JP3212350B2 - Plate heat exchanger - Google Patents

Plate heat exchanger

Info

Publication number
JP3212350B2
JP3212350B2 JP07471992A JP7471992A JP3212350B2 JP 3212350 B2 JP3212350 B2 JP 3212350B2 JP 07471992 A JP07471992 A JP 07471992A JP 7471992 A JP7471992 A JP 7471992A JP 3212350 B2 JP3212350 B2 JP 3212350B2
Authority
JP
Japan
Prior art keywords
heat transfer
plate
transfer plate
upside down
turned upside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07471992A
Other languages
Japanese (ja)
Other versions
JPH05280883A (en
Inventor
宣夫 駒野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP07471992A priority Critical patent/JP3212350B2/en
Publication of JPH05280883A publication Critical patent/JPH05280883A/en
Application granted granted Critical
Publication of JP3212350B2 publication Critical patent/JP3212350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プレート式熱交換器に
関するものであり、詳細には、熱交換媒体の種類や流動
特性に応じて伝熱面間の対向間隔を広狭自在に設定し得
るように構成したプレート式熱交換器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate-type heat exchanger, and more particularly, the distance between opposed heat transfer surfaces can be set to be wide and narrow according to the type and flow characteristics of a heat exchange medium. The present invention relates to a plate heat exchanger configured as described above.

【0002】[0002]

【従来の技術】複数枚の伝熱プレートを、ガスケットの
介在下に重ね合わせたプレート式熱交換器が市販されて
いる。例えば、特公平2− 33959号公報には熱交換媒体
の流量が異なる場合、媒体流路の間隙を減少させるた
め、伝熱面の波形の当接部を凹状にしたプレート式熱交
換器が提案されている。
2. Description of the Related Art A plate-type heat exchanger in which a plurality of heat transfer plates are stacked with a gasket interposed therebetween is commercially available. For example, Japanese Patent Publication No. 2-33959 proposes a plate-type heat exchanger in which the wave-contact portion of the heat transfer surface is concave in order to reduce the gap in the medium flow path when the flow rate of the heat exchange medium is different. Have been.

【0003】この伝熱プレートはプレス加工によって成
形されており、図6、図7に示すように、プレート
(1)には突条(2)と溝(3)から成る波形状が形成
されている。
This heat transfer plate is formed by press working. As shown in FIGS. 6 and 7, the plate (1) has a corrugated shape formed by ridges (2) and grooves (3). I have.

【0004】この突条(2)には隣接のプレート(4)
が当接する面域を形成するため凹部(5)が設けられて
いる。
The ridge (2) has an adjacent plate (4)
A recess (5) is provided in order to form a surface area where the abutment comes into contact.

【0005】このように凹部(5)を有したプレート
(1)と、凹部を有していないプレート(4)を交互に
積層すると、プレート(4)の波形溝(6)はプレート
(1)の凹部(5)と当接する。従ってこの2枚のプレ
ート(1)と(4)間の通路間隙(7)は減少するが他
方の通路間隙(8)は部分的には減少するが、その量
は、比較的小さい。
[0005] When the plate (1) having the concave portion (5) and the plate (4) having no concave portion are alternately stacked, the corrugated groove (6) of the plate (4) becomes the plate (1). (5). Thus, the passage gap (7) between the two plates (1) and (4) is reduced while the other passage gap (8) is partially reduced, but the amount is relatively small.

【0006】このような構成のプレート式熱交換器にお
いて、流量の多い媒体は広い間隙(8)へ流し、流量の
少ない媒体は狭い間隙(7)に流している。
In the plate heat exchanger having such a configuration, a medium having a large flow rate flows into a wide gap (8), and a medium having a small flow rate flows into a narrow gap (7).

