JP6482334B2 - Lamp heating device - Google Patents

Lamp heating device Download PDF

Info

Publication number
JP6482334B2
JP6482334B2 JP2015049687A JP2015049687A JP6482334B2 JP 6482334 B2 JP6482334 B2 JP 6482334B2 JP 2015049687 A JP2015049687 A JP 2015049687A JP 2015049687 A JP2015049687 A JP 2015049687A JP 6482334 B2 JP6482334 B2 JP 6482334B2
Authority
JP
Japan
Prior art keywords
light
temperature
light source
sensor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015049687A
Other languages
Japanese (ja)
Other versions
JP2016170964A (en
Inventor
服部 昌
昌 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Thermo Systems Co Ltd
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2015049687A priority Critical patent/JP6482334B2/en
Publication of JP2016170964A publication Critical patent/JP2016170964A/en
Application granted granted Critical
Publication of JP6482334B2 publication Critical patent/JP6482334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Resistance Heating (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Description

この発明は、太陽電池の電極の焼成処理等の加熱処理に用いられる加熱装置に関し、特に、ハロゲンランプ等の可視光〜近赤外域光源を備えたランプ加熱装置に関する。   The present invention relates to a heating device used for a heat treatment such as a baking treatment of an electrode of a solar cell, and more particularly to a lamp heating device provided with a visible light to near-infrared light source such as a halogen lamp.

太陽電池の電極の焼成処理等の加熱処理には、ハロゲンランプ等の可視光〜近赤外域光源を熱源としたランプ加熱装置が用いられている。ランプ加熱装置は、放射温度計によって被処理物の温度を測定し、被処理物の温度が適正な処理温度となるように、シングルループのフィードバック制御によって光源を駆動する(例えば、特許文献1参照。)。   A lamp heating apparatus using a visible light to near-infrared light source such as a halogen lamp as a heat source is used for a heat treatment such as a baking treatment of an electrode of a solar cell. The lamp heating device measures the temperature of the object to be processed with a radiation thermometer, and drives the light source by single-loop feedback control so that the temperature of the object to be processed becomes an appropriate processing temperature (see, for example, Patent Document 1). .)

特開2006−147943号公報Japanese Patent Laid-Open No. 2006-147743

しかし、フィードバック制御による光源の光量の応答性は十分に速いが、光量に対する被処理物の温度の応答性は遅いため、シングルループによるフィードバック制御では被処理物の温度を目標値に素早く追従させることが難しい。このため、従来のランプ加熱装置を用いて、例えば、太陽電池の電極の焼成処理におけるスパイクアニールのように100℃/秒を越える速度で被処理物の温度を急速に変化させる場合、制御パラメータの微調整等の煩雑な作業が必要になる。   However, the response of the light quantity of the light source by feedback control is sufficiently fast, but the response of the temperature of the object to be processed is slow with respect to the light quantity, so that the temperature of the object to be processed quickly follows the target value in the single-loop feedback control. Is difficult. For this reason, when the temperature of the workpiece is rapidly changed at a rate exceeding 100 ° C./second by using a conventional lamp heating device, for example, spike annealing in the baking treatment of the electrode of the solar cell, the control parameter Complicated work such as fine adjustment is required.

このような問題は、太陽電池の電極の焼成処理に限らず、ランプ加熱装置における加熱処理に一般的に生じる。   Such a problem generally occurs not only in the baking treatment of the electrodes of the solar battery but also in the heat treatment in the lamp heating apparatus.

この発明の目的は、光源の光量に対する被処理物の温度の応答性を光源の光量のフィードバック制御によって向上させることで、制御パラメータの微調整等の作業を必要とすることなく被処理物の温度を目標値に素早く追従させることができるランプ加熱装置を提供することにある。   The object of the present invention is to improve the responsiveness of the temperature of the object to be processed with respect to the light amount of the light source by feedback control of the light amount of the light source, so that the temperature of the object to be processed is not required, such as fine adjustment of control parameters. An object of the present invention is to provide a lamp heating device that can quickly follow a target value.

