, the metal member 20B is made of molybdenum (Mo). The metal members 30A and 30B of the anode 30 are made of pure tungsten (W) and molybdenum (Mo), respectively.

図3は、陰極の部分的側面図である。図4は、陰極における金属部材接合面付近を拡大した図である。図3、4を用いて、陰極側面に形成した溝部について説明する。  FIG. 3 is a partial side view of the cathode. FIG. 4 is an enlarged view of the vicinity of the metal member bonding surface in the cathode. The groove formed on the side surface of the cathode will be described with reference to FIGS.

陰極20は、金属紛体を焼結して固形化した金属部材20A、20Bとなる素材を、放電プラズマ焼結(SPS焼結)方式に従って固相接合し、その後、旋盤による切削加工することによって製造される。切削加工により、陰極20のテーパー面(縮径面)20Qが形成される。  The cathode 20 is manufactured by solid-phase joining the materials to be the metal members 20A and 20B obtained by sintering and solidifying a metal powder according to a discharge plasma sintering (SPS sintering) method, and then cutting with a lathe. Is done. The tapered surface (reduced diameter surface) 20Q of the cathode 20 is formed by the cutting process.

切削加工では、電極軸Eに垂直な方向、すなわち周方向に沿って金属部材20A、20Bを切削する。ここでは、接合面S1に対して±10°以下の角度αで切削が施される。そして、テーパー面20Qをもつ電極を形成するための切削工程において、溝部Rが同時に形成される。  In the cutting process, the metal members 20A and 20B are cut along a direction perpendicular to the electrode axis E, that is, along the circumferential direction. Here, cutting is performed at an angle α of ± 10 ° or less with respect to the bonding surface S1. Then, in the cutting process for forming the electrode having the tapered surface 20Q, the groove R is simultaneously formed.

溝部Rは接合面S1を跨いで形成されており、微細な溝(以下、微細溝という)から成る。微細溝rは、切削加工処理時と同時に所定のピッチ間隔P1で形成される溝であり、ピッチ間隔P1は、1μm〜5μmの範囲に定められる。これは、従来の放電ランプに形成された放熱用溝と比べて十分小さい。図4では、微細溝rに関し、金属部材20Aに形成された微細溝を「r1A」、金属部材20Bに形成された微細溝を「r1B」と表している。  The groove R is formed across the joining surface S1, and is formed of a fine groove (hereinafter referred to as a fine groove). The fine grooves r are grooves formed at a predetermined pitch interval P1 simultaneously with the cutting process, and the pitch interval P1 is set in a range of 1 μm to 5 μm. This is sufficiently smaller than the heat radiation groove formed in the conventional discharge lamp. In FIG. 4, regarding the fine groove r, the fine groove formed in the metal member 20A is represented as “r1A”, and the fine groove formed in the metal member 20B is represented as “r1B”.

後端側の金属部材20Bに形成される微細溝r1Bは、むしれのある溝であり、溝深さdは、工具切れ刃稜位置よりも深い位置まで達している。ただし、溝深さdを、溝山頂点を結んだ線から底までの距離としてここでは示している。一方、展延性が相対的に低い金属部材20Aには、むしれのない、あるいはほとんど生じない微細溝r1Aが形成される。溝深さdは、金属部材20B側と比べて金属部材20A側の方が小さい(浅い)。  The fine groove r1B formed in the metal member 20B on the rear end side is a peeled groove, and the groove depth d reaches a position deeper than the tool cutting edge ridge position. However, the groove depth d is shown here as the distance from the line connecting the groove peak points to the bottom. On the other hand, a fine groove r1A that does not peel or hardly occurs is formed in the metal member 20A having relatively low spreadability. The groove depth d is smaller (shallow) on the metal member 20A side than on the metal member 20B side.

このような接合面S1を挟んで深さ、粗さなど表面状態の異なる微細溝rを形成するように、切削加工時における旋盤の回転数/回転速度、刃の材質、切込み角度、切込み量などが調整される。ここでは、連続的に切削加工する間に接合面S1を境にして溝の違いが生じるように、調整が行われる。  The number of rotations / rotation speed of the lathe at the time of cutting, the material of the blade, the cutting angle, the cutting amount, etc., so as to form fine grooves r having different surface conditions such as depth and roughness across the joining surface S1. Is adjusted. Here, the adjustment is performed so that a difference in groove occurs at the joint surface S1 during continuous cutting.