【0007】[0007]

【発明が解決しようとする課題】図6、図7に例示する
従来方式では、突条(2)に隣接プレート(4)の当接
する面域に凹部(5)を有したプレート(1)と、凹部
(5)を有していないプレート(4)を交互に積層して
プレート式熱交換器を構成しているため、プレート
(1)、(4)のプレス加工に際しては2種類のプレス
用金型が必要となる。このため、プレス用金型の製作費
が高くなり、プレス加工時には金型交換のため、生産性
が低下する。
In the conventional system illustrated in FIGS. 6 and 7, a plate (1) having a recess (5) in a surface area where an adjacent plate (4) abuts on a ridge (2) is used. Since the plate heat exchanger is constructed by alternately stacking plates (4) having no concave portion (5), two types of presses are used for pressing the plates (1) and (4). A mold is required. For this reason, the manufacturing cost of the press die increases, and the productivity is reduced because the die is replaced during press working.

【0008】更に詳細に説明すると、プレート式熱交換
器の使用に際しては、熱交換を行なう2種類の媒体の間
で、流動条件や温度などに大きな差がある場合には、各
々の流体の特性に合せて、流路間隙を異にするプレート
の積層構造が得られるように伝熱プレートの積層条件を
調節することが望ましい。
More specifically, when a plate type heat exchanger is used, if there is a large difference in flow conditions, temperature, etc. between the two types of media that perform heat exchange, the characteristics of each fluid are changed. It is desirable to adjust the lamination conditions of the heat transfer plate so as to obtain a lamination structure of plates having different flow path gaps.

【0009】しかし図6、図7に示す従来型のプレート
式熱交換器では、媒体通路間隙は通常のものと少し狭い
ものの2種類の組合せしかないので、媒体流量差の大き
い場合には、十分な性能を発揮させることが困難であ
る。
However, in the conventional plate type heat exchangers shown in FIGS. 6 and 7, the medium passage gap has only two combinations, that is, a normal one and a slightly narrow one. It is difficult to exhibit excellent performance.

【0010】[0010]

【課題を解決するための手段】上記課題の解決手段とし
て本発明は、伝熱面に乱流発生用の波形部を形成してな
る伝熱プレートを、ガスケットを介して複数枚重ね合わ
せることによって構成されたプレート式熱交換器におい
て、上記伝熱面の周縁部に設けられたガスケットの支持
面を、当該伝熱プレートの成形深さの略中央に位置させ
ると共に、上記伝熱面上で当該伝熱プレートの幅方向か
ら見て非対称の位置に、上記乱流発生用の波形部よりも
大きな高さを有するビードを配設し、かつ、上記複数枚
の伝熱プレートの内、特定のものをこの伝熱プレートと
同一の平面上で上下反転させるか、あるいは上記伝熱面
上で互いに直交する横軸または縦軸を回転中心として表
裏反転させ、この上下反転あるいは表裏反転された伝熱
プレートと、上下反転あるいは表裏反転されておらない
残余の伝熱プレートとを所定の積層順序で重ね合わせる
ことによって、隣接する伝熱プレートの間で熱交換媒体
の流路の高さを広狭自在に調節し得るように構成したこ
とを特徴とするプレート式熱交換器を提供するものであ
る。
According to the present invention, as a means for solving the above-mentioned problems, a plurality of heat transfer plates each having a heat transfer surface and a corrugated portion for generating a turbulent flow are stacked via a gasket. In the configured plate heat exchanger, the support surface of the gasket provided at the peripheral portion of the heat transfer surface is positioned substantially at the center of the forming depth of the heat transfer plate, and the heat transfer plate is disposed on the heat transfer surface. A bead having a height larger than the turbulent flow generating corrugated portion is disposed at an asymmetric position when viewed from the width direction of the heat transfer plate, and a specific one of the plurality of heat transfer plates is provided. This heat transfer plate is turned upside down on the same plane as the heat transfer plate, or the heat transfer plate is turned upside down or upside down on the heat transfer surface with the horizontal axis or vertical axis orthogonal to each other as the center of rotation. And up and down By stacking the remaining heat transfer plates that have not been inverted or turned upside down in a predetermined stacking order, the height of the flow path of the heat exchange medium between the adjacent heat transfer plates can be adjusted in a wide and narrow manner. The present invention provides a plate heat exchanger characterized by having the above structure.

