JP6481502B2 - ロック検出回路、発振源回路および無線機器 - Google Patents

ロック検出回路、発振源回路および無線機器 Download PDF

Info

Publication number
JP6481502B2
JP6481502B2 JP2015100837A JP2015100837A JP6481502B2 JP 6481502 B2 JP6481502 B2 JP 6481502B2 JP 2015100837 A JP2015100837 A JP 2015100837A JP 2015100837 A JP2015100837 A JP 2015100837A JP 6481502 B2 JP6481502 B2 JP 6481502B2
Authority
JP
Japan
Prior art keywords
signal
circuit
oscillation
reference signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015100837A
Other languages
English (en)
Other versions
JP2016219938A (ja
Inventor
宏志 松村
宏志 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015100837A priority Critical patent/JP6481502B2/ja
Priority to US15/142,161 priority patent/US20160344397A1/en
Publication of JP2016219938A publication Critical patent/JP2016219938A/ja
Application granted granted Critical
Publication of JP6481502B2 publication Critical patent/JP6481502B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/095Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using a lock detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Electromagnetism (AREA)

Description

本発明は、ロック検出回路、発振源回路および無線機器に関する。
無線機器は、電波信号として高周波信号(ローカル信号)を使用する。ローカル信号は、VCO等の不安定な高周波発振器で発生され、安定度の高いリファレンス信号と比較してフィードバック制御することにより、周波数が安定化される。このようなフィードバック制御機構として、PLL、FLLなどが知られている。
リファレンス信号を生成するリファレンス信号源は、水晶発振器などで実現され、50MHz程度のものが使用される。これに対して、電波信号として使用されるローカル信号、例えばミリ波信号は、数十GHzの信号であるため、ローカル信号を分周した分周信号とリファレンス信号の位相差を検出し、フォードバックするのが一般的である。
車載用のミリ波レーダは、FMCW変調された電波信号を送出し、反射信号を受信し、中間周波数信号におけるドプラー成分を抽出して対象物との距離および相対速度を検出する。そのため、周波数が上限と下限の間での線形に変化することを繰り返すローカル信号が生成される。
PLL等のフィードバック制御機構によれば、発生されるローカル信号がリファレンス信号に対して所定の関係を有する状態が維持される。このような同期状態は、通常は、多少の電圧変化・温度変化が生じても、フィードバック制御されて、安定状態が維持される。しかし、大きな電源電圧変動、温度変化、デジタル回路の誤動作等のループ外からの大きな衝撃が加えられると、同期が外れて不安定化し、ローカル信号がリファレンス信号に対して所定の関係を有さない非同期状態になる。このような状態になると無線機器としての機能そのものが失われることになる。
そこで、無線機器において、ローカル信号のリファレンス信号に対する非同期状態を正確且つ高速に検知することが望まれ、ロック検出回路が使用される。これまでのロック検出回路は、長い時間をかけて周波数差を位相として積算し、積算された位相変化(論理の変化)によって周波数差を検知しようというものである。したがって、周波数差が小さいアンロック状態では、その検知に非常に時間が掛かるという問題があった。言い換えれば、非同期状態になったことが、長時間検出できないという問題があった。
この問題は、特に車載ミリ波レーダ等の安全性に関わる無線機器で重要であり、非同期状態での動作を続けるとレーダの誤動作につながり、誤った自動車制御によって危険性が生じる可能性がある。したがって、非同期状態が生じてそれを検知するまでの時間(タイムラグ)を、できる限り小さくすることが求められる。