金属部材20Bにおける溝深さdについては、むしれによる溝であるため比較的バラつきがあるが、深さ5μm以上となるように、刃の切込み量などが調整される。一方、金属部材20Aではむしれが生じるのを防ぐように、切込み量などが調整される。  The groove depth d in the metal member 20B is relatively uneven because it is a groove due to peeling, but the cutting depth of the blade is adjusted so that the depth is 5 μm or more. On the other hand, the cut amount and the like are adjusted so as to prevent the metal member 20A from being peeled.

金属表面が粗くなると、光の乱反射が大きくなり、反射率が小さくなる。本来であれば光の反射率はタングステンよりもモリブデンの方が大きいが、微細溝r(r1A、r1B)を形成することにより、溝部Rにおいて金属部材20B側の反射率は、金属部材20A側の反射率よりも小さくなる。また、切削加工により、金属部材20Bの表面粗さRaは1.2μm以上、金属部材20Aの表面粗さRaは0.7μm以下となる。  When the metal surface becomes rough, irregular reflection of light increases and the reflectance decreases. Originally, the reflectance of light is larger in molybdenum than in tungsten. However, by forming the fine grooves r (r1A, r1B), the reflectance on the metal member 20B side in the groove portion R is the same as that on the metal member 20A side. It becomes smaller than the reflectance. Moreover, the surface roughness Ra of the metal member 20B is 1.2 μm or more and the surface roughness Ra of the metal member 20A is 0.7 μm or less by cutting.

上述したように、後端側のモリブデン(Mo)から成る金属部材20Bは、先端側のタングステン(W)から成る金属部材20Aと比べて展延性が高く、変形しやすい。したがって、金属部材20A、20Bを固相接合させると、図3に示すように接合面S1の外縁付近に楔Wが生じやすい。この楔Wは、マイクロオーダーレベルで生じることが多い。  As described above, the metal member 20B made of molybdenum (Mo) on the rear end side has higher spreadability than the metal member 20A made of tungsten (W) on the front end side, and is easily deformed. Therefore, when the metal members 20A and 20B are solid-phase bonded, a wedge W tends to be generated near the outer edge of the bonding surface S1, as shown in FIG. The wedge W often occurs at the micro order level.

しかしながら、微細溝rが接合面S1付近に形成されるとき、相対的に展延性が高い金属部材20Bでは、むしれが生じるほどの微細溝r1Bが形成されることにより、接合面S1の外縁付近において塑性変形が生じる。これは、切削時に金属部材20Bに加えられる力などを調整したこと、および切削加工を接合面S1に沿って(10°以内)行うことなどによってもたらされる。このような微細溝r1Aを形成する目安として、上述した表面粗さRaが1.2μm以上となるように切削加工すればよい。  However, when the fine groove r is formed in the vicinity of the joint surface S1, in the metal member 20B having relatively high extensibility, the fine groove r1B is formed so as to cause peeling, so that the vicinity of the outer edge of the joint surface S1. In this case, plastic deformation occurs. This is brought about by adjusting the force applied to the metal member 20B at the time of cutting and performing the cutting along the joining surface S1 (within 10 °). As a guideline for forming such a fine groove r1A, cutting may be performed so that the above-described surface roughness Ra is 1.2 μm or more.

その結果、楔Wの形状も変化し、接合面S1付近に形成される微細溝rと同程度のサイズになる。接合面S1に生じた楔Wは、電極中心側へ深く切れ込んだ状態から形状変化し、場合によっては、潰れた状態となる。これは、ランプ点灯中に接合面S1付近における熱膨張の相違から楔を起点として生じる接合部破損を防ぐ。  As a result, the shape of the wedge W also changes and becomes the same size as the fine groove r formed near the joint surface S1. The wedge W generated on the joint surface S1 changes in shape from a state of being deeply cut to the electrode center side, and in some cases, the wedge W is in a crushed state. This prevents the joint from being damaged starting from the wedge due to the difference in thermal expansion in the vicinity of the joint surface S1 during lamp operation.