この発明のランプ加熱装置は、光源、温度センサ、光量センサ、温度制御部、光量制御部を備えている。光源は、被処理物に光を照射して加熱する。温度センサは、被処理物の温度を検出する。光量センサは、光源の光量を検出する。温度制御部は、温度センサの検出温度を温度目標値に一致させるための光源の制御量を出力する。光量制御部は、光量センサの検出光量が温度制御部から出力された光源の制御量に一致するように光源を駆動する。   The lamp heating device of the present invention includes a light source, a temperature sensor, a light amount sensor, a temperature control unit, and a light amount control unit. The light source irradiates and heats the object to be processed. The temperature sensor detects the temperature of the object to be processed. The light quantity sensor detects the light quantity of the light source. The temperature control unit outputs a control amount of the light source for making the temperature detected by the temperature sensor coincide with the temperature target value. The light amount control unit drives the light source so that the light amount detected by the light amount sensor matches the control amount of the light source output from the temperature control unit.

この構成によれば、温度センサの検出温度に基づいて被処理物を目標温度に一致させる第1のループのフィードバック制御に、光量センサの検出光量に基づいて光源の光量を制御する第2ループのフィードバック制御が追加される。被処理物を加熱する光源の光量が第2ループのフィードバック制御によって直接制御され、被処理物の温度が素早く目標温度に一致する。   According to this configuration, the second loop that controls the light amount of the light source based on the detected light amount of the light sensor is used for the feedback control of the first loop that matches the object to be processed with the target temperature based on the detected temperature of the temperature sensor. Feedback control is added. The light quantity of the light source for heating the object to be processed is directly controlled by the feedback control of the second loop, and the temperature of the object to be processed quickly matches the target temperature.

この構成において、光量センサは、検出感度波長域が光源の照射光の波長域に重複し、かつ光の波長の吸収域が被処理物の吸収域と略一致することが好ましい。光量センサの検出感度の高い波長域が被処理物を加熱する光の波長域に一致し、被処理物を加熱する波長域の光量を正確に検出することができる。   In this configuration, it is preferable that the light intensity sensor has a detection sensitivity wavelength region that overlaps with a wavelength region of irradiation light of the light source, and an absorption region of the wavelength of light substantially coincides with the absorption region of the object to be processed. The wavelength range with high detection sensitivity of the light quantity sensor coincides with the wavelength range of light for heating the object to be processed, and the amount of light in the wavelength area for heating the object to be processed can be accurately detected.

また、光量センサは、光源を挟んで被処理物の反対側に配置することが好ましい。光源の光を確実に受光できるとともに、被処理物における反射光を受光し難くなり、光源の光量を正確に検出することができる。   Moreover, it is preferable to arrange | position a light quantity sensor on the opposite side of a to-be-processed object on both sides of a light source. The light from the light source can be reliably received, and it becomes difficult to receive the reflected light from the object to be processed, so that the amount of light from the light source can be accurately detected.

本発明によれば、光量に対する被処理物の温度の応答性が光源の光量のフィードバック制御によって向上し、制御パラメータの微調整等の作業を必要とすることなく被処理物の温度を目標値に素早く追従させることができる。   According to the present invention, the responsiveness of the temperature of the object to be processed with respect to the light amount is improved by feedback control of the light amount of the light source, and the temperature of the object to be processed can be set to the target value without requiring work such as fine adjustment of control parameters. It can be made to follow quickly.

本発明の実施形態に係るランプ加熱装置の概略の断面図である。It is a schematic sectional drawing of the lamp heating apparatus which concerns on embodiment of this invention. 同ランプ加熱装置の要部の断面図である。It is sectional drawing of the principal part of the lamp heating apparatus. 同ランプ加熱装置の光量センサの放射率特性の一例を示す図である。It is a figure which shows an example of the emissivity characteristic of the light quantity sensor of the lamp heating apparatus. 同ランプ加熱装置の制御部のブロック図である。It is a block diagram of the control part of the lamp heating device. 同ランプ制御装置における被処理物の温度変化を示す図である。It is a figure which shows the temperature change of the to-be-processed object in the lamp | ramp control apparatus.