特開2010−237172号公報 特開2013−002949号公報
実施形態によれば、短時間で非同期状態が検出できるロック検出回路が実現される。
本発明の第1の態様のロック検出回路は、位相差検出回路と、微分回路と、ロック判定回路と、を有する。位相差検出回路は、リファレンス信号に対して所定の関係を有するようにフィードバック制御することにより発生される発振信号の分周信号と、リファレンス信号の位相差を検出する。微分回路は、位相差の2次微分値および3次微分値を検出する。ロック判定回路は、2次微分値および3次微分値に基づいて発振信号のリファレンス信号に対する非同期状態を検出する。
実施形態のロック検出回路は、非同期状態が短時間で検出できる。
図1は、無線機器の基本構成を示す図である。 図2は、ローカル信号生成回路(ミリ波信号生成器)の構成を示す図であり、リファレンス信号源を合わせて示している。 図3は、ロック検出回路の動作を説明する図であり、(A)が同期状態を、(B)が非同期状態を示す。 図4は、実施形態における非同期状態の検出原理を説明する図であり、(A)が物理変数の例を、(B)がリファレンス信号と分周信号の位相差を、(C)が位相差信号を、(D)が1次微分を、(E)が2次微分を示す。 図5は、実施形態のローカル信号生成回路(ミリ波信号生成器)の構成を示す図であり、リファレンス信号源を合わせて示している。 図6は、実施形態のローカル信号生成回路のロック検出回路の構成を示す図である。 図7は、位相差検出回路の回路構成を示す図である。 図8は、位相差検出回路の動作を説明するタイムチャートである。 図9は、位相計算回路におけるデジタル処理を説明する図である。 図10は、微分回路の回路図である。 図11は、ロック判定回路における処理を示すフローチャートである。
実施形態のロック検出回路について説明する前に、一般的なロック検出回路、それが使用される発振源回路および無線機器について説明する。
図1は、無線機器の基本構成を示す図である。
無線機器は、リファレンス信号源10と、ローカル信号生成回路(ミリ波信号生成器)11と、アンプ12と、送信アンテナ13と、受信アンテナ14と、アンプ15と、ミキサ16と、ベースバンド信号処理回路16と、を有する。リファレンス信号源10は、水晶発振器などを有し、一定周波数(例えば50MHz)のリファレンス信号を出力する。ここでは、電波信号としてミリ波信号を利用する場合を例として説明するので、ローカル信号生成回路11をミリ波信号生成器と称する場合がある。
ローカル信号生成回路11は、数10GHzで発振する可変周波数発振回路と、可変周波数発振回路の出力する発振信号がリファレンス信号に対して所定の関係を有するように可変周波数発振回路をフィードバック制御するフィードバック制御回路と、を有する。可変周波数発振回路は、例えば、電圧制御発振器(VCO)、電流制御発振器(ICO)などで形成される。フィードバック制御回路は、可変周波数発振回路の出力する発振信号を分周し、分周信号とリファレンス信号の位相差を検出し、位相差信号の高周波成分をカットして生成した制御信号を可変周波数発振回路に印加するPLL回路で実現される。また、フィードバック制御回路は、分周信号とリファレンス信号の周波数差を検出してフィードバックする回路で実現される。以上のようにして、ローカル信号生成回路11は、リファレンス信号に対して所定の関係を有し、送信データに応じて変調されたローカル信号を生成する。
アンプ12は、ローカル信号を増幅する。増幅されたローカル信号は、送信アンテナ13から出力される。受信アンテナ14は、ローカル信号に対応する高周波信号を受信する。高周波信号は、アンプ15で増幅される。ミキサ16は、アンプ15で増幅された高周波信号とローカル信号をミキシングし、中間周波数(IF)信号を生成する。ベースバンド信号処理回路17は、例えば、中間周波数信号をデジタル変換した後デジタル処理し、受信データを取得する。
例えば、車載用のミリ波レーダは、FMCW変調された信号を送出し、反射信号を受信し、中間周波数信号におけるドプラー成分を抽出して対象物との距離および相対速度を検出する。この場合、ローカル信号生成回路11は、周波数が上限と下限の間での線形に変化することを繰り返すローカル信号を出力する。
図1に示した受信回路の無線機器の基本構成は広く知られているので、これ以上の説明は省略する。なお、以下に説明する実施形態のロック検出回路は、図1の無線機器等に使用される回路である。
図1の無線機器では、通常状態では、ローカル信号生成回路11はロック(同期)状態になり、ローカル信号生成回路11が発生するローカル信号がリファレンス信号に対して所定の関係を有する状態が維持される。このような同期状態は、通常は、多少の電圧変化・温度変化が生じても、フィードバック制御されて、安定状態が維持される。しかし、大きな電源電圧変動、温度変化、デジタル回路の誤動作等のループ外からの大きな衝撃が加えられると、同期が外れて不安定化し、ローカル信号がリファレンス信号に対して所定の関係を有さない非同期状態になる。このような状態になると無線機器としての機能そのものが失われることになる。