特に、テーパー面20Qにおいては電流密度が高く、熱膨張率の違いによる熱応力が金属部材20Bから金属部材20Aに向けて大きく作用するが、接合強度が高いため、高い熱伝導性、電気伝導性を維持することが可能となる。これによって、先端側金属部材20Aにおけるトリウム含有量を、必要最小限に留めることができる。  In particular, the taper surface 20Q has a high current density, and thermal stress due to the difference in thermal expansion coefficient acts greatly from the metal member 20B toward the metal member 20A. However, since the bonding strength is high, high thermal conductivity and electrical conductivity are achieved. Can be maintained. Thereby, the thorium content in the tip side metal member 20A can be kept to the minimum necessary.

また、先端側の金属部材20Aにも微細溝r1Aを形成することにより、ランプ点灯中に金属部材20Bから金属部材20Aへ熱応力が加えられたとき、微細溝r1Aによって熱応力を逃すことになり、接合面S1付近において欠けが生じるのを防止することができる。これを実現するため、表面粗さRaが0.7μm以下にするように、微細溝r1Aを形成すればよい。  Further, by forming the minute groove r1A in the metal member 20A on the front end side, when a thermal stress is applied from the metal member 20B to the metal member 20A during lamp lighting, the thermal stress is released by the minute groove r1A. It is possible to prevent chipping in the vicinity of the joint surface S1. In order to realize this, the fine groove r1A may be formed so that the surface roughness Ra is 0.7 μm or less.

さらに、金属部材20B表面付近の切削加工による塑性変形によって、金属部材20Bの接合面S1付近では、電極中心側に食い込む微細溝r1Bが形成されることになり、接合面S1の外縁付近での接合を強固にすることができる。特に、金属部材20Bを純モリブデンで形成することにより、むしれが生じやすくなり、表面粗さRaを大きくしやすい。  Further, by the plastic deformation by cutting near the surface of the metal member 20B, a fine groove r1B that bites into the electrode center side is formed in the vicinity of the joint surface S1 of the metal member 20B, and the joint near the outer edge of the joint surface S1. Can be strengthened. In particular, when the metal member 20B is formed of pure molybdenum, peeling easily occurs and the surface roughness Ra is easily increased.

一方、金属部材20A側面の微細溝r1Aには、むしれが実質的に生じていないため、ピッチ、深さが乱れのない溝となっている。これによって、展延性の低いタングステンから成る金属部材20Aにおいてクラックや欠けが生じず、ランプ点灯中のアーク放電が安定する。このような微細溝rが切削加工と同時に形成されるため、電極製造工程が煩雑にならない。  On the other hand, in the fine groove r1A on the side surface of the metal member 20A, since no peeling is substantially generated, the pitch and depth are grooves with no disturbance. As a result, no crack or chipping occurs in the metal member 20A made of tungsten having low extensibility, and arc discharge during lamp operation is stabilized. Since such fine grooves r are formed simultaneously with the cutting process, the electrode manufacturing process is not complicated.

以上、陰極20のテーパー面20Qに形成される溝部Rについて説明したが、陽極30においても、陰極20と同様な溝部が形成される。その結果、タングステンから成る金属部材30Aとモリブデンから成る金属部材30Bに接合面S2を間に挟んで溝部が形成され、金属部材30Bにはむしれが生じた微細溝が形成される。これにより、接合強度、熱伝導性、電気伝導性を向上させることができる。  Although the groove portion R formed on the tapered surface 20Q of the cathode 20 has been described above, the same groove portion as that of the cathode 20 is formed also in the anode 30. As a result, a groove is formed in the metal member 30A made of tungsten and the metal member 30B made of molybdenum with the joining surface S2 interposed therebetween, and a fine groove with a peeling is formed in the metal member 30B. Thereby, joint strength, thermal conductivity, and electrical conductivity can be improved.