以下に、この発明の実施形態に係るランプ加熱装置について、図面を参照しつつ説明する。   Hereinafter, a lamp heating apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、この発明の実施形態に係るランプ加熱装置10は、炉体1、ハロゲンランプ2、温度センサ3、光量センサ4、制御部5及びランプ駆動部6を備え、被処理物Wを所定の温度に加熱する。被処理物Wは、一例としてシリコンを素材として板状を呈する太陽電池の電極材料である。   As shown in FIG. 1, a lamp heating apparatus 10 according to an embodiment of the present invention includes a furnace body 1, a halogen lamp 2, a temperature sensor 3, a light quantity sensor 4, a control unit 5, and a lamp driving unit 6, and an object to be processed. Heat W to a predetermined temperature. The workpiece W is an electrode material of a solar cell that exhibits a plate shape using silicon as an example.

炉体1は、断熱性を有する筐体であり、内部に被処理物Wが搬入出される。ハロゲンランプ2は、この発明の光源であり、炉体1の内部に、一例として上下に5個ずつ配置される。被処理物Wは、上下のハロゲンランプ2の間に搬入される。この発明の光源は、ハロゲンランプに限るものではなく、個数、配置位置、形状も図1に示す状態に限るものではない。   The furnace body 1 is a heat-insulating housing, and the workpiece W is carried into and out of the furnace body 1. The halogen lamps 2 are light sources according to the present invention, and five pieces are arranged inside the furnace body 1 as an example. The workpiece W is carried between the upper and lower halogen lamps 2. The light source of the present invention is not limited to the halogen lamp, and the number, arrangement position, and shape are not limited to the state shown in FIG.

温度センサ3は、一例として放射温度計であり、被処理物Wの温度を測定する。温度センサ3は、炉体1の外部に配置され、炉体1に形成された貫通孔11を経由して、被処理物Wの底面に対向している。温度センサ3は、放射温度計に限るものではなく、例えば、被処理物Wの温度を直接測定するものであってもよい。   The temperature sensor 3 is a radiation thermometer as an example, and measures the temperature of the workpiece W. The temperature sensor 3 is arranged outside the furnace body 1 and faces the bottom surface of the workpiece W through a through hole 11 formed in the furnace body 1. The temperature sensor 3 is not limited to the radiation thermometer, and may be one that directly measures the temperature of the workpiece W, for example.

光量センサ4は、一例として、シリコンフォトダイオードであり、炉体1の外部に配置され、炉体1に形成された貫通孔12を経由して、ハロゲンランプ2の光量を測定する。制御部5は、温度センサ3の検出温度及び光量センサ4の検出光量に基づいて作成したハロゲンランプ2の駆動データをランプ駆動部6に出力する。ランプ駆動部6は、駆動データに基づいてハロゲンランプ2を駆動する。制御部5及びランプ駆動部6が、この発明の駆動制御部に相当する。   The light quantity sensor 4 is a silicon photodiode as an example, and is disposed outside the furnace body 1 and measures the light quantity of the halogen lamp 2 through a through hole 12 formed in the furnace body 1. The control unit 5 outputs drive data of the halogen lamp 2 created based on the detected temperature of the temperature sensor 3 and the detected light amount of the light amount sensor 4 to the lamp drive unit 6. The lamp driving unit 6 drives the halogen lamp 2 based on the driving data. The control unit 5 and the lamp driving unit 6 correspond to the driving control unit of the present invention.

温度センサ3及び光量センサ4について、図2及び図3により、さらに詳細に説明する。図2に示すように、温度センサ3は、水平方向について炉体1内に配置されている2つのハロゲンランプ2の間に位置しており、貫通孔11を経由して被処理物Wの底面に直接対向している。これによって、温度センサ3は、被処理物Wの温度を正確に測定できる。   The temperature sensor 3 and the light quantity sensor 4 will be described in more detail with reference to FIGS. As shown in FIG. 2, the temperature sensor 3 is located between the two halogen lamps 2 arranged in the furnace body 1 in the horizontal direction, and the bottom surface of the workpiece W through the through hole 11. Directly opposite. Thereby, the temperature sensor 3 can accurately measure the temperature of the workpiece W.