そこで、無線機器において、ローカル信号生成回路(ミリ波信号生成器)11の非同期状態を正確且つ高速に検知することが望まれる。
図2は、ローカル信号生成回路(ミリ波信号生成器)の構成を示す図であり、リファレンス信号源を合わせて示している。
ローカル信号生成回路11は、電圧制御発振器(VCO)21と、1/N分周器22と、位相比較器(PD)23と、ローパスフィルタ24と、ロック検出回路30と、を有する。VCO21は、印加される電圧に応じて発振周波数が変化する発振回路で、周波数f0のローカル信号を発生する。1/N分周器22は、ローカル信号の周波数を1/Nに分周し、リファレンス信号に近似した周波数の分周信号を生成する。PD23は、リファレンス信号と分周信号の位相差を検出し、位相差信号を生成する。ローパスフィルタ24は、位相差信号から高周波成分を除去し、VCO制御電圧信号を生成する。VCO制御電圧信号は、VCO21に印加される。このような構成により、ローカル信号は、リファレンス信号に対して所定の関係(例えば、N倍の周波数で同位相)を有する信号になるようにフィードバック制御される。したがって、ロックした同期状態では、VCO21は、リファレンス信号に対して所定の関係を有するローカル信号を出力する。
ロック検出回路30は、リファレンス信号を分周信号に応じてラッチするフリップフロップ(F/F)31と、デジタル信号処理回路32と、を有する。
図2に示したローカル信号生成回路11は、不安定なミリ波発振器(VCO)21の発振信号を、安定度の高いリファレンス信号と比較してフィードバック制御することにより、周波数を安定化する回路である。
図2に示したローカル信号生成回路11の構成は、PLL回路として広く知られており、これ以上の説明は省略する。
図3は、ロック検出回路30の動作を説明する図であり、(A)が同期状態を、(B)が非同期状態を示す。
図3の(A)に示すように、リファレンス信号と分周信号が、同じ周波数で、位相がずれた状態の時、分周信号の立ち上りでリファレンス信号をラッチすると、ラッチした値は変化せず、一定の値(図では高(High))である。ここでは、リファレンス信号と分周信号が、同じ周波数の場合を同期状態と称する。リファレンス信号と分周信号の位相が180度から360度の間の場合は、ラッチした値は低(Low)になる。
図3の(B)に示すように、リファレンス信号と分周信号の周波数が異なる非同期状態の時、分周信号の立ち上りでリファレンス信号をラッチすると、位相差は徐々に変化し、ラッチした値はあるところで反転する。したがって、デジタル信号処理回路32は、F/F31の出力を監視し、変化しない時には同期状態にあり、変化した時には非同期状態にあると判定する。
なお、図2では、分周信号の立ち上りでリファレンス信号をラッチする例を示したが、リファレンス信号の立ち上りで分周信号をラッチすることも可能である。
図3の(B)に示すように、リファレンス信号と分周信号の周波数が近似している場合、初期位相差にもよるが、ラッチした値が反転するまでには長時間を要する。すなわち、図2のロック検出回路30は、長い時間をかけて周波数差を位相として積算し、積算された位相変化(論理の変化)によって周波数差を検知しようというものである。したがって、周波数差が小さいアンロック状態では、その検知に非常に時間が掛かるという問題があった。言い換えれば、非同期状態になったことが、長時間検出できないという問題があった。
例えば、分周器22で分周比N=約1500とし、ローカル信号の所望の周波数が77.00GHzで、実際のローカル信号の周波数が77.01GHzで非同期状態であるとする。この周波数差は77.01GHz−77.00GHz=10MHzであり、10MHz/分周比(約1500)=6.7kHzである。リファレンス信号の周波数fref=50MHzに対して、50MHz/6.7lHz=約7500クロック(150μs)中に1回反転が発生することになる。したがって、非同期状態の検出まで約100μsを要することになる。
この問題は、特に車載ミリ波レーダ等の安全性に関わる無線機器で重要であり、非同期状態での動作を続けるとレーダの誤動作につながり、誤った自動車制御によって危険性が生じる可能性がある。したがって、非同期状態が生じてそれを検知するまでの時間(タイムラグ)を、できる限り小さくすることが求められる。
上記のこれまでのロック検出方法は、2つの信号の周波数差を長い時間かけて積算し、積算された位相の変化を検出する方式、つまり積分型の同期検出回路により実現された。これに対して、以下に説明する実施形態のロック検出方法は、2つの信号の位相差をモニタし、位相差の時間的な変化量から検出する方式、つまり微分型の同期検出回路により実現される。