このように本実施形態によれば、先端側の金属部材20Aと後端側の金属部材20Bをから成る陰極20を、固相接合および切削加工によって形成する。切削加工時に形成される陰極20のテーパー面20Qには、微細溝rを形成した溝部Rが形成される。このとき、金属部材20Bにおいてむしれが生じる一方、金属部材20Aにおいてはむしれが生じないように、切削加工が施される。  Thus, according to the present embodiment, the cathode 20 composed of the metal member 20A on the front end side and the metal member 20B on the rear end side is formed by solid phase bonding and cutting. A groove portion R in which fine grooves r are formed is formed on the tapered surface 20Q of the cathode 20 formed at the time of cutting. At this time, cutting is performed so that peeling occurs in the metal member 20B but does not occur in the metal member 20A.

次に、図5を用いて、第2の実施形態であるショートアーク型放電ランプについて説明する。第2の実施形態では、さらに放熱用溝部が形成される。  Next, the short arc type discharge lamp which is 2nd Embodiment is demonstrated using FIG. In the second embodiment, a heat radiating groove is further formed.

図5は、第2の実施形態における陰極の側面図である。  FIG. 5 is a side view of the cathode in the second embodiment.

陰極200は、先端面200Sを含む先端側金属部材200Aと後端側金属部材200Bから成る。そして、テーパー表面200Qを形成する切削加工時に、微細溝から成る溝部100Rが形成される。  The cathode 200 includes a front end side metal member 200A including a front end surface 200S and a rear end side metal member 200B. And the groove part 100R which consists of a fine groove is formed at the time of the cutting which forms the taper surface 200Q.

さらに、微細溝rの形成後、レーザー照射によってピッチの大きい溝rr(以下、幅広溝という)が重ねて形成される。幅広溝rrは、微細溝よりも十分大きなオーダー(ミリオーダーレベル)であるピッチP2および深さd’(図示せず)をもつ。ここでは、ピッチP2が0.1mm〜1.0mmの範囲、深さd’が0.1〜0.5mmの範囲に定められる。特に、ピッチP2を0.2mm〜0.5mm、深さd’を0.2mm〜0.5mmに定めるのがよい。  Further, after the formation of the fine groove r, a groove rr having a large pitch (hereinafter referred to as a wide groove) is formed by laser irradiation. The wide groove rr has a pitch P2 and a depth d '(not shown) that are sufficiently larger (millimeter order level) than the fine groove. Here, the pitch P2 is set in a range of 0.1 mm to 1.0 mm, and the depth d 'is set in a range of 0.1 to 0.5 mm. In particular, the pitch P2 is preferably set to 0.2 mm to 0.5 mm, and the depth d 'is set to 0.2 mm to 0.5 mm.

切削加工後のレーザー照射によって溝部Rに形成される幅広溝rrは、電極放熱効果を高めるとともに、レーザー照射により溶融した金属部分が楔Wに埋まることによって接合強度がより一層上がる。  The wide groove rr formed in the groove portion R by the laser irradiation after the cutting process enhances the electrode heat dissipation effect and further increases the bonding strength when the metal portion melted by the laser irradiation is buried in the wedge W.

微細溝は、切削加工以外の方法によって形成し、むしれによらない微細溝/凹凸面を形成することも可能である。接合面強度が上がる範囲で適度な深さ、ピッチをもつ溝を形成すればよい。特に、後端側の溝深さが、先端側溝深さよりも大きい溝部を形成するのがよい。  The fine groove is formed by a method other than the cutting process, and it is possible to form a fine groove / uneven surface that does not depend on peeling. What is necessary is just to form the groove | channel with moderate depth and a pitch in the range which joint surface intensity | strength raises. In particular, it is preferable to form a groove portion having a groove depth on the rear end side larger than the groove depth on the front end side.

例えば、微細溝を100μm以下のピッチで形成し、また、後端側金属部材に対して微細溝が100μm以下の深さとなるように切削加工すればよい。これは、楔Wがマイクロオーダーレベルで生じることが多いため、上記よりも大きい溝では、楔Wを十分に埋めることができないためである。  For example, the fine grooves may be formed at a pitch of 100 μm or less, and cutting may be performed so that the fine grooves have a depth of 100 μm or less with respect to the rear end side metal member. This is because the wedge W often occurs at the micro-order level, so that the wedge W cannot be sufficiently filled with a groove larger than the above.

