JP6479271B1 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP6479271B1
JP6479271B1 JP2018528358A JP2018528358A JP6479271B1 JP 6479271 B1 JP6479271 B1 JP 6479271B1 JP 2018528358 A JP2018528358 A JP 2018528358A JP 2018528358 A JP2018528358 A JP 2018528358A JP 6479271 B1 JP6479271 B1 JP 6479271B1
Authority
JP
Japan
Prior art keywords
medium
heat transfer
transfer plate
plate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018528358A
Other languages
Japanese (ja)
Other versions
JPWO2018198420A1 (en
Inventor
純一 中園
純一 中園
一法師 茂俊
茂俊 一法師
健 篠▲崎▼
健 篠▲崎▼
勇吾 浅井
勇吾 浅井
裕輔 木本
裕輔 木本
義浩 深山
義浩 深山
臼田 雄一
雄一 臼田
佳峰 永島
佳峰 永島
誠司 丸山
誠司 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6479271B1 publication Critical patent/JP6479271B1/en
Publication of JPWO2018198420A1 publication Critical patent/JPWO2018198420A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

プレート式熱交換器は、積層された複数の伝熱プレートを用いて熱交換を行う。各伝熱プレートは、プレート本体と、第1媒体用流入部と、第1媒体用流出部と、第2媒体用流入部と、第2媒体用流出部と、流路を形成する突部とを備える。第1媒体用流入部と第1媒体用流出部のうちの少なくとも一方は、突部が接するプレート本体の一端側にある2つの角部のうちの一角部に配置してある。第2媒体用流入部と第2媒体用流出部のうちの少なくとも一方は、突部が離隔するプレート本体の他端側にある2つの角部のうちの一角部に配置してある。   The plate heat exchanger performs heat exchange using a plurality of stacked heat transfer plates. Each heat transfer plate includes a plate main body, a first medium inflow portion, a first medium outflow portion, a second medium inflow portion, a second medium outflow portion, and a protrusion that forms a flow path. Is provided. At least one of the first medium inflow portion and the first medium outflow portion is disposed at one corner portion of the two corner portions on one end side of the plate main body with which the protrusion comes into contact. At least one of the second medium inflow portion and the second medium outflow portion is disposed at one corner portion of the two corner portions on the other end side of the plate body from which the protrusion is separated.

Description

本発明は、プレート式熱交換器に関する。   The present invention relates to a plate heat exchanger.

媒体を用いて熱交換を行うプレート式熱交換器が知られている。例えば、同様にプレス加工した金属板を複数積層し、積層された第1金属板と第2金属板との間の積層空間および、積層された第2金属板と第3金属板との間の積層空間に媒体を流して熱交換を行うプレート式熱交換器が知られている(例えば、特許文献1〜4)。   Plate type heat exchangers that perform heat exchange using a medium are known. For example, a plurality of similarly pressed metal plates are laminated, a lamination space between the laminated first metal plate and the second metal plate, and between the laminated second metal plate and the third metal plate. Plate-type heat exchangers that exchange heat by flowing a medium in a laminated space are known (for example, Patent Documents 1 to 4).

プレート式熱交換器は、積層空間に流した媒体とそれを挟む一対の金属板との間で熱交換を行うように構成される。具体的には、1層目の金属板および2層目の金属板が1層目の金属板および2層目の金属板の間の第1積層空間に流れる媒体と熱交換を行い、2層目の金属板および3層目の金属板が2層目の金属板および3層目の金属板の間の第2積層空間に流れる媒体と熱交換を行い、3層目の金属板および4層目の金属板が3層目の金属板および4層目の金属板の間の第3積層空間を流れる媒体と熱交換を行う。   The plate heat exchanger is configured to exchange heat between a medium flowing in the laminated space and a pair of metal plates sandwiching the medium. Specifically, the first metal plate and the second metal plate exchange heat with the medium flowing in the first laminated space between the first metal plate and the second metal plate, and the second layer metal plate. The metal plate and the third layer metal plate exchange heat with the medium flowing in the second laminated space between the second layer metal plate and the third layer metal plate, and the third layer metal plate and the fourth layer metal plate Performs heat exchange with the medium flowing in the third laminated space between the third metal plate and the fourth metal plate.

上述したようなプレート式熱交換器では、第1積層空間に形成された流路と第2積層空間に形成された流路とが同様の距離を有する流路となる。そのため、複数の金属板間での略均一な熱交換をすることができる。   In the plate heat exchanger as described above, the flow path formed in the first stacked space and the flow path formed in the second stacked space are flow paths having the same distance. Therefore, substantially uniform heat exchange can be performed between the plurality of metal plates.

特開平5−280883公報JP-A-5-280883 特開2011−149667公報JP 2011-149667 A 特開2000−241094公報JP 2000-244104 A 特開2009−186142公報JP 2009-186142 A

しかしながら、熱交換機構の多様化を考慮した場合、熱容量の異なる複数の媒体を用いて熱交換を行う状況も考えられる。また、熱伝導率の異なる複数種類の媒体を用いる状況も考えられる。上述したような従来のプレート式熱交換器の場合、一方の媒体の熱容量が低くとも、熱容量が大きい他方の媒体に依存して熱交換器の熱交換効率が抑制される虞がある。また、一方の媒体の熱伝導率が高くとも、熱伝導率が低い他方の媒体に依存して熱交換器の熱交換効率が抑制される虞がある。   However, when diversification of the heat exchange mechanism is considered, a situation where heat exchange is performed using a plurality of media having different heat capacities is also conceivable. In addition, a situation in which a plurality of types of media having different thermal conductivities is used can be considered. In the case of the conventional plate heat exchanger as described above, even if the heat capacity of one medium is low, the heat exchange efficiency of the heat exchanger may be suppressed depending on the other medium having a large heat capacity. Moreover, even if the thermal conductivity of one medium is high, the heat exchange efficiency of the heat exchanger may be suppressed depending on the other medium having a low thermal conductivity.

本発明は、上記のような問題点を解決するためになされたものであり、熱交換を行う複数の媒体で熱容量が異なる場合であっても、熱伝導率の異なる複数の媒体を熱交換に用いる場合であっても、一方の媒体に依存した熱交換効率の抑制を低減することが可能なプレート式熱交換器を提供することを目的とする。   The present invention has been made to solve the above-described problems, and even when heat capacity is different among a plurality of media that perform heat exchange, a plurality of media having different thermal conductivities can be used for heat exchange. Even if it is a case where it uses, it aims at providing the plate type heat exchanger which can reduce suppression of the heat exchange efficiency depending on one medium.

本発明の一側面にかかるプレート式熱交換器は、積層された複数の伝熱プレートを用いて熱交換を行う。複数の伝熱プレートは、熱交換を行う第1伝熱プレートと、第1伝熱プレートとの間に第1媒体を流す第1積層空間を設けて積層され、熱交換を行う第2伝熱プレートと、第2伝熱プレートとの間に第2媒体を流す第2積層空間を設けて積層され、熱交換を行う第3伝熱プレートとを備える。第1伝熱プレート、第2伝熱プレートおよび第3伝熱プレートは同一形状であり、それぞれ、熱交換を行う矩形状のプレート本体と、第1媒体を流入出させるための第1媒体用流入部および第1媒体用流出部、または第2媒体を流入出させるための第2媒体用流入部および第2媒体用流出部と、プレート本体の軸長方向の一端側に接して他端側から離隔し、積層方向に突出し、第1媒体または第2媒体の流路を形成する突部とを備える。第1媒体用流出部は、第1媒体用流入部に対し対角の位置に配置され、第2媒体用流出部は、第2媒体用流入部に対し対角の位置に配置されている。 The plate heat exchanger according to one aspect of the present invention performs heat exchange using a plurality of stacked heat transfer plates. The plurality of heat transfer plates are stacked by providing a first heat transfer plate that performs heat exchange and a first stacked space through which the first medium flows between the first heat transfer plate and performing heat exchange. There is provided a third heat transfer plate that is stacked by providing a second stacked space for allowing the second medium to flow between the plate and the second heat transfer plate, and performs heat exchange. The first heat transfer plate, the second heat transfer plate, and the third heat transfer plate have the same shape, and each has a rectangular plate body that performs heat exchange, and an inflow for the first medium that causes the first medium to flow in and out. And the first medium outflow part, or the second medium inflow part and the second medium outflow part for allowing the second medium to flow in and out, from one end side in the axial direction of the plate body from the other end side And a protrusion that protrudes in the stacking direction and forms a flow path for the first medium or the second medium. The first medium outflow portion is disposed at a diagonal position with respect to the first medium inflow portion, and the second medium outflow portion is disposed at a diagonal position with respect to the second medium inflow portion.

本発明の一側面によれば、熱交換を行う複数の媒体で熱容量が異なる場合であっても、熱伝導率の異なる複数の媒体を熱交換に用いる場合であっても、一方の媒体に依存した熱交換効率の抑制を低減することができる。   According to one aspect of the present invention, even when a plurality of media performing heat exchange have different heat capacities, or when a plurality of media having different thermal conductivities are used for heat exchange, they depend on one medium. It is possible to reduce the suppression of the heat exchange efficiency.

実施の形態1に係るプレート式熱交換器の構成を表わす説明図である。2 is an explanatory diagram illustrating a configuration of a plate heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る各伝熱プレートの形状を記した上面視図である。3 is a top view showing the shape of each heat transfer plate according to Embodiment 1. FIG. 実施の形態1に係るプレート式熱交換器における複数の伝熱プレートの積層状態を説明する説明図である。It is explanatory drawing explaining the lamination | stacking state of the some heat exchanger plate in the plate type heat exchanger which concerns on Embodiment 1. FIG. 実施の形態2に係る各伝熱プレートの形状を記した上面視図である。FIG. 6 is a top view showing the shape of each heat transfer plate according to the second embodiment. 実施の形態3に係るプレート式熱交換器における複数の伝熱プレートの積層状態を説明する説明図である。It is explanatory drawing explaining the lamination | stacking state of the some heat exchanger plate in the plate type heat exchanger which concerns on Embodiment 3. FIG. 実施の形態4に係る各伝熱プレートの形状を記した上面視図である。FIG. 6 is a top view showing the shape of each heat transfer plate according to Embodiment 4. 実施の形態5に係るプレート式熱交換器1の第1媒体用流入部4と、第1媒体用流出部5と、第2媒体用流入部6と、第2媒体用流出部7との位置を表す説明図である。Positions of first medium inflow portion 4, first medium outflow portion 5, second medium inflow portion 6, and second medium outflow portion 7 of plate heat exchanger 1 according to the fifth embodiment. It is explanatory drawing showing. 実施の形態5に係る第1冷媒と第2冷媒の流路長と温度関係を表わす図である。It is a figure showing the flow path length and temperature relationship of the 1st refrigerant | coolant which concern on Embodiment 5, and a 2nd refrigerant | coolant.

以下、添付図面を参照して、本願が開示するプレート式熱交換器の実施の形態を詳細に説明する。なお、以下に示す実施の形態は一例であり、これらの実施の形態によって本発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a plate heat exchanger disclosed in the present application will be described in detail with reference to the accompanying drawings. The following embodiments are merely examples, and the present invention is not limited to these embodiments.