図4は、実施形態における非同期状態の検出原理を説明する図であり、(A)が物理変数の例を、(B)がリファレンス信号と分周信号の位相差を、(C)が位相差信号を、(D)が1次微分を、(E)が2次微分を示す。
非同期状態は、状態を表す信号が振動している状態である。
ある物理変数x(t)の振動状態を考える。図4の(A)では、物理変数x(t)が振動しており、その1次微分信号dx(t)/dtも振動している。物理変数x(t)が安定状態(同期状態)にある時、x(t)=0且つdx(t)/dt=0となる。物理変数x(t)が不安状態(非同期状態)にある時、x(t)≠0またはdx(t)/dt≠0となる。
フィードバック回路の安定性を評価する場合、安定状態を表す物理変数x(t)をどのように選択するかが問題であり、安定状態(ロック状態)では、x(t)=0となる変数を選択する必要がある。
ここで、FMCWレーダで使用するPLL回路での安定性を評価する物理変数の元になる変数として、図4の(B)に示すように、リファレンス信号と分周信号の位相差qを用いる。FMCWレーダでは、周波数を上限と下限の間で線形に繰り返し変化させるため、図4の(C)に示すように、位相差q(t)も上限と下限の間で線形に繰り返し変化する。
図4の(D)に示すように、位相差q(t)の1次微分dq(t)/dtは、上限と下限に達する時に、正と負の一定値になる。さらに、2次微分d2q(t)/dt2は、図4の(E)に示すように、常に0になる。そこで、位相差q(t)の2次微分d2q(t)/dt2を状態変数x(t)とする。そして、2次微分d2q(t)/dt2と、その微分(3次微分)から不安定状態(非同期状態)を検出する。
図5は、実施形態のローカル信号生成回路(ミリ波信号生成器)の構成を示す図であり、リファレンス信号源を合わせて示している。
図6は、実施形態のローカル信号生成回路のロック検出回路40の構成を示す図である。
実施形態のローカル信号生成回路(ミリ波信号生成器)は、図1の無線機器のローカル信号生成回路(ミリ波信号生成器)11として使用することができ、特にFMCWレーダ機能を有す無線機器での使用に適しているが、これに限定されるものではない。
実施形態のローカル信号生成回路(ミリ波信号生成器)は、電圧制御発振器(VCO)21と、1/N分周器22と、位相比較器(PD)23と、ローパスフィルタ24と、ロック検出回路40と、を有する。VCO21、1/N分周器22、PD23およびローパスフィルタ24は、図2と同様に形成できるので、詳しい説明は省略する。言い換えれば、実施形態のローカル信号生成回路(ミリ波信号生成器)は、ロック検出回路がこれまでのものと異なる。
図6に示すように、ロック検出回路40は、位相差検出回路41と、位相計算回路42と、微分回路43と、ロック判定回路44と、を有する。
図7は、位相差検出回路41の回路構成を示す図である。
図7の位相差検出回路41は、一般にTDC(Time to Digital Converter)回路と呼ばれる。位相差検出回路41は、リファレンス信号を複数段で遅延し、異なる遅延量の複数の遅延信号を生成するディレイライン51−0、51−1、…51−N−1と、複数の遅延信号を分周信号でラッチするラッチ列52−0、52−1、…52−N−1と、を有する。ディレイライン51−0、51−1、…51−N−1は、同じ遅延量である。ラッチ列52−0、52−1、…52−N−1の出力が、q[0]、q[1]、…、q[N−1]である。
図8は、位相差検出回路41の動作を説明するタイムチャートである。
リファレンス信号は、ディレイライン51−0、51−1、…51−N−1により、多段に遅延される。分周信号の立ち上りでラッチしたラッチ列52−0、52−1、…52−N−1の出力は、途中で変化し、変化する位置は、リファレンス信号に対する分周信号の位相差で決まる。図8の例では、q[0]〜q[3]=1で、q[4]〜q[5]=0である。したがって、ラッチ列52−0、52−1、…52−N−1の出力で値が変化する位置を検出すれば、リファレンス信号に対する分周信号の位相差をデジタル変換した値が求まる。PLLにおいては、この位相差はVCO21の出力周波数と比例関係にある。つまり、デジタル位相差qの時間変化は、出力周波数f0の時間変化と比例する。
図7および図8では、リファレンス信号を遅延し、分周信号でラッチする例を示したが、分周信号を遅延し、リファレンス信号でラッチする構成も可能である。
図9は、位相計算回路42におけるデジタル処理を説明する図である。
位相計算回路42は、位相差検出回路41の出力する位相差を表すデジタル信号q「0」〜q「N−1]を受けて処理する。q「0」〜q「N−1]は、分周信号の1周期で更新されるため、分周信号をクロックとして、1クロック中に処理を完了する。