【0011】[0011]

【作用】プレート式熱交換器を構成する複数枚の伝熱プ
レートの内、特定のものを、この伝熱プレートと同一の
平面上で180゜上下反転させるか、あるいは伝熱面上で互
いに直交する横軸または縦軸を回転中心として180゜表裏
反転させ、この上下反転あるいは表裏反転された伝熱プ
レートを、上下反転あるいは表裏反転されておらない残
余の伝熱プレートとを所定の積層順序で重ね合わせるこ
とによって、隣接する伝熱プレートの間で熱交換媒体の
流路の高さを広狭自在に多段階に変化させる。
[Function] Of a plurality of heat transfer plates constituting a plate type heat exchanger, a specific one is turned upside down by 180 ° on the same plane as the heat transfer plate, or orthogonal to each other on the heat transfer surface. 180 ° upside down with the horizontal axis or vertical axis as the center of rotation, and the heat transfer plate that is turned upside down or turned upside down is combined with the remaining heat transfer plate that is not turned upside down or turned upside down in a predetermined stacking order. By overlapping, the height of the flow path of the heat exchange medium between the adjacent heat transfer plates is changed in multiple stages so as to be wide and narrow.

【0012】[0012]

【実施例】以下、図1乃至図5を参照して本発明に係る
プレート式熱交換器の積層構造を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A laminated structure of a plate heat exchanger according to the present invention will be described below with reference to FIGS.

【0013】プレート式熱交換器(10)は、伝熱面(1
1)に乱流発生用の斜めに走る波形部(12)を形成し、
コーナー部分に通液口(3A)(3B)(3C)(3
D)を開口させた伝熱プレート(20)を、ガスケット
(16)を介して複数枚、所定の順序に従って重ね合わせ
ることによって構成されている。
The plate heat exchanger (10) has a heat transfer surface (1).
An obliquely running wavy part (12) for turbulence generation is formed in 1),
Through the corners (3A) (3B) (3C) (3
A plurality of heat transfer plates (20) each having an opening D) are stacked via a gasket (16) in a predetermined order.

【0014】それぞれの伝熱プレート(20)において、
伝熱面(11)の周縁部にはガスケット(16)の支持面
(15)が設けられている。この支持面(15)は何れの伝
熱プレート(20)においても図2の最上部に代表して図
示するように、成形深さ(H)の略中央、即ちH/2の
高さの位置にガスケット(16)の支持部位が位置するよ
うにプレス加工されている。そして、上記伝熱面(11)
上で当該伝熱プレート(20)のY軸から見て非対称の位
置に、上記乱流発生用の波形部(12)よりも大きな高さ
を有するビード(14A)(14B)を平行に配設してい
る。図示する具体例では1枚の伝熱プレート(20)の表
面側に互いに平行に整列した2本のビード(14A)(14
B)が設けられているが、これに限定されるものではな
く、伝熱プレート(20)の幅方向から眺めて非対称の位
置に設けられている限り、熱交換条件、あるいは、熱交
換媒体の流動特性の変化に応じてビードの配設本数は3
本以上に増加させることが可能である。
In each heat transfer plate (20),
A support surface (15) for the gasket (16) is provided on the periphery of the heat transfer surface (11). This support surface (15) is located substantially at the center of the molding depth (H), that is, at the height of H / 2, as shown on the uppermost part of FIG. It is pressed so that the support portion of the gasket (16) is located at the bottom. And the heat transfer surface (11)
Above, the beads (14A) (14B) having a height larger than that of the turbulence generating corrugated portion (12) are arranged in parallel at the asymmetric position of the heat transfer plate (20) as viewed from the Y axis. are doing. In the example shown, two beads (14A) (14A) (14A) aligned in parallel with each other are arranged on the surface side of one heat transfer plate (20).
B) is provided, but is not limited thereto, as long as it is provided at an asymmetrical position when viewed from the width direction of the heat transfer plate (20), the heat exchange conditions or the heat exchange medium The number of beads to be arranged is 3 according to the change of flow characteristics
It is possible to increase more than books.

【0015】伝熱プレート(20)の積層に際しては、図
2の(A)(B)(C)(D)に示すように、熱交換媒
体の流量や温度あるいは流動特性の変化に応じて隣接す
る伝熱プレート間で流路の高さを変化させる。
When laminating the heat transfer plates (20), as shown in FIGS. 2A, 2B, 2C, and 2D, adjacent ones of the heat transfer plates 20 are changed according to changes in the flow rate, temperature, or flow characteristics of the heat exchange medium. The height of the flow path is changed between the heat transfer plates.

【0016】図2の(A)は、伝熱面(11)の表面側お
よびガスケット(16)の支持面(15)を上向きにした伝
熱プレート(20)の縦断面図である。この状態では、乱
流発生用の波形部(12)の上端と、間隔保持用のビード
(14A)(14B)の上端は、伝熱面(11)から上向きに
突出している。
FIG. 2A is a longitudinal sectional view of a heat transfer plate (20) in which the surface side of the heat transfer surface (11) and the support surface (15) of the gasket (16) face upward. In this state, the upper end of the turbulent flow generating wave portion (12) and the upper end of the spacing bead (14A) (14B) protrude upward from the heat transfer surface (11).

【0017】これに対して図2の(B)は、伝熱面(1
1)の表面側およびガスケット(16)の支持面(15)を
上向きにしたまま、伝熱面(11)を含む平面上で180゜上
下反転させた伝熱プレート(20)の縦断面図である。こ
の状態では、波形部(12)およびビード(14A)(14
B)の位置が、図2の(A)に示すものと左右反対にな
っている。
On the other hand, FIG. 2B shows a heat transfer surface (1).
With the front side of 1) and the support surface (15) of the gasket (16) facing upward, the heat transfer plate (20) is turned upside down by 180 ° on a plane including the heat transfer surface (11). is there. In this state, the corrugated portion (12) and the bead (14A) (14
The position of B) is left and right opposite to that shown in FIG.

【0018】また、図2の(C)は、伝熱面(11)の表
面側およびガスケット(16)の支持面(15)を上向きに
した状態から伝熱プレート(20)を縦軸(Y軸)を回転
中心として180゜回転させることによって表裏面を反転さ
せた伝熱プレート(20)の縦断面図である。この状態で
は、波形部(12)およびビード(14A)(14B)の頂点
の位置が図2の(B)に示すものと上下反対になってい
る。
FIG. 2C shows a state in which the heat transfer plate (20) is moved along the vertical axis (Y) with the heat transfer surface (11) and the support surface (15) of the gasket (16) facing upward. It is a longitudinal cross-sectional view of the heat transfer plate (20) in which the front and back surfaces are inverted by rotating 180 ° about the axis). In this state, the vertices of the corrugated portion (12) and the beads (14A) (14B) are upside down from those shown in FIG. 2 (B).

【0019】最後に、図2の(D)は、伝熱面(11)の
表面側およびガスケット(16)の支持面(15)を上向き
にした状態から伝熱プレート(20)を横軸(X軸)を回
転中心として180゜回転させることによって表裏面を反転
させた伝熱プレート(20)の縦断面図である。この状態
では、波形部(12)およびビード(14A)(14B)の頂
点の位置が図2の(A)に示すものと上下反対になって
いる。
Finally, FIG. 2 (D) shows the heat transfer plate (20) with the heat transfer surface (11) facing upward and the support surface (15) of the gasket (16) facing upward. It is a longitudinal cross-sectional view of the heat transfer plate (20) in which the front and back surfaces are inverted by rotating 180 ° about the X axis) as a rotation center. In this state, the vertices of the corrugated portion (12) and the beads (14A) (14B) are upside down from those shown in FIG. 2 (A).

【0020】説明の便宜上、図2の(A)に示す伝熱プ
レートを(20A)、図2の(B)に示す伝熱プレートを
(20B)、図2の(C)に示す伝熱プレートを(20
C)、図2の(D)に示す伝熱プレートを(20D)と呼
称し、以下、図3乃至図5に基いてプレート式熱交換器
(10)の積層順序と熱交換媒体の流路の高さの調節要領
を説明する。
For convenience of explanation, the heat transfer plate shown in FIG. 2A is (20A), the heat transfer plate shown in FIG. 2B is (20B), and the heat transfer plate shown in FIG. To (20
C), the heat transfer plate shown in (D) of FIG. 2 is referred to as (20D). Hereinafter, the stacking order of the plate heat exchanger (10) and the flow path of the heat exchange medium will be described with reference to FIGS. The height adjustment procedure will be described.

【0021】第1の具体例においては、図3に示すよう
にガスケット(16)を介して伝熱プレート(20A)の上
に伝熱プレート(20B)を重ね合わせ、その上に伝熱プ
レート(20A)を重ね合わせる積層動作を繰返す。対向
する伝熱プレート(20A)と(20B)の間でビード(1
4)と波形部(12)が当接することによって、これらの
伝熱プレートの間には、中間的な対向間隔(M)を具え
た熱交換媒体の流路が形成される。
In the first embodiment, as shown in FIG. 3, a heat transfer plate (20B) is superimposed on a heat transfer plate (20A) via a gasket (16), and a heat transfer plate (20) is placed on the heat transfer plate (20B). 20A) is repeated. Beads (1) between opposing heat transfer plates (20A) and (20B)
The contact of the corrugated portion (4) with the corrugated portion (12) forms a flow path for the heat exchange medium having an intermediate facing space (M) between these heat transfer plates.

【0022】また、第2の具体例においては、図4に示
すようにガスケット(16)を介して伝熱プレート(20
D)の上に伝熱プレート(20A)を重ね合わせる積層動
作を繰返す。この積層順序を採用した場合には、ビード
(14A)(14A)およびビード(14B)(14B)を当接
させた伝熱プレート(20A)と(20D)の間で波形部
(12)と(12)との対向間隔が最大(L)となり広い熱
交換媒体の流路が形成される。また隣の間隔、すなわち
伝熱プレート(20D)と(20A)の間では、波形部(1
2)の底面と上面を当接間隔になり最小間隔(S)を具
えた熱交換媒体の流路が形成される。
In the second embodiment, as shown in FIG. 4, a heat transfer plate (20) is inserted through a gasket (16).
D) The stacking operation of stacking the heat transfer plate (20A) on the heat transfer plate is repeated. When this stacking order is adopted, the corrugated portions (12) and (20) are placed between the heat transfer plates (20A) and (20D) with which the beads (14A) (14A) and the beads (14B) (14B) are in contact. The distance (12) opposed to (12) becomes the maximum (L), and a wide flow path of the heat exchange medium is formed. In the adjacent space, that is, between the heat transfer plates (20D) and (20A), the corrugated portion (1
The bottom surface and the top surface of 2) are in contact with each other, and a heat exchange medium flow path having a minimum distance (S) is formed.