実施の形態1.
図1は、実施の形態1に係るプレート式熱交換器1の構成を表わす説明図である。プレート式熱交換器1は、複数枚の伝熱プレート2,2,2・・・を厚さ方向に積層した熱交換器である。プレート式熱交換器1は、積層した伝熱プレート2と伝熱プレート2との間の積層空間を流路として第1媒体または第2媒体を流すことによって、第1媒体および第2媒体との間で熱交換を行う。図1中の矢印は、各積層空間での媒体の流れ方向を表す。
Embodiment 1 FIG.
FIG. 1 is an explanatory diagram illustrating a configuration of a plate heat exchanger 1 according to the first embodiment. The plate heat exchanger 1 is a heat exchanger in which a plurality of heat transfer plates 2, 2, 2... Are stacked in the thickness direction. The plate heat exchanger 1 flows between the first medium and the second medium by flowing the first medium or the second medium using the stacked space between the stacked heat transfer plates 2 and 2 as a flow path. Heat exchange between them. The arrows in FIG. 1 represent the flow direction of the medium in each stacked space.

プレート式熱交換器1では、積層した隣接する第1伝熱プレート2と第2伝熱プレート2との間の第1積層空間を流路として第1媒体を流し、積層した隣接する第2伝熱プレート2と第3伝熱プレート2との間の第2積層空間を流路として第2媒体を流し、積層した隣接する第3伝熱プレート2と第4伝熱プレート2との間の第3積層空間を流路として第1媒体を流し、積層した隣接する第4伝熱プレート2と第5伝熱プレート2との間の第4積層空間を流路として第2媒体を流す。つまりプレート式熱交換器1では、一の積層空間では第1媒体が流れ、厚さ方向に一の積層空間と隣接する二の積層空間では第2媒体が流れ、厚さ方向に二の積層空間と隣接する三の積層空間では第1媒体流れ、積層方向で交互に異なる媒体が流れるように構成してある。図1の一例では、最上部の第1伝熱プレート2とその下方に隣接する第2伝熱プレート2との間の第1積層空間を流路として、第1媒体が図面の右から左へ流れ、第2伝熱プレート2とその下方に隣接する第3伝熱プレート2との間の第2積層空間を流路として、第2媒体が左から右へと流れ、第3伝熱プレート2とその下方に隣接する第4伝熱プレート2との間の第3積層空間を流路として、第1媒体が右から左へと流れるというように、積層方向で交互に異なる媒体が流れるように構成してある。   In the plate heat exchanger 1, the first medium is caused to flow using the first lamination space between the adjacent first and second heat transfer plates 2 and 2 as a flow path, and the adjacent second heat transfer plates are laminated. The second medium is allowed to flow using the second stack space between the heat plate 2 and the third heat transfer plate 2 as a flow path, and the second medium between the adjacent third heat transfer plate 2 and the fourth heat transfer plate 2 stacked. The first medium is caused to flow using the three laminated spaces as flow paths, and the second medium is caused to flow using the fourth laminated space between the stacked fourth and fifth heat transfer plates 2 and 2 as flow paths. That is, in the plate heat exchanger 1, the first medium flows in one laminated space, the second medium flows in two laminated spaces adjacent to the one laminated space in the thickness direction, and two laminated spaces in the thickness direction. In the three laminated spaces adjacent to each other, the first medium flows, and different media alternately flow in the lamination direction. In the example of FIG. 1, the first medium moves from the right to the left in the drawing with the first stacked space between the uppermost first heat transfer plate 2 and the second heat transfer plate 2 adjacent below the uppermost first heat transfer plate 2 as a flow path. The second medium flows from the left to the right using the second stacked space between the second heat transfer plate 2 and the third heat transfer plate 2 adjacent to the second heat transfer plate 2 below the third heat transfer plate 2. And the fourth heat transfer plate 2 adjacent to the lower side of the second heat transfer plate 2 as a flow path, the first medium flows from right to left so that different media flow alternately in the stacking direction. It is configured.

各伝熱プレート2は、矩形状のプレート本体を有する板状部材であり、第1媒体および第2媒体との間で熱交換を行う。例えば各伝熱プレート2は、材料としてステンレス、鉄、アルミ、銅等を有し、プレス加工で製造された部材である。   Each heat transfer plate 2 is a plate-like member having a rectangular plate body, and performs heat exchange between the first medium and the second medium. For example, each heat transfer plate 2 is a member that has stainless steel, iron, aluminum, copper, or the like as a material and is manufactured by press working.

第1媒体および第2媒体は、外部の部材と伝熱プレート2との間の熱輸送を行うものであり、水、油、CO、HFC冷媒、等の液体または気体または気液混合媒体である。例えば第1媒体は、第2媒体の素材とは異なる素材を用い、第1媒体の熱伝導率が第2媒体の熱伝導率よりも高くなるように構成される。The first medium and the second medium perform heat transport between an external member and the heat transfer plate 2, and are liquids such as water, oil, CO 2 , HFC refrigerant, etc., or gas or gas-liquid mixed media. is there. For example, the first medium uses a material different from the material of the second medium, and is configured such that the thermal conductivity of the first medium is higher than the thermal conductivity of the second medium.

図2は、実施の形態1に係る各伝熱プレート2の形状を記した上面視図である。各伝熱プレート2は、2つの突部8,9と、第1媒体用流入部4と,第1媒体用流出部5と、第2媒体用流入出部6と、第2媒体用流出部7と、ヘリンボーン凹凸部3とをプレート本体に備える。   FIG. 2 is a top view showing the shape of each heat transfer plate 2 according to the first embodiment. Each heat transfer plate 2 includes two protrusions 8, 9, a first medium inflow portion 4, a first medium outflow portion 5, a second medium inflow / outflow portion 6, and a second medium outflow portion. 7 and a herringbone concavo-convex portion 3 are provided on the plate body.

2つの突部8,9はそれぞれ、積層された隣接する他の伝熱プレート2との間で積層空間を確保すべく、プレス加工によって一の伝熱プレート2の表面から一方側へ突出するよう構成してある。つまり2つの突部8,9はそれぞれ、積層方向に突出し、後述する第1媒体または第2媒体の流路を形成するよう構成してある。   Each of the two protrusions 8 and 9 protrudes from the surface of one heat transfer plate 2 to one side by pressing so as to secure a stacking space between the adjacent adjacent heat transfer plates 2 stacked. It is configured. That is, each of the two protrusions 8 and 9 is configured to protrude in the stacking direction and form a flow path for the first medium or the second medium described later.

各突部8,9の裏面側は、各突部8,9が突出する一方側へ窪んだ窪み形状となっている。図2には、矩形板状の伝熱プレート2に対して軸長方向に延出した直線状の突部8,9が示してある。一方の突部8は、伝熱プレート2の一端側に接しているが他端側から離隔しており、他方の突部9は、伝熱プレート2の他端側に接しているが一端側から離隔している。   The back surface side of each protrusion 8, 9 has a hollow shape that is recessed toward one side from which each protrusion 8, 9 protrudes. FIG. 2 shows linear protrusions 8 and 9 extending in the axial length direction with respect to the rectangular plate-shaped heat transfer plate 2. One protrusion 8 is in contact with one end side of the heat transfer plate 2 but is separated from the other end side, and the other protrusion 9 is in contact with the other end side of the heat transfer plate 2 but is on one end side. Separated from.

2つの突部8,9は、伝熱プレート2を三分割する位置に配置してある。より詳細に述べると、軸長方向に延出する2つの突部8,9は、伝熱プレート2を三等分する位置から軸短方向の一端側へ偏倚した位置に配置してある。突部8,9が有する積層方向の高さについては、後で詳細に述べる。   The two protrusions 8 and 9 are arranged at positions where the heat transfer plate 2 is divided into three parts. More specifically, the two projecting portions 8 and 9 extending in the axial length direction are arranged at a position deviated from a position at which the heat transfer plate 2 is equally divided to one end side in the axial short direction. The height in the stacking direction of the protrusions 8 and 9 will be described in detail later.

第1媒体用流入部4、第1媒体用流出部5はそれぞれ、一方側に積層された他の伝熱プレート2との間に形成された一の積層空間に第1媒体を流入出させるための開口部である。第1媒体用流入部4から一の積層空間内に第1媒体が流入し、第1媒体用流出部5から一の積層空間外へ第1媒体が流出するように構成してある。第1媒体用流入部4と第1媒体用流出部5のうちの一方は、矩形板状の伝熱プレート2の一の対角線上にある一の角部に配置してあり、第1媒体用流入部4と、第1媒体用流入部5とのうちの他方は、矩形板状の伝熱プレート2の一の対角線上にある他の角部に配置してある。   Each of the first medium inflow portion 4 and the first medium outflow portion 5 causes the first medium to flow into and out of one stacked space formed between the other heat transfer plate 2 stacked on one side. Is the opening. The first medium flows into the one stacked space from the first medium inflow portion 4, and the first medium flows out of the first stacked space from the first medium outflow portion 5. One of the first medium inflow portion 4 and the first medium outflow portion 5 is disposed at one corner on one diagonal line of the rectangular plate-shaped heat transfer plate 2, and is used for the first medium. The other of the inflow portion 4 and the first medium inflow portion 5 is disposed at another corner portion on one diagonal line of the rectangular plate-shaped heat transfer plate 2.

第2媒体用流入部6、第2媒体用流出部7はそれぞれ、他方側に積層された他の伝熱プレート2との間に形成された他の積層空間に第2媒体を流入出させるための開口部である。第2媒体用流入部6から他の積層空間内に第2媒体が流入し、第2媒体用流出部7から他の積層空間外へ第2媒体が流出するように構成してある。第2媒体用流入部6と、第2媒体用流出部7とのうちの一方は、矩形板状の伝熱プレート2の他の対角線上にある一の角部に配置してあり、第2媒体用流入部6と第2媒体用流出部7とのうちの他方は、矩形板状の伝熱プレート2の他の対角線上にある他の角部に配置してある。   Each of the second medium inflow portion 6 and the second medium outflow portion 7 causes the second medium to flow into and out of another stacked space formed between the other heat transfer plate 2 stacked on the other side. Is the opening. The second medium flows into the other stacked space from the second medium inflow portion 6, and the second medium flows out of the other stacked space from the second medium outflow portion 7. One of the second medium inflow portion 6 and the second medium outflow portion 7 is arranged at one corner portion on the other diagonal line of the rectangular plate-shaped heat transfer plate 2, The other of the medium inflow portion 6 and the second medium outflow portion 7 is disposed at another corner portion on the other diagonal line of the rectangular plate-shaped heat transfer plate 2.

ヘリンボーン凹凸部3は、一の積層空間に流れる第1媒体および他の積層空間に流れる第2媒体との熱交換効率を高めるべく、突部8,9を跨いだヘリンボーン形状で表面に凹凸している。言い換えると、2つの突部8,9によって三分割されるようにヘリンボーン凹凸部3が配置してある。   The herringbone concavo-convex portion 3 is uneven on the surface in a herringbone shape straddling the protrusions 8 and 9 in order to increase the heat exchange efficiency between the first medium flowing in one laminated space and the second medium flowing in another laminated space. Yes. In other words, the herringbone concavo-convex portion 3 is arranged so as to be divided into three by the two protrusions 8 and 9.