位相計算回路42は、q「0」〜q「N−1]において、q「0」側から値が変化するまでの個数をカウントする。図9の例では、位相計算回路42は、値が1(High)の個数をカウントする。この時、最低ビットであるq「0」側から値が0(Low)になるまでの1である個数をカウントし、一旦0になった後q「N−1]側で1(High)になる個数はカウントしない。これは、q「N−1]側で1になる分は次のパルスの立ち上り時間を表すためである。また、q「0」=0であった場合には、q「0」側から値が1になるまでの0である個数をカウントする。位相計算回路42は、カウントした個数を示すデータdを出力する。データdは、最大位相差に対応する個数を表せるビット数を有する。
図10は、微分回路43の回路図である。
微分回路43は、分周信号をクロックとして動作する。
微分回路43は、3段の微分回路を有する。1段目の微分回路は、データdを1クロック周期保持するF/F61Aと、データdとF/F61Aの出力の差分を計算する差演算回路62Aと、を有する。F/F61Aの出力は1周期前のデータであり、データdとF/F61Aの出力の差分は、データdの1次微分に相当する。すなわち、微分回路43は、データdの1次微分d1q(dq/dt)を出力する。2段目の微分回路は、1次微分d1を1クロック周期保持するF/F61Bと、1次微分d1とF/F61Bの出力の差分を計算する差演算回路62Bと、を有し、1次微分d1の微分、すなわちデータdの2次微分d2q(d2q/dt2)を出力する。3段目の微分回路は、2次微分d2を1クロック周期保持するF/F61Cと、2次微分d2とF/F61Cの出力の差分を計算する差演算回路62Cと、を有し、2次微分d2の微分、すなわちデータdの3次微分d3q(d3q/dt3)を出力する。
ロック判定回路44は、微分回路43の出力する2次微分d2qおよび3次微分d3qを用いて、ロック判定を行う。FMCWレーダでは、ローカル信号の周波数が線形変化しており、ロック状態では位相差qに対応するデータdは時間に対して線形変化となる。したがって、これを微分したd1q=一定、d2q=0、d3q=0となる。すなわち、d2q=0かつd3q=0の時、ロック状態(同期状態)であり、d2q≠0かつd3q≠0の時、アンロック状態(非同期状態)と判定できる。
図11は、ロック判定回路44における処理を示すフローチャートである。
ステップS11で、不安定条件(|d2q|≧2または|d3q|≧2)を満たすか判定し、満たさなければステップS12に進み、満たせばステップS13に進む。ここでは、判定条件にマージンを設けて、不安定条件を|d2q|≧2または|d3q|≧2としている。
ステップS12では、アンロック状態の時間を示すフラグflag_unlockを0に設定して、ステップS11に戻る。
ステップS13からS15では、誤検出を防ぐために、不安定条件の1回の検出で判定するのではなく、複数回連続した場合に『非同期状態』と判断する処理を行う。
ステップS13で、不安定条件の継続回数を表すパラメータcnt_unlockを1増加する。この時、cnt_unlock==Njであれば、値を保持する。
ステップS14で、パラメータcnt_unlock==Njであるか判定し、判定結果がYesであればステップS15に進み、NoであればステップS11に戻る。
ステップS15で、フラグflag_unlock==1に設定して、ステップS11に戻る。したがって、不安定条件が満たされル状態が続く間、flag_unlock==1になる。
flag_unlock==1は、PLLが非同期状態に陥っていることを意味し、無線機としての機能が喪失するため、アンロック状態(flag_unlock==1)が検出されると、ただちに無線部分の動作を停止し、回復制御が行われる。
以上説明したように、実施形態の無線機器およびロック検出回路は、毎クロック毎に、安定条件で判定を行うため、周波数差によらず、判定時間が非常に短くなる。例えば、fref=50MHz、判定サイクル数(Nj)=10とすると、20ns×10=200nsで判定でき、これまでの一般的な例に比べると、数100倍の速度で、非同期状態を検出することができる。
以上、実施形態を説明したが、ここに記載したすべての例や条件は、発明および技術に適用する発明の概念の理解を助ける目的で記載されたものである。特に記載された例や条件は発明の範囲を制限することを意図するものではなく、明細書のそのような例の構成は発明の利点および欠点を示すものではない。発明の実施形態を詳細に記載したが、各種の変更、置き換え、変形が発明の精神および範囲を逸脱することなく行えることが理解されるべきである。
10 リファレンス信号源
11 ローカル信号生成回路(ミリ波信号生成器)
12 リニアアンプ
13 送信アンテナ
14 受信アンテナ
15 アンプ
16 ミキサ
17 ベースバンド信号処理回路
21 VCO
22 1/N分周器
23 位相比較器(PD)
24 ローパスフィルタ
40 ロック検出回路
41 位相差検出回路
42 位相計算回路
43 微分回路
44 ロック判定回路