溝部の形成範囲については、接合面付近の一部だけでもよく、あるいは、テーパー面20Q全体に渡って行うことも可能である。さらに、レーザー照射以外の方法(切削加工など)でピッチの大きな幅広溝を形成してもよく、微細溝、あるいは幅広溝のみ形成することも可能である。  About the formation range of a groove part, it may be only a part of joint surface vicinity, or it can also carry out over the taper surface 20Q whole. Furthermore, wide grooves with a large pitch may be formed by a method other than laser irradiation (cutting or the like), or only fine grooves or wide grooves may be formed.

先端側の金属部材20A、後端側の金属部材20Bの金属素材については、金属部材20Bが相対的に金属部材20Aよりも展延性が高くなるように選択される。例えば、金属部材20Bは、タンタル/モリブデン、あるいはタンタル/モリブデンを主成分とする合金によって構成することが可能である。  About the metal material of the metal member 20A on the front end side and the metal member 20B on the rear end side, the metal member 20B is selected so as to have relatively higher extensibility than the metal member 20A. For example, the metal member 20B can be composed of tantalum / molybdenum or an alloy mainly composed of tantalum / molybdenum.

なお、3つ以上の金属部材でそれぞれ電極を構成してもよい。また、一方の電極のみ接合面付近に溝部を形成した構成にしてもよく、テーパー面、円柱表面いずれに形成される接合面においても溝部を形成することができる。また、金属部材以外の部材を固相接合させてもよく、ショートアーク型放電ランプ以外の放電ランプにも適用可能である。  In addition, you may comprise an electrode with three or more metal members, respectively. Further, only one of the electrodes may have a groove formed in the vicinity of the bonding surface, and the groove can be formed on the bonding surface formed on either the tapered surface or the cylindrical surface. Further, members other than metal members may be solid-phase bonded, and can be applied to discharge lamps other than short arc type discharge lamps.

第1、第2の実施形態では、異なる金属部材を固相接合させているが、同種の金属部材を固相接合させることも可能である。金属部材の展延性が同じであっても、接合面に微小な楔が生じやすく、微細溝を形成することによって楔拡大を防ぐことができる。  In the first and second embodiments, different metal members are solid-phase bonded, but the same kind of metal members can also be solid-phase bonded. Even if the spreadability of the metal member is the same, a minute wedge is likely to be formed on the joint surface, and the formation of the minute groove can prevent the wedge from expanding.

以下では、図6〜図8を用いて、本発明の実施例について説明する。  Below, the Example of this invention is described using FIGS. 6-8.

定格電力5kWのショートアーク型放電ランプの陰極は、トリエーテッドタングステンから成る金属部材、モリブデンから成る金属部材をSPS焼結方式に従って固相接合し、その後切削加工によって陰極形状が構成される。陽極は、タングステンから成る先端側金属部材、モリブデンから成る後端側金属部材を固相接合し、切削加工することによって得られる。陰極は、全長20mm、陰極先端面から接合面までの距離が5mm、接合面の径が16mmとなっている。  The cathode of the short arc type discharge lamp having a rated power of 5 kW is formed into a cathode shape by solid-phase joining a metal member made of tritunged tungsten and a metal member made of molybdenum in accordance with the SPS sintering method, and then cutting. The anode is obtained by solid-phase bonding and cutting a front end side metal member made of tungsten and a rear end side metal member made of molybdenum. The cathode has a total length of 20 mm, a distance from the cathode tip surface to the joining surface of 5 mm, and a joining surface diameter of 16 mm.

図6は、接合面付近の陰極の写真を表した図である。図7は、図6の拡大写真を表した図である。図8は、電子顕微鏡による接合面付近の写真を表した図である。  FIG. 6 is a view showing a photograph of the cathode near the joint surface. FIG. 7 is a diagram showing an enlarged photograph of FIG. FIG. 8 is a view showing a photograph of the vicinity of the joint surface by an electron microscope.