ヘリンボーン凹凸部3は、プレート式熱交換器1の厚さ方向、言い換えると積層方向に向けて凹凸するよう構成してある。またヘリンボーン凹凸部3は、伝熱プレート2の一端側から他端側に向けて先細りとなるような∨字型となるヘリンボーン形状としてある。   The herringbone concavo-convex portion 3 is configured to be concavo-convex in the thickness direction of the plate heat exchanger 1, in other words, in the stacking direction. Moreover, the herringbone uneven | corrugated | grooved part 3 is made into the herringbone shape used as the scissors shape tapering from the one end side of the heat-transfer plate 2 toward the other end side.

ヘリンボーン凹凸部3と一方側に積層された他の伝熱プレート2との間には、第1媒体の流速を考慮し、プレート式熱交換器1の厚さ方向に隙間を設けてある。同様に、ヘリンボーン凹凸部3と他方側に積層された他の伝熱プレート2との間には、第2媒体の流速を考慮し、プレート式熱交換器1の厚さ方向に隙間を設けてある。   A gap is provided in the thickness direction of the plate heat exchanger 1 between the herringbone concavo-convex portion 3 and the other heat transfer plate 2 laminated on one side in consideration of the flow rate of the first medium. Similarly, a gap is provided in the thickness direction of the plate heat exchanger 1 between the herringbone concavo-convex portion 3 and another heat transfer plate 2 stacked on the other side in consideration of the flow rate of the second medium. is there.

伝熱プレート2が上述したようなヘリンボーン凹凸部3を有する場合、一の積層空間を規定する一方の伝熱プレート2の凹凸形状および一の積層空間を規定する他方の伝熱プレート2の凹凸形状によって、一の積層空間の厚さ方向の隙間が狭まる。一の積層空間に流れる媒体は、狭まった隙間において流速が大きくなる。したがって、一の積層空間を流れる媒体と伝熱プレート2との熱交換効率を更に高めることが可能となる。   When the heat transfer plate 2 has the herringbone concavo-convex portion 3 as described above, the concavo-convex shape of one heat transfer plate 2 defining one laminated space and the concavo-convex shape of the other heat transfer plate 2 defining one laminated space As a result, the gap in the thickness direction of one stacked space is narrowed. A medium flowing in one laminated space has a high flow velocity in a narrow gap. Therefore, it is possible to further increase the heat exchange efficiency between the medium flowing in the one laminated space and the heat transfer plate 2.

図3は、実施の形態1に係るプレート式熱交換器1における複数の伝熱プレート2,2の積層状態を説明する説明図である。プレート式熱交換器1が備える複数の伝熱プレート2,2,・・・のうちの2つの伝熱プレート2,2の積層状態を例として模式的に示してある。図3では、積層される厚み方向とは異なる板状の平面方向に180°反転させた状態の2つの伝熱プレート2,2が右側部分に示してあり、その2つの伝熱プレート2,2を積層した状態が中央部分に示してあり、その積層した状態のA―A断面で切断した状態が左側部分に示してある。   FIG. 3 is an explanatory diagram for explaining a stacked state of the plurality of heat transfer plates 2 and 2 in the plate heat exchanger 1 according to the first embodiment. The laminated state of the two heat transfer plates 2, 2 of the plurality of heat transfer plates 2, 2, ... included in the plate heat exchanger 1 is schematically shown as an example. In FIG. 3, two heat transfer plates 2 and 2 are shown in the right side portion in a state where they are inverted by 180 ° in a plate-like plane direction different from the laminated thickness direction. Is shown in the center portion, and a state cut along the AA cross section in the laminated state is shown in the left side portion.

図1および図3に示してあるように、実施の形態1に係るプレート式熱交換器1では、同一板状の伝熱プレート2複数が交互に、平面方向へ180°反転させて配置される。   As shown in FIGS. 1 and 3, in the plate heat exchanger 1 according to the first embodiment, a plurality of the same plate-shaped heat transfer plates 2 are alternately arranged 180 ° inverted in the plane direction. .

第1伝熱プレート2と180°反転させて積層した第2伝熱プレート2とは、図1で示してあるように、第1伝熱プレート2の第1媒体用流入部4と第2伝熱プレート2の第1媒体用流入部4とが厚さ方向の隙間を開けて対向するよう積層され、第1伝熱プレート2の第1媒体用流出部5と第2伝熱プレート2の第1媒体用流出部5とが厚さ方向の隙間を開けて対向するよう積層される。一方、第1伝熱プレート2の第2媒体用流入部6と第2伝熱プレート2の第2媒体用流入部6とが接合され、第1伝熱プレート2の第2媒体用流出部7と第2伝熱プレート2の第2媒体用流出部7とが接合される。また、第2伝熱プレート2と第3伝熱プレート2とは、第2伝熱プレート2の第2媒体用流入部6と第3伝熱プレート2の第2媒体用流入部6とが厚さ方向の隙間を開けて対向するよう積層され、第2伝熱プレート2の第2媒体用流出部7と第3伝熱プレート2の第2媒体用流出部7とが厚さ方向の隙間を開けて対向するよう積層され、第2伝熱プレート2の第1媒体用流入部4と第3伝熱プレート2の第1媒体用流入部4とが接合され、第2伝熱プレート2の第1媒体用流出部5と第3伝熱プレート2の第1媒体用流出部5とが接合される。続いて積層される第4伝熱プレート2、第5伝熱プレート2、・・・に対し、同様の180°反転配置が繰り返してある。   As shown in FIG. 1, the second heat transfer plate 2 that is inverted by 180 ° and laminated with the first heat transfer plate 2 is the first medium inflow portion 4 of the first heat transfer plate 2 and the second heat transfer plate 2. The first medium inflow portion 4 of the heat plate 2 is laminated so as to be opposed to each other with a gap in the thickness direction, and the first medium outflow portion 5 of the first heat transfer plate 2 and the second heat transfer plate 2 of the second heat transfer plate 2 are stacked. The one medium outflow portion 5 is laminated so as to face the gap in the thickness direction. On the other hand, the second medium inflow portion 6 of the first heat transfer plate 2 and the second medium inflow portion 6 of the second heat transfer plate 2 are joined, and the second medium outflow portion 7 of the first heat transfer plate 2. And the second medium outflow portion 7 of the second heat transfer plate 2 are joined. In addition, the second heat transfer plate 2 and the third heat transfer plate 2 are thicker than the second medium inflow portion 6 of the second heat transfer plate 2 and the second medium inflow portion 6 of the third heat transfer plate 2. The second medium outflow part 7 of the second heat transfer plate 2 and the second medium outflow part 7 of the third heat transfer plate 2 form a gap in the thickness direction. The first medium inflow portion 4 of the second heat transfer plate 2 and the first medium inflow portion 4 of the third heat transfer plate 2 are joined together so as to be opposed to each other. The 1 medium outflow part 5 and the 1st medium outflow part 5 of the 3rd heat-transfer plate 2 are joined. The same 180 ° inversion arrangement is repeated for the fourth heat transfer plate 2, the fifth heat transfer plate 2,.

上述したような伝熱プレート2の180°反転配置が繰り返してあるプレート式熱交換器1では、厚さ方向の隙間を開けて対向する第1媒体用流入部4から第1媒体が第1伝熱プレート2と第2伝熱プレート2との間の第1積層空間へ流入する。一方、第1伝熱プレート2の第2媒体用流入部6と第2伝熱プレート2の第2媒体用流入部6との接合および第1伝熱プレート2の第2媒体用流出部7と第2伝熱プレート2の第2媒体用流出部7との接合によって、第1積層空間に第2媒体は流入出しない。   In the plate-type heat exchanger 1 in which the 180 ° inversion arrangement of the heat transfer plate 2 as described above is repeated, the first medium is transferred from the first medium inflow portion 4 with a gap in the thickness direction facing each other. It flows into the first laminated space between the heat plate 2 and the second heat transfer plate 2. Meanwhile, the joining of the second medium inflow portion 6 of the first heat transfer plate 2 and the second medium inflow portion 6 of the second heat transfer plate 2 and the second medium outflow portion 7 of the first heat transfer plate 2 and Due to the joining of the second heat transfer plate 2 to the second medium outlet 7, the second medium does not flow into and out of the first stacked space.

上述したような伝熱プレート2の180°反転配置が繰り返してあるプレート式熱交換器1では、厚さ方向の隙間を開けて対向する第2媒体用流入部6と、第2媒体用流出部7から第2媒体が第2伝熱プレート2と第3伝熱プレート2との間の第2積層空間へ流入出する。一方、第2伝熱プレート2の第1媒体用流入部4と第3伝熱プレート2の第1媒体用流入部4との接合および第2伝熱プレート2の第1媒体用流出部5と第3伝熱プレート2の第1媒体用流出部5との接合によって、第2積層空間に第1媒体は流入出しない。   In the plate heat exchanger 1 in which the 180 ° inversion arrangement of the heat transfer plate 2 as described above is repeated, the second medium inflow portion 6 and the second medium outflow portion facing each other with a gap in the thickness direction therebetween. The second medium flows into and out of the second stacked space between the second heat transfer plate 2 and the third heat transfer plate 2 from 7. On the other hand, the joining of the first medium inflow portion 4 of the second heat transfer plate 2 and the first medium inflow portion 4 of the third heat transfer plate 2 and the first medium outflow portion 5 of the second heat transfer plate 2 By joining the third heat transfer plate 2 to the first medium outlet 5, the first medium does not flow into and out of the second stacked space.

プレート式熱交換器1では、上述したような伝熱プレート2の180°反転配置が繰り返されることによって、第1媒体が流入出するが第2媒体が流入出しない第1媒体用流入出型の積層空間と第2媒体が流入出するが第1媒体が流入出しない第2媒体用流入出型の積層空間とが、プレート式熱交換器1の厚さ方向に交互で現れるように構成される。   In the plate heat exchanger 1, by repeating the 180 ° inversion arrangement of the heat transfer plate 2 as described above, the first medium inflow / outflow type in which the first medium flows in / out but the second medium does not flow in / out. The laminated space and the second medium inflow / outlet type laminated space into which the second medium flows in / out but the first medium does not flow in / out are configured to alternately appear in the thickness direction of the plate heat exchanger 1. .

上述したような第1媒体用流入出型の積層空間では、第1伝熱プレート2の第1媒体用流入部4と第2伝熱プレート2の第1媒体用流入部4とが対向した一方の対向部が形成され、第1伝熱プレート2の第1媒体用流出部5と第2伝熱プレート2の第1媒体用流出部5とが対向した他方の対向部が形成される。第1媒体が流入出する一方の第1媒体用流入出部4,5の対向部が、矩形の伝熱プレート2の一対角線上において一端側にある一角部に位置し、他方の第1媒体用流入部4,第1媒体用流出部5の対向部が、この一角部と同一対角線上にある他端側の他角部に位置する。図1の一例では、伝熱プレート2の一端側に接して他端側から離隔する直線状の突部8と伝熱プレート2の他端側に接して一端側から離隔する直線状の突部9と伝熱プレート2の外周と2つの第1媒体用対向部とによってS字型の流路が規定され、2つの対向部は、そのS字型の流路の両端側に位置する。そのためプレート式熱交換器1では、第2媒体と比較して熱伝導率が高い又は熱容量が小さい第1媒体に対し、伝熱プレート2の軸長方向の一端側から他端側へ向かった後に他端側から一端側へ向かって更に一端側から他端側へと向かう折返流路が形成される。   In the first medium inflow / outflow type laminated space as described above, the first medium inflow portion 4 of the first heat transfer plate 2 and the first medium inflow portion 4 of the second heat transfer plate 2 face each other. Are formed, and the other facing portion is formed in which the first medium outflow portion 5 of the first heat transfer plate 2 and the first medium outflow portion 5 of the second heat transfer plate 2 are opposed to each other. The opposing portion of the first medium inflow and outflow portions 4 and 5 into which the first medium flows in and out is located at one corner on one end on the diagonal line of the rectangular heat transfer plate 2, and the other first medium. The opposing portion of the inflow portion 4 for the first medium and the outflow portion 5 for the first medium are located at the other corner portion on the other end side on the same diagonal line as the one corner portion. In the example of FIG. 1, a linear protrusion 8 that contacts one end of the heat transfer plate 2 and is spaced from the other end, and a linear protrusion that contacts the other end of the heat transfer plate 2 and is spaced from the one end. 9 and the outer periphery of the heat transfer plate 2 and the two opposing portions for the first medium define an S-shaped flow path, and the two opposing portions are located at both ends of the S-shaped flow path. For this reason, in the plate heat exchanger 1, the first medium having a higher thermal conductivity or a smaller heat capacity than the second medium is moved from one end side to the other end side in the axial length direction of the heat transfer plate 2. A return channel is formed from the other end side to the one end side and further from the one end side to the other end side.

上述したような第2媒体用流入出型の積層空間では、第1伝熱プレート2の第2媒体用流入出部6と第2伝熱プレート2の第2媒体用流入出部7とが対向した一方の対向部が形成され、第1伝熱プレート2の第2媒体用流入出部7と第2伝熱プレート2の第2媒体用流入出部6とが対向した他方の対向部が形成される。第2媒体が流入出する一方の第2媒体用流入出部6,7の対向部が、矩形の伝熱プレート2の他対角線上において一端側にある一角部に位置し、他方の第2媒体用流入出部6,7の対向部が、この一角部と同一対角線上にある他端側の他角部に位置する。図1の一例では、伝熱プレート2の一端側に接して他端側から離隔する直線状の突部8と伝熱プレート2の他端側に接して一端側から離隔する直線状の突部9と伝熱プレート2の外周と2つの第2媒体用対向部とによって、S字型の流路の中央を占めるZ字型流路が規定され、2つの対向部は、そのZ字型流路の両端に位置する。そのためプレート式熱交換器1では、第1媒体と比較して熱伝導率が低い又は熱容量が大きい第2媒体に対し、一端側から他端側へと向かった後に他端側から一端側へと折り返すことなく伝熱プレート2の軸長方向の一端側から他端側へ向かう非折返流路が形成される。   In the second medium inflow / outflow type laminated space as described above, the second medium inflow / outflow portion 6 of the first heat transfer plate 2 and the second medium inflow / outflow portion 7 of the second heat transfer plate 2 face each other. One opposing portion is formed, and the other opposing portion is formed in which the second medium inflow / outflow portion 7 of the first heat transfer plate 2 and the second medium inflow / outflow portion 6 of the second heat transfer plate 2 face each other. Is done. The opposing portion of the second medium inflow and outflow portions 6 and 7 into which the second medium flows in and out is located at one corner on one end side on the other diagonal line of the rectangular heat transfer plate 2, and the other second medium. Opposite portions of the inflow / outflow portions 6 and 7 for use are located at other corners on the other end side which are on the same diagonal as the one corner. In the example of FIG. 1, a linear protrusion 8 that contacts one end of the heat transfer plate 2 and is spaced from the other end, and a linear protrusion that contacts the other end of the heat transfer plate 2 and is spaced from the one end. 9 and the outer periphery of the heat transfer plate 2 and the two opposing portions for the second medium define a Z-shaped flow path that occupies the center of the S-shaped flow path, Located at both ends of the road. Therefore, in the plate heat exchanger 1, the second medium having a lower thermal conductivity or a larger heat capacity than the first medium is directed from one end side to the other end side and then from the other end side to the one end side. A non-folding flow path is formed from one end side to the other end side in the axial length direction of the heat transfer plate 2 without being folded back.

上述したように、2つの突部8,9は、軸長方向に延出する2つの突部8,9は、伝熱プレート2を三等分する位置から軸短方向の一端側へ偏倚した位置に配置してある。そのため、図3の左側部分に示してあるように、伝熱プレート2の180°反転配置が繰り返された積層構造において、一の伝熱プレート2の下面に他の伝熱プレート2の2つの突部8,9が接触する。この接触によって、S字型の折返流路の形成精度を高めることが可能となる。またこの接触によって、Z字型の非折返流路の形成精度を高めることが可能となる。   As described above, the two protrusions 8 and 9 extend in the axial length direction, and the two protrusions 8 and 9 are biased from the position where the heat transfer plate 2 is equally divided to one end side in the axial short direction. In place. Therefore, as shown in the left part of FIG. 3, in the laminated structure in which the heat transfer plate 2 is repeatedly inverted by 180 °, two protrusions of the other heat transfer plate 2 are formed on the lower surface of one heat transfer plate 2. The parts 8 and 9 come into contact. This contact makes it possible to increase the formation accuracy of the S-shaped folded flow path. Further, this contact makes it possible to increase the formation accuracy of the Z-shaped non-folding flow path.

同様の容積を有する積層空間中において、第1媒体が流れることになるS字型の折返流路の両端間距離と比較し、S字型の折返流路の一部であって第2媒体が流れることになるZ字型の非折返流路の両端間距離は短くなる。また、第1媒体が流れることになるS字型の折返流路の一端からS字型流路に沿って他端へ向かうベクトルの変化量と比較し、S字型の折返流路の一部であって第2媒体が流れることになるZ字型の非折返流路の一端からZ字型流路に沿って他端へ向かうベクトルの変化量は小さくなる。そのため、第1媒体と比較して熱伝導率が低い又は熱容量が大きい第2媒体の流速を第1媒体の流速と比較して大きくすることができる。したがって、実施の形態1に係るプレート式熱交換器1は、熱交換を行う複数の媒体で熱容量が異なる場合であっても、熱伝導率の異なる複数の媒体を熱交換に用いる場合であっても、一方の媒体に依存した熱交換効率の抑制を低減することができる。   Compared to the distance between both ends of the S-shaped folded flow path in which the first medium flows in the laminated space having the same volume, the second medium is a part of the S-shaped folded flow path. The distance between both ends of the Z-shaped non-folding flow path that will flow becomes short. Further, a part of the S-shaped folded flow path is compared with the amount of change in the vector from one end of the S-shaped folded flow path through which the first medium flows to the other end along the S-shaped flow path. Thus, the amount of change in the vector from one end of the Z-shaped non-folding flow path through which the second medium flows to the other end along the Z-shaped flow path becomes small. Therefore, the flow rate of the second medium having a low thermal conductivity or a large heat capacity compared to the first medium can be increased compared to the flow rate of the first medium. Therefore, the plate heat exchanger 1 according to Embodiment 1 is a case where a plurality of media having different thermal conductivities are used for heat exchange even when the heat capacities of the plurality of media performing heat exchange are different. However, the suppression of the heat exchange efficiency depending on one medium can be reduced.

実施の形態1に係るプレート式熱交換器1では、上述したように、第1媒体が流れる第1媒体用流路と第2媒体が流れる第2媒体流路とを別々に形成している。具体的には、第1積層空間に第1媒体用流路が形成され、伝熱プレート2を介して第1積層空間に隣接する第2積層空間に第2媒体流路が形成される。そのため、第1媒体と第2媒体とが混ざることがない。また実施の形態1に係るプレート式熱交換器1では、第1媒体用流路において流入部から流出部へ向かう道のりが第2媒体用流路において流入部から流出部へ向かう道のりよりも長くなり、第1媒体用流路において流入部から流出部へ向かうベクトルの変化量が第2媒体用流路において流入部から流出部へ向かうベクトルの変化量よりも大きくなるよう形成してある。そのため、熱伝導率が高い方または熱容量が小さい方の第1媒体の流速よりも、熱伝導率が低い方または熱容量が大きい方の第2媒体の流速が大きくなるように構成することが可能となる。   In the plate heat exchanger 1 according to the first embodiment, as described above, the first medium flow path through which the first medium flows and the second medium flow path through which the second medium flow are formed separately. Specifically, the first medium flow path is formed in the first stacked space, and the second medium flow path is formed in the second stacked space adjacent to the first stacked space via the heat transfer plate 2. Therefore, the first medium and the second medium are not mixed. In the plate heat exchanger 1 according to Embodiment 1, the path from the inflow part to the outflow part in the first medium flow path is longer than the path from the inflow part to the outflow part in the second medium flow path. The change amount of the vector from the inflow portion to the outflow portion in the first medium flow path is formed to be larger than the change amount of the vector from the inflow portion to the outflow portion in the second medium flow path. Therefore, the flow rate of the second medium having the lower thermal conductivity or the larger heat capacity can be configured to be larger than the flow rate of the first medium having the higher heat conductivity or the smaller heat capacity. Become.

実施の形態1に係るプレート式熱交換器1では、上述したように、複数の異なる形状の伝熱プレートを使用せずとも、同一形状の伝熱プレート2を180°反転させて複数積層させた180°反転配置を用いて媒体流速、ベクトル変化量、または道のりを第1媒体と第2媒体とで変化させる構成を実現した。したがって、実施の形態1に係るプレート式熱交換器1は、製造コストの削減にも寄与することができる。   In the plate heat exchanger 1 according to the first embodiment, as described above, a plurality of heat transfer plates 2 having the same shape are inverted by 180 ° and stacked without using a plurality of heat transfer plates having different shapes. A configuration has been realized in which the medium flow velocity, the amount of vector change, or the path is changed between the first medium and the second medium using a 180 ° inversion arrangement. Therefore, the plate heat exchanger 1 according to Embodiment 1 can also contribute to the reduction of manufacturing costs.

実施の形態1では、各伝熱プレート2が2つの突部8,9を有する一例について説明していた。しかしながら本発明は、上記一例に限定されない。各伝熱プレート2が3つ以上の突部8,9を有するように構成しても良い。そうすることにより、流路の道のりを更に長くすることができ、熱交換効率の抑制を更に低減することができる。   In the first embodiment, an example in which each heat transfer plate 2 has two protrusions 8 and 9 has been described. However, the present invention is not limited to the above example. Each heat transfer plate 2 may be configured to have three or more protrusions 8 and 9. By doing so, the path of the flow path can be further lengthened, and the suppression of heat exchange efficiency can be further reduced.

実施の形態1では、プレス加工によって表面から一方側へ突出した2つの突部8,9を各伝熱プレート2が一体的に有する一例について説明していた。しかしながら本発明は、上記一例に限定されない。積層された他の伝熱プレート2との間で積層空間を確保すべく、各伝熱プレート2が別体として2つの突部8,9を有する構成としてもよい。例えば、伝熱プレート2と伝熱プレート2との間に2つの突部8,9を設けた枠状プレートを設けるように構成しても良い。そうすることにより、プレート式熱交換器1の製造に対する柔軟性が増加する。   In the first embodiment, an example in which each heat transfer plate 2 integrally has two protrusions 8 and 9 protruding from the surface to one side by press working has been described. However, the present invention is not limited to the above example. In order to secure a laminated space between the laminated other heat transfer plates 2, each heat transfer plate 2 may have two protrusions 8 and 9 as separate bodies. For example, you may comprise so that the frame-shaped plate which provided the two protrusions 8 and 9 between the heat-transfer plate 2 and the heat-transfer plate 2 may be provided. By doing so, the flexibility with respect to the manufacture of the plate heat exchanger 1 is increased.