Claims (5)

  1. リファレンス信号に対して所定の関係を有するようにフィードバック制御することにより発生される発振信号の分周信号と、前記リファレンス信号の位相差を検出する位相差検出回路と、
    前記位相差の2次微分値および3次微分値を検出する微分回路と、
    前記2次微分値および前記3次微分値に基づいて前記発振信号の前記リファレンス信号に対する非同期状態を検出するロック判定回路と、を有することを特徴とするロック検出回路。
  2. 前記位相差検出回路は、
    前記リファレンス信号および前記分周信号の一方を複数段で遅延し、異なる遅延量の複数の遅延信号を生成するディレイラインと、
    前記複数の遅延信号を前記リファレンス信号および前記分周信号の他方でラッチするラッチ列と、
    前記ラッチ列でラッチした値が変化する前記複数の遅延信号の位置から位相差を計算する位相差計算回路と、を有する請求項1に記載のロック検出回路。
  3. 前記ロック判定回路は、前記2次微分値および前記3次微分値が共にゼロでない状態が所定回数連続した時に、非同期状態と判定する請求項1または2に記載のロック検出回路。
  4. 所定周波数のリファレンス信号を生成するリファレンス信号源と、
    周波数が可変の発振信号を生成する発振回路、および前記発振信号が前記リファレンス信号に対して所定の関係を有するように前記発振回路をフィードバック制御するフィードバック制御回路を含む制御発振回路と、
    前記発振信号の分周信号と前記リファレンス信号の位相差の2次微分値および3次微分値を検出し、前記2次微分値および前記3次微分値に基づいて前記制御発振回路の前記リファレンス信号に対する非同期状態を検出するロック検出回路と、を有することを特徴とする発振源回路。
  5. 発振信号を出力する発振源と、
    前記発振信号を増幅し、アンテナから送信信号を出力する送信回路と、
    前記送信信号に対応する信号を受信し、受信信号を出力する受信回路と、
    前記受信信号に前記発振信号をミキシングするミキサと、
    前記ミキサの出力する中間周波数信号を処理するベースバンド信号処理回路と、を有し、
    発振源は、
    所定周波数のリファレンス信号を生成するリファレンス信号源と、
    周波数が可変の発振信号を生成する発振回路、および前記発振信号の分周信号が前記リファレンス信号に対して所定の関係を有するように前記発振回路をフィードバック制御するフィードバック制御回路を含む制御発振回路と、
    前記分周信号と前記リファレンス信号の位相差の2次微分値および3次微分値を検出し、前記2次微分値および前記3次微分値に基づいて前記制御発振回路の前記リファレンス信号に対する非同期状態を検出するロック検出回路と、を有することを特徴とする無線機器。
JP2015100837A 2015-05-18 2015-05-18 ロック検出回路、発振源回路および無線機器 Expired - Fee Related JP6481502B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015100837A JP6481502B2 (ja) 2015-05-18 2015-05-18 ロック検出回路、発振源回路および無線機器
US15/142,161 US20160344397A1 (en) 2015-05-18 2016-04-29 Lock detection circuit, oscillation source circuit and wireless device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015100837A JP6481502B2 (ja) 2015-05-18 2015-05-18 ロック検出回路、発振源回路および無線機器