図6から明らかなように、溝部が接合面S1に沿った方向に形成され、かつ、接合面S1を跨いで先端側部材20Aと後端側部材20Bに形成されている。さらに、図7、8から明らかなように、後端側部材20Bには、むしれが生じている。  As is clear from FIG. 6, the groove is formed in the direction along the joint surface S1, and is formed in the front end side member 20A and the rear end side member 20B across the joint surface S1. Further, as is apparent from FIGS. 7 and 8, the rear end side member 20B has peeling.

接合面S1に沿って溝部が形成され、後端側部材20Bにむしれが生じるように切削加工したため、接合面端部に楔状の隙間が生じず、点灯中に接合部の破損は生じなかった。  Since a groove was formed along the joint surface S1 and the rear end side member 20B was cut so as to cause peeling, no wedge-shaped gap was formed at the end of the joint surface, and the joint was not damaged during lighting. .

本発明に関しては、添付されたクレームによって定義される本発明の意図および範囲から離れることなく、様々な変更、置換、代替が可能である。さらに、本発明では、明細書に記載された特定の実施形態のプロセス、装置、製造、構成物、手段、方法およびステップに限定されることを意図していない。当業者であれば、本発明の開示から、ここに記載された実施形態がもたらす機能と同様の機能を実質的に果たし、又は同等の作用、効果を実質的にもたらす装置、手段、方法が導かれることを認識するであろう。したがって、添付した請求の範囲は、そのような装置、手段、方法の範囲に含まれることが意図されている。  Various changes, substitutions and alternatives are possible with respect to the present invention without departing from the spirit and scope of the present invention as defined by the appended claims. Furthermore, the present invention is not intended to be limited to the specific embodiments of the processes, apparatus, manufacture, components, means, methods, and steps described in the specification. Those skilled in the art will appreciate from the disclosure of the present invention devices, means, and methods that perform substantially the same functions as those provided by the embodiments described herein, or that provide substantially the same operations and effects. You will recognize it. Accordingly, the appended claims are intended to be included within the scope of such devices, means, and methods.

本願は、日本出願(特願2013−151647号、2013年7月22日出願)を基礎出願として優先権主張する出願であり、基礎出願の明細書、図面およびクレームを含む開示内容は、参照することによって本願全体に組み入れられている。  This application claims the priority of a Japanese application (Japanese Patent Application No. 2013-151647, filed on July 22, 2013) as a basic application, and the disclosure including the specification, drawings and claims of the basic application is referred to. Which is incorporated herein by reference in its entirety.

10 放電ランプ
12 放電管
20 陰極
30 陽極
S1 接合面
R 溝部
r 微細溝
rr 幅広溝
DESCRIPTION OF SYMBOLS 10 Discharge lamp 12 Discharge tube 20 Cathode 30 Anode S1 Joint surface R Groove part r Fine groove rr Wide groove

Claims (7)

