JP6482384B2 - Composite particles and aqueous dispersion containing the same - Google Patents

Composite particles and aqueous dispersion containing the same Download PDF

Info

Publication number
JP6482384B2
JP6482384B2 JP2015108355A JP2015108355A JP6482384B2 JP 6482384 B2 JP6482384 B2 JP 6482384B2 JP 2015108355 A JP2015108355 A JP 2015108355A JP 2015108355 A JP2015108355 A JP 2015108355A JP 6482384 B2 JP6482384 B2 JP 6482384B2
Authority
JP
Japan
Prior art keywords
particles
meth
metal
composite
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015108355A
Other languages
Japanese (ja)
Other versions
JP2016222770A (en
Inventor
豊昭 山内
豊昭 山内
秀司 藤井
秀司 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Josho Gakuen Educational Foundation
Original Assignee
Asahi Kasei Corp
Josho Gakuen Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Josho Gakuen Educational Foundation filed Critical Asahi Kasei Corp
Priority to JP2015108355A priority Critical patent/JP6482384B2/en
Publication of JP2016222770A publication Critical patent/JP2016222770A/en
Application granted granted Critical
Publication of JP6482384B2 publication Critical patent/JP6482384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、複合粒子及びこれを含有する水性分散液に関する。   The present invention relates to composite particles and an aqueous dispersion containing the same.

一般に、樹脂材料に導電性能を付与、向上させるには、混入物である導電性物質同士を連続的につなげることが必要であり、混入量を多くしなければならない。しかし、混入量が増えると、樹脂材料の柔軟性が損なわれてしまう。導電性能と柔軟性を共に向上させるために、さまざまな検討がなされている。   In general, in order to impart and improve the conductive performance of a resin material, it is necessary to continuously connect conductive substances that are contaminants, and the amount of contamination must be increased. However, when the mixing amount increases, the flexibility of the resin material is impaired. Various studies have been made to improve both the conductive performance and flexibility.

例えば、高分子粒子を担体とし、その表面に金属粒子を固着、固定化して得られる材料は、粒子界面に金属が偏在化するため、塗膜を形成したときに金属粒子が連続的につながりやすく、混入する金属量を削減することが可能となる。具体的には、高分子粒子を担体とし、その表面に金属粒子を固着、固定化し、水に分散させることで得られる複合粒子では、高分子粒子のガラス転移温度や分子量を制御することで、塗膜の形態にすることができる。その塗膜中において、金属粒子が連続的につながることが可能となる。この複合粒子について性能を向上させるために様々な開発が行われている。   For example, a material obtained by fixing and immobilizing metal particles on the surface of polymer particles as a carrier is unevenly distributed at the particle interface, so that metal particles are easily connected continuously when a coating film is formed. It becomes possible to reduce the amount of mixed metal. Specifically, in a composite particle obtained by using polymer particles as a carrier, fixing metal particles on its surface, fixing, and dispersing in water, by controlling the glass transition temperature and molecular weight of the polymer particles, It can be in the form of a coating film. In the coating film, metal particles can be continuously connected. Various developments have been made to improve the performance of the composite particles.

例えば、特許文献1は、高分子粒子の存在下で金錯体と還元剤とを用いることにより、高分子粒子担体の表面に金粒子を固着、固定化する方法を開示している。   For example, Patent Document 1 discloses a method for fixing and fixing gold particles on the surface of a polymer particle carrier by using a gold complex and a reducing agent in the presence of the polymer particles.

特許文献2は、極性の高い官能基を表面に有さない高分子粒子の存在下で金錯体と還元剤とを用いることにより、高分子粒子担体の表面に金粒子を固着、固定化する方法を開示している。   Patent Document 2 discloses a method for fixing and immobilizing gold particles on the surface of a polymer particle carrier by using a gold complex and a reducing agent in the presence of polymer particles having no highly polar functional group on the surface. Is disclosed.

非特許文献1では、ポリメタクリル酸ブチルラテックス粒子存在下、ピロールを還元することによって、ポリメタクリル酸ブチル粒子表面にポリピロール層を形成させる方法を開示している。   Non-Patent Document 1 discloses a method of forming a polypyrrole layer on the surface of polybutyl methacrylate particles by reducing pyrrole in the presence of polybutyl methacrylate latex particles.

非特許文献2では、高分子粒子の存在下で金錯体と還元剤とを用いることにより、高分子粒子担体の表面に金粒子を固着、固定化する方法を開示している。   Non-Patent Document 2 discloses a method for fixing and immobilizing gold particles on the surface of a polymer particle carrier by using a gold complex and a reducing agent in the presence of polymer particles.

非特許文献3では、さらに水に分散しているポリビニルピリジン粒子存在下で、金錯体を還元剤によって還元し、金粒子をポリビニルピリジン粒子へ固着する方法が開示されている。   Non-Patent Document 3 discloses a method in which a gold complex is reduced with a reducing agent in the presence of polyvinylpyridine particles dispersed in water, and the gold particles are fixed to the polyvinylpyridine particles.

特開2007−197591号公報JP 2007-197591 A 特開2009−220017号公報JP 2009-220017 A

D.B.カイアーンズ(D.B.Cairns)ら外4名,ケミカル マター(Chem. Matter)、第15巻、第233−239頁(2003年)D. B. D.B. Cairns et al., 4 others, Chem. Matter, Vol. 15, pp. 233-239 (2003) 藤井ら外6名、日本接着学会誌第44巻、第1号、第12頁(2008年)Fujii et al., 6 people, Journal of the Adhesion Society of Japan, Vol. 44, No. 1, p. 12 (2008) ケンスケ アカマツ(Kensuke Akamatsu)ら外5名、ラングミュアー(Langmuir)、第26巻、第2号、第1254−1259頁(2010年)Kensuke Akamatsu et al., 5 others, Langmuir, Vol. 26, No. 2, pp. 1254-1259 (2010)

しかしながら、特許文献1に記載の技術では、金粒子の高分子粒子への固定化力が弱く、水を蒸発させる時点で、水が飛散する塗膜表面へ金粒子の一部が移動してしまうという欠点がある。   However, in the technique described in Patent Document 1, the fixing force of the gold particles to the polymer particles is weak, and at the time of evaporating the water, some of the gold particles move to the coating film surface where the water scatters. There is a drawback.

特許文献2に記載の技術では、極性の高い官能基を表面に有さない高分子を必須とするため、高分子粒子への固定化力が弱く、水を蒸発させる時点で、水が飛散する塗膜表面へ金粒子の一部が移動してしまうという欠点がある。   The technique described in Patent Document 2 requires a polymer that does not have a highly polar functional group on its surface, so that the fixing force to the polymer particles is weak, and water is scattered when water is evaporated. There is a drawback that some of the gold particles move to the surface of the coating film.

非特許文献1に記載の技術では、所定のラテックスから得られる塗膜は柔軟性に優れるものの、ポリピロール層だけでは充分な導電性能を得ることはできていない。   In the technique described in Non-Patent Document 1, a coating film obtained from a predetermined latex is excellent in flexibility, but a sufficient conductive performance cannot be obtained only with a polypyrrole layer.

非特許文献2に記載の技術では、金粒子の高分子粒子への固定化力が弱く、水を蒸発させる時点で、水が飛散する塗膜表面へ金粒子の一部が移動してしまうという欠点がある。   In the technique described in Non-Patent Document 2, the fixing force of gold particles to polymer particles is weak, and at the time when water is evaporated, some of the gold particles move to the surface of the coating film on which water scatters. There are drawbacks.

非特許文献3に記載の技術では、カチオン基が粒子全体に存在するため、金を固定化する目的に対し必要以上の過剰のビニルピリジンを必要とし、共重合により塗膜化可能な組成にしたとき、吸湿性が高いという欠点がある。   In the technique described in Non-Patent Document 3, since a cationic group is present in the entire particle, an excessive amount of vinyl pyridine is required more than necessary for the purpose of fixing gold, and the composition can be formed into a film by copolymerization. Sometimes, there is a drawback of high hygroscopicity.

以上のとおり、複合粒子の性能を向上させるために様々な開発が行われているものの、未だ十分な性能を有するものは得られていない。   As described above, various developments have been made to improve the performance of the composite particles, but those having sufficient performance have not yet been obtained.

本発明は、上記の従来技術が有する課題に鑑みてなされたものであり、塗膜とした際に、優れた導電性、低粘着性を発現することができる複合粒子を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide composite particles that can exhibit excellent conductivity and low adhesion when used as a coating film. To do.

本発明者らは、上記課題を解決するべく鋭意検討した結果、特定の構成を有する複合粒子とすることで、上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by using composite particles having a specific configuration, and have completed the present invention.

本発明は、以下に関する。
〔1〕
カチオン基を持つポリマー粒子(A)と、
金属粒子(B)と、
無機物粒子(C)と、
を有し、
前記(A)が、前記(C)を吸着しており、
前記(A)が、前記(C)を介して金属粒子(B)を固着している、複合粒子。
〔2〕
前記(A)が、水性媒体中において、前記(C)とカチオン系物質(D)との存在下で得られるものである、〔1〕に記載の複合粒子。
〔3〕
前記(C)を吸着している前記(A)の存在下で、金属錯体(B−1)を還元剤(B−2)により還元し、金属粒子(B)を複合化する工程により得られる、〔1〕又は〔2〕に記載の複合粒子。
〔4〕
水性媒体と、
前記水性媒体中に存在する〔1〕〜〔3〕のいずれかに記載の複合粒子と、
を含有する、水性分散液。
The present invention relates to the following.
[1]
Polymer particles (A) having a cationic group;
Metal particles (B);
Inorganic particles (C);
Have
The (A) adsorbs the (C),
The composite particle in which (A) fixes metal particles (B) through (C).
[2]
The composite particle according to [1], wherein (A) is obtained in the presence of (C) and a cationic substance (D) in an aqueous medium.
[3]
Obtained by the step of reducing the metal complex (B-1) with the reducing agent (B-2) in the presence of the (A) adsorbing the (C) and combining the metal particles (B). [1] or [2].
[4]
An aqueous medium;
The composite particles according to any one of [1] to [3] present in the aqueous medium;
An aqueous dispersion containing

本発明の複合粒子は、塗膜とした際に、優れた導電性、低粘着性を発現することができる。   The composite particles of the present invention can exhibit excellent conductivity and low tackiness when formed into a coating film.

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜変形して実施できる。   Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be appropriately modified within the scope of the gist.

<複合粒子の概要>
本実施形態に係る複合粒子は、カチオン基を持つポリマー粒子(A)と、金属粒子(B)と、無機物粒子(C)と、を有し、前記(A)が、前記(C)を吸着しており、前記(A)が、前記(C)を介して金属粒子(B)を固着している。このように構成されているため、本実施形態の複合粒子は、塗膜とした際に、優れた導電性、低粘着性を発現することができる。すなわち、本実施形態の複合粒子は、導電性の塗膜を形成するために用いることができ、塗膜化した際に、金属粒子が粒子融着界面に局在化する傾向にある。このように金属粒子をポリマー粒子と複合化することにより、金属粒子が持つ固有の性能が安定的に発現することができる。結果として、当該金属粒子の使用量が少ない場合でも、十分な導電性を発現させることができる。したがって、本実施形態の複合粒子は、特に金属粒子として高価な貴金属類の粒子を用いる場合に有用である。
<Overview of composite particles>
The composite particles according to the present embodiment include polymer particles (A) having a cationic group, metal particles (B), and inorganic particles (C), and (A) adsorbs (C). The (A) fixes the metal particles (B) through the (C). Since it is comprised in this way, the composite particle of this embodiment can express the outstanding electroconductivity and low adhesiveness, when it is set as a coating film. That is, the composite particles of this embodiment can be used to form a conductive coating film, and when formed into a coating film, the metal particles tend to localize at the particle fusion interface. Thus, by compounding the metal particles with the polymer particles, the inherent performance of the metal particles can be stably expressed. As a result, even when the amount of the metal particles used is small, sufficient conductivity can be expressed. Therefore, the composite particles of the present embodiment are particularly useful when expensive noble metal particles are used as the metal particles.

本実施形態において、所望の効果が奏される理由としては、以下に限定する趣旨ではないが、次のように推察される。すなわち、ポリマー粒子は、塗膜化可能な低いガラス転移点を持つため、粘着性を持つのが通常であるが、当該ポリマー粒子がカチオン性であるため、アニオン基を持つ無機粒子を吸着できるため、ポリマー粒子の周りに硬い無機粒子が存在することになる。結果として、複合粒子の水分散液が乾燥に伴い塗膜化する際、ポリマー粒子固有の粘着性の発現が無機粒子によって回避されると考えられる。さらに、本実施形態においては、金属粒子(B)が該無機物粒子(C)を介してカチオン基を持つポリマー粒子(A)に固着されているため、(B)が(A)の粒子内部へもぐりこむことなく(A)の表面に固着することになると考えられる。このような複合粒子を塗膜化したとき、粒子融着界面に(B)が位置することとなり、(B)同士の十分な接触を確保できると考えられる。   In the present embodiment, the reason for the desired effect is not limited to the following, but is presumed as follows. In other words, polymer particles are usually sticky because they have a low glass transition point that can be formed into a coating film, but because the polymer particles are cationic, they can adsorb inorganic particles having anionic groups. , There will be hard inorganic particles around the polymer particles. As a result, when the aqueous dispersion of the composite particles becomes a coating film upon drying, it is considered that the expression of tackiness inherent to the polymer particles is avoided by the inorganic particles. Furthermore, in this embodiment, since the metal particles (B) are fixed to the polymer particles (A) having a cationic group via the inorganic particles (C), (B) is moved into the particles of (A). It is thought that it will adhere to the surface of (A) without digging. When such a composite particle is formed into a coating film, (B) is positioned at the particle fusion interface, and it is considered that sufficient contact between (B) can be secured.

本実施形態に係る複合粒子は、例えば、カチオン基を持つポリマー粒子(A)が無機物粒子(C)を吸着し、分散している分散液中で金属錯体を還元剤により還元して、カチオン基を持つポリマー粒子(A)に吸着した無機物粒子(C)表面に固着された金属粒子を形成する工程を含む方法により得ることができる。このように、金属粒子(B)を単純に混合するのではなく、金属錯体を還元剤により還元して金属粒子(B)を発生させることで、塗膜化した際に金属粒子が塗膜表面等へ移動することなく、カチオン基を持つポリマー粒子間に留まり、塗膜全体へ導電性を与えることができる。   In the composite particles according to the present embodiment, for example, the polymer particles (A) having a cationic group adsorb the inorganic particles (C), and the metal complex is reduced with a reducing agent in the dispersed dispersion, whereby a cationic group is obtained. It can be obtained by a method including a step of forming metal particles fixed on the surface of the inorganic particles (C) adsorbed on the polymer particles (A) having the above. Thus, instead of simply mixing the metal particles (B), the metal particles are reduced by the reducing agent to generate the metal particles (B). It can stay between the polymer particles having a cationic group without moving to the like, and can impart conductivity to the entire coating film.

<カチオン基を持つポリマー粒子(A)>
カチオン基を持つポリマー粒子(A)(以下、単に「(A)成分」又は「(A)」と記載する場合がある。)は、ポリマーから構成される粒子である。カチオン基を持つポリマー粒子(A)を構成するポリマーは、特に限定されないが、ビニル系ポリマー、ポリエーテル、ポリエステル、ポリカーボネート、ポリアミド、ポリウレタン、ジエン系ポリマー、メラミン・ベンゾグアナミン系ポリマー、芳香族系ポリマー、ポリイミド、ポリカーボネート、ポリウレタン、ポリカプロラクトン、硫黄系ポリマー及び天然高分子から選択されることが好ましい。なお、1種以上を組み合わせてもよく、(A)はその他の添加物を含んでもよい。本実施形態の複合粒子より得られる塗膜の透明性及び耐光性をより良好なものとする観点から(A)成分を構成するポリマーは、ビニル系ポリマーの中でもアクリルポリマーであることが好ましい。
<Polymer particles having a cationic group (A)>
The polymer particles (A) having a cationic group (hereinafter sometimes simply referred to as “component (A)” or “(A)”) are particles composed of a polymer. The polymer constituting the polymer particles (A) having a cationic group is not particularly limited, but vinyl polymer, polyether, polyester, polycarbonate, polyamide, polyurethane, diene polymer, melamine / benzoguanamine polymer, aromatic polymer, It is preferably selected from polyimide, polycarbonate, polyurethane, polycaprolactone, sulfur-based polymer and natural polymer. One or more kinds may be combined, and (A) may contain other additives. From the viewpoint of improving the transparency and light resistance of the coating film obtained from the composite particles of the present embodiment, the polymer constituting the component (A) is preferably an acrylic polymer among vinyl polymers.

(A)の最低成膜温度(MFT)は、好ましくは50℃以下であり、さらに好ましくは20℃以下である。MFTがこのような範囲である場合、室温で容易に成膜できる傾向にある。MFTは、共重合物によりTgを調節すること、及び/又は、可塑剤を添加すること等によって調節できる。   The minimum film formation temperature (MFT) of (A) is preferably 50 ° C. or lower, more preferably 20 ° C. or lower. When the MFT is in such a range, the film tends to be easily formed at room temperature. MFT can be adjusted by adjusting Tg with a copolymer and / or adding a plasticizer.

(A)が後述する無機物粒子(C)を吸着している。本実施形態において、吸着とは、化学的な結合を介して、無機物粒子(C)が、(A)の表面に付着することを意味する。無機物粒子(A)が(C)を吸着していることは、走査型電子顕微鏡、透過型電子顕微鏡、ウエット透過型顕微鏡により観察することで確認でき、また、粒子径測定による粒子径の肥大化等によっても確認することができる。   (A) adsorbs inorganic particles (C) described later. In the present embodiment, the adsorption means that the inorganic particles (C) adhere to the surface of (A) through chemical bonds. The inorganic particles (A) adsorbing (C) can be confirmed by observing with a scanning electron microscope, a transmission electron microscope, or a wet transmission microscope, and the particle diameter is enlarged by measuring the particle diameter. It can also be confirmed by, for example.

カチオン基を持つポリマー粒子(A)の粒径は、特に限定されないが、5nm〜50μmであることが好ましい。より好ましくは、8nm〜2μmであり、さらに好ましくは、10nm〜500nmである。   The particle size of the polymer particles (A) having a cationic group is not particularly limited, but is preferably 5 nm to 50 μm. More preferably, it is 8 nm-2 micrometers, More preferably, it is 10 nm-500 nm.

カチオン基を持つポリマー粒子(A)は、通常の粒子形状のほか、中空粒子、多孔体などの形状を有していてもよく、楕円球体、金平糖型、ダルマ状などその形状は特に限定されない。利用のし易さを考慮すれば、通常、粒子形状として球形が好ましい。   The polymer particle (A) having a cationic group may have a shape such as a hollow particle or a porous body in addition to a normal particle shape, and the shape thereof is not particularly limited, such as an elliptical sphere, a confetti type, and a dharma shape. In consideration of ease of use, a spherical shape is usually preferable as the particle shape.

本実施形態において、(A)は、その表面に吸着した無機物粒子(C)により、分散安定化されているともいえる。(C)成分を吸着した(A)成分は、アニオン型として分散安定化されていることが好ましい。(C)成分を吸着した(A)成分がアニオン型の分散状態にあることは、(C)成分が有するアニオン基や混在しうる他の成分が有するアニオン基の総量が(A)成分のカチオン基量を上回ることに起因する。なお、(C)成分を吸着した(A)成分がアニオン型の分散状態にあることは、ゼータ電位計で確認できる。   In this embodiment, it can be said that (A) is dispersed and stabilized by the inorganic particles (C) adsorbed on the surface thereof. The component (A) that has adsorbed the component (C) is preferably dispersed and stabilized as an anionic type. The component (A) that adsorbs the component (C) is in an anion-type dispersion state that the total amount of anion groups contained in the component (C) and other components that may be mixed is a cation of the component (A). This is due to exceeding the basic amount. In addition, it can confirm with the zeta electrometer that (A) component which adsorb | sucked (C) component exists in an anion type dispersion state.

無機物粒子(C)を吸着している(A)の調製方法としては、特に限定されないが、カチオン基が導入されたポリマー粒子を、無機物粒子(C)で分散安定化して、無機物粒子(C)を吸着している(A)を得る方法が好ましい。   The method for preparing (A) adsorbing the inorganic particles (C) is not particularly limited, but the polymer particles into which cationic groups are introduced are dispersed and stabilized with the inorganic particles (C), and then the inorganic particles (C). The method of obtaining (A) adsorbing is preferred.

また、カチオン基が導入されたポリマー粒子を得るために、カチオン系物質(D)を用いることが好ましい。カチオン系物質(D)としては、以下に限定されないが、例えば、カチオン性ラジカル重合開始剤、カチオン性エチレン性不飽和単量体等が挙げられる。カチオン系物質(D)に由来するカチオン基は、無機物粒子(C)にイオン的結合することができ、全体としてアニオン性を発現する。   In order to obtain polymer particles having a cationic group introduced therein, it is preferable to use a cationic substance (D). Examples of the cationic substance (D) include, but are not limited to, a cationic radical polymerization initiator and a cationic ethylenically unsaturated monomer. The cationic group derived from the cationic substance (D) can be ionically bonded to the inorganic particles (C), and exhibits anionicity as a whole.

本明細書において、「カチオン基」は、正に帯電した基、及び、水素イオン等の付加により正に帯電し得る基を意味する。カチオン基としては、以下に限定されないが、例えば、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、4級化アミノ基が挙げられる。   In the present specification, the “cationic group” means a positively charged group and a group that can be positively charged by addition of a hydrogen ion or the like. Examples of the cationic group include, but are not limited to, an amino group, a monoalkylamino group, a dialkylamino group, and a quaternized amino group.

カチオン性ラジカル重合開始剤としては、以下に限定されないが、例えば、2,2−アゾビス(2−ジアミノプロパン)ハイドロクロライド等が挙げられる。   Examples of the cationic radical polymerization initiator include, but are not limited to, 2,2-azobis (2-diaminopropane) hydrochloride and the like.

カチオン性エチレン性不飽和単量体としては、以下に限定されないが、例えば、(メタ)アクリル酸アミノアルキル又は、へテロ原子が窒素である5若しくは6員環複素環を有する化合物が挙げられる。上記の中でも、(メタ)アクリル酸−N,N−ジアルキル(炭素数1〜6)アミノアルキル(炭素数2〜3)エステルが好ましい。その具体例としては、以下に限定されないが、(メタ)アクリル酸ジエチルアミノエチルエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸ジエチルアミノプロピルエステル、(メタ)アクリル酸ジメチルアミノプロピルエステル、(メタ)アクリル酸ジメチルアミノt−ブチルエステル、(メタ)アクリル酸ジエチルアミノt−ブチルエステルが挙げられる。その他、(メタ)アクリル酸トリエタノールアミン、ビニルアミン、ビニルピリジンが挙げられる。これらは単独で用いてもよく、適宜併用してもよい。   Examples of the cationic ethylenically unsaturated monomer include, but are not limited to, an aminoalkyl (meth) acrylate or a compound having a 5- or 6-membered heterocyclic ring in which a hetero atom is nitrogen. Among these, (meth) acrylic acid-N, N-dialkyl (C1-6) aminoalkyl (C2-3) ester is preferable. Specific examples thereof include, but are not limited to, (meth) acrylic acid diethylaminoethyl ester, (meth) acrylic acid dimethylaminoethyl ester, (meth) acrylic acid diethylaminopropyl ester, (meth) acrylic acid dimethylaminopropyl ester, Examples include (meth) acrylic acid dimethylamino t-butyl ester and (meth) acrylic acid diethylamino t-butyl ester. Other examples include (meth) acrylic acid triethanolamine, vinylamine, and vinylpyridine. These may be used alone or in appropriate combination.

カチオン系物質(D)がカチオン性ラジカル開始剤の場合は、カチオン系物質(D)によりエチレン性不飽和単量体を重合させることで、カチオン基を持つポリマー粒子(A)を得ることができる。また、カチオン系物質(D)がカチオン性エチレン性不飽和単量体の場合は、カチオン系物質(D)をエチレン性不飽和単量体と共重合することによってカチオン基を持つポリマー粒子(A)を得ることができる。   When the cationic substance (D) is a cationic radical initiator, polymer particles (A) having a cationic group can be obtained by polymerizing the ethylenically unsaturated monomer with the cationic substance (D). . When the cationic substance (D) is a cationic ethylenically unsaturated monomer, polymer particles (A) having a cationic group by copolymerizing the cationic substance (D) with the ethylenically unsaturated monomer (A ) Can be obtained.

エチレン性不飽和単量体としては、特に限定されないが、具体例としては、アクリル酸エステル、メタクリル酸エステル(本明細書においてアクリル酸及び又はメタクリル酸をまとめて(メタ)アクリル酸と表す)が挙げられる。当該(メタ)アクリル酸エステルと共重合可能な単量体は、特に限定されないが、その具体例を示せば、(メタ)アクリルアミド系単量体類、シアン化ビニル類等が挙げられる。   Although it does not specifically limit as an ethylenically unsaturated monomer, As a specific example, acrylic acid ester and methacrylic acid ester (Acrylic acid and / or methacrylic acid are collectively described as (meth) acrylic acid in this specification). Can be mentioned. The monomer copolymerizable with the (meth) acrylic acid ester is not particularly limited, and specific examples thereof include (meth) acrylamide monomers and vinyl cyanides.

(メタ)アクリル酸エステルの例としては、以下に限定されないが、アルキル部の炭素数が1〜18の(メタ)アクリル酸アルキルエステル、アルキル部の炭素数が1〜18の(メタ)アクリル酸ヒドロキシアルキルエステル、エチレンオキシド基の数が1〜100個の(ポリ)オキシエチレン(メタ)アクリレート、プロピレンオキシド基の数が1〜100個の(ポリ)オキシプロピレン(メタ)アクリレート、エチレンオキシド基の数が1〜100個の(ポリ)オキシエチレンジ(メタ)アクリレート等が挙げられる。   Examples of (meth) acrylic acid esters include, but are not limited to, (meth) acrylic acid alkyl esters having 1 to 18 carbon atoms in the alkyl portion, and (meth) acrylic acids having 1 to 18 carbon atoms in the alkyl portion. Hydroxyalkyl esters, (poly) oxyethylene (meth) acrylates having 1 to 100 ethylene oxide groups, (poly) oxypropylene (meth) acrylates having 1 to 100 propylene oxide groups, and ethylene oxide groups Examples thereof include 1 to 100 (poly) oxyethylene di (meth) acrylates.

(メタ)アクリル酸アルキルエステルの具体例としては、以下に限定されないが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸アダマンチル等が挙げられる。   Specific examples of the (meth) acrylic acid alkyl ester include, but are not limited to, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. Cyclohexyl (meth) acrylate, methyl cyclohexyl (meth) acrylate, dodecyl (meth) acrylate, isobornyl (meth) acrylate, stearyl (meth) acrylate, adamantyl (meth) acrylate, and the like.

(メタ)アクリル酸ヒドロキシアルキルエステルの具体例としては、以下に限定されないが、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシシクロヘキシル、(メタ)アクリル酸ドデシル等が挙げられる。   Specific examples of (meth) acrylic acid hydroxyalkyl esters include, but are not limited to, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxycyclohexyl (meth) acrylate, (Meth) acrylic acid dodecyl etc. are mentioned.

(ポリ)オキシエチレン(メタ)アクリレートの具体例としては、以下に限定されないが、(メタ)アクリル酸エチレングリコール、メトキシ(メタ)アクリル酸エチレングリコール、(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、(メタ)アクリル酸テトラエチレングリコール、メトキシ(メタ)アクリル酸テトラエチレングリコール等が挙げられる。
(ポリ)オキシプロピレン(メタ)アクリレートの具体例としては、以下に限定されないが、(メタ)アクリル酸プロピレングリコール、メトキシ(メタ)アクリル酸プロピレングリコール、(メタ)アクリル酸ジプロピレングリコール、メトキシ(メタ)アクリル酸ジプロピレングリコール、(メタ)アクリル酸テトラプロピレングリコール、メトキシ(メタ)アクリル酸テトラプロピレングリコール等が挙げられる。
Specific examples of (poly) oxyethylene (meth) acrylate include, but are not limited to, ethylene glycol (meth) acrylate, ethylene glycol methoxy (meth) acrylate, diethylene glycol (meth) acrylate, methoxy (meth) acryl Examples include acid diethylene glycol, (meth) acrylic acid tetraethylene glycol, and methoxy (meth) acrylic acid tetraethylene glycol.
Specific examples of (poly) oxypropylene (meth) acrylate include, but are not limited to, propylene glycol (meth) acrylate, propylene glycol methoxy (meth) acrylate, dipropylene glycol (meth) acrylate, methoxy (meth) ) Dipropylene glycol acrylate, tetrapropylene glycol (meth) acrylate, tetrapropylene glycol methoxy (meth) acrylate, and the like.

(ポリ)オキシエチレンジ(メタ)アクリレートの具体例としては、以下に限定されないが、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール等が挙げられる。   Specific examples of (poly) oxyethylene di (meth) acrylate include, but are not limited to, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, diethylene glycol methoxy (meth) acrylate, di (meth) ) Tetraethylene glycol acrylate and the like.

(メタ)アクリルアミド系単量体類としては、以下に限定されないが、例えば(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、ビニルピロリドン、ジアセトン(メタ)アクリルアミドなどが挙げられる。また、シアン化ビニル類としては、以下に限定されないが、例えば(メタ)アクリロニトリル、N,N'-メチレンビスアクリルアミドなどが挙げられる。   Examples of (meth) acrylamide monomers include, but are not limited to, (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide, dimethyl (meth) acrylamide, diethyl (meth) ) Acrylamide, vinylpyrrolidone, diacetone (meth) acrylamide and the like. Examples of vinyl cyanides include, but are not limited to, (meth) acrylonitrile, N, N′-methylenebisacrylamide, and the like.

また、アルド基又はケト基を有するエチレン性不飽和単量体を用いてもよく、それらの具体例としては、以下に限定されないが、アクロレイン、ジアセトンアクリルアミド、ジアセトンメタクリルアミド、ビニルメチルケトン、ビニルエチルケトン、アセトアセトキシエチルメタクリレート、アセトアセトキシエチルアクリレート、ホルミルスチロール等や、その併用が挙げられる。   Further, an ethylenically unsaturated monomer having an ald group or keto group may be used, and specific examples thereof include, but are not limited to, acrolein, diacetone acrylamide, diacetone methacrylamide, vinyl methyl ketone, Examples thereof include vinyl ethyl ketone, acetoacetoxyethyl methacrylate, acetoacetoxyethyl acrylate, formylstyrene, and combinations thereof.

上記以外のエチレン性不飽和単量体の具体例としては、以下に限定されないが、エチレン、プロピレン、イソブチレン等のオレフィン類、ブタジエン等のジエン類、塩化ビニル、塩化ビニリデン等のハロオレフィン類、酢酸ビニル、プロピオン酸ビニル、n−酪酸ビニル、安息香酸ビニル、p−t−ブチル安息香酸ビニル、ピバリン酸ビニル、2−エチルヘキサン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル等のカルボン酸ビニルエステル類、酢酸イソプロペニル、プロピオン酸イソプロペニル等のカルボン酸イソプロペニルエステル類、エチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル等のビニルエーテル類、スチレン、ビニルトルエン等の芳香族ビニル化合物、酢酸アリル、安息香酸アリル等のアリルエステル類、アリルエチルエーテル、アリルグリシジルエーテル、アリルフェニルエーテル等のアリルエーテル類、さらに、γ−(メタ)アクリロキシプロピルトリメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルエトキシシラン、ビニルジメチルメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、4−(メタ)アクリロイルオキシ−2,2,6,6,−テトラメチルピペリジン、4−(メタ)アクリロイルオキシ−1,2,2,6,6,−ペンタメチルピペリジン、パーフルオロメチル(メタ)アクリレート、パーフルオロプロピル(メタ)アクリレート、パーフルオロプロピロメチル(メタ)アクリレート、ビニルピロリドン、トリメチロルプロパントリ(メタ)アクリレート、(メタ)アクリル酸2,3−シクロヘキセンオキサイド、(メタ)アクリル酸アリル、メタクリル酸アシッドホスホオキシエチル、メタクリル酸3−クロロ−2−アシッドホスホオキシプロピル、メチルプロパンスルホン酸アクリルアミド、ジビニルベンゼン等やそれらの併用が挙げられる。   Specific examples of ethylenically unsaturated monomers other than the above include, but are not limited to, olefins such as ethylene, propylene and isobutylene, dienes such as butadiene, haloolefins such as vinyl chloride and vinylidene chloride, acetic acid Carboxylic acid vinyl esters such as vinyl, vinyl propionate, n-vinyl butyrate, vinyl benzoate, vinyl pt-butylbenzoate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl versatate, vinyl laurate, Carboxylic acid isopropenyl esters such as isopropenyl acetate and isopropenyl propionate, vinyl ethers such as ethyl vinyl ether, isobutyl vinyl ether and cyclohexyl vinyl ether, aromatic vinyl compounds such as styrene and vinyl toluene, allyl acetate, allyl benzoate, etc. Allyl ethers such as allyl esters, allyl ethyl ether, allyl glycidyl ether, allyl phenyl ether, γ- (meth) acryloxypropyltrimethoxysilane, vinylmethyldiethoxysilane, vinylmethyldimethoxysilane, vinyldimethylethoxysilane , Vinyldimethylmethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 4- (meth) acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (meth) acryloyloxy-1,2,2 , 6,6, -pentamethylpiperidine, perfluoromethyl (meth) acrylate, perfluoropropyl (meth) acrylate, perfluoropropylmethyl (meth) acrylate, vinylpyrrolidone, trimethylolpropane tri (Meth) acrylate, 2,3-cyclohexene oxide (meth) acrylate, allyl (meth) acrylate, acid phosphooxyethyl methacrylate, 3-chloro-2-acid phosphooxypropyl methacrylate, methylpropanesulfonic acid acrylamide, Examples thereof include divinylbenzene and combinations thereof.

カチオン基を持つエチレン性不飽和単量体としては、以下に限定されないが、例えば、(メタ)アクリル酸ジメチルアミノエチルおよび塩、(メタ)アクリル酸ジエチルアミノエチルおよび塩、(メタ)アクリル酸ジメチルアミノプロピルおよび塩、ジメチルアミノメチル(メタ)アクリルアミドおよび塩、ジメチルアミノエチル(メタ)アクリルアミドおよび塩、ジメチルアミノプロピル(メタ)アクリルアミドおよび塩、ビニルピリジン、ジメチルアミノメチル(メタ)アクリルアミドエピクロロヒドリン付加物のハロゲン化塩、ジメチルアミノプロピル(メタ)アクリルアミドエピクロロヒドリン付加物のハロゲン化塩及びアルキルスルホン酸塩、(メタ)アクリル酸ジメチルアミノメチルエピクロロヒドリン付加物のハロゲン化塩、(メタ)アクリル酸ジメチルアミノプロピルエピクロロルヒドリン付加物のハロゲン化塩及びアルキルスルホン酸塩などが挙げられる。   Examples of the ethylenically unsaturated monomer having a cationic group include, but are not limited to, for example, dimethylaminoethyl (meth) acrylate and salts, diethylaminoethyl (meth) acrylate and salts, dimethylamino (meth) acrylate Propyl and salt, dimethylaminomethyl (meth) acrylamide and salt, dimethylaminoethyl (meth) acrylamide and salt, dimethylaminopropyl (meth) acrylamide and salt, vinylpyridine, dimethylaminomethyl (meth) acrylamide epichlorohydrin adduct Halogenated salts of, dimethylaminopropyl (meth) acrylamide epichlorohydrin adducts and alkyl sulfonates, (meth) acrylic acid dimethylaminomethyl epichlorohydrin adducts, Meth) halogenated salt and alkyl sulfonate salt of acrylic acid-dimethylaminopropyl epichlorohydrin Ruhi polyhedrin adducts.

本実施形態において、ラジカル重合性開始剤として用いられる上記のカチオン性ラジカル重合開始剤に加えて、水溶性開始剤を用いることもできる。水溶性開始剤の例としては、以下に限定されないが、水溶性の過硫酸塩、過酸化物、アゾビス化合物等が使用できる。その具体例としては、以下に限定されないが、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過酸化水素、t−ブチルハイドロパーオキサイド、2,2−アゾビス(2−ジアミノプロパン)ハイドロクロライドが挙げられる。また、上記のカチオン性ラジカル重合開始剤に加えて、油溶性開始剤を用いることもでき、その具体例としては、以下に限定されないが、t−ブチルパーオキシベンゾエート、2,2−アゾビスイソブチロニトリル、2,2−アゾビス(2,4−ジメチルバレロニトリル)等がある。   In the present embodiment, a water-soluble initiator can be used in addition to the above cationic radical polymerization initiator used as a radical polymerizable initiator. Examples of water-soluble initiators include, but are not limited to, water-soluble persulfates, peroxides, azobis compounds, and the like. Specific examples thereof include, but are not limited to, potassium persulfate, sodium persulfate, ammonium persulfate, hydrogen peroxide, t-butyl hydroperoxide, and 2,2-azobis (2-diaminopropane) hydrochloride. . In addition to the above cationic radical polymerization initiator, an oil-soluble initiator can also be used, and specific examples thereof include, but are not limited to, t-butyl peroxybenzoate, 2,2-azobisiso Examples include butyronitrile and 2,2-azobis (2,4-dimethylvaleronitrile).

またさらに、(A)と(C)の吸着をより強固にする観点から、エチレン性不飽和基を有する加水分解性シランを併用できる。加水分解性シランの例としては、以下に限定されないが、γ−(メタ)アクリロキシプロピルトリメトキシシラン、γ−(メタ)アクリロキシプロピルトリエトキシシラン、γ−(メタ)アクリロキシプロピルジメトキシメチルシラン、γ−(メタ)アクリロキシプロピルジエトキシメチルシランなどが挙げられる。これらは単独又は二種以上含んでいてもよい。   Furthermore, hydrolyzable silane having an ethylenically unsaturated group can be used in combination from the viewpoint of strengthening the adsorption of (A) and (C). Examples of hydrolyzable silanes include, but are not limited to, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, γ- (meth) acryloxypropyldimethoxymethylsilane , Γ- (meth) acryloxypropyldiethoxymethylsilane and the like. These may be contained alone or in combination.

<無機物粒子(C)>
本実施形態において、無機物粒子(C)(以下、単に「(C)成分」又は「(C)」と記載する場合がある。)は、種々公知のものを使用できる。なお、本明細書において、後に詳述する金属粒子(B)に該当するものは、(C)に包含されないものとする。(C)としては、特に限定されないが、例えば、金属化合物(例えば金属酸化物、金属塩、半金属化合物)及び非金属化合物が好ましい。
<Inorganic particles (C)>
In this embodiment, various well-known particles can be used as the inorganic particles (C) (hereinafter sometimes simply referred to as “component (C)” or “(C)”). In addition, in this specification, what corresponds to the metal particle (B) explained in full detail later shall not be included in (C). Although it does not specifically limit as (C), For example, a metal compound (for example, a metal oxide, a metal salt, a semimetal compound) and a nonmetallic compound are preferable.

金属酸化物の例としては、以下に限定されないが、二酸化チタン(例えば、石原産業(株)製)、酸化ジルコニウム、酸化スズ(例えば、日産化学(株)製)、酸化アルミニウム(例えば、日産化学(株)製)、酸化バリウム、酸化マグネシウム、種々の酸化鉄(例えば、ウエスタイト、ヘマタイト及びマグネタイト)、酸化クロム、酸化アンチモン、酸化ビスマス、酸化亜鉛、酸化ニッケル、酸化コバルト、酸化銅、酸化イットリウム、酸化セリウム、これらの非晶質及び/又はその種々の結晶変態、並びに、そのヒドロキシ酸化物(例えば、ヒドロキシチタン酸化物、ヒドロキシジルコニウム酸化物、ヒドロキシアルミニウム酸化物及びヒドロキシ鉄酸化物)、これらの非晶質又はその種々の結晶変態を含む。   Examples of the metal oxide include, but are not limited to, titanium dioxide (for example, manufactured by Ishihara Sangyo Co., Ltd.), zirconium oxide, tin oxide (for example, manufactured by Nissan Chemical Co., Ltd.), aluminum oxide (for example, Nissan Chemical Co., Ltd. Manufactured by Co., Ltd.), barium oxide, magnesium oxide, various iron oxides (for example, Westite, hematite and magnetite), chromium oxide, antimony oxide, bismuth oxide, zinc oxide, nickel oxide, cobalt oxide, copper oxide, yttrium oxide, Cerium oxide, their amorphous and / or various crystal modifications thereof, and hydroxy oxides thereof (eg, hydroxy titanium oxide, hydroxy zirconium oxide, hydroxy aluminum oxide and hydroxy iron oxide), non- Includes crystalline or its various crystal modifications.

また、以下の非晶質及び/又はその種々の結晶構造で存在する金属塩を本実施形態における(C)として使用できる:硫化物(例えば、硫化鉄、二硫化鉄、硫化スズ、硫化水銀、硫化カドミウム、硫化亜鉛、硫化銅、硫化銀、硫化ニッケル、硫化コバルト、硫化マンガン、硫化クロム、硫化チタン、硫化チタン、硫化ジルコニウム、硫化アンチモン、硫化ビスマス)、水酸化物(例えば、水酸化スズ、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化亜鉛、水酸化鉄)、硫酸塩(例えば、硫酸カルシウム、硫酸ストロンチウム、硫酸バリウム、硫酸鉛)、炭酸塩(例えば、炭酸リチウム、炭酸マグネシウム、炭酸カルシウム、炭酸亜鉛、炭酸ジルコニウム、炭酸鉄)、オルトリン酸塩(例えば、オルトリン酸リチウム、オルトリン酸カルシウム、オルトリン酸亜鉛、オルトリン酸マグネシウム、オルトリン酸アルミニウム、オルトリン酸スズ、オルトリン酸鉄)、メタリン酸塩(例えば、メタリン酸リチウム、メタリン酸カルシウム、メタリン酸アルミニウム)、ピロリン酸塩(例えば、ピロリン酸マグネシウム、ピロリン酸カルシウム、ピロリン酸亜鉛、ピロリン酸鉄、ピロリン酸スズ)、アンモニウムリン酸塩(例えば、アンモニウムリン酸マグネシウム、アンモニウムリン酸亜鉛)、ヒドロキシルアパタイト、オルトケイ酸塩(例えば、オルトケイ酸リチウム、オルトケイ酸カルシウム/マグネシウム、オルトケイ酸アルミニウム、オルトケイ酸鉄、オルトケイ酸マグネシウム、オルトケイ酸亜鉛、オルトケイ酸ジルコニウム)、メタケイ酸塩(例えば、メタケイ酸リチウム、メタケイ酸カルシウム/マグネシウム、メタケイ酸カルシウム、メタケイ酸マグネシウム、メタケイ酸亜鉛)、層状ケイ酸塩(例えば、アルミニウムケイ酸ナトリウム及びマグネシウムケイ酸ナトリウム、特に自発的に離層した形、例えばOprigel(登録商標)(ロックウッド社製)、Saponite(登録商標)、Hektorite(登録商標)(ヘキスト社製)及びLaponite(登録商標)(ロックウッド社製))、アルミン酸塩(例えば、アルミン酸リチウム、アルミン酸カルシウム、アルミン酸亜鉛)、ホウ酸塩(例えば、メタホウ酸マグネシウム、オルトホウ酸マグネシウム)、シュウ酸塩(例えば、シュウ酸カルシウム、シュウ酸ジルコニウム、シュウ酸亜鉛、シュウ酸アルミニウム)、酒石酸塩(例えば、酒石酸カルシウム)、アセチルアセトネート(例えば、アルミニウムアセチルアセトネート、鉄アセチルアセトネート)、サリチル酸塩(例えば、サリチル酸アルミニウム)、クエン酸塩(例えば、クエン酸カルシウム、クエン酸鉄、クエン酸亜鉛)、パルミチン酸塩(例えば、パルミチン酸アルミニウム、パルミチン酸カルシウム、パルミチン酸マグネシウム)、ステアリン酸塩(例えば、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛)、ラウレート(例えばカルシウムラウレート)、リノレイン酸塩(例えばリノレイン酸カルシウム)、オレイン酸塩(例えばオレイン酸鉄又はオレイン酸亜鉛)。ただし、上記に示した例に限定されるものではない。   In addition, the following amorphous and / or metal salts existing in various crystal structures thereof can be used as (C) in the present embodiment: sulfide (eg, iron sulfide, iron disulfide, tin sulfide, mercury sulfide, Cadmium sulfide, zinc sulfide, copper sulfide, silver sulfide, nickel sulfide, cobalt sulfide, manganese sulfide, chromium sulfide, titanium sulfide, titanium sulfide, zirconium sulfide, antimony sulfide, bismuth sulfide), hydroxide (e.g., tin hydroxide, Aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, iron hydroxide), sulfate (eg, calcium sulfate, strontium sulfate, barium sulfate, lead sulfate), carbonate (eg, lithium carbonate) , Magnesium carbonate, calcium carbonate, zinc carbonate, zirconium carbonate, iron carbonate), orthophosphate (eg, ortho Lithium phosphate, calcium orthophosphate, zinc orthophosphate, magnesium orthophosphate, aluminum orthophosphate, tin orthophosphate, iron orthophosphate), metaphosphate (e.g., lithium metaphosphate, calcium metaphosphate, aluminum metaphosphate), pyrophosphate ( For example, magnesium pyrophosphate, calcium pyrophosphate, zinc pyrophosphate, iron pyrophosphate, tin pyrophosphate), ammonium phosphate (eg, ammonium magnesium phosphate, zinc ammonium phosphate), hydroxylapatite, orthosilicate (eg, orthosilicate) Lithium oxide, calcium orthosilicate / magnesium, aluminum orthosilicate, iron orthosilicate, magnesium orthosilicate, zinc orthosilicate, zirconium orthosilicate), meta Iates (eg lithium metasilicate, calcium metasilicate / magnesium, calcium metasilicate, magnesium metasilicate, zinc metasilicate), layered silicates (eg sodium aluminum silicate and magnesium sodium silicate, especially spontaneously Delaminated forms, such as, for example, Orange® (manufactured by Rockwood), Saponite® (registered trademark), Hektorite® (manufactured by Hoechst) and Laponite® (manufactured by Rockwood), aluminate Salts (eg, lithium aluminate, calcium aluminate, zinc aluminate), borates (eg, magnesium metaborate, magnesium orthoborate), oxalates (eg, calcium oxalate, zirconium oxalate, zinc oxalate, Oxalic acid Aluminum), tartrate (eg, calcium tartrate), acetylacetonate (eg, aluminum acetylacetonate, iron acetylacetonate), salicylate (eg, aluminum salicylate), citrate (eg, calcium citrate, citric acid) Iron, zinc citrate), palmitate (eg, aluminum palmitate, calcium palmitate, magnesium palmitate), stearate (eg, aluminum stearate, calcium stearate, magnesium stearate, zinc stearate), laurate ( Eg calcium laurate), linolenate (eg calcium linoleate), oleate (eg iron oleate or zinc oleate). However, it is not limited to the example shown above.

本実施形態における(C)として使用可能な半金属化合物としては、以下に限定されないが、例えば、非晶質及び/又は種々の結晶構造で存在する二酸化ケイ素が挙げられる。二酸化ケイ素としては、市販品も好ましく用いることができ、例えば、Aerosil(登録商標)(デグッサ社製)、Levasil(登録商標)(バイエル社製)、Ludox(登録商標)(デュポン社製)、Nyacol(登録商標)(ナヤコール社製)及びBindzil(登録商標)(アクゾ−ノーベル社製)、Snowtex(登録商標)(日産化学工業社の商標)、アデライト(登録商標)(アデカ(株)製)として入手できる。非金属化合物の好ましい例としては、コロイド状で存在するグラファイト又はダイヤモンドである。   The metalloid compound that can be used as (C) in the present embodiment is not limited to the following, but includes, for example, amorphous and / or silicon dioxide present in various crystal structures. As silicon dioxide, commercially available products can also be preferably used. For example, Aerosil (registered trademark) (manufactured by Degussa), Levasil (registered trademark) (manufactured by Bayer), Ludox (registered trademark) (manufactured by DuPont), Nyacol. (Registered trademark) (manufactured by Nayakor) and Bindzil (registered trademark) (manufactured by Akzo-Nobel), Snowtex (registered trademark) (trademark of Nissan Chemical Industries, Ltd.), Adelite (registered trademark) (manufactured by ADEKA Corporation) Available. Preferable examples of the nonmetallic compound are graphite or diamond existing in a colloidal form.

本実施形態における(C)として、好ましくは、二酸化ケイ素、酸化アルミニウム、酸化スズ、酸化イットリウム、酸化セリウム、酸化ヒドロキシアルミニウム、炭酸カルシウム、炭酸マグネシウム、オルトリン酸カルシウム、オルトリン酸マグネシウム、メタリン酸カルシウム、メタリン酸マグネシウム、ピロリン酸カルシウム、ピロリン酸マグネシウム、酸化鉄、二酸化チタン、ヒドロキシルアパタイト、酸化亜鉛及び硫化亜鉛を含む群から選択される。(C)の表面をシリカ処理したあらゆるもの、負の符号を有するゼータ電位を示すコロイダルシリカがさらに好ましい。   (C) in this embodiment is preferably silicon dioxide, aluminum oxide, tin oxide, yttrium oxide, cerium oxide, hydroxyaluminum oxide, calcium carbonate, magnesium carbonate, calcium orthophosphate, magnesium orthophosphate, calcium metaphosphate, magnesium metaphosphate , Calcium pyrophosphate, magnesium pyrophosphate, iron oxide, titanium dioxide, hydroxylapatite, zinc oxide and zinc sulfide. (C) Any silica-treated surface, colloidal silica showing a zeta potential having a negative sign is more preferable.

本実施形態において、(C)の粒径(平均粒径)は、複合粒子から形成される塗膜の透明性の観点から、好ましくは1nm〜5μmであり、さらに好ましくは1nm〜500nmであり、特に好ましくは3nm〜250nmである。(C)の流体力学的直径は、大塚電子(株)製ELSZ−1000ZS等を用いた動的光散乱法にて測定し、キュムラント法解析にて求めることができる。また数平均粒子径は日本電子(株)製JEM-2000EX透過型電子顕微鏡を用いて取得する画像から求めることができる。   In the present embodiment, the particle size (average particle size) of (C) is preferably 1 nm to 5 μm, more preferably 1 nm to 500 nm, from the viewpoint of the transparency of the coating film formed from the composite particles. Especially preferably, it is 3 nm-250 nm. The hydrodynamic diameter of (C) can be measured by a dynamic light scattering method using ELSZ-1000ZS manufactured by Otsuka Electronics Co., Ltd. and can be obtained by cumulant method analysis. The number average particle diameter can be determined from an image obtained using a JEM-2000EX transmission electron microscope manufactured by JEOL Ltd.

本実施形態において、無機酸化物粒子(C)とカチオン基を持つポリマー粒子(A)の質量比(C)/(A)は、0.1〜10が好ましく、より好ましくは0.2〜5である。(C)/(A)が0.1以上である場合、カチオン基を持つポリマー粒子(A)の分散安定性が十分に確保され、凝集が防止される傾向にあり、(C)/(A)が10以下である場合、塗膜とした際の導電性が十分に確保される傾向にある。   In this embodiment, the mass ratio (C) / (A) of the inorganic oxide particles (C) and the polymer particles (A) having a cationic group is preferably 0.1 to 10, more preferably 0.2 to 5. It is. When (C) / (A) is 0.1 or more, the dispersion stability of the polymer particles (A) having a cationic group is sufficiently secured and aggregation tends to be prevented, and (C) / (A ) Is 10 or less, there is a tendency that the conductivity when the coating film is formed is sufficiently secured.

<金属粒子(B)>
金属粒子(B)(以下、単に「(B)成分」又は「(B)」と記載する場合がある。)は、金属を含む粒子である。金属としては、特に限定されないが、例えば、白金、パラジウム、ロジウム、ルテニウム、イリジウム、金、ニッケル、コバルト、マンガン、銀、アルミニウム、錫、チタン、ジルコニウム、インジウム、クロム、鉄、銅、モリブデン、タングステン等の導電性を有する金属が挙げられる。金属粒子(B)は、2種以上の金属を含んでもよく、合金や混合物であってもよい。
<Metal particles (B)>
The metal particles (B) (hereinafter sometimes simply referred to as “component (B)” or “(B)”) are particles containing a metal. Although it does not specifically limit as a metal, For example, platinum, palladium, rhodium, ruthenium, iridium, gold, nickel, cobalt, manganese, silver, aluminum, tin, titanium, zirconium, indium, chromium, iron, copper, molybdenum, tungsten The metal which has electroconductivity, etc. is mentioned. The metal particles (B) may contain two or more metals, and may be an alloy or a mixture.

金属粒子(B)の粒径は、複合粒子から形成される塗膜の透明性の観点から、ポリマー粒子(A)の平均粒径よりも小さいことが好ましい。金属粒子(B)の粒径は、より好ましくは、1nm〜1μmであり、さらに好ましくは、1nm〜100nmであり、よりさらに好ましくは3nm〜50nmである。   The particle size of the metal particles (B) is preferably smaller than the average particle size of the polymer particles (A) from the viewpoint of the transparency of the coating film formed from the composite particles. The particle size of the metal particles (B) is more preferably 1 nm to 1 μm, still more preferably 1 nm to 100 nm, and still more preferably 3 nm to 50 nm.

金属粒子(B)の形態、形状としては、特に限定されないが、粒子形状として球形であることが好ましい。   The form and shape of the metal particles (B) are not particularly limited, but the particle shape is preferably spherical.

金属粒子(B)は、例えば、(C)を吸着している(A)の存在下、金属錯体(B−1)を還元剤(B−2)により還元することで、他の成分と複合化することができる。   For example, the metal particle (B) is combined with other components by reducing the metal complex (B-1) with a reducing agent (B-2) in the presence of (A) adsorbing (C). Can be

本実施形態における金属錯体(B−1)としては、以下に限定されないが、例えば、塩化白金酸、ヘキサアンミン白金塩化物、ジニトロジアンミン白金、塩化パラジウム、テトラアンミンパラジウム塩化物、塩化ロジウム、塩化ルテニウム、ヘキサクロロイリジウム酸、四塩化金酸、四塩化金酸塩、三塩化金、三臭化金、シアン化金、シアン化金カリウム、三塩化ジエチルアミン金酸、エチレンジアミン金錯体、ジメチル金β−ジケトン誘導体金錯体、ジエチル金β−ジケトン誘導体金錯体、塩化ニッケル、塩化クロム、塩化コバルト、塩化マンガン、硝酸銀、酢酸パラジウムが挙げられる。   The metal complex (B-1) in the present embodiment is not limited to the following. For example, chloroplatinic acid, hexaammineplatinum chloride, dinitrodiammineplatinum, palladium chloride, tetraamminepalladium chloride, rhodium chloride, ruthenium chloride, Hexachloroiridium acid, tetrachloroauric acid, tetrachloroaurate, gold trichloride, gold tribromide, gold cyanide, potassium gold cyanide, diethyltrichloride gold acid, ethylenediamine gold complex, dimethyl gold β-diketone derivative gold Complex, diethyl gold β-diketone derivative gold complex, nickel chloride, chromium chloride, cobalt chloride, manganese chloride, silver nitrate, palladium acetate.

本実施形態における還元剤(B−2)としては、以下に限定されないが、例えば、水素化ホウ素ナトリウム類、アルキルアミンボラン類、アルキルボラン類、水素、二酸化硫黄、亜硝酸ナトリウム、次亜硫酸ナトリウム、ロンガリットなどが挙げられる。また、有機系還元剤も用いることができ、その具体例としては、以下に限定されないが、ヒドラジン、ホルムアルデヒド、メタノール、クエン酸及びその塩(例えば、クエン酸ナトリウム、クエン酸マグネシウム)、シュウ酸及びその塩、グルコース、エチレングリコール、L−アスコルビン酸、アルキルアミン類、アニリン等のアリールアミン類、アルカノールアミン類、ヒドロキシアミン、ピロール、水素化ホウ素ナトリウム、水素化トリアセトキシホウ素ナトリウム、ジメチルアミンボラン、t−ブチルアミンボランなどが挙げられる。上記した中でも、好ましくはピロールを挙げることができる。ピロールを還元剤として用いる場合、還元剤自身がポリマー化するため、また、ピロール自体がカチオン性物質であるため、ピロールは静電的相互作用により無機粒子に吸着しながらポリマー化し、そのポリピロール部分に金属粒子が発生し、より強固に金属粒子が固着される傾向にあると考えられる。また、ポリピロールのような導電性ポリマーが(B)と混在して存在することにより、塗膜内に通電する道筋をより確保しやすくなり、塗膜の全体にわたって優れた導電性が付与される傾向にあると考えられる。   The reducing agent (B-2) in the present embodiment is not limited to the following. For example, sodium borohydride, alkylamine boranes, alkylboranes, hydrogen, sulfur dioxide, sodium nitrite, sodium hyposulfite, Longalit is listed. An organic reducing agent can also be used. Specific examples thereof include, but are not limited to, hydrazine, formaldehyde, methanol, citric acid and salts thereof (for example, sodium citrate and magnesium citrate), oxalic acid and Salts thereof, glucose, ethylene glycol, L-ascorbic acid, alkylamines, arylamines such as aniline, alkanolamines, hydroxyamine, pyrrole, sodium borohydride, sodium triacetoxyborohydride, dimethylamineborane, t -Butylamine borane etc. are mentioned. Among the above, pyrrole is preferable. When pyrrole is used as a reducing agent, the reducing agent itself polymerizes, and pyrrole itself is a cationic substance. Therefore, pyrrole is polymerized while adsorbing to inorganic particles by electrostatic interaction, and becomes a polypyrrole part. It is considered that metal particles are generated and the metal particles tend to be firmly fixed. In addition, the presence of a conductive polymer such as polypyrrole in combination with (B) makes it easier to secure a route for energization in the coating film, and tends to impart excellent conductivity throughout the coating film. It is thought that there is.

金属錯体(B−1)と還元剤(B−2)が使用される比率は下記式で表され、該比率は、0.01〜100が好ましく、より好ましくは0.1〜20である。該比率が少ないと、金属粒子のカチオン基を持つポリマー粒子(A)への固着をより容易にする観点から、該比率を0.01以上とすることが好ましく、還元反応を充分に進行させて金属粒子を十分に生成させる観点から、該比率を100以下とすることが好ましい。
金属錯体−還元剤比率 = (金属錯体(B−1)のモル数×金属錯体(B−1)の金属イオン価数) / 還元剤(B−2)のモル数
The ratio in which the metal complex (B-1) and the reducing agent (B-2) are used is represented by the following formula, and the ratio is preferably 0.01 to 100, more preferably 0.1 to 20. When the ratio is small, the ratio is preferably set to 0.01 or more from the viewpoint of facilitating the fixation of the metal particles to the polymer particles (A) having a cationic group, and the reduction reaction is allowed to proceed sufficiently. From the viewpoint of sufficiently generating metal particles, the ratio is preferably 100 or less.
Metal complex-reducing agent ratio = (number of moles of metal complex (B-1) × metal ion valence of metal complex (B-1)) / number of moles of reducing agent (B-2)

<複合粒子>
複合粒子が、(A)、(B)、(C)を有し、前記(A)が(C)を吸着しており、さらに(A)が、(C)を介して(B)を固着していることが好ましい。本実施形態において、固着とは、吸着あるいは静電的相互作用によるのではなく、(C)に接触してその部分で発生した金属粒子が(C)に付着した状態を表している。特に、「(A)が(C)を介して(B)を固着している」とは、(C)粒子を担体として(B)粒子が付着している状態を意味し、走査型電子顕微鏡、透過型電子顕微鏡、ウエット透過型顕微鏡、粒子径測定、XPS(X線光電子分光)、XRD、ICP発光分析装置により確認することができる。なお、(B)成分が、(C)成分上に吸着した還元剤に由来する成分に固着される態様も、「(A)が(C)を介して(B)を固着している」に含まれるものとする。
<Composite particle>
The composite particles have (A), (B), (C), (A) adsorbs (C), and (A) adheres (B) via (C). It is preferable. In this embodiment, the term “adhesion” does not mean adsorption or electrostatic interaction, but represents a state in which metal particles generated in contact with (C) adhere to (C). In particular, “(A) is fixing (B) via (C)” means that (B) particles are attached using (C) particles as a carrier, and scanning electron microscope , Transmission electron microscope, wet transmission microscope, particle diameter measurement, XPS (X-ray photoelectron spectroscopy), XRD, ICP emission analyzer. In addition, the mode in which the (B) component is fixed to the component derived from the reducing agent adsorbed on the (C) component is also “(A) is fixing (B) via (C)”. Shall be included.

本実施形態において、複合粒子は、その表面に吸着した無機物粒子(C)を介して金属粒子(B)を固着することにより、分散安定化されている。このとき、本実施形態の複合粒子はアニオン型として分散安定化されていることが好ましい。本実施形態の複合粒子がアニオン型の分散状態にあることは、(C)成分がアニオン基を有すること及び混在しうる他の成分がアニオン基を有することに起因する。本実施形態の複合粒子がアニオン性であることは、ゼータ電位計で確認できる。   In the present embodiment, the composite particles are dispersed and stabilized by fixing the metal particles (B) through the inorganic particles (C) adsorbed on the surface. At this time, the composite particles of the present embodiment are preferably dispersed and stabilized as an anionic type. The fact that the composite particles of the present embodiment are in the anion-type dispersion state is due to the fact that the component (C) has an anion group and other components that can be mixed have an anion group. It can be confirmed with a zeta electrometer that the composite particles of the present embodiment are anionic.

複合粒子の粒子径は、10nm〜10μmであることが好ましい。より好ましくは、20nm〜5μmであり、さらに好ましくは、50nm〜1μmである。   The particle diameter of the composite particles is preferably 10 nm to 10 μm. More preferably, it is 20 nm-5 micrometers, More preferably, it is 50 nm-1 micrometer.

本実施形態の複合粒子は、金属粒子のポリマー粒子(A)に対する量は、固着される金属粒子の大きさ、並びにポリマー粒子表面にどの程度の量の金属を固定化するかにより異なる。金属粒子のポリマー粒子への固着量は水性媒体の濃度と量により、例えば0.01質量%〜100質量%の範囲で調整することができる。したがって、金属固着量に応じて、水性媒体の金属錯体濃度や水性媒体の使用量、および還元剤は金属錯体モル量に応じた前記金属錯体−還元剤比率範囲内で決めればよい。さらに詳しくは、(C)を吸着している(A)と金属錯体(B−1)と還元剤(B−2)とを含む場合において、それらの質量比{(B−1)+(B−2)}/{(A)+(C)}は、0.01〜5.0であることが好ましく、より好ましくは0.02〜2.0、さらに好ましくは、0.03〜1.0である。上記質量比が0.01以上である場合、導電性が十分に確保される傾向にあり、5.0以下である場合、分散系の凝集が十分に防止される傾向にある。   In the composite particles of the present embodiment, the amount of the metal particles relative to the polymer particles (A) varies depending on the size of the metal particles to be fixed and how much metal is immobilized on the surface of the polymer particles. The adhesion amount of the metal particles to the polymer particles can be adjusted, for example, in the range of 0.01% by mass to 100% by mass depending on the concentration and amount of the aqueous medium. Therefore, the concentration of the metal complex in the aqueous medium, the amount of the aqueous medium used, and the reducing agent may be determined within the metal complex-reducing agent ratio range according to the metal complex molar amount in accordance with the metal fixing amount. More specifically, when (A) adsorbing (C), the metal complex (B-1), and the reducing agent (B-2) are included, their mass ratio {(B-1) + (B -2)} / {(A) + (C)} is preferably from 0.01 to 5.0, more preferably from 0.02 to 2.0, still more preferably from 0.03 to 1. 0. When the mass ratio is 0.01 or more, conductivity tends to be sufficiently secured, and when it is 5.0 or less, aggregation of the dispersion tends to be sufficiently prevented.

<複合粒子の製造方法>
本実施形態の複合粒子を製造する方法は、特に限定されないが、例えば、次の方法が挙げられる:
(1)無機物粒子(C)を吸着している(A)を製造する工程;
(2)無機物粒子(C)を吸着している(A)を精製する工程;
(3)(A)に金属錯体(B−1)と還元剤(B−2)とを混合し、金属粒子(B)を複合化する工程;
(4)複合粒子の精製工程。
なお、本実施形態の複合粒子を製造する方法は、上記した各工程を順次に終了して実施する方法に限定されない。
<Method for producing composite particles>
The method for producing the composite particles of the present embodiment is not particularly limited, and examples thereof include the following methods:
(1) A step of producing (A) adsorbing inorganic particles (C);
(2) a step of purifying (A) adsorbing inorganic particles (C);
(3) A step of mixing the metal complex (B-1) and the reducing agent (B-2) with (A) to composite the metal particles (B);
(4) A purification step of the composite particles.
In addition, the method of manufacturing the composite particles of the present embodiment is not limited to the method of performing by sequentially completing the above steps.

(1)無機物粒子(C)を吸着している(A)を製造する工程
水性媒体中において、無機物粒子(C)とカチオン系物質(D)存在下で、例えば、乳化重合又はミニエマルション重合を行い、(C)を吸着している(A)を得ることができる。上記の他、無機物粒子(C)とカチオン基を持つポリマー粒子(A)を配合する方法で(C)を吸着している(A)を得てもよい。
(1) Step of producing (A) adsorbing inorganic particles (C) In the presence of inorganic particles (C) and a cationic substance (D) in an aqueous medium, for example, emulsion polymerization or miniemulsion polymerization And (A) adsorbing (C) can be obtained. In addition to the above, (A) adsorbing (C) may be obtained by blending inorganic particles (C) and polymer particles (A) having a cationic group.

上記において、乳化重合又はミニエマルション重合を実施する際のpHは、通常1.5〜13、好ましくは4〜11であり、より好ましくは5〜10.5であり、分散安定性が適正に確保できる範囲で製造する。前記の重合温度は、開始剤が分解する範囲で決定され、反応溶液として水を用いる場合、温度は水の沸点(100℃)以下であればよく、特に限定されないが、通常40℃から90℃までの範囲が好ましい。重合時濃度は通常50%以下、好ましくは40%以下であり、分散安定性が適正に確保できる範囲で決定される。   In the above, pH at the time of carrying out emulsion polymerization or miniemulsion polymerization is usually from 1.5 to 13, preferably from 4 to 11, more preferably from 5 to 10.5, and adequately ensuring dispersion stability. Manufacture as much as possible. The polymerization temperature is determined within a range in which the initiator decomposes, and when water is used as the reaction solution, the temperature is not particularly limited as long as it is not higher than the boiling point of water (100 ° C.), but is usually 40 ° C. to 90 ° C. The range up to is preferable. The polymerization concentration is usually 50% or less, preferably 40% or less, and is determined within a range in which dispersion stability can be appropriately secured.

水性媒体の具体例としては、水のみ、または水と水に溶解する有機溶媒からなり、水に溶解する有機溶媒であれば特に限定されず、低級アルコール類、アセトンを含むケトン類、テトラハイドロフラン等が挙げられる。   Specific examples of the aqueous medium include water alone or water and an organic solvent that dissolves in water, and are not particularly limited as long as the organic solvent dissolves in water. Lower alcohols, ketones including acetone, tetrahydrofuran Etc.

該製造工程では、乳化重合又はミニエマルション重合の際、(A)の分散安定性を補助する目的で、下記の分散安定剤を使用することが好ましい。分散安定剤の具体例としては、以下に限定されないが、ノニオン型界面活性剤、カチオン型界面活性剤、ポリビニルアルコール、メチルセルロース、ヒドロキシエチルセルロース等の水溶性高分子が挙げられ、ポリビニルピロリドンであることがより好ましい。   In the production process, it is preferable to use the following dispersion stabilizer for the purpose of assisting the dispersion stability of (A) during emulsion polymerization or miniemulsion polymerization. Specific examples of the dispersion stabilizer include, but are not limited to, water-soluble polymers such as nonionic surfactants, cationic surfactants, polyvinyl alcohol, methyl cellulose, and hydroxyethyl cellulose, and are polyvinyl pyrrolidone. More preferred.

(2)無機物粒子(C)を吸着している(A)を精製する工程
吸着していない余分な無機物粒子(C)を除くために、水で希釈して遠心分離機にて遠心分離し上澄みを除去後、沈殿物へ水を加え超音波洗浄機あるいは超音波分散機を用いて再分散し再度遠心分離する方法を繰り返すことによって、無機物粒子(C)を吸着している(A)を得ることができる。
(2) Step of purifying (A) adsorbing inorganic particles (C) In order to remove excess inorganic particles (C) that have not been adsorbed, the supernatant is diluted with water and centrifuged in a centrifuge. After removing the particles, water is added to the precipitate, and the mixture is redispersed using an ultrasonic washer or ultrasonic disperser and centrifuged again to obtain (A) adsorbing inorganic particles (C). be able to.

(3)(A)に金属錯体(B−1)と還元剤(B−2)とを混合し、金属粒子(B)を複合化する工程
(C)を吸着している(A)の存在下で、金属錯体(B−1)を還元剤(B−2)により還元し、金属粒子(B)を他の成分と複合化する。(A)を金属粒子(B)と複合粒子化する工程の簡便さから、(A)は、水性媒体中に分散して存在することが好ましい。
(3) Step of mixing metal complex (B-1) and reducing agent (B-2) in (A) and complexing metal particles (B) (C) Existence of (A) adsorbing Below, a metal complex (B-1) is reduce | restored with a reducing agent (B-2), and a metal particle (B) is compounded with another component. From the simplicity of the step of forming (A) into composite particles with metal particles (B), (A) is preferably present in a dispersed state in an aqueous medium.

水性媒体中の(A)の分散液に金属錯体(B−1)を添加するに際して、金属錯体(B−1)は、そのまま(A)の分散液に加えられてもよいが、予め(B−1)の水性溶液とした後に、(A)の分散液に加えられることが好ましい。このとき、金属錯体(B−1)は一度に加えられてもよいし、数回に分けて加えられてもよい。金属錯体(B−1)を加えた(A)の分散液は、ゆっくりと撹拌されることが好ましい。また、金属錯体(B−1)の水性溶液に対して、(A)の分散液を加えてもよい。   When the metal complex (B-1) is added to the dispersion liquid (A) in the aqueous medium, the metal complex (B-1) may be added as it is to the dispersion liquid (A). It is preferable that the aqueous solution of -1) is added to the dispersion of (A). At this time, the metal complex (B-1) may be added at once or may be added in several times. The dispersion of (A) to which the metal complex (B-1) has been added is preferably stirred slowly. Moreover, you may add the dispersion liquid of (A) with respect to the aqueous solution of a metal complex (B-1).

上記の製造工程では、(A)及び生成される複合粒子の分散安定性を補助する目的で前記の分散安定剤を使用することが好ましく、ポリビニルアルコールであることがより好ましい。   In said manufacturing process, it is preferable to use the said dispersion stabilizer for the purpose of assisting the dispersion stability of (A) and the produced | generated composite particle, and it is more preferable that it is polyvinyl alcohol.

水性分散液のpHは、通常1.5〜13であり、好ましくは2〜9であり、使用する還元剤(B−2)によって適正な範囲を決定することができる。温度は、担体として使用される高分子材料の軟化が起こらない範囲で、かつ分散液の沸点以下とすることが好ましい。例えば、水性媒体として水を用いる場合、温度は水の沸点(100℃)以下であればよく、特に限定されないが、通常0℃から90℃までの範囲とされる。還元剤(B−2)を用いるときには特に0℃から30℃とすることが好ましい。   The pH of the aqueous dispersion is usually 1.5 to 13, preferably 2 to 9, and an appropriate range can be determined depending on the reducing agent (B-2) used. The temperature is preferably within the range where softening of the polymer material used as the carrier does not occur, and below the boiling point of the dispersion. For example, when water is used as the aqueous medium, the temperature is not particularly limited as long as the temperature is equal to or lower than the boiling point of water (100 ° C.). When the reducing agent (B-2) is used, it is particularly preferably 0 ° C to 30 ° C.

還元剤(B−2)の反応系への導入速度は、特に限定されるものではないが、比較的短時間で導入を終了することが好ましい。導入は連続的でなくてもよく、ある時間をおいて間歇的に添加が行われてもよい。このように、金化合物の種類と濃度、溶液の種類とpH、還元剤(B−2)の種類と濃度、還元反応の温度、及び溶液に添加する添加剤の種類と濃度を適切に制御することが好ましい。   The rate of introduction of the reducing agent (B-2) into the reaction system is not particularly limited, but it is preferable to complete the introduction in a relatively short time. The introduction may not be continuous, and the addition may be performed intermittently after a certain period of time. In this way, the type and concentration of the gold compound, the type and pH of the solution, the type and concentration of the reducing agent (B-2), the temperature of the reduction reaction, and the type and concentration of the additive added to the solution are appropriately controlled. It is preferable.

4)複合粒子の精製工程
具体的な方法としては、上記の反応終了後、複合粒子の分散液を遠心分離機を使用して高速回転にて遠心分離し、上澄み液を除去した後、沈殿物へ水を加え超音波分散機を用いて再分散する方法が挙げられる。このサイクルを数回繰り返し、精製された複合粒子の分散液を得ることができる。
4) Purification step of composite particles As a specific method, after the completion of the above reaction, the dispersion of composite particles is centrifuged at a high speed using a centrifuge, and the supernatant is removed, followed by precipitation. An example is a method in which water is added and redispersed using an ultrasonic disperser. By repeating this cycle several times, a purified dispersion of composite particles can be obtained.

<水性分散液>
本実施形態の水性分散液は、水性媒体と、当該水性媒体中に存在する本実施形態の複合粒子と、を含有する。本実施形態の水性分散液は、上記のように構成されているため、塗膜とした際に、優れた導電性、透明性、耐光性を発現することができる。本実施形態の水性分散液は、例えば、上述した工程(1)〜(4)を経て製造することができる。なお、本実施形態の水性分散液は、例えば、次の工程により、塗膜とすることができる。すなわち、水性分散液を所望の濃度に調整し、スブレー塗装、ロール塗装、スピンコートなどの通常の塗装方法で塗装することができ、室温ないし加熱などの強制乾燥により塗膜化することで複合粒子の塗膜を得ることができる。
<Aqueous dispersion>
The aqueous dispersion of the present embodiment contains an aqueous medium and the composite particles of the present embodiment present in the aqueous medium. Since the aqueous dispersion of this embodiment is configured as described above, it can exhibit excellent conductivity, transparency, and light resistance when formed into a coating film. The aqueous dispersion of the present embodiment can be produced, for example, through the steps (1) to (4) described above. In addition, the aqueous dispersion liquid of this embodiment can be made into a coating film by the following process, for example. That is, the aqueous dispersion liquid can be adjusted to a desired concentration, and can be applied by ordinary coating methods such as spray coating, roll coating, spin coating, etc., and composite particles can be formed by coating by forced drying such as room temperature or heating. The coating film can be obtained.

<用途>
本実施形態に係る複合粒子は、導電性ポリマー塗膜を形成するために利用することができ、該導複合粒子を含む塗膜は優れた導電性、透明性、耐光性を発現することができる。複合粒子の塗膜は、例えば、水等の水性媒体及び該水性媒体中に分散する複合粒子を含む粒子分散液を塗布し、塗布された粒子分散液から水性媒体を除去する方法により、形成することができるため、透明導電膜、電極のバインダー又は該接着層等に利用できる。
<Application>
The composite particles according to this embodiment can be used to form a conductive polymer coating, and the coating containing the conductive composite particles can exhibit excellent conductivity, transparency, and light resistance. . The coating film of the composite particles is formed by, for example, applying a particle dispersion containing an aqueous medium such as water and composite particles dispersed in the aqueous medium, and removing the aqueous medium from the applied particle dispersion. Therefore, it can be used for a transparent conductive film, an electrode binder or the adhesive layer.

以下に、実施例などを用いて本実施形態をさらに具体的に説明するが、本実施形態はこれら実施例などにより何ら限定されるものではない。   Hereinafter, the present embodiment will be described more specifically using examples and the like, but the present embodiment is not limited to these examples and the like.

<粒子径>
レーザー回折式粒度分布測定装置 (Malvern、MASTER−SIZER 2000)を用い、体積平均粒子径を測定した。測定には水にて適宜希釈し、分散ユニット (Malvern、Hydro 2000SM)で2,000 rpmの撹拌条件で測定を行った。
<Particle size>
The volume average particle size was measured using a laser diffraction particle size distribution analyzer (Malvern, MASTER-SIZER 2000). For the measurement, it was appropriately diluted with water, and measured with a dispersion unit (Malvern, Hydro 2000SM) under stirring conditions of 2,000 rpm.

<塗膜抵抗値>
複合粒子の水分散体をマイクロピペットでガラス板に一滴滴下し、約24時間室温にて乾燥した。その後、凍結乾燥機を用いて乾燥した後、テスター(株式会社エー・アンド・デイ製:AD−5522)を用いた2探針法(針の距離を1mm以上)による生成物の抵抗率を測定し、以下の基準に基づいて判定をした。
〇:32MΩ未満
×:32MΩ以上
<Paint resistance value>
One drop of the aqueous dispersion of composite particles was dropped on a glass plate with a micropipette and dried at room temperature for about 24 hours. Then, after drying using a freeze dryer, the resistivity of the product is measured by a two-probe method (with a needle distance of 1 mm or more) using a tester (manufactured by A & D Co., Ltd .: AD-5522). The determination was made based on the following criteria.
○: Less than 32MΩ ×: 32MΩ or more

<粘着性>
プローブタック試験機(テスター産業株式会社,TE−6002 恒温槽付プローブタックテスター)を用いて、プローブタックを測定した。
複合粒子の水分散体をアプリケーターを用いて、あるいは一定厚みの型枠内へ流延して、常温にて乾燥させ、厚さ約150〜125μmのフィルムを作製し、そのフィルムを2cm四方に裁断し試験片とした。この試験片を10gの試料保持リングに張り付け、プローブタック試験機(テスター産業株式会社,TE−6002恒温槽付プローブタックテスター、プローブ直径5mm)を用いてフィルムのタックを測定した。なお、プローブタックの測定は、測定温度23±1℃、接触速度10mm/秒、剥離速度10mm/秒、接触時間30秒の条件で行い、以下の基準に基づいて判定をした。
〇:0.01MPa未満
△:0.01以上0.05MPa未満
×:0.05MPa以上
<Adhesiveness>
The probe tack was measured using a probe tack tester (Tester Sangyo Co., Ltd., TE-6002, a probe tack tester with a thermostatic bath).
An aqueous dispersion of composite particles is cast using an applicator or into a fixed thickness mold and dried at room temperature to produce a film having a thickness of about 150 to 125 μm, and the film is cut into a 2 cm square. A test piece was prepared. This test piece was affixed to a 10 g sample holding ring, and the tack of the film was measured using a probe tack tester (Tester Sangyo Co., Ltd., TE-6002 thermostatic bath probe tack tester, probe diameter 5 mm). The probe tack was measured under the conditions of a measurement temperature of 23 ± 1 ° C., a contact speed of 10 mm / second, a peeling speed of 10 mm / second, and a contact time of 30 seconds, and judged based on the following criteria.
◯: Less than 0.01 MPa Δ: 0.01 or more and less than 0.05 MPa ×: 0.05 MPa or more

[製造例1](無機物粒子を吸着しているカチオン基を持つポリマー粒子の製造−1)
250mLの丸底フラスコに水88gを注ぎ、マグネットスターラーで攪拌しながらpoly(N−vinylpyrrolidone)(PNVP;分子量=360000,和光純薬工業株式会社)を0.50gを溶解させた。その後コロイダルシリカ(40質量%の水分散体、EkaChemicals製Bindzil2040)20gをマイクロピペット(Eppendorf;1,000μL)を用いて少しずつ撹拌しながら添加し、さらに2,2’−azobis(2−methylpropionamidine)dihydrochloride(AIBA;純度97%,シグマアルドリッチジャパン株式会社製)を0.15g加え完全に溶解させた。その後、セプタムで蓋をし、窒素置換を行った。そこへアクリル酸ブチル10gをシリンジにより注入し、70℃まで昇温し、そのまま撹拌を続け24時間保持した。反応終了後、反応液を遠心分離機(日立工機(株)、CF16RXII形)を使用して2000rpmで10分間遠心分離し、沈殿した凝集物を除去した。さらに残液について7000rpmで30分間遠心分離を行い、上澄み液を除去し、沈殿物に水を加え、超音波洗浄機(Yamato,BRANSONIC221)を用いて再分散した。このサイクルを5回行い、無機物粒子を吸着しているカチオン基を持つポリマー粒子を得た。前記粒子のレーザー回折式粒度分布測定結果より、体積平均粒子径(Dv)が0.13±0.043μmの単分散粒子であった。
[Production Example 1] (Production of polymer particles having cationic groups adsorbing inorganic particles-1)
Water (88 g) was poured into a 250 mL round bottom flask, and 0.50 g of poly (N-vinylpyrrolidone) (PNVP; molecular weight = 360,000, Wako Pure Chemical Industries, Ltd.) was dissolved while stirring with a magnetic stirrer. Thereafter, 20 g of colloidal silica (40 mass% aqueous dispersion, Bindzil 2040 manufactured by Eka Chemicals) was added while stirring little by little using a micropipette (Eppendorf; 1,000 μL), and further 2,2′-azobis (2-methylpropionamide) 0.15 g of dihydrochloride (AIBA; purity 97%, manufactured by Sigma-Aldrich Japan Co., Ltd.) was added and completely dissolved. Then, it was capped with a septum and replaced with nitrogen. Thereto, 10 g of butyl acrylate was injected by a syringe, the temperature was raised to 70 ° C., and stirring was continued as it was for 24 hours. After completion of the reaction, the reaction solution was centrifuged at 2000 rpm for 10 minutes using a centrifuge (Hitachi Koki Co., Ltd., CF16RXII type) to remove the precipitated aggregates. Further, the remaining liquid was centrifuged at 7000 rpm for 30 minutes, the supernatant liquid was removed, water was added to the precipitate, and redispersed using an ultrasonic cleaner (Yamato, BRANSONIC221). This cycle was repeated 5 times to obtain polymer particles having a cationic group adsorbing inorganic particles. From the results of laser diffraction particle size distribution measurement, the particles were monodisperse particles having a volume average particle diameter (Dv) of 0.13 ± 0.043 μm.

[実施例1](複合粒子の製造)
50mLサンプル瓶に、無機物粒子を吸着している製造例1のカチオン基を持つポリマー粒子の水分散液を11.09g(固形分濃度4.51質量%)計りとった。次いで、マグネットスターラーで攪拌しながらポリビニルアルコール(PVA;けん化度:88.0±1.5mol%,SIGMA−ALDRICHInc.)0.075gを添加し、24時間撹拌することで水媒体中に溶解させた。その後25℃を維持したまま、ピロール0.0125gを加え、水1.06gに塩化金酸3水和物(HAuCl4・3H2O)0.057gを溶解した水溶液を、マイクロピペット(Eppendorf;1,000μL)を用いて、80分かけて添加し、25℃で24時間撹拌を継続した。反応終了後、遠心分離機(日立工機(株)、CF16RXII形)を使用して7,000rpmで40分間遠心分離し、上澄み液を除去した後、水を加え、超音波洗浄機(Yamato,BRANSONIC221)を用いて再分散した。このサイクルを4回行い複合粒子の分散液(固形分濃度10.2質量%)を得た。塗膜抵抗値、粘着性試験結果を表1に示す。
[Example 1] (Production of composite particles)
In a 50 mL sample bottle, 11.09 g (solid content concentration: 4.51% by mass) of an aqueous dispersion of polymer particles having a cationic group of Production Example 1 adsorbing inorganic particles was weighed. Next, 0.075 g of polyvinyl alcohol (PVA; degree of saponification: 88.0 ± 1.5 mol%, SIGMA-ALDRICH Inc.) was added while stirring with a magnetic stirrer, and dissolved in an aqueous medium by stirring for 24 hours. . Thereafter, 0.0125 g of pyrrole was added while maintaining the temperature at 25 ° C., and an aqueous solution in which 0.057 g of chloroauric acid trihydrate (HAuCl 4 .3H 2 O) was dissolved in 1.06 g of water was added to a micropipette (Eppendorf; 1 , 1,000 μL) was added over 80 minutes, and stirring was continued at 25 ° C. for 24 hours. After completion of the reaction, the mixture was centrifuged at 7,000 rpm for 40 minutes using a centrifuge (Hitachi Koki Co., Ltd., CF16RXII type), the supernatant was removed, water was added, and an ultrasonic washer (Yamato, Redistribution was performed using BRANSONIC 221). This cycle was repeated four times to obtain a dispersion of composite particles (solid content concentration 10.2% by mass). Table 1 shows the coating resistance value and the adhesive test results.

〔実施例2〕(複合粒子の製造)
50mLサンプル瓶に、無機物粒子を吸着している製造例1のカチオン基を持つポリマー粒子の水分散液を11.09g(固形分濃度4.51質量%)計りとった。次いで、マグネットスターラーで攪拌しながらポリビニルアルコール(PVA;けん化度:88.0±1.5mol%,SIGMA−ALDRICHInc.)0.075gを添加し、24時間撹拌することで水媒体中に溶解させた。その後25℃を維持したまま、ピロール0.05gを加え、水1.06gに塩化金酸3水和物(HAuCl4・3H2O)0.228gを溶解した水溶液を、マイクロピペット(Eppendorf;1,000μL)を用いて、90分かけて添加し、25℃で24時間撹拌を継続した。反応終了後、遠心分離機(日立工機(株)、CF16RXII形)を使用して7,000rpmで40分間遠心分離し、上澄み液を除去した後、水を加え、超音波洗浄機(Yamato,BRANSONIC221)を用いて再分散した。このサイクルを4回行い複合粒子の分散液(固形分濃度10.6質量%)を得た。塗膜抵抗値、粘着性試験結果を表1に示す。
[Example 2] (Production of composite particles)
In a 50 mL sample bottle, 11.09 g (solid content concentration: 4.51% by mass) of an aqueous dispersion of polymer particles having a cationic group of Production Example 1 adsorbing inorganic particles was weighed. Next, 0.075 g of polyvinyl alcohol (PVA; degree of saponification: 88.0 ± 1.5 mol%, SIGMA-ALDRICH Inc.) was added while stirring with a magnetic stirrer, and dissolved in an aqueous medium by stirring for 24 hours. . Thereafter, 0.05 g of pyrrole was added while maintaining the temperature at 25 ° C., and an aqueous solution in which 0.228 g of chloroauric acid trihydrate (HAuCl 4 .3H 2 O) was dissolved in 1.06 g of water was added to a micropipette (Eppendorf; 1 , 000 μL) was added over 90 minutes and stirring was continued at 25 ° C. for 24 hours. After completion of the reaction, the mixture was centrifuged at 7,000 rpm for 40 minutes using a centrifuge (Hitachi Koki Co., Ltd., CF16RXII type), the supernatant was removed, water was added, and an ultrasonic washer (Yamato, Redistribution was performed using BRANSONIC 221). This cycle was repeated four times to obtain a dispersion of composite particles (solid content concentration 10.6% by mass). Table 1 shows the coating resistance value and the adhesive test results.

[製造例2](カチオン基を持っていないポリマー粒子の製造)
250mLの丸底フラスコに水88gを注ぎ、マグネットスターラーで攪拌しながらpoly(N−vinylpyrrolidone)(PNVP;分子量=360000,和光純薬工業株式会社)を0.50gを溶解させた。その後コロイダルシリカ(40質量%の水分散体、EkaChemicals製Bindzil2040)20gをマイクロピペット(Eppendorf;1,000μL)を用いて少しずつ撹拌しながら添加し、さらに過硫酸ナトリウムを0.15g加え完全に溶解させた。その後、セプタムで蓋をし、窒素置換を行った。そこへメタクリル酸ブチル5gと、メタクリル酸メチル5gの混合物をシリンジにより注入し、70℃まで昇温し、そのまま撹拌を続け24時間保持した。反応終了後、反応液を遠心分離機(日立工機(株)、CF16RXII形)を使用して2000rpmで10分間遠心分離し、沈殿した凝集物を除去した。さらに残液について7000rpmで30分間遠心分離を行い、上澄み液を除去し、沈殿物に水を加え、超音波洗浄機(Yamato,BRANSONIC221)を用いて再分散した。このサイクルを5回行い、無機物粒子を含んだポリマー粒子を得た。
[Production Example 2] (Production of polymer particles having no cationic group)
Water (88 g) was poured into a 250 mL round bottom flask, and 0.50 g of poly (N-vinylpyrrolidone) (PNVP; molecular weight = 360,000, Wako Pure Chemical Industries, Ltd.) was dissolved while stirring with a magnetic stirrer. Thereafter, 20 g of colloidal silica (40 mass% aqueous dispersion, Bindzil 2040 manufactured by Eka Chemicals) was added little by little using a micropipette (Eppendorf; 1,000 μL), and 0.15 g of sodium persulfate was further added and completely dissolved. I let you. Then, it was capped with a septum and replaced with nitrogen. Thereto, a mixture of 5 g of butyl methacrylate and 5 g of methyl methacrylate was injected by a syringe, the temperature was raised to 70 ° C., and stirring was continued as it was for 24 hours. After completion of the reaction, the reaction solution was centrifuged at 2000 rpm for 10 minutes using a centrifuge (Hitachi Koki Co., Ltd., CF16RXII type) to remove the precipitated aggregates. Further, the remaining liquid was centrifuged at 7000 rpm for 30 minutes, the supernatant liquid was removed, water was added to the precipitate, and redispersed using an ultrasonic cleaner (Yamato, BRANSONIC221). This cycle was repeated 5 times to obtain polymer particles containing inorganic particles.

〔比較例1〕
50mLサンプル瓶に、無機物粒子を吸着している製造例2のカチオン基を持つポリマー粒子の水分散液を11.08g(固形分濃度4.53質量%)計りとった。次いで、マグネットスターラーで攪拌しながらポリビニルアルコール(PVA;けん化度:88.0±1.5mol%,SIGMA−ALDRICHInc.)0.075gを添加し、24時間撹拌することで水媒体中に溶解させた。その後25℃を維持したまま、ピロール0.0125gを加え、水1.06gに塩化金酸3水和物(HAuCl4・3H2O)0.057gを溶解した水溶液を、マイクロピペット(Eppendorf;1,000μL)を用いて、80分かけて添加し、25℃で24時間撹拌を継続した。反応終了後、遠心分離機(日立工機(株)、CF16RXII形)を使用して7,000rpmで40分間遠心分離し、上澄み液を除去した後、水を加え、超音波洗浄機(Yamato,BRANSONIC221)を用いて再分散した。このサイクルを4回行い複合粒子の分散液(固形分濃度10.2質量%)を得た。塗膜抵抗値、粘着性試験結果を表1に示す。
[Comparative Example 1]
In a 50 mL sample bottle, 11.08 g (solid content concentration: 4.53 mass%) of an aqueous dispersion of polymer particles having a cationic group of Production Example 2 adsorbing inorganic particles was weighed. Next, 0.075 g of polyvinyl alcohol (PVA; degree of saponification: 88.0 ± 1.5 mol%, SIGMA-ALDRICH Inc.) was added while stirring with a magnetic stirrer, and dissolved in an aqueous medium by stirring for 24 hours. . Thereafter, 0.0125 g of pyrrole was added while maintaining the temperature at 25 ° C., and an aqueous solution in which 0.057 g of chloroauric acid trihydrate (HAuCl 4 .3H 2 O) was dissolved in 1.06 g of water was added to a micropipette (Eppendorf; 1 , 1,000 μL) was added over 80 minutes, and stirring was continued at 25 ° C. for 24 hours. After completion of the reaction, the mixture was centrifuged at 7,000 rpm for 40 minutes using a centrifuge (Hitachi Koki Co., Ltd., CF16RXII type), the supernatant was removed, water was added, and an ultrasonic washer (Yamato, Redistribution was performed using BRANSONIC 221). This cycle was repeated four times to obtain a dispersion of composite particles (solid content concentration 10.2% by mass). Table 1 shows the coating resistance value and the adhesive test results.

[比較例2]
500mLの丸底フラスコに水290gを注ぎ、マグネットスターラーで撹拌しながらアクリル酸ブチル30.0gを加えた。その後、セプタムで蓋をし、窒素置換を行い、70℃昇温した。過硫酸アンモニウム0.30gと水10gの混合物を投入した後、70℃で24時間保持し、無機物粒子を吸着していないポリマー粒子の水分散液(固形分濃度9.1質量%)を得た。前記粒子のレーザー回折式粒度分布測定結果より、体積平均粒子径(Dv)が0.32±0.072μmの単分散粒子であった。
この水分散液を22.0gを100mLサンプル瓶に計りとった。次いで、マグネットスターラーで攪拌しながらポリビニルアルコール(PVA;けん化度:88.0±1.5mol%,SIGMA−ALDRICHInc.)0.1gを添加し、24時間撹拌することで水媒体中に溶解させた。その後25℃を維持したまま、ピロール0.05gを加え、水1.06gに塩化金酸3水和物(HAuCl4・3H2O)0.228gを溶解した水溶液を、マイクロピペット(Eppendorf;1,000μL)を用いて、90分かけて添加し、25℃で24時間撹拌を継続した。反応終了後、遠心分離機(日立工機(株)、CF16RXII形)を使用して7,000rpmで40分間遠心分離し、上澄み液を除去した後、水を加え、超音波洗浄機(Yamato,BRANSONIC221)を用いて再分散した。このサイクルを4回行い複合粒子の分散液(固形分濃度10.3質量%)を得た。塗膜抵抗値、粘着性試験結果を表1に示す。
[Comparative Example 2]
290 g of water was poured into a 500 mL round bottom flask, and 30.0 g of butyl acrylate was added while stirring with a magnetic stirrer. Then, it was capped with a septum, purged with nitrogen, and heated at 70 ° C. After adding a mixture of 0.30 g of ammonium persulfate and 10 g of water, the mixture was kept at 70 ° C. for 24 hours to obtain an aqueous dispersion of polymer particles not adsorbing inorganic particles (solid content concentration: 9.1% by mass). From the results of laser diffraction particle size distribution measurement, the particles were monodisperse particles having a volume average particle diameter (Dv) of 0.32 ± 0.072 μm.
22.0 g of this aqueous dispersion was weighed into a 100 mL sample bottle. Next, 0.1 g of polyvinyl alcohol (PVA; degree of saponification: 88.0 ± 1.5 mol%, SIGMA-ALDRICH Inc.) was added while stirring with a magnetic stirrer, and dissolved in an aqueous medium by stirring for 24 hours. . Thereafter, 0.05 g of pyrrole was added while maintaining the temperature at 25 ° C., and an aqueous solution in which 0.228 g of chloroauric acid trihydrate (HAuCl 4 .3H 2 O) was dissolved in 1.06 g of water was added to a micropipette (Eppendorf; 1 , 000 μL) was added over 90 minutes and stirring was continued at 25 ° C. for 24 hours. After completion of the reaction, the mixture was centrifuged at 7,000 rpm for 40 minutes using a centrifuge (Hitachi Koki Co., Ltd., CF16RXII type), the supernatant was removed, water was added, and an ultrasonic washer (Yamato, Redistribution was performed using BRANSONIC 221). This cycle was repeated 4 times to obtain a dispersion of composite particles (solid concentration 10.3% by mass). Table 1 shows the coating resistance value and the adhesive test results.

Figure 0006482384
Figure 0006482384

本発明に係る複合粒子は、導電性材料として、タッチパネル、有機EL、有機薄膜太陽電池等に利用することができる。また、本発明に係る複合粒子は、他の導電性高分子であるポリアセチレンやポリ(3,4−エチレンジオキシチオフェン)(PEDOT)、ポリピロール、ポリアニリンと同様に、電解コンデンサー、電池電極、錆止め材、帯電防止剤などに利用できる。   The composite particles according to the present invention can be used as a conductive material for a touch panel, an organic EL, an organic thin film solar cell, and the like. In addition, the composite particles according to the present invention are similar to other conductive polymers such as polyacetylene, poly (3,4-ethylenedioxythiophene) (PEDOT), polypyrrole, polyaniline, electrolytic capacitors, battery electrodes, rust inhibitors. It can be used as an antistatic agent.

Claims (4)

カチオン基を持つポリマー粒子(A)と、
金属粒子(B)と、
無機物粒子(C)と、
を有し、
前記(A)が、前記(C)を吸着しており、
前記(A)が、前記(C)を介して金属粒子(B)を固着している、複合粒子。
Polymer particles (A) having a cationic group;
Metal particles (B);
Inorganic particles (C);
Have
The (A) adsorbs the (C),
The composite particle in which (A) fixes metal particles (B) through (C).
請求項1に記載の複合粒子の製造方法であって、
性媒体中において、前記(C)とカチオン系物質(D)との存在下で前記(A)を得る工程を含む複合粒子の製造方法
A method for producing composite particles according to claim 1,
In water soluble medium, comprising the step of obtaining said (A) in the presence of the (C) and cationic substances (D), the manufacturing method of the composite particles.
前記(C)を吸着している前記(A)の存在下で、金属錯体(B−1)を還元剤(B−2)により還元し、金属粒子(B)を複合化する工程を含む請求項2に記載の複合粒子の製造方法In the presence of the adsorbed said (C) (A), a metal complex (B-1) was reduced by a reducing agent (B-2), comprising the step of composite metal particles (B), The manufacturing method of the composite particle of Claim 2 . 水性媒体と、
前記水性媒体中に存在する請求項1に記載の複合粒子と、
を含有する、水性分散液。
An aqueous medium;
And composite particles according to claim 1 present in said aqueous medium,
An aqueous dispersion containing
JP2015108355A 2015-05-28 2015-05-28 Composite particles and aqueous dispersion containing the same Active JP6482384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015108355A JP6482384B2 (en) 2015-05-28 2015-05-28 Composite particles and aqueous dispersion containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015108355A JP6482384B2 (en) 2015-05-28 2015-05-28 Composite particles and aqueous dispersion containing the same

Publications (2)

Publication Number Publication Date
JP2016222770A JP2016222770A (en) 2016-12-28
JP6482384B2 true JP6482384B2 (en) 2019-03-13

Family

ID=57747198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015108355A Active JP6482384B2 (en) 2015-05-28 2015-05-28 Composite particles and aqueous dispersion containing the same

Country Status (1)

Country Link
JP (1) JP6482384B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285604A (en) * 1991-03-13 1992-10-09 Nippon Shokubai Co Ltd Metal-carrying fine particle and its production
JP2003506511A (en) * 1999-07-30 2003-02-18 ヨット・ペーター・グッゲンビヒラー Method for producing antimicrobial plastic body with improved long-term efficacy
JP4628519B2 (en) * 2000-05-30 2011-02-09 株式会社日本触媒 Composite particle and method for producing the same
FR2846572B1 (en) * 2002-11-05 2004-12-31 Centre Nat Rech Scient DISSYMMETRIC PARTICLES OF NANOMETRIC OR MESOSCOPIC SIZE, AND PROCESS FOR THEIR PREPARATION
KR20070108798A (en) * 2006-05-08 2007-11-13 최길배 Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof
JP5283854B2 (en) * 2007-03-27 2013-09-04 公立大学法人首都大学東京 Precious metal fine particle-supported solid polymer material, preparation method thereof and catalyst
CN102474024B (en) * 2009-07-02 2014-09-17 日立化成株式会社 Conductive particle
JP5694671B2 (en) * 2010-02-16 2015-04-01 公立大学法人首都大学東京 Method for producing metal-coated particles
JP2013249403A (en) * 2012-06-01 2013-12-12 Asahi Kasei Chemicals Corp Composite particle and particle dispersion containing the same
JP6188392B2 (en) * 2013-04-12 2017-08-30 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
JP6333626B2 (en) * 2013-05-29 2018-05-30 積水化学工業株式会社 Projection particle, conductive particle, conductive material, and connection structure

Also Published As

Publication number Publication date
JP2016222770A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
KR20110053459A (en) Electroconductive particles and anisotropic electroconductive material using the same
JP5719483B1 (en) Conductive particles, conductive materials, and connection structures
JP7131908B2 (en) Metal-containing particles, connecting material, connected structure, and method for producing connected structure
JP5395482B2 (en) Coated conductive fine particles, anisotropic conductive material, and conductive connection structure
JP6668075B2 (en) Conductive particles, conductive material and connection structure
WO2013042785A1 (en) Electroconductive fine particles and anisotropic conductive material containing same
JP2006269296A (en) Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
JP4326003B2 (en) Method for producing polymer-coated particles
WO2020004273A1 (en) Conductive particles, conductive material, and connecting structure
JP5162477B2 (en) Nanoscale superparamagnetic poly (meth) acrylate polymer
JP2020037705A (en) Base material particle, conductive particle, conductive material and connection structure
JP2019114552A (en) Base particle, conductive particle, conductive material, and connection structure
JP6343623B2 (en) Aqueous composite particle dispersion
TW201803960A (en) Insulated coated conductive particles, anisotropic conductive adhesive and connected structure
JP2005171096A (en) Method for manufacturing protruded particle, protruded particle, protruded conductive particle and anisotropic conductive material
JP5629641B2 (en) Conductive fine particles and method for producing the same
JP6482384B2 (en) Composite particles and aqueous dispersion containing the same
Zhang et al. Synthesis and characterization of gibbsite nanoplatelet brushes by surface-initiated atom transfer radical polymerization
JP6378905B2 (en) Conductive fine particles
JP7144472B2 (en) Conductive particles, conductive materials and connecting structures
JP2016095951A (en) Conductive fine particle
JP3401851B2 (en) Method for microencapsulation of solid particles
JP5694671B2 (en) Method for producing metal-coated particles
JP2013221036A (en) Method of producing polymer-coated inorganic particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190212

R150 Certificate of patent or registration of utility model

Ref document number: 6482384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250