Publications (2)

Publication Number Publication Date
JP2016219938A JP2016219938A (ja) 2016-12-22
JP6481502B2 true JP6481502B2 (ja) 2019-03-13

Family

ID=57326100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015100837A Expired - Fee Related JP6481502B2 (ja) 2015-05-18 2015-05-18 ロック検出回路、発振源回路および無線機器

Country Status (2)

Country Link
US (1) US20160344397A1 (ja)
JP (1) JP6481502B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10447283B1 (en) * 2018-05-29 2019-10-15 Speedlink Technology Inc. Broadband phase locked loop for multi-band millimeter-wave 5G communication
WO2020003349A1 (ja) * 2018-06-25 2020-01-02 株式会社ソシオネクスト 周波数掃引回路およびレーダー装置
US11372095B2 (en) 2019-07-24 2022-06-28 Nxp B.V. Phase-adjustable injection-locking
JP7472561B2 (ja) 2020-03-13 2024-04-23 株式会社Jvcケンウッド 発振回路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286214A (ja) * 1991-03-14 1992-10-12 Fujitsu Ltd 位相同期回路の同期外れ検出回路
US6760394B1 (en) * 1999-08-11 2004-07-06 Broadcom Corporation CMOS lock detect with double protection
JP2012005022A (ja) * 2010-06-21 2012-01-05 Panasonic Corp デジタル位相差検出器およびそれを備えた周波数シンセサイザ

Also Published As

Publication number Publication date
JP2016219938A (ja) 2016-12-22
US20160344397A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
KR101632657B1 (ko) 타임투디지털 컨버터 및 디지털 위상 고정 루프
JP6481502B2 (ja) ロック検出回路、発振源回路および無線機器
US8390348B2 (en) Time base generator and method for providing a first clock signal and a second clock signal
US10727848B2 (en) Phase-locked loop having a multi-band oscillator and method for calibrating same
EP2436119B1 (en) Phase lock loop with a multiphase oscillator
CN101630958B (zh) 压控振荡器电路以及包括该压控振荡器电路的半导体设备
US8781054B2 (en) Semiconductor device
US20180267159A1 (en) Signal generator
US10097187B2 (en) Digital synthesizer, radar device and method therefor
US20100259305A1 (en) Injection locked phase lock loops
EP3799312A1 (en) Phase to digital converter
US8207762B2 (en) Digital time base generator and method for providing a first clock signal and a second clock signal
JP2009117894A (ja) 注入同期型発振器
US6148052A (en) Digital phase detector with ring oscillator capture and inverter delay calibration
US20070285082A1 (en) Lock Detecting Circuit, Lock Detecting Method
JP2010259039A (ja) デジタルロック検出装置及びこれを含む周波数合成器
JP5317851B2 (ja) 周波数掃引回路
EP3249816A1 (en) Time-to-digital converter in phase-locked loop
US11251798B2 (en) Reference clock signal injected phase locked loop circuit and offset calibration method thereof
US7869555B2 (en) Digital word representative of a non-integer ratio between the respective periods of two signals
JP5872949B2 (ja) Pll周波数シンセサイザ、半導体集積装置及び無線通信機器
KR20190081415A (ko) 주입 동기 주파수 체배기 및 그의 주파수 체배 방법
JP2013205101A (ja) 無線端末距離測定システム、距離測定装置
US11342923B1 (en) Circuit and method for random edge injection locking
CN107547084B (zh) 频率控制电路、频率控制方法以及锁相回路电路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R150 Certificate of patent or registration of utility model

Ref document number: 6481502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees