JP6481085B2 - Solder joining method and solder joining apparatus - Google Patents

Solder joining method and solder joining apparatus Download PDF

Info

Publication number
JP6481085B2
JP6481085B2 JP2018539463A JP2018539463A JP6481085B2 JP 6481085 B2 JP6481085 B2 JP 6481085B2 JP 2018539463 A JP2018539463 A JP 2018539463A JP 2018539463 A JP2018539463 A JP 2018539463A JP 6481085 B2 JP6481085 B2 JP 6481085B2
Authority
JP
Japan
Prior art keywords
solder
joined
heating
electromagnetic induction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018539463A
Other languages
Japanese (ja)
Other versions
JPWO2018051475A1 (en
Inventor
杉山 和弘
和弘 杉山
佐藤 彰
彰 佐藤
光樹 福田
光樹 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WONDER FUTURE CORPORATION
Original Assignee
WONDER FUTURE CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WONDER FUTURE CORPORATION filed Critical WONDER FUTURE CORPORATION
Publication of JPWO2018051475A1 publication Critical patent/JPWO2018051475A1/en
Application granted granted Critical
Publication of JP6481085B2 publication Critical patent/JP6481085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/002Soldering by means of induction heating

Description

本発明は電気製品のはんだ接合技術に関する。   The present invention relates to a solder joint technology for electrical products.

電気製品において配線端子と配線端子とは、はんだ接合される。半導体を回路基板に実装する際も、はんだ接合される。ハンダ接合は、接合対象間にハンダが配置された後、ハンダが加熱され溶融することによって、行われている。加熱には、一般的には、リフロー炉(加熱炉)が用いられる。   In the electrical product, the wiring terminal and the wiring terminal are joined by soldering. Soldering is also performed when a semiconductor is mounted on a circuit board. Solder bonding is performed by placing solder between bonding objects and then heating and melting the solder. In general, a reflow furnace (heating furnace) is used for heating.

ところで、ほとんどの電気製品には樹脂が用いられている。樹脂製品がリフロー炉(加熱炉)に入れられて加熱される場合、樹脂部分は熱損傷を受ける恐れが有る。このため、耐熱性の高い樹脂が用いられるともに、比較的融点の低いはんだ(低温はんだ)が用いられている。   By the way, resin is used for most electric products. When a resin product is put into a reflow furnace (heating furnace) and heated, the resin part may be damaged by heat. For this reason, a resin having high heat resistance is used, and a solder having a relatively low melting point (low temperature solder) is used.

また、イメージセンサなど耐熱性の弱い部品の実装にも低温はんだが用いられている。   Low-temperature solder is also used to mount components with low heat resistance such as image sensors.

しかしながら、低温はんだ(たとえば、SnBi系はんだ)は強度及び靭性が十分ではない。これに対し、熱硬化性樹脂で補強する技術(例えば特許文献1)が提案されている。   However, low-temperature solder (for example, SnBi solder) has insufficient strength and toughness. On the other hand, the technique (for example, patent document 1) reinforced with a thermosetting resin is proposed.

一方、レーザー照射はんだ接合に係る技術を用いることにより、スポットでのはんだ接合ができる。接合箇所のみを瞬時に加熱することにより、周辺の樹脂部分が熱損傷を受けるおそれは少ない。したがって、比較的融点の高いはんだ(高温はんだ)を用いることができ、充分な強度及び靭性が確保される。   On the other hand, by using a technique related to laser irradiation solder bonding, spot solder bonding can be performed. By heating only the joining portion instantaneously, the peripheral resin portion is less likely to be damaged by heat. Therefore, solder having a relatively high melting point (high temperature solder) can be used, and sufficient strength and toughness are ensured.

特開2010−232388号公報JP 2010-232388 A

熱硬化性樹脂で補強する技術を用いれば、低温はんだに係る課題を解決できるが、リフロー炉を用いるため、接合時間が長くなり生産性が悪くなる。一般に一連の接合作業に要する時間は5分前後である。また、リフロー炉の温度制御が難しい。その結果、接合精度を維持することが難しい。さらに、リフロー炉により装置が大型化する。   The use of a technology that reinforces with a thermosetting resin can solve the problems associated with low-temperature soldering, but since a reflow furnace is used, the joining time becomes longer and the productivity becomes worse. Generally, the time required for a series of joining operations is around 5 minutes. Moreover, it is difficult to control the temperature of the reflow furnace. As a result, it is difficult to maintain the joining accuracy. Furthermore, the reflow furnace increases the size of the apparatus.