光量センサ4は、炉体1内に配置されている複数のハロゲンランプ2のうち、被処理物Wの全体の温度に与える影響が大きい例えば中央部のハロゲンランプ2に対向する位置で、被処理物Wや炉体1の内壁からの反射光の影響を受け難い位置に配置されている。   The light quantity sensor 4 has a large influence on the overall temperature of the workpiece W among the plurality of halogen lamps 2 arranged in the furnace body 1, for example, at a position facing the halogen lamp 2 in the central portion. It is disposed at a position where it is difficult to be affected by the reflected light from the object W or the inner wall of the furnace body 1.

光量センサ4は、貫通孔12に備えられている減光フィルタ41を介してハロゲンランプ2の光を受光する。また、光量センサ4は、放熱部材42に取り付けられている。光量センサ4は、減光フィルタ41及び放熱部材42によってハロゲンランプ2の光による温度上昇を最小限に抑えられ、ハロゲンランプ2の光量を正確に測定できる。   The light quantity sensor 4 receives light from the halogen lamp 2 through a neutral density filter 41 provided in the through hole 12. The light quantity sensor 4 is attached to the heat radiating member 42. The light quantity sensor 4 can minimize the temperature rise caused by the light from the halogen lamp 2 by the neutral density filter 41 and the heat radiating member 42, and can accurately measure the light quantity of the halogen lamp 2.

なお、温度センサ3及び光量センサ4の配置位置は、炉体1の下方に限るものではなく、一方又は両方を炉体1の上方又は側方に配置することもできる。但し、平板状の被処理物Wの温度を放射温度計である温度センサ3によって測定するためには、温度センサ3を被処理物Wの主面に対向して配置することが望ましい。また、光量センサ4は、被処理物Wや炉体1の内壁からの反射光の影響を受け難い位置でハロゲンランプ2に直接対向させる必要がある。さらに、温度センサ3及び光量センサ4は、ともに制御部5に接続されるため、互いに近接して配置することが好ましく、例えば放熱部材42を介して両者を一体的に固定することもできる。   Note that the arrangement positions of the temperature sensor 3 and the light quantity sensor 4 are not limited to the lower side of the furnace body 1, and one or both of them can be arranged above or to the side of the furnace body 1. However, in order to measure the temperature of the flat workpiece W by the temperature sensor 3 which is a radiation thermometer, it is desirable to arrange the temperature sensor 3 so as to face the main surface of the workpiece W. Further, the light quantity sensor 4 needs to be directly opposed to the halogen lamp 2 at a position where it is difficult to be influenced by the reflected light from the workpiece W and the inner wall of the furnace body 1. Furthermore, since both the temperature sensor 3 and the light quantity sensor 4 are connected to the control unit 5, it is preferable to arrange them close to each other. For example, both of them can be fixed integrally via the heat radiation member 42.

図3は、光量センサの放射率特性の一例として、シリコンフォトダイオードによって構成された光量センサ4の放射率特性を示している。同図に示すように、光量センサ4の放射率特性は、被処理物Wの素材であるシリコンの放射率特性と略一致する。また、シリコンフォトダイオードの検出感度波長域は、ハロゲンランプ2の発光波長とオーバラップする。放射率特性は光の吸収特性と等価と考えられる。このため、光量センサ4は、被処理物Wのハロゲンランプ2の光による加熱状態を、ハロゲンランプ2の光の光量によって正確に検出することができる。   FIG. 3 shows the emissivity characteristic of the light quantity sensor 4 formed of a silicon photodiode as an example of the emissivity characteristic of the light quantity sensor. As shown in the figure, the emissivity characteristic of the light quantity sensor 4 substantially matches the emissivity characteristic of silicon, which is the material of the workpiece W. Further, the detection sensitivity wavelength region of the silicon photodiode overlaps with the emission wavelength of the halogen lamp 2. The emissivity characteristic is considered equivalent to the light absorption characteristic. For this reason, the light quantity sensor 4 can accurately detect the heating state of the workpiece W by the light of the halogen lamp 2 by the light quantity of the light of the halogen lamp 2.

なお、この発明の光源は、ハロゲンランプ2に限るものではない。ハロゲンランプ2以外であっても、使用する光源の発光波長にオーバラップする検出感度波長域を有し、放射率特性が略一致する材料で構成された光量センサ4を使用することで、被処理物Wの光源の光による加熱状態を、光源の光の光量によって正確に検出することができる。   The light source of the present invention is not limited to the halogen lamp 2. Even if it is other than the halogen lamp 2, by using the light amount sensor 4 having a detection sensitivity wavelength region that overlaps with the emission wavelength of the light source to be used and made of a material whose emissivity characteristics substantially coincide, The heating state of the object W by the light of the light source can be accurately detected by the amount of light of the light source.

温度センサ3及び光量センサ4の検出値に基づくハロゲンランプ2の駆動制御について、図4により、さらに詳細に説明する。図4に示すように、制御部5は、温度制御器51、光量制御器52及び電力変換器53を備えている。制御部5は、図示しない記憶部に予め記憶されているシーケンスに従って被処理物Wの温度目標値Tを経時的に設定する。温度制御器51は、温度センサ3が検出した被処理物Wの現在の温度Tと温度目標値Tとの差分に基づいて、ハロゲンランプ2が照射すべき光量目標値Lを出力する。光量制御器52は、光量センサ4が検出したハロゲンランプ2の現在の光量Lと光量目標値Lとの差分に基づいてハロゲンランプ2に供給すべき電力制御値を決定し、電力変換器53に入力する。 The drive control of the halogen lamp 2 based on the detection values of the temperature sensor 3 and the light quantity sensor 4 will be described in more detail with reference to FIG. As shown in FIG. 4, the control unit 5 includes a temperature controller 51, a light amount controller 52, and a power converter 53. Control unit 5 over time to set the target temperature T O of the workpiece W in accordance with the sequence stored in advance in a storage unit not shown. Temperature controller 51, based on the difference between the current temperature T R and the temperature target value T O of the workpiece W which is a temperature sensor 3 detects a halogen lamp 2 outputs a light amount target value L O to be irradiated . The light quantity controller 52 determines a power control value to be supplied to the halogen lamp 2 based on the difference between the current light quantity LR and the light quantity target value L O of the halogen lamp 2 detected by the light quantity sensor 4, and the power converter 53.

即ち、制御部5は、温度センサ3の検出温度に基づいて被処理物Wを目標温度に一致させる第1のループのフィードバック制御に加えて、光量センサ4の検出光量に基づいてハロゲンランプ2の光量を制御する第2ループのフィードバック制御を行う。制御部5は、被処理物Wを加熱するハロゲンランプ2の光量を直接制御することができ、被処理物の温度を素早く目標温度に一致させることができ、被処理物Wの温度軌跡を1/10秒単位の高速で制御することができる。   That is, the control unit 5 performs the control of the halogen lamp 2 based on the detected light quantity of the light quantity sensor 4 in addition to the feedback control of the first loop for matching the workpiece W with the target temperature based on the detected temperature of the temperature sensor 3. Perform feedback control of the second loop for controlling the amount of light. The control unit 5 can directly control the amount of light of the halogen lamp 2 that heats the workpiece W, can quickly match the temperature of the workpiece to the target temperature, and sets the temperature trajectory of the workpiece W to 1 It can be controlled at a high speed of / 10 seconds.

制御理論に示されるように、制御目標値が時系列的に変化しない一定値である定値制御を行う場合、制御系が積分極を1つ備えれば制御遅れを生じない(制御偏差が0)。これに対して、時系列的に変化する制御目標値に追随させるランピング制御を行う場合は、制御系が積分極を2つ備えることが望ましい。   As shown in the control theory, when performing a constant value control in which the control target value is a constant value that does not change in time series, if the control system has one integral pole, no control delay occurs (the control deviation is 0). . On the other hand, when performing ramping control to follow a control target value that changes in time series, it is desirable that the control system includes two integration poles.

一般的なPID制御における制御系の伝達関数C(s)は、比例ゲインをK、積分ゲインをK、微分ゲインをKとして、
C(s)=K+K・1/s+K・s
で表される。制御対象が積分極を有する場合は、1つのみの積分極1/sを有する単一制御ループの制御系であっても、ランピング制御における制御偏差を抑制できるが、一般に制御対象が積分極を有することは少ない。そこで、制御系に2つの制御ループを構成し、それぞれが積分極を有する2つの制御器を備えることで、ランピング制御における制御偏差を0にすることができる。
In general PID control, the transfer function C (s) of the control system is such that the proportional gain is K P , the integral gain is K I , and the differential gain is K D.
C (s) = K P + K I · 1 / s + K D · s
It is represented by When the controlled object has an integral pole, even a single control loop control system having only one integral pole 1 / s can suppress the control deviation in the ramping control, but generally the controlled object has an integral pole. There is little to have. Therefore, by forming two control loops in the control system and providing two controllers each having an integral pole, the control deviation in the ramping control can be made zero.

例えば、被処理物Wの温度を所望のピーク温度で保持するスパイクアニール処理を1つの制御ループのみを有する制御系を用いて行おうとすると、図5に示すように、所望のピーク温度に達した後に一定時間pにわたって目標値を保持する必要があり、目標値の調整作業が必要となる。また、制御遅れを生じて、制御対象を目標値に追随させることができない。   For example, when a spike annealing process for maintaining the temperature of the workpiece W at a desired peak temperature is performed using a control system having only one control loop, the desired peak temperature is reached as shown in FIG. Later, it is necessary to hold the target value for a certain time p, and adjustment of the target value is required. In addition, a control delay occurs, and the control target cannot follow the target value.

これに対して、2つの制御ループを構成して積分極を2つ備えた制御系では、目標値が所望のピーク値に達した時点で制御量を0とすることができ、スパイクアニール処理等の時系列的に変化する目標値に制御対象を追随させることができする。   On the other hand, in a control system comprising two control loops and having two integrating poles, the control amount can be set to zero when the target value reaches a desired peak value, and spike annealing processing, etc. It is possible to make the control target follow the target value that changes in time series.

したがって、光量に対する被処物Wの温度の応答性がハロゲンランプ2の光量のフィードバック制御によって向上し、制御パラメータの微調整等の作業を必要とすることなく被処理物Wの温度を目標温度軌跡に素早く追従させることができる。   Therefore, the responsiveness of the temperature of the workpiece W with respect to the light amount is improved by feedback control of the light amount of the halogen lamp 2, and the temperature of the workpiece W can be set to the target temperature locus without requiring fine adjustment of control parameters. Can follow quickly.

上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The above description of the embodiment is to be considered in all respects as illustrative and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

1−炉体
2−ハロゲンランプ(光源)
3−温度センサ
4−光量センサ
5−制御部
6−ランプ駆動部
1-furnace body 2-halogen lamp (light source)
3-temperature sensor 4-light quantity sensor 5-control unit 6-lamp drive unit

Claims (3)

被処理物に光を照射して加熱する光源と、
前記被処理物の温度を検出する温度センサと、
前記光源の光量を検出する光量センサと、
前記温度センサの検出温度を温度目標値に一致させるための前記光源の制御量を出力する温度制御部と、
前記光量センサの検出光量が前記温度制御部から出力された前記光源の制御量に一致するように前記光源を駆動する光量制御部と、
を備え、前記光量センサは、光の波長の吸収域が前記被処理物の吸収域と略一致する、ランプ加熱装置。
A light source that irradiates and heats the workpiece,
A temperature sensor for detecting the temperature of the workpiece;
A light amount sensor for detecting the light amount of the light source;
A temperature control unit that outputs a control amount of the light source for making the detected temperature of the temperature sensor coincide with a temperature target value;
A light amount control unit that drives the light source so that the detected light amount of the light amount sensor matches the control amount of the light source output from the temperature control unit;
The light amount sensor is a lamp heating apparatus , wherein an absorption region of a wavelength of light substantially coincides with an absorption region of the object to be processed .
前記光量センサは、検出感度波長域が前記光源の照射光の波長域に重複する、請求項1に記載のランプ加熱装置。 The lamp heating device according to claim 1 , wherein the light amount sensor has a detection sensitivity wavelength region overlapping a wavelength region of irradiation light of the light source. 前記光量センサは、前記光源を挟んで前記被処理物の反対側に配置される、請求項1又は2に記載のランプ加熱装置。 The lamp heating apparatus according to claim 1 , wherein the light amount sensor is disposed on the opposite side of the object to be processed with the light source interposed therebetween.
JP2015049687A 2015-03-12 2015-03-12 Lamp heating device Active JP6482334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015049687A JP6482334B2 (en) 2015-03-12 2015-03-12 Lamp heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015049687A JP6482334B2 (en) 2015-03-12 2015-03-12 Lamp heating device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019007562A Division JP6670959B2 (en) 2019-01-21 2019-01-21 Lamp heating device

Publications (2)

Publication Number Publication Date
JP2016170964A JP2016170964A (en) 2016-09-23
JP6482334B2 true JP6482334B2 (en) 2019-03-13

Family

ID=56984029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049687A Active JP6482334B2 (en) 2015-03-12 2015-03-12 Lamp heating device

Country Status (1)

Country Link
JP (1) JP6482334B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512249B2 (en) * 1991-08-29 1996-07-03 松下電器産業株式会社 Optical beam heating device
JP2001244212A (en) * 2000-03-02 2001-09-07 Ushio Inc Method for controlling incandescent lamp and light irradiating heating equipment
JP2002367914A (en) * 2001-06-11 2002-12-20 Tokyo Electron Ltd Heat treatment device
JP3896395B2 (en) * 2001-06-20 2007-03-22 大日本スクリーン製造株式会社 Heat treatment equipment

Also Published As

Publication number Publication date
JP2016170964A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
US9920993B2 (en) Heat treatment method and heat treatment apparatus for heating substrate by irradiating substrate with light
US9875919B2 (en) Heat treatment method for heating substrate by irradiating substrate with flash of light
US8901460B2 (en) Heat treatment method and heat treatment apparatus for heating substrate by irradiating substrate with light
US8987123B2 (en) Heat treatment apparatus and heat treatment method for heating substrate by irradiating substrate with flash of light
US20160138185A1 (en) Method of manufacturing silicon carbide single crystal
US20120238110A1 (en) Heat treatment method and heat treatment apparatus for heating substrate by irradiating substrate with flash of light
KR101598557B1 (en) Substrate processing apparatus and method for heat treatment the same
JP2010225613A (en) Heat treatment apparatus
JP2019068063A (en) Substrate processing method abd substrate processing device
TWI558489B (en) Laser working system utilizing heat radiation image and method thereof
JP6482334B2 (en) Lamp heating device
JP2017522258A5 (en)
WO2016151651A1 (en) Heat treatment device and heat treatment method
JP6670959B2 (en) Lamp heating device
US20190267261A1 (en) Light irradiation type heat treatment method and heat treatment apparatus
US20210132592A1 (en) Control System For Adaptive Control Of A Thermal Processing System
JP2011058015A5 (en)
JP6299693B2 (en) Electric heating device (method)
JP5558985B2 (en) Heat treatment equipment
JP6574344B2 (en) Heat treatment apparatus and heat treatment method
KR102199776B1 (en) Apparatus and method for measuring substrate temperature
US20220390175A1 (en) Light irradiation type heat treatment method and heat treatment apparatus
JP2006093302A (en) Quick heat treating apparatus and manufacturing method of semiconductor device
JP5898258B2 (en) Heat treatment equipment
JP2000021854A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190212

R150 Certificate of patent or registration of utility model

Ref document number: 6482334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250