【0023】一方、第3の具体例においては、図5に示
すようにガスケット(16)を介して伝熱プレート(20
A)の上に伝熱プレート(20D)、(20A)、(20B)
および(20A)を順次重ね合わせる積層動作を繰返す。
対向配置された2枚の伝熱プレート(20A)と(20B)
の間、および伝熱プレート(20B)と(20A)の間でビ
ード(14)と波形部(12)を当接させることによって、
これらの伝熱プレートの間には、中間的な対向間隔
(M)を具えた熱交換媒体の流路が形成される。また、
伝熱プレート(20A)と(20D)の間で波形部(12)の
底面と上面同士を当接させることによって、これらの伝
熱プレートの間には小さな対向間隔(S)を具えた熱交
換媒体の流路が形成される。一方、伝熱プレート(20
D)と(20A)の間でビード(14A)(14A)およびビ
ード(14B)(14B)を当接した間には大きな対向間隔
(L)を具えた熱交換媒体の流路が形成される。このよ
うにプレートの積層順序とそれに対応したガスケットの
取付けにより、媒体流量差に適した流路構成を行うこと
ができる。
On the other hand, in the third specific example, as shown in FIG. 5, a heat transfer plate (20) is inserted through a gasket (16).
Heat transfer plate (20D), (20A), (20B) on A)
And (20A) are sequentially repeated.
Two heat transfer plates (20A) and (20B) arranged opposite to each other
By bringing the bead (14) and the corrugated portion (12) into contact with each other between the heat transfer plates (20B) and (20A),
Between these heat transfer plates, a flow path for the heat exchange medium having an intermediate facing distance (M) is formed. Also,
By bringing the bottom surface and the top surface of the corrugated portion (12) into contact with each other between the heat transfer plates (20A) and (20D), a heat exchange having a small opposing interval (S) is provided between these heat transfer plates. A medium flow path is formed. Meanwhile, the heat transfer plate (20
Between D) and (20A), between the beads (14A) (14A) and the beads (14B) (14B), a flow path of the heat exchange medium having a large facing distance (L) is formed. . As described above, the flow path configuration suitable for the medium flow rate difference can be performed by the stacking order of the plates and the mounting of the gasket corresponding thereto.

【0024】[0024]

【発明の効果】本発明によれば、1枚の伝熱プレート
(20)の積層順序と上下反転および表裏反転状態を変化
させることによって、熱交換媒体の流路の大きさ、即
ち、対向配置された2枚の伝熱プレートの間の対向間隔
を最大値(L)から最小値(S)迄、多段階的に設定す
ることができる。従って、2種類の熱交換媒体の間に許
容限度を越える流量や粘度等の流動特性の差がある場合
にも、最適の流路寸法を選定することが可能となる。
According to the present invention, the size of the flow path of the heat exchange medium, that is, the facing arrangement, is changed by changing the stacking order of one heat transfer plate (20) and the upside-down and upside down states. The facing distance between the two heat transfer plates thus set can be set in multiple stages from the maximum value (L) to the minimum value (S). Therefore, even when there is a difference in flow characteristics such as a flow rate and a viscosity exceeding an allowable limit between the two types of heat exchange media, it is possible to select an optimal flow path size.

【0025】また、単一の伝熱プレート(20)とガスケ
ット(16)からプレート式熱交換器(10)を形成するこ
ができるから、従来装置のように2種類の伝熱プレート
(1)を使い分ける必要がなくなり、プレート式熱交換
器の組立工程の省力化と製造コストの節減に対して注目
すべき効果が発揮される。
Further, since the plate type heat exchanger (10) can be formed from a single heat transfer plate (20) and a gasket (16), two types of heat transfer plates (1) are used as in the conventional apparatus. It is no longer necessary to use differently, and a remarkable effect can be exerted on labor saving of the assembly process of the plate heat exchanger and reduction of the manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用する伝熱プレートの平面図FIG. 1 is a plan view of a heat transfer plate used in the present invention.

【図2】 (A)本発明に使用する伝熱プレートの第1の縦断面図 (B)本発明に使用する伝熱プレートの第2の縦断面図 (C)本発明に使用する伝熱プレートの第3の縦断面図 (D)本発明に使用する伝熱プレートの第4の縦断面図2A is a first longitudinal sectional view of a heat transfer plate used in the present invention. FIG. 2B is a second longitudinal sectional view of a heat transfer plate used in the present invention. FIG. 2C is a heat transfer plate used in the present invention. (D) Fourth longitudinal sectional view of a heat transfer plate used in the present invention

【図3】伝熱プレートの第1の積層形態を説明する縦断
面図
FIG. 3 is a longitudinal sectional view for explaining a first lamination form of the heat transfer plate.