一方で、レーザー照射はんだ接合に係る技術を用いることにより、1つの接合は瞬時に完了するが、多数の箇所を遂次接合するため、結果的にトータルの接合時間が長くなり生産性が悪くなる。また、近年、接合対象が極めて小型化する傾向にあり、精度よく照射することが難しい。その結果、接合精度を維持することが難しい。さらに、フラックス飛散やはんだ粒飛散に係る課題もある。   On the other hand, by using the technology related to laser irradiation soldering, one joining is completed instantly, but since many places are joined successively, the total joining time becomes longer, resulting in poor productivity. . In recent years, the objects to be joined have a tendency to be extremely small, and it is difficult to irradiate with high accuracy. As a result, it is difficult to maintain the joining accuracy. Furthermore, there are also problems related to flux scattering and solder particle scattering.

本発明は上記課題を解決するものであり、接合時間が短く、容易に精度を確保できる技術を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a technique capable of ensuring accuracy with a short joining time.

上記課題を解決する本発明の接合方法は、第1被接合部材と第2被接合部材との間にはんだペーストを配置する工程と、電磁誘導加熱によりはんだペーストに含まれるはんだを溶融する工程と、を備える。前記電磁誘導加熱では加熱温度および加熱時間を制御する。   The joining method of the present invention that solves the above problems includes a step of arranging a solder paste between a first member to be joined and a second member to be joined, and a step of melting solder contained in the solder paste by electromagnetic induction heating. . In the electromagnetic induction heating, the heating temperature and the heating time are controlled.

上記発明において好ましくは、前記電磁誘導加熱では電磁誘導加熱装置の電源出力量および出力時間を多段階に制御する。   In the above invention, preferably, in the electromagnetic induction heating, a power output amount and an output time of the electromagnetic induction heating device are controlled in multiple stages.

電磁誘導加熱では出力制御が容易である。したがって、複雑な加熱制御を容易にできる。   Output control is easy with electromagnetic induction heating. Therefore, complicated heating control can be facilitated.

上記発明において好ましくは、前記はんだペーストには、はんだ粒と熱硬化性樹脂とが含まれ、前記電磁誘導加熱する工程では、はんだ溶融温度を超えないように加熱して熱硬化性樹脂を軟化させた後、はんだ溶融温度以上に加熱してはんだ粒を溶融する。   Preferably, in the above invention, the solder paste includes solder grains and a thermosetting resin, and in the electromagnetic induction heating step, the thermosetting resin is softened by heating so as not to exceed a solder melting temperature. Then, the solder grains are melted by heating above the solder melting temperature.

上記発明において好ましくは、前記はんだペーストには、はんだ粒と溶剤とフラックスとが含まれ、前記電磁誘導加熱する工程では、加熱して溶剤を蒸発させ、温度を維持して、フラックスを液化させ、酸化膜を除去し、更に加熱して、はんだ粒を溶融する。   Preferably, in the above invention, the solder paste contains solder particles, a solvent, and a flux. In the electromagnetic induction heating step, the solvent is evaporated by heating, the temperature is maintained, and the flux is liquefied. The oxide film is removed and further heated to melt the solder grains.

上記課題を解決する本発明のはんだ接合装置は、第1被接合部材と第2被接合部材との間に配置されたはんだペーストを電磁誘導加熱により溶融して、第1被接合部材と第2被接合部材とを接合し、前記電磁誘導加熱の電源出力量および出力時間は制御可能である。   The solder bonding apparatus of the present invention that solves the above problems melts the solder paste disposed between the first member to be bonded and the second member to be bonded by electromagnetic induction heating, and the first and second members to be bonded. The member to be joined is joined, and the power output amount and output time of the electromagnetic induction heating can be controlled.

本発明の接合技術よれば、接合時間が短く、容易に接合精度を確保できる。   According to the joining technique of the present invention, the joining time is short and the joining accuracy can be easily secured.

電磁誘導の基本原理Basic principles of electromagnetic induction FPCでの端子接合に係る説明図(第1実施形態)Explanatory diagram related to terminal bonding in FPC (first embodiment) 接合工程に係る概略説明図(第1実施形態)Schematic explanatory diagram relating to the joining process (first embodiment) 加熱制御に係る概念図(第1実施形態)Conceptual diagram related to heating control (first embodiment) 実証実験制御例Demonstration experiment control example フィルム基板でのチップ実装に係る説明図(第2実施形態)Explanatory drawing concerning chip mounting on a film substrate (second embodiment) 加熱制御に係る概念図(第2実施形態)Conceptual diagram related to heating control (second embodiment)

<装置及び原理>   <Apparatus and principle>

図1に基づき、電磁誘導加熱の基本原理について説明する。電磁誘導加熱装置は、コイル導線と電源とから構成される。   Based on FIG. 1, the basic principle of electromagnetic induction heating will be described. The electromagnetic induction heating device includes a coil conductor and a power source.

コイル導線に交流電流を流すと、強度の変化する磁力線が発生する。その近くに電気を通す物質(通常は金属、より具体的には接合対象)を置くとこの変化する磁力線の影響を受けて、金属の中に渦電流が流れる。金属には通常電気抵抗があるため、金属に電流が流れると、ジュール熱が発生して、金属が自己発熱する。この現象を誘導加熱という。   When an alternating current is passed through the coil conductor, magnetic field lines with varying strength are generated. When a substance that conducts electricity (usually a metal, more specifically, an object to be joined) is placed near it, an eddy current flows in the metal under the influence of the changing magnetic field lines. Since metal usually has electrical resistance, when current flows through the metal, Joule heat is generated and the metal self-heats. This phenomenon is called induction heating.

電磁誘導による発熱量Qは次の式で表される。Q=(V/R)×t[V=印加電圧:R=抵抗:t=時間]The calorific value Q due to electromagnetic induction is expressed by the following equation. Q = (V 2 / R) × t [V = applied voltage: R = resistance: t = time]

電磁誘導加熱では、金属のみ発熱するため、周辺の樹脂部分が熱損傷を受けるおそれは少ない。   In electromagnetic induction heating, only the metal generates heat, so there is little risk of thermal damage to the surrounding resin part.

電磁誘導加熱では、金属のみ発熱するため、少ないエネルギーでかつ短時間で接合できる。一回の接合に要する時間は数〜十数秒である。   In the electromagnetic induction heating, only the metal generates heat, so that it can be joined with less energy and in a short time. The time required for one bonding is several to several tens of seconds.

電磁誘導加熱では、一様磁場内であれば、所定のジュール熱が得られるため、接合精度が高い。また、一様磁場内であれば、複数の接合が一度にできる。   In the electromagnetic induction heating, a predetermined Joule heat can be obtained within a uniform magnetic field, so that the joining accuracy is high. Moreover, if it exists in a uniform magnetic field, several joining can be performed at once.

電磁誘導加熱では、制御装置により電源出力量および出力時間の制御が容易である。その結果、加熱温度および加熱時間の制御も容易である。これにより、下記のような複雑な動作(ステップキュア)を容易にできる。制御装置は加熱プロファイルを予め記憶しておいてもよい。   In the electromagnetic induction heating, it is easy to control the power output amount and the output time by the control device. As a result, it is easy to control the heating temperature and the heating time. Thereby, the following complicated operation (step cure) can be facilitated. The control device may store the heating profile in advance.

<第1実施形態>
非耐熱FPC(フレキシブルプリント回路基板)での端子接合を例に説明する。たとえば、図2に示す様に、表面および裏面に所定パターンの電極および配線が形成された透明樹脂シートの接続端子2とフレキシブルシート(FPC)4の接続端子5とを接合する。透明樹脂シートは熱成形によって、例えばケース状の成形体3に成形されている。なお、透明樹脂シートに形成された電極および配線は目視不可なほど細いため図示を省略する。
<First Embodiment>
An example of terminal bonding with a non-heat resistant FPC (flexible printed circuit board) will be described. For example, as shown in FIG. 2, the connection terminal 2 of the transparent resin sheet and the connection terminal 5 of the flexible sheet (FPC) 4 in which electrodes and wirings of a predetermined pattern are formed on the front and back surfaces are joined. The transparent resin sheet is formed into, for example, a case-shaped molded body 3 by thermoforming. In addition, since the electrode and wiring which were formed in the transparent resin sheet are so thin that it cannot be visually observed, illustration is abbreviate | omitted.

図3は接合工程に係る概略説明図である。図示上側は断面図であり、図示下側は平面図である。   FIG. 3 is a schematic explanatory diagram relating to the joining process. The upper side in the figure is a sectional view, and the lower side in the figure is a plan view.

接続端子2と接続端子5とが対向するように配置するとともに、接続端子2と接続端子5との間にはんだペーストを塗布する。このとき、接続端子2,2間にはんだペーストが配置されてもよい。たとえば、接続端子2対応位置にはんだペーストをベタ印刷した後に接続端子5を配置する。   The connection terminal 2 and the connection terminal 5 are disposed so as to face each other, and a solder paste is applied between the connection terminal 2 and the connection terminal 5. At this time, a solder paste may be disposed between the connection terminals 2 and 2. For example, the connection terminal 5 is arranged after the solder paste is solid-printed at the position corresponding to the connection terminal 2.

さらに、ノズルにより荷重をかけ、接続端子2と接続端子5とを突き合わせる。このときのノズル荷重はFPCが反らないように、はんだペーストに含まれるはんだ粒が潰れないように留意する。   Further, a load is applied by the nozzle, and the connection terminal 2 and the connection terminal 5 are brought into contact with each other. At this time, care must be taken not to crush the solder grains contained in the solder paste so that the FPC does not warp the nozzle load.

はんだペーストには、はんだ粒と熱硬化性樹脂が含まれている。適宜フラックスを含んでいてもよい。はんだ粒は高温はんだでもよいが、低温はんだ(たとえば、SnBiはんだ)として説明する。SnBi系はんだの融点は138℃程度である。熱硬化性樹脂は特に限定されるものではないがエポキシ樹脂として説明する。   The solder paste contains solder grains and a thermosetting resin. A flux may be included as appropriate. The solder grains may be high-temperature solder, but will be described as low-temperature solder (for example, SnBi solder). The melting point of SnBi solder is about 138 ° C. The thermosetting resin is not particularly limited, but will be described as an epoxy resin.

この状態で、加熱制御によりはんだを溶融し、はんだ接合をおこなう。図4は加熱制御に係る概念図である。   In this state, the solder is melted by heating control to perform solder joining. FIG. 4 is a conceptual diagram related to heating control.

まず、約1秒間、はんだ融点近くまで加熱し、さらに、約1秒間、当該温度を維持する(図示Aゾーン)。熱硬化性樹脂は加熱によりただちに硬化するのでなく、一旦軟らかくなり、流動化する。接続端子2と接続端子5との間の熱硬化性樹脂は、接続端子2,2間(パターン間)へ流動する。このとき、はんだ融点未満のため、はんだ粒に変化はない。   First, it is heated to near the solder melting point for about 1 second, and further maintained for about 1 second (A zone in the figure). The thermosetting resin does not cure immediately upon heating, but once becomes soft and fluidizes. The thermosetting resin between the connection terminal 2 and the connection terminal 5 flows between the connection terminals 2 and 2 (between patterns). At this time, since it is less than the solder melting point, there is no change in the solder grains.

次に、約2秒間、はんだ融点を超えて所定温度(例えば220℃)まで加熱し、約1秒間、所定温度範囲を維持する(図示Bゾーン)。接続端子2と接続端子5との間のはんだ粒が溶融し、はんだ塊となる。この熱の一部は接続端子2,2間のはんだ粒に伝達され、接続端子2,2間のはんだ粒は軟化した硬化樹脂により流動し、接続端子2と接続端子5との間のはんだ塊に凝集する。すなわち、接続端子2,2間にはんだ粒はなくなる。   Next, it is heated to a predetermined temperature (for example, 220 ° C.) exceeding the solder melting point for about 2 seconds, and the predetermined temperature range is maintained for about 1 second (B zone in the figure). Solder grains between the connection terminal 2 and the connection terminal 5 melt and form a solder lump. Part of this heat is transmitted to the solder grains between the connection terminals 2 and 2, and the solder grains between the connection terminals 2 and 2 flow due to the softened cured resin, and the solder mass between the connection terminals 2 and 5. Aggregate. That is, there are no solder grains between the connection terminals 2 and 2.

さらに、約3秒間、出力を抑制しながら加熱する。接合箇所の温度は緩やかにはんだ融点近くまで低下する(図示Cゾーン)。熱硬化性樹脂は、ゲル化し、半硬化する。   Furthermore, it heats for about 3 seconds, suppressing an output. The temperature at the joining point gradually decreases to near the solder melting point (C zone in the figure). The thermosetting resin is gelled and semi-cured.

加熱終了により接合箇所の温度は急速に低下する(図示Dゾーン)。熱硬化性樹脂は、接合箇所周りを覆うように完全に硬化する。これにより、接合箇所を補強する。   When the heating is completed, the temperature at the joining point rapidly decreases (D zone shown in the figure). The thermosetting resin is completely cured so as to cover the periphery of the joint. Thereby, a joining location is reinforced.

接続端子2と接続端子5との間には熱硬化性樹脂はなく、はんだ接合により確実に通電できる。   There is no thermosetting resin between the connection terminal 2 and the connection terminal 5, and the current can be reliably supplied by soldering.

接続端子2,2間にははんだ粒はなく、熱硬化性樹脂により補強されるとともに、確実に絶縁されている。   There are no solder grains between the connection terminals 2 and 2 and they are reinforced by a thermosetting resin and reliably insulated.

一連の接合作業はおよそ10秒程度で完了する。   A series of joining operations are completed in about 10 seconds.

なお、図4に示す加熱制御は一例であり、数値は理解を補足するための例示である。はんだの溶融特性や樹脂の硬化特性に応じて、適宜、温度プロファイルを設定すれば良い。   Note that the heating control shown in FIG. 4 is an example, and the numerical value is an example for supplementing the understanding. What is necessary is just to set a temperature profile suitably according to the fusion | melting characteristic of a solder, and the hardening characteristic of resin.

発明者は、下記実証実験をおこなった。図5は実証実験における制御例である。実証実験のためより簡易な制御としている。図中「15%」「35%」は電源出力設定の指標であり、数値が大きい方がより加熱する。   The inventor conducted the following demonstration experiment. FIG. 5 is an example of control in the demonstration experiment. Simpler control is used for demonstration experiments. In the figure, “15%” and “35%” are indices for setting the power output, and the larger the value, the more the heating is performed.

出力「15%」を約3秒間継続し接合箇所の温度を140℃程度とした後、出力「35%」を約2秒間継続し接合箇所の温度を230℃程度とし、出力を終了した。接合箇所の温度は自然冷却により低下した。約10秒間の温度履歴を記録した。   After the output “15%” was continued for about 3 seconds and the temperature of the joint portion was about 140 ° C., the output “35%” was continued for about 2 seconds and the temperature of the joint portion was about 230 ° C., and the output was terminated. The temperature at the joint was lowered by natural cooling. A temperature history of about 10 seconds was recorded.

発明者は拡大写真(図示省略)により実証実験の結果を確認した。加熱前、はんだペースト塗付により、接続端子上およびパターン間に均等にはんだ粒が配置されていた。   The inventor confirmed the result of the demonstration experiment with an enlarged photograph (not shown). Prior to heating, solder particles were evenly disposed on the connection terminals and between the patterns by applying solder paste.

次いで加熱後のパターン間の状態を確認した。はんだ接合後、接合箇所を剥離させて観察した。接続端子上では確実にはんだ塊が広がっているとともに、パターン間では樹脂が確実に硬化していた。さらに、パターン間を拡大して詳細に観察した。パターン間の樹脂にわずかはんだ粒が残っているが、樹脂に覆われ状態で、溶融せず粒形状を維持したまま独立していた。これにより、パターン間の樹脂にわずかはんだ粒が残っていても、パターン間の絶縁状態が維持される。   Next, the state between the heated patterns was confirmed. After soldering, the joint was peeled off and observed. The solder lump surely spread on the connection terminals, and the resin was surely cured between the patterns. Furthermore, the pattern space was enlarged and observed in detail. Although a few solder grains remained in the resin between the patterns, the resin was covered with the resin and was not melted and kept independent while maintaining the grain shape. Thereby, even if a small amount of solder particles remain in the resin between the patterns, the insulation state between the patterns is maintained.

さらに信頼性を評価した。まず、接続抵抗値に係る信頼性を評価した。高温・低温のサイクル試験環境を複数の条件でおこなった。何れの条件においても、経時劣化は起きなかった。さらに、剥離接着強さに係る信頼性を評価した。高温・低温のサイクル試験環境を複数の条件でおこなった。何れの条件においても、経時劣化は起きなかった。なお、上記信頼性評価結果は従来技術と同等であった。   Furthermore, reliability was evaluated. First, the reliability related to the connection resistance value was evaluated. High-temperature and low-temperature cycle test environments were conducted under multiple conditions. Under any conditions, deterioration with time did not occur. Furthermore, the reliability related to peel adhesion strength was evaluated. High-temperature and low-temperature cycle test environments were conducted under multiple conditions. Under any conditions, deterioration with time did not occur. The reliability evaluation result was the same as that of the prior art.

また、溶剤を含まないため、フラックス飛散に係る課題も生じない。   Moreover, since the solvent is not included, a problem related to flux scattering does not occur.

また、間接的にはんだ粒を加熱するため、はんだ粒飛散に係る課題も生じない。   In addition, since the solder particles are indirectly heated, there is no problem relating to the scattering of the solder particles.

以上のように、簡易な加熱制御により、短時間で精度のよいはんだ接合ができることを確認した。   As described above, it was confirmed that accurate soldering can be performed in a short time by simple heating control.

なお、端子の接合に、第2実施形態の高温はんだを含むはんだペーストを用いてもよい。接合相当箇所にはんだペーストを印刷する。   In addition, you may use the solder paste containing the high temperature solder of 2nd Embodiment for joining of a terminal. Solder paste is printed on the joints.

<第2実施形態>
図6に示す様に、PETなどのフィルム基板上にLEDチップ等を実装するはんだ接合を例に説明する。
Second Embodiment
As shown in FIG. 6, an example of solder joint in which an LED chip or the like is mounted on a film substrate such as PET will be described.

フィルム基板8上の所定位置にはんだペーストを印刷し、LEDチップ9をマウントする。   A solder paste is printed at a predetermined position on the film substrate 8, and the LED chip 9 is mounted.

はんだペーストには、はんだ粒と溶剤とフラックスが含まれている。はんだ粒には低温はんだを用いてもよいが、電磁誘導加熱では金属のみ発熱するため周辺の熱損傷が少なく、高温はんだ(たとえば、SnAgCu系はんだ)を用いることができる。SnAgCu系はんだの融点は220℃程度である。   The solder paste contains solder grains, a solvent, and a flux. Low-temperature solder may be used as the solder grains, but only metal is heated in electromagnetic induction heating, so that there is little thermal damage in the surroundings, and high-temperature solder (for example, SnAgCu solder) can be used. The melting point of SnAgCu solder is about 220 ° C.

この状態で、加熱制御によりはんだを溶融し、はんだ接合をおこなう。図7は加熱制御に係る概念図である。   In this state, the solder is melted by heating control to perform solder joining. FIG. 7 is a conceptual diagram related to heating control.

まず、約4秒間、150℃まで昇温速度略一定にて加熱する(図示Aゾーン)。これにより溶剤が蒸発する。また、フラックスが飛散することがない。   First, it is heated to 150 ° C. for about 4 seconds at a substantially constant heating rate (A zone in the figure). This evaporates the solvent. Moreover, the flux is not scattered.

次いで、接合箇所の温度を150℃程度に維持するように約3秒加熱する(図示Bゾーン)。これによりフラックスが液化し、接合箇所の酸化膜が除去される。   Subsequently, it heats for about 3 seconds so that the temperature of a junction location may be maintained at about 150 degreeC (B zone shown in figure). As a result, the flux is liquefied and the oxide film at the joint portion is removed.

更に、ピーク温度(例えば240℃)がはんだ融点を超えるように、約2秒間加熱する(図示Cゾーン)。これにより、はんだ粒が溶融する。   Further, heating is performed for about 2 seconds so that the peak temperature (for example, 240 ° C.) exceeds the solder melting point (C zone shown in the figure). As a result, the solder grains are melted.

加熱終了により接合箇所の温度は急速に低下する(図示Dゾーン)。   When the heating is completed, the temperature at the joining point rapidly decreases (D zone shown in the figure).

一連の接合作業はおよそ10数秒程度で完了する。高温はんだを用いることにより、強度及び靭性に係る問題は生じない。   A series of joining operations are completed in about 10 to several seconds. By using high-temperature solder, there are no problems related to strength and toughness.

また、チップ側は磁界から離れているため、発熱しにくく、チップは熱損傷しない。   Further, since the chip side is away from the magnetic field, it is difficult to generate heat and the chip is not thermally damaged.

なお、チップの実装に、第1実施形態の低温はんだを含むはんだペーストを用いてもよい。接合相当箇所にはんだペーストを印刷する。   In addition, you may use the solder paste containing the low temperature solder of 1st Embodiment for mounting of a chip | tip. Solder paste is printed on the joints.

<まとめ>
電磁誘導加熱は、材料等に制限が少なく、かつ、適用範囲が広い。
<Summary>
Electromagnetic induction heating has few restrictions on materials, etc., and has a wide application range.

電磁誘導加熱は、リフロー炉を用いたい加熱やレーザー加熱に比べて、省エネルギーの点で優れている。   Electromagnetic induction heating is superior in terms of energy saving compared to heating that uses a reflow furnace or laser heating.

電磁誘導加熱は、リフロー炉を用いたい加熱やレーザー加熱に比べて、接合時間が極めて短く、生産性が良い。   Electromagnetic induction heating has a very short bonding time and good productivity as compared with heating using a reflow furnace or laser heating.

電磁誘導加熱は、リフロー炉を用いたい加熱やレーザー加熱に比べて、加熱制御が極めて容易であり、その結果、接合精度が高い。   The electromagnetic induction heating is extremely easy to control the heating compared to the heating using the reflow furnace or the laser heating, and as a result, the bonding accuracy is high.

<はんだ接合以外の適用>
本願発明は、はんだ接合に係るものであるが、はんだ接合以外にも適用できる。たとえば、熱硬化型接着剤硬化に、本願電磁誘導加熱および加熱制御を適用することができる。
<Applications other than solder joints>
The present invention relates to solder bonding, but can be applied to other than solder bonding. For example, the present electromagnetic induction heating and heating control can be applied to thermosetting adhesive curing.

具体的には、プラスティック筐体と金属部品が一体になっている成型品に対し、金属部品に熱硬化型接着剤を塗付しておき、電磁誘導加熱により金属部品を発熱させ、熱硬化型接着剤を反応させる。   Specifically, for a molded product in which a plastic housing and a metal part are integrated, a thermosetting adhesive is applied to the metal part, and the metal part is heated by electromagnetic induction heating. Allow the adhesive to react.

また、IC (Integrated Circuit)などアルミ配線を使ったアンテナ回路の部品実装において、接続パットであるアルミパットを電磁誘導加熱により発熱させ、導電性材料・異方性導電フィルム(ACF)・異方性導電ペースト(ACP)等の高分子接着剤を反応させる。   Also, when mounting antenna circuit components using aluminum wiring such as IC (Integrated Circuit), the aluminum pad, which is a connection pad, is heated by electromagnetic induction heating to produce conductive material, anisotropic conductive film (ACF), anisotropic A polymer adhesive such as conductive paste (ACP) is reacted.

これにより、省エネルギーで、短時間で生産性よく、精度のよい接着を容易にすることができる。   As a result, energy-saving, easy productivity in a short time with high accuracy can be facilitated.

2 接続端子
3 成形体
4 フレキシブルシート
5 接続端子
8 フィルム基板
9 チップ
2 Connection terminal 3 Molded body 4 Flexible sheet 5 Connection terminal 8 Film substrate 9 Chip

Claims (2)

第1被接合部材と第2被接合部材とをはんだペーストにより接合するはんだ接合方法であって、
前記第1被接合部材は非耐熱部材上に形成され、絶縁された状態で隣り合う複数の金属端子であって、
前記はんだペーストには、はんだ粒と熱硬化性樹脂とが含まれており、気泡発生材は含まれておらず、
前記第1被接合部材の金属端子間および前記第1被接合部材と第2被接合部材との間にはんだペーストを配置する工程と、
電磁誘導で少なくとも前記第1被接合部材を直接加熱することにより前記はんだペーストに含まれるはんだを溶融する工程と、
を備え、
前記電磁誘導加熱する工程では、
前記第1被接合部材と第2被接合部材との間のはんだペーストに荷重をかけた状態で、はんだ溶融温度を超えないように加熱して熱硬化性樹脂を軟化させ、前記第1被接合部材と第2被接合部材との間の熱硬化性樹脂を前記第1被接合部材の金属端子間に流動させた後、
はんだ溶融温度以上に加熱して、前記第1被接合部材と第2被接合部材との間のはんだ粒を溶融し、はんだ塊とするとともに、熱硬化性樹脂の軟化に伴い流動状態の前記第1被接合部材の金属端子間のはんだ粒を前記はんだ塊に凝集させ、前記第1被接合部材と第2被接合部材との間を通電させるととともに、前記第1被接合部材の金属端子間の絶縁を維持する
ように、電磁誘導加熱装置の電源出力量および出力時間を制御して、
加熱温度および加熱時間を多段階に制御する
ことを特徴とするはんだ接合方法。
A solder joining method for joining a first joined member and a second joined member with a solder paste,
The first member to be joined is formed on a non-heat-resistant member, and is a plurality of adjacent metal terminals in an insulated state,
The solder paste contains solder grains and a thermosetting resin, does not contain a bubble generating material,
Disposing a solder paste between the metal terminals of the first bonded member and between the first bonded member and the second bonded member;
Melting the solder contained in the solder paste by directly heating at least the first member to be joined by electromagnetic induction;
With
In the electromagnetic induction heating step,
In a state where a load is applied to the solder paste between the first member to be joined and the second member to be joined, the thermosetting resin is softened by heating so as not to exceed the solder melting temperature. After allowing the thermosetting resin between the member and the second bonded member to flow between the metal terminals of the first bonded member,
Heating to a temperature equal to or higher than the solder melting temperature melts the solder grains between the first member to be joined and the second member to be joined to form a solder lump, and the fluidized first state as the thermosetting resin softens. Solder particles between metal terminals of one member to be joined are aggregated into the solder lump, energized between the first member to be joined and the second member to be joined, and between the metal terminals of the first member to be joined In order to maintain insulation, control the power output amount and output time of the electromagnetic induction heating device,
A soldering method characterized by controlling the heating temperature and the heating time in multiple stages.
請求項1記載のはんだ接合方法に用いる装置であって、
前記電磁誘導加熱の電源出力量および出力時間は制御可能である
ことを特徴とするはんだ接合装置。
An apparatus used in the soldering method according to claim 1,
A power supply output amount and output time of the electromagnetic induction heating can be controlled.
JP2018539463A 2016-09-16 2016-09-16 Solder joining method and solder joining apparatus Active JP6481085B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077370 WO2018051475A1 (en) 2016-09-16 2016-09-16 Solder joining method and solder joining device

Publications (2)

Publication Number Publication Date
JPWO2018051475A1 JPWO2018051475A1 (en) 2018-12-06
JP6481085B2 true JP6481085B2 (en) 2019-03-13

Family

ID=61618726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018539463A Active JP6481085B2 (en) 2016-09-16 2016-09-16 Solder joining method and solder joining apparatus

Country Status (4)

Country Link
JP (1) JP6481085B2 (en)
CN (1) CN109937110B (en)
TW (1) TWI711506B (en)
WO (1) WO2018051475A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210151872A (en) 2019-06-14 2021-12-14 가부시키가이샤 원더 퓨쳐 코포레이션 Circuit board and mounting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110666274B (en) * 2019-10-30 2021-06-29 珠海格力智能装备有限公司 Welding method and device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3422135B2 (en) * 1995-07-06 2003-06-30 株式会社 日立インダストリイズ Soldering of electronic components to printed circuit boards
JP3398892B2 (en) * 2000-10-04 2003-04-21 モレックス インコーポレーテッド Apparatus and method for connecting electrical conductors
JP2007180457A (en) * 2005-12-28 2007-07-12 Toyota Industries Corp Soldering method, method of manufacturing semiconductor module, and soldering apparatus
JP2009158766A (en) * 2007-12-27 2009-07-16 Panasonic Corp Wiring board and connection method
JP5334436B2 (en) * 2008-03-24 2013-11-06 パナソニック株式会社 Wiring board and wiring board soldering method
JP5447008B2 (en) * 2010-03-04 2014-03-19 住友ベークライト株式会社 Connection method between terminals and method for manufacturing connection terminals
JP2012164965A (en) * 2011-01-21 2012-08-30 Ngk Spark Plug Co Ltd Wiring board and manufacturing method of the same
US9949375B2 (en) * 2013-11-15 2018-04-17 Wonder Future Corporation Method for manufacturing an electric product
CN105493201B (en) * 2014-02-24 2018-12-07 积水化学工业株式会社 The manufacturing method of conductive paste, connection structural bodies and connection structural bodies
JP6418253B2 (en) * 2014-12-26 2018-11-07 富士電機株式会社 Heating / cooling equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210151872A (en) 2019-06-14 2021-12-14 가부시키가이샤 원더 퓨쳐 코포레이션 Circuit board and mounting method

Also Published As

Publication number Publication date
JPWO2018051475A1 (en) 2018-12-06
CN109937110A (en) 2019-06-25
TWI711506B (en) 2020-12-01
CN109937110B (en) 2021-06-08
TW201819080A (en) 2018-06-01
WO2018051475A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
US8701966B2 (en) Induction bonding
JP6501970B2 (en) Method of repairing micro light emitting diode, manufacturing method, apparatus and electronic device
KR101417252B1 (en) Device for bonding pcb to module
US6288376B1 (en) Method and apparatus for melting a bump by induction heating
CN102482540B (en) Anisotropic conductive adhesive for ultrasonic wave adhesion, and electronic parts connection method using same
JP6915843B2 (en) Solder joining device
US20060196600A1 (en) Apparatus and method for bonding anisotropic conductive film using laser beam
TW200818357A (en) Electric components connecting method
JP6481085B2 (en) Solder joining method and solder joining apparatus
US10896892B2 (en) Wire bonding apparatus
JP2006237451A (en) Apparatus and method for bonding anisotropic conductive film by using laser
JP6773331B2 (en) Solder bonding equipment
TWI770612B (en) Chip-transferring system and chip-transferring method
CN103639558B (en) Heat-ultrasonic electromagnetic many compound reflow welding method
TW200934012A (en) Apparatus and method for manufacturing fast and low cost electrical contacts to solar modules
WO2007015367A1 (en) Process for producing junction structure
WO2020250427A1 (en) Circuit board and mounting method
JP2009160617A (en) Heater tip and joining device
KR101276611B1 (en) Device for optimizing a bonding temperature in bonding equipment and method therefor
JP2001257458A (en) Member for soldering, and method of soldering
JP2016051844A (en) Soldering method, soldering device and reflow furnace
JP7128994B2 (en) Electronic member removal method and device
JPH11154689A (en) Method for mounting electronic component with gold bump
CN1258810C (en) Remelting interconnection approach for high-frequency electromagnetic radiation solder micro-boss
Consiglio et al. Development of a duothermal soldering process

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20180810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181010

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181010

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190208

R150 Certificate of patent or registration of utility model

Ref document number: 6481085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250