実施の形態1では、ヘリンボーン凹凸部3と積層された一方側の他の伝熱プレート2および積層された他方側の他の伝熱プレート2との間には、プレート式熱交換器1の厚さ方向に隙間を設ける一例について説明していた。しかしながら本発明は、上記一例に限定されない。熱交換効率の向上を考慮し、隙間を設けないようヘリンボーン凹凸部3の厚さ方向の凹凸を大きくしてもよい。また、熱交換効率の低下または媒体流速の増加等を考慮するような場合には、ヘリンボーン凹凸部3の厚さ方向の凹凸をより小さくしてもよい。更なる熱交換効率の低下または媒体流速の増加等を考慮するような場合には、ヘリンボーン凹凸部3を設けない構成を採用してもよい。   In the first embodiment, the thickness of the plate heat exchanger 1 is between the herringbone concavo-convex portion 3 and the other heat transfer plate 2 on one side and the other heat transfer plate 2 on the other side. An example in which a gap is provided in the vertical direction has been described. However, the present invention is not limited to the above example. In consideration of improvement in heat exchange efficiency, the unevenness in the thickness direction of the herringbone uneven portion 3 may be increased so as not to provide a gap. Further, when considering a decrease in heat exchange efficiency or an increase in the medium flow rate, the unevenness in the thickness direction of the herringbone uneven portion 3 may be made smaller. When considering further reduction in heat exchange efficiency or increase in the medium flow rate, a configuration in which the herringbone irregularities 3 are not provided may be employed.

実施の形態1では、軸長方向に延出する直線状の突部8,9を伝熱プレート2に設ける一例について説明していた。しかしながら本発明は、上記一例に限定されない。第1媒体が流れることになる流路の一端から他端へ向かうベクトルの変化量と第2媒体が流れることになる流路の一端から他端へ向かうベクトルの変化量とが異なるように構成すれば、曲線状の突部8,9を設けても良い。   In the first embodiment, an example in which the linear protrusions 8 and 9 extending in the axial length direction are provided on the heat transfer plate 2 has been described. However, the present invention is not limited to the above example. The amount of change in vector from one end of the flow path through which the first medium flows to the other end is different from the amount of change in vector from one end of the flow path through which the second medium flows. For example, curved protrusions 8 and 9 may be provided.

実施の形態1では、軸長方向に延出する2つの突部8,9を伝熱プレート2に設ける一例について説明していた。しかしながら本発明は、上記一例に限定されない。第1媒体が流れることになる流路の一端から他端へ向かうベクトルの変化量と第2媒体が流れることになる流路の一端から他端へ向かうベクトルの変化量とが異なるように構成すれば、3つ以上の突部を設けるようにしても良い。例えば、3つ以上で奇数の突部を設ける場合、一端側に接するが他端側から離隔する突部と他端側に接するが一端側から離隔する突部とが交互に並設されるようにし、最近接の突部が端部に接している一角部に第1媒体用流入出部4を配置し、伝熱プレート2の軸短方向に位置する別の角部に第1媒体用流入出部5を配置すれば良い。また例えば、3つ以上で偶数の突部を設ける場合、一端側に接するが他端側から離隔する突部と他端側に接するが一端側から離隔する突部とが交互に並設されるようにし、最近接の突部が端部に接している一角部に第1媒体用流入出部4を配置し、その角部に対して伝熱プレート2上の対角線上に位置する別の角部に第1媒体用流入出部5を配置すれば良い。   In Embodiment 1, the example which provided the two protrusions 8 and 9 extended in an axial length direction in the heat-transfer plate 2 was demonstrated. However, the present invention is not limited to the above example. The amount of change in vector from one end of the flow path through which the first medium flows to the other end is different from the amount of change in vector from one end of the flow path through which the second medium flows. For example, three or more protrusions may be provided. For example, when three or more odd-numbered protrusions are provided, the protrusions that are in contact with one end side but are separated from the other end side and the protrusions that are in contact with the other end side but are separated from the one end side are alternately arranged in parallel. The first medium inflow / outflow part 4 is arranged at one corner where the closest protrusion is in contact with the end, and the first medium inflow is placed at another corner located in the short axis direction of the heat transfer plate 2. The protruding portion 5 may be disposed. For example, when three or more even-numbered protrusions are provided, the protrusions that are in contact with one end side but are separated from the other end side and the protrusions that are in contact with the other end side but are separated from the one end side are alternately arranged in parallel. In other words, the first medium inflow / outflow portion 4 is arranged at one corner where the closest protrusion is in contact with the end, and another corner positioned on a diagonal line on the heat transfer plate 2 with respect to the corner. What is necessary is just to arrange | position the inflow / outflow part 5 for 1st media in a part.

実施の形態1では、伝熱プレート2の軸長方向の一端側から他端側に向けて先細りとなるような∨字型となるヘリンボーン形状のヘリンボーン凹凸部3を各伝熱プレート2に設ける一例について説明していた。しかしながら本発明は、上記一例に限定されない。伝熱プレート2の軸短方向の一側端から他側端へ向けて先細りとなるような∨字型となるヘリンボーン形状のヘリンボーン凹凸部3を各伝熱プレート2に設けてもよい。   In the first embodiment, an example is provided in which each of the heat transfer plates 2 is provided with a herringbone-shaped herringbone irregularity portion 3 that has a scissors shape that tapers from one end side to the other end side in the axial direction of the heat transfer plate 2. Was explained. However, the present invention is not limited to the above example. Each heat transfer plate 2 may be provided with a herringbone concavo-convex portion 3 of a herringbone shape that tapers from one side end to the other side end in the short axis direction of the heat transfer plate 2.

実施の形態2.
実施の形態1に係るプレート式熱交換器1では、図2に示すように、第1媒体用流入部4と、第1媒体用流出部5および第2媒体用流入部6と、第2媒体用流出部7とが略同一開口面積を有する構成について例示していた。しかしながら実施の形態2に係るプレート式熱交換器1では、第1媒体用流入部4、第1媒体用流出部5および第2媒体用流入部6と第2媒体用流出部7の開口面積が異なる構成について、図4を用いて説明する。実施の形態2にかかるプレート式熱交換器1について、実施の形態1に係るプレート式熱交換器1と同様の構成については説明を省略する。
Embodiment 2. FIG.
In the plate heat exchanger 1 according to Embodiment 1, as shown in FIG. 2, the first medium inflow portion 4, the first medium outflow portion 5, the second medium inflow portion 6, and the second medium. The configuration in which the outflow portion 7 for use has substantially the same opening area has been illustrated. However, in the plate heat exchanger 1 according to Embodiment 2, the opening areas of the first medium inflow portion 4, the first medium outflow portion 5, the second medium inflow portion 6 and the second medium outflow portion 7 are as follows. A different configuration will be described with reference to FIG. About the plate-type heat exchanger 1 concerning Embodiment 2, description is abbreviate | omitted about the structure similar to the plate-type heat exchanger 1 concerning Embodiment 1. FIG.

図4は、実施の形態2に係る各伝熱プレート2の形状を記した上面視図である。各伝熱プレート2は、2つの突部8,9と、第1媒体用流入部4と、第1媒体用流出部5と、第2媒体用流入部6、第2媒体用流出部7と、ヘリンボーン凹凸部3とを備える。   FIG. 4 is a top view showing the shape of each heat transfer plate 2 according to the second embodiment. Each heat transfer plate 2 includes two protrusions 8, 9, a first medium inflow portion 4, a first medium outflow portion 5, a second medium inflow portion 6, and a second medium outflow portion 7. And herringbone irregularities 3.

実施の形態2では、各第1媒体用流入部4,第1媒体用流出部5の開口面積が各第2媒体用流入部6,第2媒体用流入部7の開口面積よりも小さい。その他の構成については、実施の形態1と同様であるため、説明を省略する。   In the second embodiment, the opening area of each first medium inflow portion 4 and first medium outflow portion 5 is smaller than the opening area of each second medium inflow portion 6 and second medium inflow portion 7. Since other configurations are the same as those in the first embodiment, description thereof is omitted.

第1媒体用流入部4および第2媒体用流出部7に最近接する突部8は、伝熱プレート2の一端側から離隔しているが他端側に接している。突部8の接触構造および突部8の離隔構造によって、第1媒体用流入部4近傍における第1媒体の流路は第2媒体用流出部7近傍における第2媒体の流路よりも小さくなる。しかしながら実施の形態2では、第1媒体用流入部4の開口面積を第2媒体用流入部7の開口面積よりも小さくしているため、第1媒体用流入部4および第1媒体用流出部5の第1媒体の圧力損失と、第2媒体用流入部6および第2媒体用流出部7における第2媒体の圧力損失との差を抑制することが可能となる。   The protrusion 8 that is closest to the first medium inflow portion 4 and the second medium outflow portion 7 is separated from one end side of the heat transfer plate 2 but is in contact with the other end side. Due to the contact structure of the protrusion 8 and the separation structure of the protrusion 8, the flow path of the first medium in the vicinity of the first medium inflow section 4 is smaller than the flow path of the second medium in the vicinity of the second medium outflow section 7. . However, in Embodiment 2, since the opening area of the first medium inflow portion 4 is smaller than the opening area of the second medium inflow portion 7, the first medium inflow portion 4 and the first medium outflow portion The difference between the pressure loss of the first medium 5 and the pressure loss of the second medium in the second medium inflow portion 6 and the second medium outflow portion 7 can be suppressed.

第1媒体用流出部5および第2媒体用流入出部6に最近接する突部9は、伝熱プレート2の一端側に接しているが他端側から離隔している。突部9の接触構造および突部9の離隔構造によって、第1媒体用流出部5近傍における第1媒体の流路は第2媒体用流入部6近傍における第2媒体の流路よりも小さくなる。しかしながら実施の形態2では、第1媒体用流入部5の開口面積を第2媒体用流出部6の開口面積よりも小さくしているため、第1媒体用流入部5における第1媒体の圧力損失と第2媒体用流出部6における第2媒体の圧力損失との差を抑制することが可能となる。そのため、実施の形態2に係るプレート式熱交換器1は、熱伝導率または熱容量の異なる複数の媒体を用いる場合であっても、圧力損失との差を抑制しつつ、一方の媒体に依存した熱交換効率の抑制を低減することができる。   The protrusion 9 closest to the first medium outflow portion 5 and the second medium inflow / outflow portion 6 is in contact with one end side of the heat transfer plate 2 but is separated from the other end side. Due to the contact structure of the protrusions 9 and the separation structure of the protrusions 9, the flow path of the first medium in the vicinity of the first medium outflow part 5 is smaller than the flow path of the second medium in the vicinity of the second medium inflow part 6. . However, in the second embodiment, since the opening area of the first medium inflow portion 5 is smaller than the opening area of the second medium outflow portion 6, the pressure loss of the first medium in the first medium inflow portion 5. And the pressure loss of the second medium in the second medium outflow portion 6 can be suppressed. Therefore, the plate-type heat exchanger 1 according to Embodiment 2 depends on one medium while suppressing the difference from the pressure loss even when using a plurality of media having different thermal conductivities or heat capacities. The suppression of heat exchange efficiency can be reduced.

実施の形態3.
実施の形態1に係るプレート式熱交換器1では、図1および図3に示すように、複数の伝熱プレート2,2,・・・を交互に180°反転させるよう積層する構成について例示していた。しかしながら実施の形態3に係るプレート式熱交換器1では、複数の伝熱プレート2,2,・・・の少なくとも一部を180°反転することなく同方向のまま積層する構成について、図5を用いて説明する。実施の形態3にかかるプレート式熱交換器1について、実施の形態1に係るプレート式熱交換器1と同様の構成については説明を省略する。
Embodiment 3 FIG.
In the plate heat exchanger 1 according to the first embodiment, as illustrated in FIGS. 1 and 3, a configuration in which a plurality of heat transfer plates 2, 2,. It was. However, in the plate heat exchanger 1 according to the third embodiment, FIG. 5 shows a configuration in which at least a part of the plurality of heat transfer plates 2, 2,. It explains using. About the plate-type heat exchanger 1 concerning Embodiment 3, description is abbreviate | omitted about the structure similar to the plate-type heat exchanger 1 concerning Embodiment 1. FIG.

図5は、実施の形態3に係るプレート式熱交換器1における複数の伝熱プレート2,2,・・・の積層状態を説明する説明図である。プレート式熱交換器1が備える複数の伝熱プレート2,2,・・・に含まれる少なくとも2つの伝熱プレート2,2の積層状態を例として模式的に示してある。図5では、積層される厚み方向とは異なる板状の平面方向に180°反転させることなく同方向の状態の2つの伝熱プレート2,2が右側部分に示してあり、その2つの伝熱プレート2,2を積層した状態が中央部分に示してあり、その積層した状態のB―B断面で切断した状態が左側部分に示してある。   FIG. 5 is an explanatory diagram for explaining a stacked state of a plurality of heat transfer plates 2, 2,... In the plate heat exchanger 1 according to the third embodiment. A stacked state of at least two heat transfer plates 2, 2 included in the plurality of heat transfer plates 2, 2,... Included in the plate heat exchanger 1 is schematically shown as an example. In FIG. 5, two heat transfer plates 2 and 2 in the same direction are shown on the right side without being inverted by 180 ° in a plate-like plane direction different from the laminated thickness direction. A state in which the plates 2 and 2 are stacked is shown in the center portion, and a state cut along the BB cross section in the stacked state is shown in the left side portion.

実施の形態3に係るプレート式熱交換器1では、同一形状の2つの伝熱プレート2,2が同一方向で積層されることによって、下側の伝熱プレート2が有する2つの突部8,9は、上側の伝熱プレート2に接触しない。言い換えると、下側の伝熱プレート2が有する2つの突部8,9と上側の伝熱プレート2との間に隙間が形成される。そのため、2つの突部8,9による伝熱プレート2の軸短方向の流路分断が抑制され、媒体用流出部から媒体用流入部へ向かう流れが促される。   In the plate heat exchanger 1 according to the third embodiment, two heat transfer plates 2 and 2 having the same shape are stacked in the same direction, whereby two protrusions 8 included in the lower heat transfer plate 2, 9 does not contact the upper heat transfer plate 2. In other words, a gap is formed between the two protrusions 8 and 9 of the lower heat transfer plate 2 and the upper heat transfer plate 2. Therefore, flow path division in the short axis direction of the heat transfer plate 2 by the two protrusions 8 and 9 is suppressed, and a flow from the medium outflow part to the medium inflow part is promoted.

第2媒体を流す流路を形成する積層空間に対し、上述したような同一方向積層構造を用いた場合、第1媒体よりも熱伝導率の低いまたは熱容量の大きい第2媒体の流速を更に増加させることが可能となる。したがって、実施の形態3に係るプレート式熱交換器1は、熱伝導率または熱容量の異なる複数の媒体を用いる場合であっても、一方の媒体に依存した熱交換効率の抑制を更に低減することが可能となる。   When the same direction laminated structure as described above is used for the laminated space forming the flow path for flowing the second medium, the flow rate of the second medium having a lower thermal conductivity or a larger heat capacity than the first medium is further increased. It becomes possible to make it. Therefore, the plate heat exchanger 1 according to Embodiment 3 can further reduce the suppression of the heat exchange efficiency depending on one medium even when a plurality of media having different thermal conductivities or heat capacities are used. Is possible.

実施の形態4.
実施の形態1に係るプレート式熱交換器1では、図2に示すように、各伝熱プレート2が2つの突部8,9を備える構成について例示していた。しかしながら実施の形態4に係るプレート式熱交換器1では、各伝熱プレート2が1つの突部8を備える構成について、図6を用いて説明する。実施の形態4にかかるプレート式熱交換器1について、実施の形態1に係るプレート式熱交換器1と同様の構成については説明を省略する。
Embodiment 4 FIG.
In the plate heat exchanger 1 according to the first embodiment, as illustrated in FIG. 2, the configuration in which each heat transfer plate 2 includes two protrusions 8 and 9 has been illustrated. However, in the plate heat exchanger 1 according to the fourth embodiment, a configuration in which each heat transfer plate 2 includes one protrusion 8 will be described with reference to FIG. About the plate-type heat exchanger 1 concerning Embodiment 4, description is abbreviate | omitted about the structure similar to the plate-type heat exchanger 1 concerning Embodiment 1. FIG.

図6は、実施の形態4に係る各伝熱プレート2の形状を記した上面視図である。伝熱プレート2は、1つの突部8と、第1媒体用流入部4と、第1媒体用流出部5と、第2媒体用流入部6、第2媒体用流出部7と、ヘリンボーン凹凸部3とを備える。   FIG. 6 is a top view showing the shape of each heat transfer plate 2 according to the fourth embodiment. The heat transfer plate 2 includes one protrusion 8, a first medium inflow portion 4, a first medium outflow portion 5, a second medium inflow portion 6, a second medium outflow portion 7, and a herringbone unevenness. Part 3.

実施の形態4では、伝熱プレート2の軸長方向の一端から離隔して他端に接する突部8が1つ配置してある。突部8と離隔してある一端の側の軸短方向の一方の角部に第2媒体用流入部6が配置してあり、他方の角部に第2媒体用流出部7が配置してある。突部8と接する他端の側の単軸方向の一方の角部に第1媒体用流入部4が配置してあり、他方の角部に第1媒体用流出部5が配置してある。   In the fourth embodiment, one protrusion 8 that is separated from one end in the axial length direction of the heat transfer plate 2 and is in contact with the other end is disposed. The second medium inflow portion 6 is disposed at one corner in the short axis direction on one end side that is separated from the protrusion 8, and the second medium outflow portion 7 is disposed at the other corner. is there. The first medium inflow portion 4 is disposed at one corner in the uniaxial direction on the other end side in contact with the protrusion 8, and the first medium outflow portion 5 is disposed at the other corner.

上述したような実施の形態4では、図6にも示してあるように、第1媒体が流れることになる∪字型の折返流路が形成され、∪字型の折返流路の一部であって第2媒体が流れることになるI字型の非折返流路が形成される。∪字型の折返流路の道のりの両端間距離と比較し、I字型の非折返流路の道のりの両端間距離は短くなる。また、第1媒体が流れることになる∪字型の折返流路の一端から他端へ向かうベクトルの変化量と比較し、∪字型の折返流路の一部であって第2媒体が流れることになるI字型の非折返流路の一端から他端へ向かうベクトルの変化量は小さくなる。そのため、第1媒体と比較して熱伝導率が低いまたは熱容量が大きい第2媒体の流速を第1媒体の流速と比較して大きくすることができる。したがって、実施の形態4に係るプレート式熱交換器1は、熱交換を行う複数の媒体で熱容量が異なる場合であっても、熱伝導率の異なる複数の媒体を熱交換に用いる場合であっても、一方の媒体に依存した熱交換効率の抑制を低減することができる。   In the fourth embodiment as described above, as shown in FIG. 6, a cross-shaped folded flow path through which the first medium flows is formed, and a part of the cross-shaped folded flow path is formed. Thus, an I-shaped non-folding flow path through which the second medium flows is formed. The distance between both ends of the path of the I-shaped non-return channel is shorter than the distance between both ends of the path of the U-shaped folded channel. In addition, compared with the amount of change in vector from one end to the other end of the square-shaped folded flow path through which the first medium flows, the second medium flows as a part of the square-shaped folded flow path. The amount of change in the vector from one end of the I-shaped non-folding flow path to the other end becomes small. Therefore, the flow rate of the second medium having a low thermal conductivity or a large heat capacity compared to the first medium can be increased compared to the flow rate of the first medium. Therefore, the plate heat exchanger 1 according to Embodiment 4 is a case where a plurality of media having different thermal conductivities are used for heat exchange even when the heat capacities of the plurality of media performing heat exchange are different. However, the suppression of the heat exchange efficiency depending on one medium can be reduced.

実施の形態5.
図7は、実施の形態5に係るプレート式熱交換器1の第1冷媒および第2媒体用流入出部の構成を表わす説明図である。プレート式熱交換器1の伝熱プレート2における第1媒体用流入部4、第1媒体用流出部5、第2媒体用流入部6および第2媒体用流出部7の位置を模式的に示してある。図7では、1層目の伝熱プレート2を平面方向に180°反転させ、2層目の伝熱プレートを同方向に配置し、3層目の伝熱プレートを平面方向に180°反転させるように、奇数層目は180°反転させ、偶数層目は同方向に積層させた積層状態を示している。また、図7の左側には伝熱プレート2の軸長方向の一端に第1媒体用流入部4および第2冷媒用流入部6を配置し、軸長方向の他端に第1媒体用流出部5および第2冷媒用流出部7を配置した場合の図を、図7の右側には伝熱プレート2の軸長方向の一端に第1媒体用流入部4および第2冷媒用流出部7を配置し、軸長方向の他端に第1媒体用流出部5および第2冷媒用流入部6を配置した場合の図を示してある。
Embodiment 5. FIG.
FIG. 7 is an explanatory diagram illustrating configurations of the first refrigerant and the second medium inflow / outflow portion of the plate heat exchanger 1 according to the fifth embodiment. The positions of the first medium inflow portion 4, the first medium outflow portion 5, the second medium inflow portion 6 and the second medium outflow portion 7 in the heat transfer plate 2 of the plate heat exchanger 1 are schematically shown. It is. In FIG. 7, the first heat transfer plate 2 is inverted by 180 ° in the plane direction, the second heat transfer plate is arranged in the same direction, and the third heat transfer plate is inverted by 180 ° in the plane direction. As shown, the odd-numbered layers are inverted 180 °, and the even-numbered layers are stacked in the same direction. Further, on the left side of FIG. 7, the first medium inflow portion 4 and the second refrigerant inflow portion 6 are disposed at one end in the axial length direction of the heat transfer plate 2, and the first medium outflow is disposed at the other end in the axial length direction. When the part 5 and the second refrigerant outflow part 7 are arranged, the right side of FIG. 7 shows the first medium inflow part 4 and the second refrigerant outflow part 7 at one end in the axial length direction of the heat transfer plate 2. And the first medium outflow portion 5 and the second refrigerant inflow portion 6 are disposed at the other end in the axial direction.

実施の形態5に係る図7の左側および右側に示すプレート式熱交換器1では、奇数層目の積層空間では伝熱プレート2の軸長方向の一端側から他端側へ向かった後に他端側から一端側へ向かって更に一端側から他端側へと向かう折返流路が形成され、偶数層目の積層空間では伝熱プレート2の軸長方向の一端側から他端側へ向かう非折返流路が形成される。また、図7の左側に示すプレート式熱交換器1において第1媒体は第1媒体用流入部4から流入し、直線状の突部8に沿って流れながら、第2媒体用流入部6から流入する第2媒体と熱交換し、直線状の突部8に沿って折り返し、第2媒体用流出部7から流出する第2媒体と熱交換し、第1媒体用流出部5から流出する。また、図7の右側に示すプレート式熱交換器1において、第1媒体は第1媒体用流入部4から流入し、直線状の突部8に沿って流れながら、第2媒体用流出部7から流出する第2媒体と熱交換し、直線状の突部8に沿って折り返し、第2媒体用流入部6から流入する第2媒体と熱交換し、第1媒体用流出部5から流出する。   In the plate heat exchanger 1 shown on the left side and the right side of FIG. 7 according to the fifth embodiment, in the odd-numbered layered space, the other end after moving from one end side to the other end side in the axial length direction of the heat transfer plate 2. A folding flow path is formed from the side toward the one end side and further from the one end side toward the other end side, and in the laminated space of the even-numbered layers, the non-folding toward the other end side from the one end side in the axial length direction of the heat transfer plate 2 is formed. A flow path is formed. Further, in the plate heat exchanger 1 shown on the left side of FIG. 7, the first medium flows in from the first medium inflow portion 4 and flows along the linear protrusion 8, while flowing from the second medium inflow portion 6. Heat exchanges with the inflowing second medium, turns back along the linear protrusion 8, exchanges heat with the second medium flowing out from the second medium outflow part 7, and flows out from the first medium outflow part 5. Further, in the plate heat exchanger 1 shown on the right side of FIG. 7, the first medium flows in from the first medium inflow portion 4 and flows along the linear protrusions 8, while the second medium outflow portion 7. Heat exchange with the second medium flowing out of the second medium, folding back along the linear protrusion 8, exchanging heat with the second medium flowing in from the second medium inflow section 6, and outflowing from the first medium outflow section 5 .

図8は、図7に示す実施の形態5に係るプレート式熱交換器1の第1媒体および第2媒体の流路長における温度分布を模式的に示した図である。図7の左側に示すプレート式熱交換器1において第1媒体の温度と第2媒体の温度差は第2媒体用流入部6において最も大きくなり、また平均温度差ΔTは次式に沿って規定される。ここで、Tは第1媒体の第1媒体用流入部4における温度、Tは第1媒体の第1媒体用流出部5における温度、tは第2媒体の第2媒体用流入部6における温度、tは第2媒体の第2媒体用流出部7における温度である。

Figure 0006479271
図7の右側に示すプレート式熱交換器1において第1媒体の温度と第2媒体の温度差は第2媒体用流入部6において最も大きくなり、また平均温度差ΔTは次式に沿って規定される。
Figure 0006479271
FIG. 8 is a diagram schematically showing the temperature distribution in the channel lengths of the first medium and the second medium of the plate heat exchanger 1 according to Embodiment 5 shown in FIG. In the plate heat exchanger 1 shown on the left side of FIG. 7, the temperature difference between the first medium and the second medium is greatest at the second medium inflow section 6, and the average temperature difference ΔT is defined according to the following expression. Is done. Here, T 1 is the temperature of the first medium in the first medium inflow section 4, T 2 is the temperature of the first medium in the first medium outflow section 5, and t 1 is the second medium inflow section of the second medium. 6, t 2 is the temperature of the second medium outlet 7 for the second medium.
Figure 0006479271
In the plate heat exchanger 1 shown on the right side of FIG. 7, the temperature difference between the first medium and the second medium is the largest at the second medium inflow section 6, and the average temperature difference ΔT is defined according to the following equation. Is done.
Figure 0006479271

上述したように温度差と第1媒体の出口温度と第2媒体の出口温度とが図7の左側に示すプレート式熱交換器1と図7の右側に示すプレート式熱交換器1とで異なるため、熱交換器の設定温度を変更することができ、目標温度に応じた自由度の高い設計が可能となる。   As described above, the temperature difference, the outlet temperature of the first medium, and the outlet temperature of the second medium differ between the plate heat exchanger 1 shown on the left side of FIG. 7 and the plate heat exchanger 1 shown on the right side of FIG. Therefore, the set temperature of the heat exchanger can be changed, and a design with a high degree of freedom according to the target temperature is possible.

本発明は、以上のように説明し且つ記述した特定の詳細、および代表的な実施の形態に限定されるものではない。当業者によって容易に導き出すことのできる変形例、および効果も発明に含まれる。したがって、特許請求項の範囲、およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。   The invention is not limited to the specific details and exemplary embodiments described and described above. Variations and effects that can be easily derived by those skilled in the art are also included in the invention. Accordingly, various modifications can be made without departing from the spirit or scope of the general inventive concept as defined by the claims and their equivalents.

1 プレート式熱交換器、2 伝熱プレート、3 ヘリンボーン凹凸部、4 第1媒体用流入部、5 第1媒体用流出部、6 第2媒体用流入部、7 第2媒体用流出部、8 突部、9 突部   DESCRIPTION OF SYMBOLS 1 Plate type heat exchanger, 2 Heat transfer plate, 3 Herringbone uneven | corrugated | grooved part, 1st medium inflow part, 5 1st medium outflow part, 6 2nd medium inflow part, 7 2nd medium outflow part, 8 Projection, 9 Projection

Claims (10)

積層された複数の伝熱プレートを用いて熱交換を行うプレート式熱交換器において、
前記複数の伝熱プレートは、
前記熱交換を行う第1伝熱プレートと、
前記第1伝熱プレートとの間に第1媒体を流す第1積層空間を設けて積層され、前記熱交換を行う第2伝熱プレートと、
前記第2伝熱プレートとの間に第2媒体を流す第2積層空間を設けて積層され、前記熱交換を行う第3伝熱プレートとを備え、
前記第1伝熱プレート、前記第2伝熱プレートおよび前記第3伝熱プレートは同一形状であり、それぞれ、
前記熱交換を行う矩形状のプレート本体と、
前記第1媒体を流入出させるための第1媒体用流入部および第1媒体用流出部、または前記第2媒体を流入出させるための第2媒体用流入部および第2媒体用流出部と、
前記プレート本体の軸長方向の一端側に接して他端側から離隔し、積層方向に突出し、前記第1媒体または前記第2媒体の流路を形成する突部とを備え、
前記第1媒体用流出部は、前記第1媒体用流入部に対し対角の位置に配置され、
前記第2媒体用流出部は、前記第2媒体用流入部に対し対角の位置に配置されている
ことを特徴とするプレート式熱交換器。
In a plate heat exchanger that performs heat exchange using a plurality of laminated heat transfer plates,
The plurality of heat transfer plates are:
A first heat transfer plate for performing the heat exchange;
A first heat transfer plate is provided between the first heat transfer plate and the first heat transfer plate is stacked, and a second heat transfer plate that performs the heat exchange;
A second heat transfer plate is provided between the second heat transfer plate and a third heat transfer plate for performing the heat exchange, the second heat transfer plate being stacked by providing a second stacked space for flowing a second medium;
The first heat transfer plate, the second heat transfer plate, and the third heat transfer plate have the same shape ,
A rectangular plate body for performing the heat exchange;
A first medium inflow portion and a first medium outflow portion for causing the first medium to flow in and out; or a second medium inflow portion and a second medium outflow portion for causing the second medium to flow in and out;
A projecting portion that is in contact with one end side in the axial length direction of the plate body, is spaced apart from the other end side, projects in the stacking direction, and forms a flow path for the first medium or the second medium;
The first medium outflow portion is disposed at a diagonal position with respect to the first medium inflow portion,
The second medium outflow portion is arranged at a diagonal position with respect to the second medium inflow portion.
前記第1伝熱プレートの前記一端側と前記第2伝熱プレートの前記他端側とが接するよう積層してある
ことを特徴とする請求項1に記載のプレート式熱交換器。
The plate heat exchanger according to claim 1, wherein the first heat transfer plate and the second heat transfer plate are stacked so that the one end side contacts the other end side of the second heat transfer plate.
前記第1伝熱プレートが備える前記第1媒体用流入部と前記第2伝熱プレートが備える前記第1媒体用流入部とが、間隔を空けて対向し、
前記第1伝熱プレートが備える前記第2媒体用流入部と前記第2伝熱プレートが備える前記第2媒体用流入部とが接合し、
前記第2伝熱プレートが備える前記第2媒体用流出部と前記第3伝熱プレートが備える前記第2媒体用流出部とが、間隔を空けて対向し、
前記第2伝熱プレートが備える前記第1媒体用流出部と前記第3伝熱プレートが備える前記第1媒体用流出部とが接合する
ことを特徴とする請求項1または2に記載のプレート式熱交換器。
The first medium inflow portion provided in the first heat transfer plate and the first medium inflow portion provided in the second heat transfer plate are opposed to each other with a gap therebetween,
The inflow part for the second medium provided in the first heat transfer plate and the inflow part for the second medium provided in the second heat transfer plate are joined,
The second medium outflow portion provided in the second heat transfer plate and the second medium outflow portion provided in the third heat transfer plate are opposed to each other with a gap therebetween,
The plate type according to claim 1 or 2, wherein the first medium outflow portion provided in the second heat transfer plate and the first medium outflow portion provided in the third heat transfer plate are joined. Heat exchanger.
前記第1積層空間内における前記第2伝熱プレートの前記突部に沿った前記第2伝熱プレートの前記第1媒体用流入部から前記第1媒体用流出部までの間の道のりは、前記第2積層空間内における前記第3伝熱プレートの前記突部に沿った前記第3伝熱プレートの前記第2媒体用流入部から前記第2媒体用流出部の間の道のりよりも長い
ことを特徴とする請求項1〜3の何れか1項に記載のプレート式熱交換器。
The distance between the first medium inflow portion and the first medium outflow portion of the second heat transfer plate along the protrusion of the second heat transfer plate in the first stacked space is It is longer than a path between the second medium inflow portion and the second medium outflow portion of the third heat transfer plate along the protrusion of the third heat transfer plate in the second stacked space. The plate-type heat exchanger according to any one of claims 1 to 3, wherein the plate-type heat exchanger is characterized.
前記第1積層空間内における前記第2伝熱プレートの前記突部に沿った前記第2伝熱プレートの前記2つの第1媒体用流入出部のうちの一方から他方へ向かう速度ベクトルの変化量は、前記第2積層空間内における前記第3伝熱プレートの前記突部に沿った前記第3伝熱プレートの前記2つの第2媒体用流入出部のうちの一方から他方へ向かう速度ベクトルの変化量よりも大きい
ことを特徴とする請求項1〜4の何れか1項に記載のプレート式熱交換器。
The amount of change in velocity vector from one of the two first medium inflow / outflow portions of the second heat transfer plate along the protrusion of the second heat transfer plate in the first stacked space toward the other. Is a velocity vector from one of the two second medium inflow / outflow portions of the third heat transfer plate along the protrusion of the third heat transfer plate in the second stacked space to the other. The plate-type heat exchanger according to any one of claims 1 to 4, wherein the plate-type heat exchanger is larger than the amount of change.
前記第1積層空間内における前記第1媒体の流速は、前記第2積層空間内における前記第2媒体の流速よりも小さい
ことを特徴とする請求項1〜5の何れか1項に記載のプレート式熱交換器。
6. The plate according to claim 1, wherein a flow rate of the first medium in the first stacked space is smaller than a flow rate of the second medium in the second stacked space. Type heat exchanger.
前記第1伝熱プレート、前記第2伝熱プレート、および前記第3伝熱プレートはそれぞれ、
前記プレート本体の前記軸長方向の前記他端側に接して前記一端側から離隔し、前記積層方向に突出し、前記第1媒体または前記第2媒体の流路を形成する他の突部を備え、
前記第1媒体用流入部と前記第1媒体用流出部とのうちの一方は、前記他の突部が離隔する前記プレート本体の前記一端側にある2つの角部のうちの一角部に配置され、
前記第2媒体用流入部と前記第2媒体用流出部のうちの一方は、前記他の突部が接する前記プレート本体の前記他端側にある2つの角部のうちの一角部に配置され、
前記第1媒体用流入部と前記第1媒体用流出部とのうちの他方は、前記他の突部が接する前記プレート本体の前記他端側にある2つの角部のうちの他角部に配置され、
前記第2媒体用流入部と前記第2媒体用流出部のうちの他方は、前記他の突部が離隔する前記プレート本体の前記一端側にある2つの角部のうちの他角部に配置されている
ことを特徴とする請求項1〜6の何れか1項に記載のプレート式熱交換器。
The first heat transfer plate, the second heat transfer plate, and the third heat transfer plate are respectively
Other protrusions that contact the other end side of the plate body in the axial length direction and are spaced apart from the one end side, protrude in the stacking direction, and form a flow path for the first medium or the second medium. ,
One of the first medium inflow portion and the first medium outflow portion is arranged at one corner of the two corners on the one end side of the plate body from which the other protrusion is separated. And
One of the second medium inflow portion and the second medium outflow portion is disposed at one corner of the two corners on the other end side of the plate body with which the other protrusion is in contact. ,
The other of the first medium inflow portion and the first medium outflow portion is at the other corner portion of the two corner portions on the other end side of the plate body with which the other protrusion is in contact. Arranged ,
The other of the second medium inflow portion and the second medium outflow portion is disposed at the other corner portion of the two corner portions on the one end side of the plate body where the other protrusions are separated from each other. plate heat exchanger according to any one of claims 1 to 6, characterized in that it is.
前記第1伝熱プレート、前記第2伝熱プレート、および前記第3伝熱プレートはそれぞれ、
前記プレート本体の前記軸長方向の前記一端側から前記他端側に向けて先細りとなるような∨字型となるヘリンボーン形状のヘリンボーン凹凸部を備え、
前記突部は、前記ヘリンボーン凹凸部を分割するよう配置してある
ことを特徴とする請求項1〜7の何れか1項に記載のプレート式熱交換器。
The first heat transfer plate, the second heat transfer plate, and the third heat transfer plate are respectively
A herringbone concavo-convex portion of a herringbone shape that is tapered from the one end side in the axial direction of the plate body toward the other end side;
The plate type heat exchanger according to any one of claims 1 to 7, wherein the protrusion is arranged so as to divide the herringbone concavo-convex portion.
前記複数の伝熱プレートは、前記第3伝熱プレートとの間に第3積層空間を設けて積層され、前記熱交換を行う第4伝熱プレートを更に備え、
前記第3伝熱プレートの前記一端側と前記第4伝熱プレートの前記一端側とが接するよう積層してある
ことを特徴とする請求項1〜8の何れか1項に記載のプレート式熱交換器。
The plurality of heat transfer plates further include a fourth heat transfer plate that is stacked with a third stacked space between the third heat transfer plate and performs the heat exchange,
The plate-type heat according to any one of claims 1 to 8, wherein the one end side of the third heat transfer plate and the one end side of the fourth heat transfer plate are in contact with each other. Exchanger.
前記第1媒体用流入部の開口面積と、前記第1媒体用流出部の開口面積は、前記第2媒体用流入部の開口面積と、前記第2媒体用流出部の開口面積よりも小さい
ことを特徴とする請求項1〜9の何れか1項に記載のプレート式熱交換器。
The opening area of the first medium inflow portion and the opening area of the first medium outflow portion are smaller than the opening area of the second medium inflow portion and the opening area of the second medium outflow portion. The plate heat exchanger according to any one of claims 1 to 9, wherein
JP2018528358A 2017-04-27 2017-12-13 Plate heat exchanger Active JP6479271B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017088287 2017-04-27
JP2017088287 2017-04-27
PCT/JP2017/044707 WO2018198420A1 (en) 2017-04-27 2017-12-13 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JP6479271B1 true JP6479271B1 (en) 2019-03-06
JPWO2018198420A1 JPWO2018198420A1 (en) 2019-06-27

Family

ID=63918866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018528358A Active JP6479271B1 (en) 2017-04-27 2017-12-13 Plate heat exchanger

Country Status (5)

Country Link
US (1) US20200041218A1 (en)
EP (1) EP3598053B1 (en)
JP (1) JP6479271B1 (en)
CN (1) CN110537070B (en)
WO (1) WO2018198420A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111735070B (en) * 2020-06-29 2022-07-15 浙江澄源环保科技有限公司 Catalytic combustion equipment and catalytic combustion method for VOC gas
CN115183611B (en) * 2022-09-08 2022-11-18 中国核动力研究设计院 Heat exchange component

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4612688Y1 (en) * 1968-01-20 1971-05-06
JPS51106960U (en) * 1975-02-26 1976-08-26
JPS5411552A (en) * 1977-06-27 1979-01-27 Hisaka Works Ltd Plate heat exchanger
DE19547185A1 (en) * 1995-12-16 1997-06-19 Behr Gmbh & Co Plate heat exchanger for oil cooler of internal combustion engine
JP2006064281A (en) * 2004-08-26 2006-03-09 Hisaka Works Ltd Plate type heat exchanger
JP2006183969A (en) * 2004-12-28 2006-07-13 Mahle Filter Systems Japan Corp Heat-exchange core of stacked oil cooler
JP2011220643A (en) * 2010-04-13 2011-11-04 Tokyo Roki Co Ltd Oil cooler
JP2012067940A (en) * 2010-09-21 2012-04-05 Hisaka Works Ltd Plate heat exchanger
JP2013076523A (en) * 2011-09-30 2013-04-25 T Rad Co Ltd Laminated type heat exchanger
JP2013130300A (en) * 2011-12-20 2013-07-04 T Rad Co Ltd Stacked heat exchanger
CN104792199A (en) * 2015-04-23 2015-07-22 山东大学 Plate heat exchanger achieving different flow amounts of heat exchange fluid

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3212350B2 (en) 1992-03-30 2001-09-25 株式会社日阪製作所 Plate heat exchanger
SE470339B (en) * 1992-06-12 1994-01-24 Alfa Laval Thermal Flat heat exchangers for liquids with different flows
JP3658677B2 (en) * 1999-02-18 2005-06-08 株式会社日立製作所 Plate heat exchanger and refrigeration system
CN2821502Y (en) * 2005-08-03 2006-09-27 胡金良 Plate type heat exchanger
JP2009186142A (en) 2008-02-08 2009-08-20 Mac:Kk Brazed plate type heat exchanger
JP5416451B2 (en) * 2008-08-01 2014-02-12 福伸電機株式会社 Plate heat exchanger
JP5106453B2 (en) * 2009-03-18 2012-12-26 三菱電機株式会社 Plate heat exchanger and refrigeration air conditioner
JP5264792B2 (en) 2010-01-25 2013-08-14 三菱電機株式会社 Plate heat exchanger
KR101808697B1 (en) * 2011-09-02 2017-12-14 갑을오토텍 주식회사 Plate type heat exchanger having barrier rib
CN103424024A (en) * 2012-05-15 2013-12-04 杭州三花研究院有限公司 Plate heat exchanger and plate thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4612688Y1 (en) * 1968-01-20 1971-05-06
JPS51106960U (en) * 1975-02-26 1976-08-26
JPS5411552A (en) * 1977-06-27 1979-01-27 Hisaka Works Ltd Plate heat exchanger
DE19547185A1 (en) * 1995-12-16 1997-06-19 Behr Gmbh & Co Plate heat exchanger for oil cooler of internal combustion engine
JP2006064281A (en) * 2004-08-26 2006-03-09 Hisaka Works Ltd Plate type heat exchanger
JP2006183969A (en) * 2004-12-28 2006-07-13 Mahle Filter Systems Japan Corp Heat-exchange core of stacked oil cooler
JP2011220643A (en) * 2010-04-13 2011-11-04 Tokyo Roki Co Ltd Oil cooler
JP2012067940A (en) * 2010-09-21 2012-04-05 Hisaka Works Ltd Plate heat exchanger
JP2013076523A (en) * 2011-09-30 2013-04-25 T Rad Co Ltd Laminated type heat exchanger
JP2013130300A (en) * 2011-12-20 2013-07-04 T Rad Co Ltd Stacked heat exchanger
CN104792199A (en) * 2015-04-23 2015-07-22 山东大学 Plate heat exchanger achieving different flow amounts of heat exchange fluid

Also Published As

Publication number Publication date
CN110537070A (en) 2019-12-03
US20200041218A1 (en) 2020-02-06
EP3598053B1 (en) 2022-05-11
CN110537070B (en) 2021-01-12
EP3598053A1 (en) 2020-01-22
EP3598053A4 (en) 2020-03-18
WO2018198420A1 (en) 2018-11-01
JPWO2018198420A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
US9618280B2 (en) Plate-type heat exchanger, particularly for motor vehicles
JP6770200B2 (en) Heat exchanger and heat exchanger
JP5487423B2 (en) Heat exchanger
JP6871365B2 (en) Heat exchanger and heat exchanger
WO2017169410A1 (en) Heat exchanger
JP6479271B1 (en) Plate heat exchanger
JP6562918B2 (en) Heat exchange plate with various pitches
JP2017180857A (en) Heat exchanger
JP4504092B2 (en) Plate heat exchanger
KR101693245B1 (en) Heat Exchanger
JP2010121925A (en) Heat exchanger
JP2003185375A (en) Plate-type heat exchanger
JP2012122687A (en) Plate type heat exchanger
JP5814163B2 (en) Cooler
JP6013208B2 (en) Catalytic reactor
JP2013130300A (en) Stacked heat exchanger
JP5411304B2 (en) Plate heat exchanger
WO2017195588A1 (en) Stack type heat exchanger
JP7552427B2 (en) Heat exchanger
JP2019066054A (en) Heat exchanger
JP2016130625A (en) Heat exchanger and metal thin plate for the same
JP2005083623A (en) Heat exchange unit and multilayer heat exchanger
JP2004293880A (en) Stacked heat exchanger
JP7505400B2 (en) Heat exchanger
JP6720890B2 (en) Stacked heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180531

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180531

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6479271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250