放電管と、
前記放電管内に配置される一対の電極とを備え、
少なくとも一方の電極が、先端側部材と、前記先端側部材よりも展延性の高い後端側部材とを固相接合させた電極であり、
溝部が、前記先端側部材と前記後端側部材との接合面を跨いで電極側面に形成され、
前記溝部の後端側部材側面において、むしれのある微細溝が形成されていることを特徴とする放電ランプ。
A discharge tube;
A pair of electrodes disposed in the discharge tube,
At least one of the electrodes is an electrode obtained by solid-phase bonding a front end side member and a rear end side member having higher extensibility than the front end side member,
A groove is formed on the electrode side surface across the joint surface between the front end side member and the rear end side member,
A discharge lamp, wherein a microscopic groove is formed on a side surface of a rear end side member of the groove.
放電管と、
前記放電管内に配置される一対の電極とを備え、
少なくとも一方の電極が、先端側部材と、前記先端側部材よりも展延性の高い後端側部材とを固相接合させた電極であり、
微細溝が、前記先端側部材と前記後端側部材との接合面を跨いで電極側面に形成され、
前記微細溝が、後端側部材側面において、先端側部材側面よりも深いことを特徴とする放電ランプ。
A discharge tube;
A pair of electrodes disposed in the discharge tube,
At least one of the electrodes is an electrode obtained by solid-phase bonding a front end side member and a rear end side member having higher extensibility than the front end side member,
A fine groove is formed on the electrode side surface across the joint surface between the front end side member and the rear end side member,
The discharge lamp characterized in that the fine groove is deeper on the side surface of the rear end side member than on the side surface of the front end side member.
放電管と、
前記放電管内に配置される一対の電極とを備え、
少なくとも一方の電極が、先端側部材と、前記先端側部材よりも展延性の高い後端側部材とを固相接合させた電極であり、
溝部が、前記先端側部材と前記後端側部材との接合面を跨いで電極側面に形成され、
前記溝部において、微細溝と、前記微細溝よりもピッチおよび深さが大きい幅広溝とが、接合面を跨いで形成されることを特徴とする放電ランプ。
A discharge tube;
A pair of electrodes disposed in the discharge tube,
At least one of the electrodes is an electrode obtained by solid-phase bonding a front end side member and a rear end side member having higher extensibility than the front end side member,
A groove is formed on the electrode side surface across the joint surface between the front end side member and the rear end side member,
The discharge lamp characterized in that in the groove portion, a fine groove and a wide groove having a larger pitch and depth than the fine groove are formed across the joint surface.
前記微細溝が形成された部分の後端側部材側面の表面粗さRaが、1.2μm以上であることを特徴とする請求項1乃至のいずれかに記載の放電ランプ。 The discharge lamp according to any one of claims 1 to 3 , wherein the surface roughness Ra of the side surface of the rear end side member where the fine groove is formed is 1.2 µm or more. 前記微細溝が形成された部分の先端側部材側面の表面粗さRaが、0.7μm以下であることを特徴とする請求項1乃至のいずれかに記載の放電ランプ。 The discharge lamp according to any one of claims 1 to 4 , wherein a surface roughness Ra of a side surface of the tip side member in a portion where the fine groove is formed is 0.7 µm or less. 放電管と、
前記放電管内に配置される一対の電極とを備え、
少なくとも一方の電極が、先端側部材と、前記先端側部材よりも展延性の高い後端側部材とを固相接合させた電極であり、
溝部が、前記先端側部材と前記後端側部材との接合面を跨いで電極側面に形成され、
前記溝部において、後端側部材側面の反射率が、先端側部材側面の反射率よりも小さいことを特徴とする放電ランプ。
A discharge tube;
A pair of electrodes disposed in the discharge tube,
At least one of the electrodes is an electrode obtained by solid-phase bonding a front end side member and a rear end side member having higher extensibility than the front end side member,
A groove is formed on the electrode side surface across the joint surface between the front end side member and the rear end side member,
The discharge lamp according to claim 1, wherein in the groove portion, the reflectance of the side surface of the rear end side member is smaller than the reflectance of the side surface of the front end side member.
先端側部材と、前記先端側部材よりも展延性の高い後端側部材とを固相接合させ、
固相接合させた電極部材側面を切削加工する放電ランプの製造方法であって、
前記切削加工において、前記先端側部材と前記後端側部材との接合面を跨ぐように電極部材側面に溝部を形成する放電ランプの製造方法であって、
前記切削加工のとき、後端側部材側面において、むしれによる微細溝を形成することを特徴とする放電ランプの製造方法。
Solid-phase joining the front end side member and the rear end side member having higher extensibility than the front end side member,
A method of manufacturing a discharge lamp for cutting a side surface of an electrode member subjected to solid phase bonding,
In the cutting process, the discharge lamp manufacturing method of forming a groove on the side surface of the electrode member so as to straddle the joint surface between the front end side member and the rear end side member,
A manufacturing method of a discharge lamp, wherein fine grooves are formed on a side surface of a rear end side member during the cutting process.
JP2015535169A 2013-07-22 2014-07-04 Discharge lamp, discharge lamp manufacturing method, and discharge lamp electrode Active JP6483020B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013151647 2013-07-22
JP2013151647 2013-07-22
PCT/IB2014/062847 WO2015033239A1 (en) 2013-07-22 2014-07-04 Discharge lamp, method for producing discharge lamp, and electrode for discharge lamp

Publications (2)

Publication Number Publication Date
JPWO2015033239A1 JPWO2015033239A1 (en) 2017-03-02
JP6483020B2 true JP6483020B2 (en) 2019-03-13

Family

ID=52627862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015535169A Active JP6483020B2 (en) 2013-07-22 2014-07-04 Discharge lamp, discharge lamp manufacturing method, and discharge lamp electrode

Country Status (5)

Country Link
JP (1) JP6483020B2 (en)
KR (1) KR102206779B1 (en)
CN (1) CN105431922B (en)
TW (1) TWI621151B (en)
WO (1) WO2015033239A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6564598B2 (en) * 2015-03-31 2019-08-21 株式会社オーク製作所 Discharge lamp
JP1673314S (en) 2020-02-20 2020-11-24

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513031B2 (en) * 2000-08-03 2010-07-28 ウシオ電機株式会社 Short arc type high pressure discharge lamp
TW523780B (en) * 2000-08-03 2003-03-11 Ushio Electric Inc Short-arc high-pressure discharge lamp
JP4512968B2 (en) * 2000-08-03 2010-07-28 ウシオ電機株式会社 Short arc type high pressure discharge lamp
JP4636156B2 (en) * 2008-10-01 2011-02-23 ウシオ電機株式会社 Short arc type discharge lamp
JP4484958B1 (en) 2009-09-24 2010-06-16 株式会社オーク製作所 Discharge lamp
JP5365799B2 (en) 2009-10-23 2013-12-11 ウシオ電機株式会社 High pressure discharge lamp and method of manufacturing high pressure discharge lamp
JP5316436B2 (en) * 2010-01-28 2013-10-16 ウシオ電機株式会社 Discharge lamp
JP5556315B2 (en) * 2010-04-02 2014-07-23 ウシオ電機株式会社 Short arc type discharge lamp
JP5580136B2 (en) * 2010-08-11 2014-08-27 株式会社オーク製作所 Discharge lamp

Also Published As

Publication number Publication date
TW201511080A (en) 2015-03-16
TWI621151B (en) 2018-04-11
JPWO2015033239A1 (en) 2017-03-02
KR20160033663A (en) 2016-03-28
KR102206779B1 (en) 2021-01-22
CN105431922A (en) 2016-03-23
WO2015033239A1 (en) 2015-03-12
CN105431922B (en) 2017-07-14

Similar Documents

Publication Publication Date Title
JP5472915B2 (en) Discharge lamp
JP4484958B1 (en) Discharge lamp
US8648531B2 (en) High pressure discharge lamp and method of manufacturing high pressure discharge lamp
JP5009062B2 (en) Electrode structure for discharge lamp
KR101661488B1 (en) Discharge lamp
JP6483020B2 (en) Discharge lamp, discharge lamp manufacturing method, and discharge lamp electrode
JP4498468B1 (en) Manufacturing method of electrode for discharge lamp
JP6633826B2 (en) Discharge lamp
JP2014063655A (en) Method of manufacturing electrode for discharge lamp
JP6564598B2 (en) Discharge lamp
JP6092557B2 (en) Manufacturing method of discharge lamp electrode
KR102460981B1 (en) Discharge lamp, electrode for discharge lamp, method for producing discharge lamp, and method for producing electrode for discharge lamp
JP4628777B2 (en) Short arc type high pressure discharge lamp
JP6263770B2 (en) Short arc type discharge lamp
JP2011060527A (en) Electrode and method of manufacturing the same, and high pressure discharge lamp
JP7145429B2 (en) discharge lamp
JP6328285B2 (en) Manufacturing method of discharge lamp electrode
JP2022169761A (en) Discharge lamp and method for manufacturing discharge lamp electrode
JP6235909B2 (en) Discharge lamp
JP2023048876A (en) Discharge lamp and method of manufacturing electrode for discharge lamp
JP2016066484A (en) Discharge lamp
JP2018085227A (en) Discharge lamp
JP2002075257A (en) Display tube using filament and welding method of filament

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190213

R150 Certificate of patent or registration of utility model

Ref document number: 6483020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250