【図4】伝熱プレートの第2の積層形態を説明する縦断
面図
FIG. 4 is a vertical cross-sectional view illustrating a second lamination form of the heat transfer plate.

【図5】伝熱プレートの第3の積層形態を説明する縦断
面図
FIG. 5 is a longitudinal sectional view illustrating a third lamination form of the heat transfer plate.

【図6】従来の2枚一組の伝熱プレートの一方の平面図FIG. 6 is a plan view of one of a pair of conventional heat transfer plates.

【図7】従来の伝熱プレートの積層部分縦断面図FIG. 7 is a longitudinal sectional view of a laminated portion of a conventional heat transfer plate.

【符号の説明】[Explanation of symbols]

10 プレート式熱交換器 11 伝熱面 12 波形部 14A ビード 14B ビード 15 ガスケットの支持面 16 ガスケット 20 伝熱プレート L 伝熱プレートの最大対向間隔 M 伝熱プレートの中間的な対向間隔 S 伝熱プレートの最小対向間隔 10 Plate heat exchanger 11 Heat transfer surface 12 Corrugated portion 14A bead 14B bead 15 Gasket support surface 16 Gasket 20 Heat transfer plate L Maximum distance between heat transfer plates M Intermediate distance between heat transfer plates S Heat transfer plate Minimum facing distance of

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 伝熱面に乱流発生用の波形部を形成して
なる伝熱プレートを、ガスケットを介して複数枚重ね合
わせることによって構成されたプレート式熱交換器にお
いて、 上記伝熱面の周縁部に設けられたガスケットの支持面
を、当該伝熱プレートの成形深さの中央に位置させると
共に、 上記伝熱面上で当該伝熱プレートの幅方向から見て非対
称の位置に、上記乱流発生用の波形部よりも大きな高さ
を有するビードを配設し、かつ、上記複数枚の伝熱プレ
ートの内、特定のものをこの伝熱プレートと同一の平面
上で上下反転させるか、あるいは上記伝熱面上で互いに
直交する横軸または縦軸を回転中心として表裏反転さ
せ、この上下反転あるいは表裏反転された伝熱プレート
と、上下反転あるいは表裏反転されておらない残余の伝
熱プレートとを所定の積層順序で重ね合わせることによ
って、隣接する伝熱プレートの間で熱交換媒体の流路の
高さを広狭自在に調節し得るように構成したことを特徴
とするプレート式熱交換器。
1. A plate type heat exchanger comprising a plurality of heat transfer plates each having a heat transfer surface and a corrugated portion for generating turbulent flow formed by laminating a plurality of heat transfer plates via a gasket. The support surface of the gasket provided on the peripheral edge of the heat transfer plate is positioned at the center of the molding depth of the heat transfer plate, and the heat transfer plate is positioned at an asymmetric position on the heat transfer surface as viewed from the width direction of the heat transfer plate. A bead having a height greater than the turbulence generating waveform portion is provided, and a specific one of the plurality of heat transfer plates is turned upside down on the same plane as the heat transfer plate. Alternatively, the heat transfer plate is turned upside down with the horizontal axis or vertical axis orthogonal to each other on the heat transfer surface as the center of rotation, and the heat transfer plate turned upside down or turned upside down, and the remaining heat transfer not turned upside down or turned upside down play A plate heat exchanger, wherein the height of the flow path of the heat exchange medium between adjacent heat transfer plates can be adjusted in a wide and narrow manner by superimposing the heat exchange media in a predetermined lamination order. .
JP07471992A 1992-03-30 1992-03-30 Plate heat exchanger Expired - Fee Related JP3212350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07471992A JP3212350B2 (en) 1992-03-30 1992-03-30 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07471992A JP3212350B2 (en) 1992-03-30 1992-03-30 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JPH05280883A JPH05280883A (en) 1993-10-29
JP3212350B2 true JP3212350B2 (en) 2001-09-25

Family

ID=13555314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07471992A Expired - Fee Related JP3212350B2 (en) 1992-03-30 1992-03-30 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP3212350B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260384A (en) * 1994-03-28 1995-10-13 Hisaka Works Ltd Plate type heat exchanger
JP3543992B2 (en) * 1994-03-28 2004-07-21 株式会社日阪製作所 Plate heat exchanger
JP3543993B2 (en) * 1994-03-28 2004-07-21 株式会社日阪製作所 Plate heat exchanger
JPH08101000A (en) * 1994-09-30 1996-04-16 Hisaka Works Ltd Plate-type heat exchanger
JP3654949B2 (en) * 1995-03-31 2005-06-02 株式会社日阪製作所 Plate structure of plate heat exchanger
GB2429054A (en) * 2005-07-29 2007-02-14 Howden Power Ltd A heating surface element
SE534918C2 (en) 2010-06-24 2012-02-14 Alfa Laval Corp Ab Heat exchanger plate and plate heat exchanger
EP3306253B1 (en) * 2016-10-07 2019-04-10 Alfa Laval Corporate AB Heat exchanging plate and heat exchanger
JP6322750B2 (en) * 2017-04-24 2018-05-09 株式会社日阪製作所 Plate heat exchanger
JP6479271B1 (en) 2017-04-27 2019-03-06 三菱電機株式会社 Plate heat exchanger
CN110662937B (en) * 2017-05-25 2021-05-14 株式会社日阪制作所 Plate heat exchanger
JP6799680B2 (en) * 2017-05-25 2020-12-16 株式会社日阪製作所 Plate heat exchanger
DE102018006461B4 (en) * 2018-08-10 2024-01-25 Eberhard Paul Heat exchangers with interlocking, acute-angled or pointed-roof-like boards
EP3734209A1 (en) * 2019-04-30 2020-11-04 Alfa Laval Corporate AB A plate heat exchanger for treatment of a feed, a plate for a plate heat exchanger for treatment of a feed, a gasket for use together with the heat exchanger plate and a method of producing a heat exchanger for treatment of a feed
WO2022201608A1 (en) * 2021-03-24 2022-09-29 NatureArchitects株式会社 Structure

Also Published As

Publication number Publication date
JPH05280883A (en) 1993-10-29

Similar Documents

Publication Publication Date Title
JP3212350B2 (en) Plate heat exchanger
JP3369170B2 (en) Plate heat exchanger
US4781248A (en) Plate heat exchanger
JP2753298B2 (en) Plate heat exchanger
CN101346598B (en) Means for plate heat exchanger
US5522462A (en) Plate heat exchanger
JP4584524B2 (en) Plate filler for use in heat transfer plates and plate heat exchangers
KR20070001819A (en) Heat exchange unit
JPH0233959B2 (en)
JPH0144959Y2 (en)
JPH0468556B2 (en)
JP2952261B2 (en) Plate heat exchanger
JP4462653B2 (en) Plate heat exchanger
JP3328329B2 (en) Plate heat exchanger plate
JP3543992B2 (en) Plate heat exchanger
KR900013278A (en) Heat exchanger and its manufacturing method
JPH0989482A (en) Plate-type heat exchanger
JP2001280887A (en) Plate type heat exchanger
CN112146484B (en) Plate heat exchanger
JP2002107084A (en) Plate-type heat exchanger
JPH01174895A (en) Plate type heat exchanger
JP3543993B2 (en) Plate heat exchanger
JP3805055B2 (en) Plate heat exchanger
JP2764045B2 (en) Method of manufacturing plate for heat exchanger
JPS5947615B2 (en) Method for manufacturing heat transfer plates and press mold for the same manufacturing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees